Responses to comments Provided by Referee 2
	General comments and overall evaluation: Bayesian statistics, based on probability theory, is a logical choice for model calibration; it provides parameter estimates by quantifying the uncertainties in the data and model structure. The authors employ Bayesian method to calibrate the Shuttleworth-Wallace model, using eddy-covariance evapotranspiration measurements and daily soil evaporation. The work is interesting but some technical aspects should be clarified and additional analyses should be carried out.

Authors’ response: Thanks very much for your positive comments.



	General Comments:

	1. In order to test model performances the authors split the dataset in two parts by taking alternate measurements and using one sub-dataset for model calibration and the other for model evaluation. The authors claim that the sub-datasets are independent, but for an independent validation of the model data from different site should be used. If that is not possible, model evaluation would be more rigorous if the first half of the data is used for calibration and the second half for model validation, i.e. defining the sub-dataset using subsequent measurements and not alternate measurements. Finally parameter estimates reported in Table 1 and Figure 4 should be obtained using the whole dataset, i.e. a new calibration should be carried out using all the available data.
Authors’ response: The same question has been proposed by Referee 3. In our revised paper, these sentences were changed as (Lines 323-326, Pages 15 and 16):

Since the primary interest in application of the S-W model was to reproduce the pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during the whole study period, we used all available data to construct the likelihood function (equation 25) and to obtain the posterior distribution of the parameters.



	2. Results from the Gelman and Rubin test should be reported at least in the text. By observing the marginal posterior distribution of parameter k1, k2 and k3 it seems that convergence was not reached.
Authors’ response: According to your valuable suggestion, the G-R test was reported in Appendix C. The figure below showed that the parameters tend to converge after 5000 iterations.
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Fig. B1 The evolution of GR diagnostic of convergence of MCMC. Four parallel chains with different initial values were used to calculate GR values.


	3. lines 318- 321. Sensitivity analysis are always conditional to the parameter space and the input data used in the analysis. I strongly suggest you to carry out a global sensitivity analysis (such as the Morris method) using the prior parameter ranges to understand which are the key parameters of the model in your case study.
Authors’ response: According to your valuable suggestion, the global sensitivity was conducted in Appendix A. The results indicated that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameter had almost no effect on the variability in model output (Fig. B2). 
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Fig. B2 The evolution of the first-order sensitivity indices.

	4. Which prior do you use? I suppose you were using a uniform prior with the minimum and maximum values of Table 1. Please, state it more clearly in the manuscript.
Authors’ response: The chose of prior distribution was stated as (Lines 252-253, Page 12):
, which are chosen as uniform distributions with specified allowable ranges (Table 1).



	5. Uncertainty in the data is really important when using a Bayesian approach. How did you define the measurement errors of equation 22?
Authors’ response: In our revised paper, the calculation of errors in equation 22 were stated as (Lines 271-284, Pages 13 and 14):
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We then used 
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	6. Why did you include 6 parameters in the calibration and not the whole parameter vector? And which values did you assign to the parameters not included in the calibration? Please provide the references.
Authors’ response: According to your suggestion, a global sensitivity analysis was conducted in our revised paper (Appendix C). The most sensitive parameters were selected to optimized. Other parameter (KA, Tamin, Tamax) were cited form previous studies, and the references were provided:

· in which
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is the extinction coefficient of light attenuation. It can be measured on site (see Sauer et al., 2007), and was set to be approximately 0.41 for spring maize (Mo et al., 2000).(Lines 208-210, Page 10)
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and are set at values of 0 and 40 oC (Harris et al., 2004) (Lines 231-233)


	7. Which parameter vector did you use to generate model outputs? You should use the maximum a posteriori parameter vector.
Authors’ response: The median value of the parameter vector was used to generate model output. 


	8. Bayesian statistics allows to quantify uncertainties. Was the calibration effective in reducing uncertainties of model predictions? The posterior uncertainty of simulated ET and E are not shown and discussed.
Authors’ response: Thanks for your valuable suggestions. The posterior uncertainty of simulated ET and E were presented in our revised paper. Please see Fig. 8 and Fig. 9. We also discussed in the paper:

· Also, the 95% posterior prediction intervals of simulated soil E was narrow. (Lines 433-434, Page 21);
· that the estimated daily ET generally fluctuated tightly with the measured values with relative narrow uncertainties (95% posterior predication intervals) (Lines 436-438, Page 21);
· However, there are 12 days during the study period (111 days) with observations beyond the upper bounder of the 95% posterior predication intervals (Fig. 8) (Lines 440-442, Page 21);
· simulated λET and E were comparable to the measurements with relatively narrow uncertainties (95% posterior predication intervals) (Lines 506-507, Page 24).


	9. The manuscript is relatively well written, but in my opinion the Results and discussion session should be slitted in two parts in order to provide more clear take-home messages.
Authors’ response: According to your suggestion, a Discussion section was added in our revised paper (Lines 281-548, Pages 23-26).



	Minor Comments:

	1. Abstract. Line: 31-33. “The posterior distributions…intervals.” This phrase is not clear what do you mean for well updated?
Authors’ response: This sentence was changed as (Lines 31-33, Page 2):
4 of the six main parameters were showed relatively larger uncertainty reductions (>50%), and their posterior distributions became approximately symmetric with distinctive modes

	2. Introduction. Line: 79-81. The main advantage of Bayesian method is that uncertainties can be properly quantified. Optimization algorithms can also be used to optimize parameters in the light of multiple data sources.
Authors’ response: According to your suggestion, the sentence was changed as (Lines 78-81, Page 4):

Secondly, as far as the parameterization method is concerned, abundant evidence has shown that the Bayesian method provides a powerful new tool to simultaneously optimize many or all model parameters against all available measurements, and to quantify the influences of uncertainties.  


	3. Materials and methods. Line: 106-107. Which dryness index was used. Line: 136. “Air temperature and relative humidity”: Air temperature, relative humidity Line: 199.“Eqns.(1)-(3) is calculated”: Eqns.(1)-(3) are calculated
Authors’ response: The sentence was changed as:

the dryness index according to the World Atals of Desertification (UNEP, 1992) is 15.9
Other errors have been corrected according to your suggestions.

	4. Line: 256-264. Which MCMC algorithm did you use? From the description it seems to be the Metropolis algorithm and not the Metropolis-Hastings.
Authors’ response: The detail of MCMC algorithm was presented in Appendix A. The M-H algorithm was used in our study. Because the prior distribution was selected as uniform distribution, the M-H algorithm was indeed the same as the Metropolis algorithm.

	5. Results and discussion Line: 359. “In this case, a good agreement ...”: A good agreement Line: “On the other hand, the diurnal variation”: On the other hand must go after on one hand.
Authors’ response: The words ‘On the other hand’ were deleted in our revised paper.


Appendix A

A.1 Global Sensitivity Analysis

To identify the key parameters that being responsible for most of the variability of the model outputs, a global sensitivity analysis were performed. Following Saltelli et al. (2008), the first-order sensitivity index 
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A.2 Monte Carlo Simulations

The Monte Carlo method was used to calculate 
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. The procedure are listed as below (Saltelli et al., 2010):

Step 1: 

     Generate two independent input parameter sampling matrices 
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     where 
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is the estimated value of model output; The matrices 
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are generated using the Latin Hypercube Sampling technique (Iman and Helton, 1988). 
A.3 Matlab Code for Global Sensitivity Analysis

function [A,B]=LHSsample(N,d,interval)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Using the Latin Hypercube Sampling (LHS)technique (Iman and Helton, 1988)
% to generate matrices A and B
% Authors   : Zhu Gaofeng
% Date      : March 19, 2014
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Description:
% N         :    number of sample 
% d         :    dimension of parameter vector
% Interval :   interval of prior distribution of paramter being d*2 matrix
% A         :    matrix A being N*d
% B         :    matrix B being N*d
interval=[interval;interval];
% Generates a LHS M1 containing N samples and 2*d dimension
M1=lhsdesign(N,2*d);
for j=1:size(M1,2)
    int=interval(j,:);
for i=1:size(M1,1) 
%transform to parameter space
        M(i,j)=unifinv(M1(i,j),int(1),int(2)); 
    end
end
A=M(:,1:d);             % the first d columns were designed to matrix A
B=M(:,d+1:end);        % the last d columns were designed to matrix B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
function LET=SWSA(rstmin,k1,k2,k3,b1,b2,Tamin,Tamax,KA,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
% calculate rss
thetas=0.45;    % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
% calculated rsc
F1=(eps+S)*(1055+k1)./(1055*(S+k1));       % S:short wave radiation W m-2
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
% S-W model
% specific heat capacity of the dry air in kJ/kg/K;
Cp=1.013;  
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;
D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp);
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras));
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
% Main Program

clc
clear
Nss=4000;                           % Sample numbers
% Prior parameter interval for rstmin, k1,k2,k3,b1,b2,Tamax,Tamin,KA
interval=[1 80
          0 500
          20 40
          0 .1
          4 15
          0 8
          0 5
          40 45
          .2 .8];
dem=size(interval,1); % dimension of parameter vector
% Generate matrices A and B using the LHS technique
[Am,Bm]=LHSsample(Nss,dem,interval);
% input meteorological data, Here we used the daily average data
data=[108.1539915   125.3973438 -3.675183507    0.871684028 13.78421875 64.39277778 844.5503472 17.07349201 26.71506701 2.832   256.97255   253.5320313];
% Variables
ET  =  data(1);          
% w m-2
Rn   =  data(2);          
% w m-2
G    =  data(3);          
% w m-2
u    =  data(4);          
% m s-1
Ta   =  data(5);          
% oC
RH   =  data(6)/100;      
% humidity 
P    =  data(7)/10;       
% kPa
SWC_2=  data(8)/100;     
% m3 m-3
SWC_r=  data(9)/100;     
% m3 m-3
LAI  =  data(10);         
% m2 m-2;
hc   =  data(11)/100;     % canopy height in m
z    =  3;              

% reference height in m
S    =  data(12);         
% solar radiation
% calcualte wind speed at canopy height
z0  =   0.13*hc;            % roughness lenght
d   =   0.67*hc;            % zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorologic varibles
lambda=2500.78-2.3601*Ta;     
% saturaed vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;           %the ratio between the mplecular weight of water vapor and air
gamma=Cp*P./(lambda*epsilong);
% calculate raa
k=0.41;                                         % von K¨¢rm¨¢n constant
% z0h=0.1*z0;                                     % roughness length to the heat flux in [m];
n=2.5;                                          % parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     % bare surface
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% calculate the sensitivity index
sa1=0;
sb1=0;
ss1=zeros(1,dem);
st1=zeros(1,dem);
AB=zeros(1,dem);
for j=1:Nss
    ETA=SWSA(Am(j,1),Am(j,2),Am(j,3),Am(j,4),Am(j,5),Am(j,6),Am(j,7),Am(j,8),Am(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    sa1=sa1+ETA;
    sb1=sb1+ETA^2;
    bfo(j,1)=sa1/j;
    VY(j,1)=sb1/j-bfo(j,1)^2;
    ETB=SWSA(Bm(j,1),Bm(j,2),Bm(j,3),Bm(j,4),Bm(j,5),Bm(j,6),Bm(j,7),Bm(j,8),Bm(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);  
    for i=1:dem
        AB=Am(j,:);
        AB(i)=Bm(j,i);        
        ETAB=SWSA(AB(1),AB(2),AB(3),AB(4),AB(5),AB(6),AB(7),AB(8),AB(9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
        ss1(i)=ETB*(ETAB-ETA)+ss1(i);
        Si(j,i)=ss1(i)/(j*VY(j,1));
        st1(i)=st1(i)+(ETA-ETAB)^2;
        ST(j,i)=st1(i)/(2*j*VY(j,1));
    end
end
% Create figure
figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
% Create axes
axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on');
box('on');
hold('all');
% Create multiple lines using matrix input to semilogy
semilogy1 = semilogy(Si);
set(semilogy1(1),'DisplayName','{\itr}_{STmin}');
set(semilogy1(2),'DisplayName','{\itK}_1');
set(semilogy1(3),'DisplayName','{\itK}_2');
set(semilogy1(4),'DisplayName','{\itK}_3');
set(semilogy1(5),'DisplayName','{\itb}_1');
set(semilogy1(6),'DisplayName','{\itb}_2');
set(semilogy1(7),'DisplayName','{\itT}_{min}');
set(semilogy1(8),'DisplayName','{\itT}_{max}');
set(semilogy1(9),'DisplayName','{\itK}_A');
% Create xlabel
xlabel('Simulation');
% Create ylabel
ylabel('{\itS}_{i}');
% Create legend
legend1 = legend(axes1,'show');
set(legend1,'Position',[0.7141 0.3258 0.1121 0.2881]);
% Create textbox
annotation(figure1,'textbox','String',{'August'},'FontSize',14,...
    'EdgeColor','none',...
    'Position',[0.1387 0.8208 0.393 0.1009],...
    'FitHeightToText',...
    'on');        
save Si
A.4 First-order sensitivity indices
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Fig. A1 The evolution of the first-order sensitivity indices.
Table A1 The first-order sensitivity index 
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 for different parameters

	Parameter
	Si (%)
	Order

	rSTmin
	54.3
	1

	k1
	4.2
	5

	k2
	8.5
	4

	k3
	0
	9

	b1
	21.9
	2

	b2
	10.4
	3

	Tamin
	0.3
	7

	Tamax
	0.12
	8

	KA
	2.84
	6


From Fig. A1 and Table A1, we can see that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameters with Si less than 5% had almost no effect on the variability in model output. In addition, we thought that some parameter such as KA (the extinction coefficient of light attenuation) has obviously physical meaning and should be measured directly on site (see Sauer et al., 2007). Thus, in our study, only six parameters were selected to be estimated in order to avoid equifinality or over-parameterization. 
Overall, the key parameters in the S-W model are rSTmin , b1 and b2 with the values of Si larger than 10%. Thus, proper estimations of these parameters have great influences in reducing the uncertainty on model simulation. 
A.5 Prior Uncertainty Quantification

To derive from that the prior predictive uncertainty, 4000 parameter vectors were sampled from the prior uniform distribution using Latin Hypercube Sampling (LHS) method. The results indicated that the both simulated daily (ET; mm d-1) and soil evaporation (E; mm day-1) showed larger uncertainties (Fig. C2). Thus, there is an urgent need to optimize the parameters based on available datasets.
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Fig. A2 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data.

Reference:

Iman, R.L., Helton, J.C.: An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Analysis 8(1): 71-90, 1988.
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259-270, 2010.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global  Sensitivity  Analysis:  The  Primer.  John  Wiley  &  Sons, Ltd. 2008.  
Sauer, T.J., Singer J.W., Prueger, J.H., DeSutter, T.M., Hatfield, J.L.: Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agric. For. Meteor., 145, 206-214, 2007.

Appendix C

C.1 Convergence of MCMC
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where 
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is the number M-H parallel chains; 
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is the ith component of the parameter vector 
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; 
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B

 and 
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W

 denotes the between and within-run variances; and 
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GR

 is the Gelman-Rubin (G-R) diagnostic of convergence of MCMC (Gelman and Rubin, 1992).

The evolution of GR diagnostic of convergence of MCMC was shown in Fig. C1. We can see that the GR values for all parameters tended to be less than 1.1 after 5000 iteration. 
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel chains with different initial values were used to calculate GR values.
B.2 Matlab Code 

clc
clear
load Chain 
% Chain is the matrix than contain N running length, K parallel chains
% it is a N*K matrix for parameter ci 
[N,K]=size(Chain); 
for k=1:K
    ss=0;
    for n=1:N
        ss=ss+Chain(n,k);
        cwb(n,k)=ss/n;               %calculate c.,k
    end
end 
for n=1:N
    st=0;
    for k=1:K
        st=st+cwb(n,k);
    end
    cst(n)=st/K;                      % calculate c.,.
end   
for n=1:N
    sb=0;
    for k=1:K
        sb=sb+(cwb(n,k)-cst(n))^2;
    end
    B(n)=n*sb/(K-1);                   % calculated B
end
for k=1:K
    sw=0;
    for n=1:N
        sw=sw+(Chain(n,k)-cwb(n,k))^2;
        swc(n,k)=sw/(n-1);
    end
end
for n=1:N
    s1=0;
    for k=1:K
        s1=s1+swc(n,k);
    end
    W(n,1)=s1/K;                        % calculated W
end
for n=1:N
    GR(n,1)=sqrt((W(n)*(n-1)/n+B(n)/n)/W(n));
end
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