Responses to comments Provided by Referee 1

	Parameter optimization by MCMC method for the evapotranspiration model is one of the best solutions for improving the estimation accuracy. Zhu et al. did an interesting work on simultaneous assimilation of two different data streams: 30min evapotranspiration (ET) and daily evaporation (E), then finally gained the moderately good accordance between the simulations and the observations. The efforts proved a new feature for optimizing the canopy transpiration and soil evaporation parameters, and also brought the direction for further improvement of such ET model.
Authors’ response: Thanks very much for your positive comments.



	Main comments:

	1. However, this paper is suffering from insufficient explanation on the optimization scheme. 

Authors’ response: According to your valuable suggestions, a detail explanation of the optimization scheme were added in our revised paper (Lines 303-315, Pages 14-15):
It was well recognized that efficiency of the M-H algorithm was strongly effected by the proposal distribution function. To find an effective proposal distribution 
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, a test run of the M-H algorithm with 10, 000 simulations was made by using a uniform proposal distribution (Braswell et al., 2005):
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 from the initial test run (Xu et al., 2006). 
In addition, a detailed flowchart representing the basic scheme of the M-H algorithm and the Matlab code were presented in Appendix B.


	2. … and on the optimization of which parameter reduced the uncertainty on model simulation.
Authors’ response: We thought that it may be good to explain this problem by doing a parameter sensitivity analysis. Thus, in our revised paper a sensitivity analysis was conducted (see details in Appendix A). The results indicated that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameter had almost no effect on the variability in model output. We have stated it in our revised paper (Lines 374-381, Page 18):

The global sensitivity analysis with the first-order impact ratio (FOIR) values (Appendix C) reveal the importance of input parameters in affecting total ecosystem evapotranspiration. The results indicated that total ET responded sensitively to 
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 with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%, respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting that the variability in these parameters had almost no effect on the variability in model output.   


	3. and on how individual measurement data of two data steams improved your model simulation.
Authors’ response: According to your suggestion, two different assimilation schemes were conducted to evaluated on how individual measurement data of two data steams improved your model simulation. The two assimilation schemes were: (1) simultaneous assimilation all data sets including half-hourly ET (λET; W m-2) and daily soil evaporation (E; mm d-1); (2) only assimilation half-hourly ET (λET; W m-2). The detail comparisons between the two assimilation scheme were presented in Appendix B. 

	4. The authors miss the explanations on the parameter optimization processes and results. First, why don’t you optimize other parameters for better estimation? Your former paper, Zhu et al. (2013), used gmax q50, d50, kq, ka more than this study. Explain the reason why you chose 6 parameters for optimization in this study.
Authors’ response: Firstly, the canopy resistance model in this two studies are different. In our former paper, the Leuning’s type canopy resistance model (Leuning et al., 2008) were used. In this study, the Jarvis-type model (Jarvis, 1976) was used. Thus, the parameters were different for these two different model. 

Secondly, we thought that parameters with really physical or biological meanings (e.g., KA) should be measured in site (Sauer et al., 2007) rather than to be estimated. 

Third, to avoiding the equifinality, a global sensitivity analysis was conducted to reveal the most sensitive parameters in the S-W model. The first-order impact ratio (FOIR) values for  
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 were 54.3%, 21.9%, 10.4% and 8.5%, respectively. While FOIR values for some parameters (Tamin and Tamax) were less than 5% (see Appendix A). 

Thus, we chose 
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 as parameters, while other from literatures. 

References: 

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., 2008. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman–Monteith equation. Water Resour. Res. 44, W10419. http://dx.doi.org/10.1029/2007WR006562.

Jarvis, P.G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the ﬁeld. Philos. T. R. Soc. B., 273, 563-610.
Sauer, T.J., Singer, J.W., Prueger, J.H., DeSutter, T.M., Hatfield, J.L. 2007. Radiation balance and evaporation partitioning in a narrow-row soybean canopy. Agriculture and Forest Meteorology, 145, 206-214.


	5. Second, how did you decide the measurement error variance, σ?
Authors’ response: In our revised paper, the method to determine the error variance were given as (Lines 271-284, Pages 13-14): 
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 is the same over the observation time for the ith data set (Braswell et al., 2005). Traditionally, 
[image: image26.wmf]i

s

 can be included into the analysis explicitly (i.e., assuming 
[image: image27.wmf]i

s

 is uniform over 
[image: image28.wmf]log

i

s

; Gelman et al., 1995) and treated as one the model parameters, which yields a complete posterior distribution of 
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. However, this method artificially increased the parameter dimension of the problem and may result in unreasonable estimations of the parameter values (Kavetski et al., 2006). In this study, 
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 was estimated by using the analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find the value of 
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We then used 
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	6. Third, the arithmetic mean values from posterior parameter probability density were picked up as the optimized parameter numbers in this study. However, I think that the median values should be used for them although the mean and median would be the same if there is a perfect Gaussian probability distribution. However, normally it is not the case. So you should take the median value for the optimized parameter number.
Authors’ response: According to your valuable suggestion, the median value was used as the optimized parameter (Lines 340-342, in Page 16):

, 
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is the simulation which was calculated using the posterior median parameter values, and other parameter vectors selected from the parameter chains generated by the MCMC iteration (van Oijen et al., 2013). 


	7. Fourth, you compare the range of posterior parameter values to those of other posterior parameter values. But, if you like to inter-compare the relative influence by each parameter optimization on reducing total ET error, you have to use the relative range of parameter values, by dividing the absolute parameter value range by posterior/prior parameter uncertainty value.
Authors’ response: According to your suggestion, relative uncertainty reduction was added in our revised paper (Lines 370-372, Page 18):
Parameters 
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	8. This study assimilated daily E in addition to 30min ET, which is already used in your previous study on the Qinghai Tibetan Plateau (Zhu et al., 2013). This is a good originality of this study. So I like to know how the estimation accuracy will change if you optimize single data (ET or E), and how the accuracy on E estimation is if only ET is assimilated, and vice versa.
Authors’ response: To clearly investigate this interesting question, we compared two different assimilation scheme: (1) simultaneous assimilation all data sets including half-hourly ET (λET; W m-2) and daily soil evaporation (E; mm d-1); (2) only assimilation half-hourly ET (λET; W m-2). (see Appendix B). Comparing with the two assimilation schemes, important differences occurred in estimates of the posterior distribution of parameters related to the soil surface resistance (
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 were obtained by Scheme 1. For example, the values of uncertainty reduction for 
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 in Scheme 1 (0.89 and 0.56, respectively) were higher than that in Scheme 2 (0.79 and 0.12, respectively). Thus, the daily soil evaporation data helped to well constrain estimates of 
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. In addition, the six calibrated parameters by Scheme 1 were not significantly inter-correlated with each other (correlation coefficients lower than 0.1), while for Scheme 2 the pairs 
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 tended to be constrained together with correlation coefficients being 0.84 and 0.32, respectively. 

Overall, the simulations (half-hourly 
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 and daily soil evaporation) of the S-W model optimized by using all data sets simultaneously were comparable to the measurements (see Fig. 6 in the Manuscript). For example, the slope of regressive equation between the measured and modeled half-hourly 
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values for Scheme 1 was 0.84, with MBE of 24.2 W m-2, IA of 0.93 and EF of 0.74. A relatively good agreement between measured and estimated daily soil evaporation (E) was also obtained. The slope of regression equation was 1.01, with MBE of –0.01 mm day-1, IA of 0.94 and EF of 0.76. When only EC-measured data were used (Scheme 2), the performances of the S-W model optimized by Scheme 2 on simulations of half-hourly 
[image: image59.wmf]λ

ET

were not significantly different from that optimized by Scheme 1. The regression equation between the measured 
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from the S-W model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m-2, IA of 0.67 and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly underestimated the soil evaporation (E). The slope of regression equation between the measured and the estimated E was 0.59, with MBE of 0.11 mm day-1, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model properly partition the total ET into its different components using only the half-hourly 
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 data, even thought the simulated values was in good agreement with measurements.


	9. For advection, you concluded that the underestimation by S-W model was induced by no representation of enhanced ET by such dry air advection so-called as an oasis effect. I guess that the hot/dry airflow effect by advection could be reflected by enhanced air temperature and enhanced vapor pressure deficit, which would give higher ET estimation by S-W model to some extent.
Authors’ response: Yes, when the air gets hot and dry in the absences of inversion temperature layer, a higher ET was estimated by the S-W model. However, for heterogeneous land surface such as desert and oasis, advection were often observed. In desert region, the available energy is mainly dissipated as sensible heat to warm the air; In the oases on the other hand, water is generally not limited due to irrigation and it permits evapotranspiration freely. Thus, the oasis is cooler than the regional air in which it is embedded, and there is a continual air-to-oasis inversion temperature gradient driving a downward directed heat flux. The energy used to evapotranspiration is more than available solar radiation. Oke (1978) pointed that: this anomalous situation is explained by the fact that the atmosphere supplies sensible heat to the oasis surface. The interaction between the oasis and nearby desert were illustrated in Fig. S1. 
However, the advection process was neglected in the S-W model, and underestimations of evapotranspiration were observed in our study in the presences of inversion temperature layer (Fig. 10 in our revised paper).
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Fig. S1 The interaction between desert and oasis (modified according to Hu, 1994).

References:
Oke, T. R. Boundary layer Climates, Second ed. Mathuen, London, 1978.

Hu, Y.Q.: Research advance about the energy budget and transportation of water vapour in the HEIFE area. Advance in Earth Science, 9(4), 30-34, 1994. (in Chinese with English abstract).


	10. The S-W model is a nicely simple model to be applied for estimating ET in the sparsely-planted crop field to take into account the considerable soil evaporation, which could not be represented by widely-used Penman-Monteith model. However, the optimized S-W simulation shows that the relative contribution by soil evaporation on total ET was quite low (less than 0.1 for most of growing season), so that the S-W model is not necessarily required this time actually.
Authors’ response: We fully agree with your comments. In this study, we mainly to show that only using the EC-measured data it may be not proper in estimating model parameters, especially for parameters related the soil residence (Appendix B). We want that this study may be helpful to researches in doing field observations.



	Minor comments:

	1. Title: What does "Simultaneous parameterization" mean? Does it mean that 6 parameters are optimized concurrently? Either, do you mean that S-W model assimilates two data sets, λET and E, together at once? You modify the title to appeal the focal point of this research concerning such “simultaneous parameterization”.
Authors’ response: The title was changed as:
Simultaneously assimilating multivariate datasets into the two-source evapotranspiration model by Bayesian approach: Application to spring maize in an arid region of northwest China

	2. Page 742, Line 10, “a good agreement”: I do not think that the regression line’s slope, 0.84, shows a good agreement.
Authors’ response: “a good agreement” was changed as “a moderately good agreement”


	3. Page 742, Line 11-13: This is a speculation. You should not write in this way, which strongly affirms the advection although you did not measure it directly
Authors’ response: The sentence was changed as:
The causes of underestimations of ET by the S-W model was possibly attributed to the micro-scale advection.


	4. Page 742, Line 14, “accounted”: account?
Authors’ response: The world “accounted” has been changed as “account”.



	5. Page 742, Line 15-16: This is a speculation again.
Authors’ response: This sentence was changed as:
Also, underestimations were observed on or shortly after rainy days, which may be due to direct evaporation of liquid water intercepted in the canopy.


	6. Page 743, Line 12, “has”: have?
Authors’ response: the world “has” was changed as “have”.


	7. Page 744, Line 25, “The spring wheat”: How sparsely was it planted? Normally the S-W model is needed for the crop land where the crop is planted sparsely. But, you have not mentioned anything about the crop density. You clarify it.
Authors’ response: We have clarified it as (Lines 115-116, Page 6):
Stand density of the spring maize is about 37 plants m2 with row spacing of 40 cm and planting spacing of 7 cm.


	8. Page 745, Line 4-20: You have to address about the estimation accuracy or energy closure for eddy flux measurement, which could relate to the error range of assimilated data set.
Authors’ response: According to your valuable suggestions, these issues were addressed (Lines 130-138, Pages 6 and 7):
About 85% energy balance closure (the sum of H+λET against the available energy) was found in EC data (Liu et al., 2011). In addition, the flux uncertainties are directly related to the likelihood function of Bayesian inference (Section 2.5). Thus, determining the uncertainties is EC measurements is essential for proper parameter estimates. Recently, Wang et al. (2014) systemically studies the flux uncertainties of EC systems equipped in the HiWATER experiment. Generally, uncertainties for 
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	9. Page 746, Line 8-9: The position of lysimeter installation is very important to think of estimation accuracy. If the lysimeter was installed just in the middle of rows, the soil evaporation located closer to row is missed. In this situation, when plant gets large, you may overestimate the E under the shades of leaves. It contributes to underestimate T by modeling due to adjusting the soil conductance to match the modeled E with the overestimated E by lysimeter.
Authors’ response: Yes, we fully agree with your opinions. The equipment and filed observation was presented in the following figure. In our revised paper, we stated as (Lines 160-161, Page 8):

….between crop rows (one in the middle of the rows and the other two close to plants on each side of the rows).  
[image: image70.png]



Fig. S2 The equipments and field observation during the study period



	10. Page 750, Section 2.5: Add a flow chart of data calibration and evaluation steps.
Authors’ response: According to your valuable suggestion, a flow chart of data calibration were presented in our revised paper. In order to save pages of the paper, we presented it in Appendix B. It can be easily found by the readers as shown below (Fig. S3). 
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Fig. S3 Flowchart representing the basic scheme of the M-H algorithm.



	11. Page 750, Line 21, “is”: are?
Authors’ response: It has been corrected



	12. Page 751, Line 2, σi2: How did you decide this number? It is a very important number, which decides the relative influence by each measured data in the assimilation process. So you have to write about it.
Authors’ response: According to your suggestion, a detail descriptions were given in our revised paper as (Lines 271-284, Pages 13-14):
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We then used 
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	13. Page 751, Line 22-23: I do not understand this sentence.
Authors’ response: The same question was also putted by the other two referees. In our revised paper, these sentences were changed as (Lines 323-326, Pages 15 and 16):
Since the primary interest in application of the S-W model was to reproduce the pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during the whole study period, we used all available data to construct the likelihood function (equation 25) and to obtain the posterior distribution of the parameters.


	14. Page 751, Line 23-25: You should add the flowchart of this sequence.
Authors’ response: These sentences have been deleted in our revised paper.


	15. Page 753, Section 3.2: There are several problems in this subsection. You did not make the proper explanation of results in many places. For ex., how did you calculate the corr. coefficient of 0.85? From what kind of data do you calculate this corr. coeff.? Another thing is that you did not make the discussion. At the end of paragraphs, you are finishing with the mention that the optimized parameters were within reported values. Is that all to say here? This is just a report, but discussion. You have to discuss more about why the optimized parameters fell into such reported ranges. And why did k1 and k3 have no Gaussian distribution?
Authors’ response: (1) In our revised paper, the how did we calculate the corr. coefficient were explained and a table was presented in Appendix B. These sentences were changed as (Lines 385-389, Pages 18 and 19):
In addition, the correlation coefficient between the posterior distribution of parameters can be used to find groups of parameters tend to be constrained together (Knorr and Kattge, 2005). In this study, the six calibrated parameters were not significantly inter-correlated with each other with correlation coefficients lower than 0.1 (Appendix B). 
(2) According to the valuable suggestions form you and other referees, a Discussion section were added in our revised paper to explain the posterior distribution of optimized parameters. 
· When just using EC-measured λET data, a relative wider posterior distribution of 
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 was observed (see Appendix B). Thus, the daily soil evaporation data helped to well constrain estimates of 
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. (Lines 395-397, Page 19);
· However, some parameters related to canopy surface resistance (i.e., k1 and k3) seemed to be not well updated (Fig. 4). This may be due to the fact that these parameters may be insensitive to the present available data sets. (Lines 404-407, Page 19)
· However, even with all datasets (EC-measured λET and microlysimeters-measured daily E), some parameters related to canopy surface resistance seemed to be not well updated (Fig. 4). We thought that this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax, Tamin and KA) to the present available datasets. Thus, direct observations of plant transpiration using sap flow or stable isotope (δ2H and δ18O) technologies (see Williams et al., 2004), canopy temperature using infrared thermometer and continuous within- and above-canopy radiation using the four-component net radiometer (see Sauer et al., 2007) are needed in the future studies. (Lines 523-531, Page 25).


	16. Page 753, Line 24-25, “while ~”: k1 and k3 did not have a Gaussian distribution. Then you finally could not have the proper mean or median value, which should be located in the middle of parabola of parameter histograms. So it means that the optimization did not work for those two parameters. Another thing is that it proves that Transpiration was not sensitive to Rs and D while T was sensitive to Tair and soil moisture.
Authors’ response: Yes, we fully agree with your comments. The posterior distributions of k1 and k3 seemed to be non-Gaussian. The median value may be not correct for these parameters. We explained why these parameters were not well updated as following:

· However, some parameters related to canopy surface resistance (i.e., k1 and k3) seemed to be not well updated (Fig. 4). This may be due to the fact that these parameters may be insensitive to the present available data sets. (Lines 404-407, Page 19)
· However, even with all data sets (EC-measured λET and microlysimeters-measured daily E), some parameters related to canopy surface resistance seemed to be not well updated (Fig. 4). We thought that this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax, Tamin and KA) to the present available data sets. Thus, direct observations of plant transpiration using sap flow or stable isotope (δ2H and δ18O) technologies (see Williams et al., 2004), canopy temperature using infrared thermometer and continuous within- and above-canopy radiation using the four-component net radiometer are needed in the future studies. (Lines 523-531, Page 25)
Also, a sensitivity analysis was conducted in our revised paper (Lines 374-381, Page 18):

The global sensitivity analysis with the first-order impact ratio (FOIR) values (Appendix A) reveal the importance of input parameters in affecting total ecosystem evapotranspiration. The results indicated that total ET responded sensitively to 
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 with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%, respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting that the variability in these parameters had almost no effect on the variability in model output.  



	17. Page 753, Line 25-27, “Ortega-Farias et al. (2007)~”: First, I do not understand what you are trying to say here. Second, I assume that you mean here that 95% probability intervals narrower than your prior parameter ranges and relatively clear Gaussian distribution in rstmin show those sensitivity of rstmin, and also that relatively wider parameter ranges in b1, b2 and k2 and no Gaussan distribution in k1 and k3 show less sensitivity to uncertainties in other parameters. If my assumptions are correct, I do not agree with them. You cannot estimate relative sensitivity of parameter only from the absolute range between max and min. You have to divide the absolute range by prior or posterior uncertainty of each parameter for comparison of relative influence by error. For ex., (p(95%ile)-p(5%ile))/Unc_p should be applied for this comparison.
Authors’ response: The sentences “Ortega-Farias et al. (2007)~” were deleted in our revised paper, and they were changed as (Lines 374-381, Page 18):
The global sensitivity analysis with the first-order impact ratio (FOIR) values (Appendix A) reveal the importance of input parameters in affecting total ecosystem evapotranspiration. The results indicated that total ET responded sensitively to 
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	18. Page 754, Line 1, “estimated”: optimized?
Authors’ response: Yes, it has been corrected.
 

	19. Page 754, Line 2-4: You should explain more about the results, from which you can consider if there are the inter-correlations. In which Figure and Table can we see the corr. Coeff. Number of 0.85? And what does corr. Coefﬁcient mean? There is no proper information about the corresponding results written here. You cannot confirm the inter-correlations without calculating the covariance in errors in each combination of two parameters.
Authors’ response: According to your suggestion, we explained the results as (Lines 385-389, Pages 18 and 19):

In addition, the correlation coefficient between the posterior distribution of parameters can be used to find groups of parameters tend to be constrained together (Knorr and Kattge, 2005). In this study, the six calibrated parameters were not significantly inter-correlated with each other with correlation coefficients lower than 0.1 (Appendix B). 
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Authors’ response: According to your suggestion, the uncertainties of EC measurements were added in our revised paper:
· In addition, the flux uncertainties are directly related to the likelihood function of Bayesian inference (Section 2.5). Thus, determining the uncertainties is EC measurements is essential for proper parameter estimates. Recently, Wang et al. (2014) systemically studies the flux uncertainties of EC systems equipped in the HiWATER experiment. Generally, uncertainties for 
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In addition, the uncertainties of measurements were illustrated in Fig. 9. 
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Appendix A

A.1 Global Sensitivity Analysis

To identify the key parameters that being responsible for most of the variability of the model outputs, a global sensitivity analysis were performed. Following Saltelli et al. (2008), the first-order sensitivity index 
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A.2 Monte Carlo Simulations

The Monte Carlo method was used to calculate 
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. The procedure are listed as below (Saltelli et al., 2010):

Step 1: 

     Generate two independent input parameter sampling matrices 
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     where 
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are generated using the Latin Hypercube Sampling technique (Iman and Helton, 1988). 
A.3 Matlab Code for Global Sensitivity Analysis

function [A,B]=LHSsample(N,d,interval)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Using the Latin Hypercube Sampling (LHS)technique (Iman and Helton, 1988)
% to generate matrices A and B
% Authors   : Zhu Gaofeng
% Date      : March 19, 2014
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Description:
% N         :    number of sample 
% d         :    dimension of parameter vector
% Interval :   interval of prior distribution of paramter being d*2 matrix
% A         :    matrix A being N*d
% B         :    matrix B being N*d
interval=[interval;interval];
% Generates a LHS M1 containing N samples and 2*d dimension
M1=lhsdesign(N,2*d);
for j=1:size(M1,2)
    int=interval(j,:);
for i=1:size(M1,1) 
%transform to parameter space
        M(i,j)=unifinv(M1(i,j),int(1),int(2)); 
    end
end
A=M(:,1:d);             % the first d columns were designed to matrix A
B=M(:,d+1:end);        % the last d columns were designed to matrix B
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
function LET=SWSA(rstmin,k1,k2,k3,b1,b2,Tamin,Tamax,KA,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
% calculate rss
thetas=0.45;    % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
% calculated rsc
F1=(eps+S)*(1055+k1)./(1055*(S+k1));       % S:short wave radiation W m-2
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
% S-W model
% specific heat capacity of the dry air in kJ/kg/K;
Cp=1.013;  
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;
D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp);
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras));
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model
% Main Program

clc
clear
Nss=4000;                           % Sample numbers
% Prior parameter interval for rstmin, k1,k2,k3,b1,b2,Tamax,Tamin,KA
interval=[1 80
          0 500
          20 40
          0 .1
          4 15
          0 8
          0 5
          40 45
          .2 .8];
dem=size(interval,1); % dimension of parameter vector
% Generate matrices A and B using the LHS technique
[Am,Bm]=LHSsample(Nss,dem,interval);
% input meteorological data, Here we used the daily average data
data=[108.1539915   125.3973438 -3.675183507    0.871684028 13.78421875 64.39277778 844.5503472 17.07349201 26.71506701 2.832   256.97255   253.5320313];
% Variables
ET  =  data(1);          
% w m-2
Rn   =  data(2);          
% w m-2
G    =  data(3);          
% w m-2
u    =  data(4);          
% m s-1
Ta   =  data(5);          
% oC
RH   =  data(6)/100;      
% humidity 
P    =  data(7)/10;       
% kPa
SWC_2=  data(8)/100;     
% m3 m-3
SWC_r=  data(9)/100;     
% m3 m-3
LAI  =  data(10);         
% m2 m-2;
hc   =  data(11)/100;     % canopy height in m
z    =  3;              

% reference height in m
S    =  data(12);         
% solar radiation
% calcualte wind speed at canopy height
z0  =   0.13*hc;            % roughness lenght
d   =   0.67*hc;            % zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorologic varibles
lambda=2500.78-2.3601*Ta;     
% saturaed vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;           %the ratio between the mplecular weight of water vapor and air
gamma=Cp*P./(lambda*epsilong);
% calculate raa
k=0.41;                                         % von K¨¢rm¨¢n constant
% z0h=0.1*z0;                                     % roughness length to the heat flux in [m];
n=2.5;                                          % parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     % bare surface
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% calculate the sensitivity index
sa1=0;
sb1=0;
ss1=zeros(1,dem);
st1=zeros(1,dem);
AB=zeros(1,dem);
for j=1:Nss
    ETA=SWSA(Am(j,1),Am(j,2),Am(j,3),Am(j,4),Am(j,5),Am(j,6),Am(j,7),Am(j,8),Am(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    sa1=sa1+ETA;
    sb1=sb1+ETA^2;
    bfo(j,1)=sa1/j;
    VY(j,1)=sb1/j-bfo(j,1)^2;
    ETB=SWSA(Bm(j,1),Bm(j,2),Bm(j,3),Bm(j,4),Bm(j,5),Bm(j,6),Bm(j,7),Bm(j,8),Bm(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);  
    for i=1:dem
        AB=Am(j,:);
        AB(i)=Bm(j,i);        
        ETAB=SWSA(AB(1),AB(2),AB(3),AB(4),AB(5),AB(6),AB(7),AB(8),AB(9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
        ss1(i)=ETB*(ETAB-ETA)+ss1(i);
        Si(j,i)=ss1(i)/(j*VY(j,1));
        st1(i)=st1(i)+(ETA-ETAB)^2;
        ST(j,i)=st1(i)/(2*j*VY(j,1));
    end
end
% Create figure
figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]);
% Create axes
axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on');
box('on');
hold('all');
% Create multiple lines using matrix input to semilogy
semilogy1 = semilogy(Si);
set(semilogy1(1),'DisplayName','{\itr}_{STmin}');
set(semilogy1(2),'DisplayName','{\itK}_1');
set(semilogy1(3),'DisplayName','{\itK}_2');
set(semilogy1(4),'DisplayName','{\itK}_3');
set(semilogy1(5),'DisplayName','{\itb}_1');
set(semilogy1(6),'DisplayName','{\itb}_2');
set(semilogy1(7),'DisplayName','{\itT}_{min}');
set(semilogy1(8),'DisplayName','{\itT}_{max}');
set(semilogy1(9),'DisplayName','{\itK}_A');
% Create xlabel
xlabel('Simulation');
% Create ylabel
ylabel('{\itS}_{i}');
% Create legend
legend1 = legend(axes1,'show');
set(legend1,'Position',[0.7141 0.3258 0.1121 0.2881]);
% Create textbox
annotation(figure1,'textbox','String',{'August'},'FontSize',14,...
    'EdgeColor','none',...
    'Position',[0.1387 0.8208 0.393 0.1009],...
    'FitHeightToText',...
    'on');        
save Si
A.4 First-order sensitivity indices
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Fig. A1 The evolution of the first-order sensitivity indices.
Table A1 The first-order sensitivity index 
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	Parameter
	Si (%)
	Order

	rSTmin
	54.3
	1

	k1
	4.2
	5

	k2
	8.5
	4

	k3
	0
	9

	b1
	21.9
	2

	b2
	10.4
	3

	Tamin
	0.3
	7

	Tamax
	0.12
	8

	KA
	2.84
	6


From Fig. A1 and Table A1, we can see that the most sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameters with Si less than 5% had almost no effect on the variability in model output. In addition, we thought that some parameter such as KA (the extinction coefficient of light attenuation) has obviously physical meaning and should be measured directly on site (see Sauer et al., 2007). Thus, in our study, only six parameters were selected to be estimated in order to avoid equifinality or over-parameterization. 
Overall, the key parameters in the S-W model are rSTmin , b1 and b2 with the values of Si larger than 10%. Thus, proper estimations of these parameters have great influences in reducing the uncertainty on model simulation. 
A.5 Prior Uncertainty Quantification

To derive from that the prior predictive uncertainty, 4000 parameter vectors were sampled from the prior uniform distribution using Latin Hypercube Sampling (LHS) method. The results indicated that the both simulated daily (ET; mm d-1) and soil evaporation (E; mm day-1) showed larger uncertainties (Fig. C2). Thus, there is an urgent need to optimize the parameters based on available datasets.
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Fig. A2 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data.
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Appendix B
Contents:
Part 1: Baye’s Theorem
Part 2: Multi-Source Data Set Optimization Scheme

1.1 Metropolis-Hasting (M-H) Algorithm:

1.2 Matlab Code for the M-H Algorithm:

1.3 Results

Part 3: Single Data Set Optimization Scheme

2.1 Metropolis-Hasting (M-H) Algorithm:

2.2 Matlab Code for the M-H Algorithm:

2.3 Results
Part 4: Comparisons Between Two Optimization Schemes
This appendix show: 
(1) Description of Bayes’ Theorem

(2) the optimization scheme of M-H algorithm using multi-source data set (Part 1) and single data set (Part 2); 

(2) The Matlab Code of the M-H algorithm using different assimilation scheme;

(3) The differences between the two different assimilation schemes;

The code can be used and tested freely. I would be great appreciations if you can cited our paper when using the code.
Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: application to spring maize in an arid region of northwest China. Geosci. Model Dev. Discuss., 7, 741–775.

PART 1: The Bayes’ Theorem 
A general description of the Bayesian probabilistic inversion is given by Bayes’ theorem (Box and Tiao, 1973) in a form of:  
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in which 
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 is the prior probability density function (PDF) representing prior knowledge about parameter 
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is the likelihood function, which defines the fit to the data for particular parameter set and also reflects the influence of the data on parameter identification; 
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. Thus, the inverse problem can be related to the forward problem through a set of measurements and prior knowledge about the probability of the parameters. 
PART 2: Multi-Source Data Set Optimization Scheme

2.1 Metropolis-Hasting (M-H) Algorithm:

In practice, except for situations where 
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 have very simple forms, it is not always possible to draw samples directly from
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. In such cases, the Markov Chain Monte Carlo (MCMC) method can be used to investigate the parameter space in the search for the posterior distribution (Geman et al., 1993; Gelfand and Smith, 1990). The basic idea for the MCMC sampling is to design a Markov chain with 
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as the targeted stationary distribution. Once the chain has simulated for sufficiently long period samples in the chain will follow the stationary distribution, then one can collect the samples from the simulation and calculate various statistics associated with the posterior PDF from them. The Metropolis-Hastings (M-H) algorithm (Metropolis et al., 1953; Hastings, 1970) is a type of MCMC technique that approximately obtains samples from the posterior distribution. A simple computational implementation of the M-H algorithm consists of the following steps:

Step 1: 

Chose an arbitrary initial point 
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 in the parameter space.

Setp 2:

Propose a candidate point 
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according to a proposal distribution
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; In this study, the candidate parameter is generated by a uniform proposal distribution as:
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where
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and 
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specify the prior range of the parameter vector 
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; 
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is a random number uniformly distributed between -0.5 and +0.5; 
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is a value controlling the proposing step size and was set to be 5. 
Step 3: 

     3.1 Calculate 
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 for a given parameter vector:
For a given parameter vector 
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, we can simulate half-hourly λET (W m-2) and daily E (mm day-1) using equations (1) and (9) in the manuscript, which is labeled as
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 (i=1 and 2), respectively. Form previous analysis, we can calculate 
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     where 
[image: image184.wmf]()

i

Ot

 is observed values of the ith dataset [observed half-hourly λET (W m-2) and daily E (mm day-1), respectively] at time 
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 is the number of observations of the ith dataset. 
3.2 Calculate the likelihood function 
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     where 
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 is the number of dataset (
[image: image189.wmf]2

=

 in this study) ;  

Step 4: 

 Calculate the acceptance probability:
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     The ratio of likelihood is calculated under the candidate value of parameter to  that calculated under preciously accepted value of parameter. 

Step 5: 

      Generate a random number 
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form the uniform distribution
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       If 
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Step 6: 

       Repeat steps 2 and 5 until enough samples are obtained.

The flowchart of the M-H algorithm was illustrated in Fig. B1.
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Fig. B1 Flowchart representing the basic scheme of the M-H algorithm.

2.2 Matlab Code for the M-H Algorithm:

%% Matlab Code of two source evapotranspiration model

function [LET,Emd]=SW(rstmin,k1,k2,k3,b1,b2,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac)
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Author: 
Gaofeng Zhu; Xin Li et al

%% Date: 

March 17, 2014 

%% Address:
Lanzhou University

%%

%% If there is a need for using the code, please cite the paper of the %% authors as:

%% Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the two-source evapotranspiration model by Bayesian approach: 
%% application to spring maize in an arid region of northwest China. Geosci. %% Model Dev. Discuss., 7, 741–775
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Descriptions: 

%%%%%% Output variables　

%% LET


simulated half-hourly evapotranspiration in [w m-2]

%% Emd


simulated daily soil evaporation in [mm d-1]

%%%%%% parameter in resistance sub-model

%% rstmin 

minimal stomatal resistance in [s m-1]

%% k1           parameter in eqn. 16 in the manuscript with unit [w m-2]

%% k2 


unit [oc]

%% k3           unit [kPa-1]

%% b1           parameter in soil surface resistance in [s m-1]

%% b2           parameter in soil surface resistance in [s m-1]

%%%%%% input driving variables 

%% F4 


see eqn. (19) in the manuscript 

%% G 


soil heat flux in [W m-2]

%% Rn           net solar radiation in [W m-2]

%% S            short-wave solar radiation in [W m-2] (Rs in eqn.16)
%% LAI 


leaf area index in [m2 m-2]

%% Ta 


air temperature in reference height in [oc]

%% rho

    air density in [kg m-3]

%% D 


air water vapor pressure deficit in [kPa]

%% SWC_2       soil water content at the surface layer [m3 m-3]

%% delta       slope of the saturation vapor pressure versus temperature
curve [kPa K-1]

%% gamma       psychrometric constant [kPa K-1]

%% raa 

aerodynamic resistances in [s m-1]

%% ras

aerodynamic resistances in [s m-1]

%% rac

aerodynamic resistances in [s m-1]
%% Code of S-W model   %%
%% calculate rss in [s m-1] 
thetas=0.45;   % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp(b1-b2*SWC_2./thetas);
%% calculated rsc in [s m-1]
F1=(eps+S)*(1055+k1)./(1055*(S+k1));  % S:short wave radiation W m-2
Tamin=0;
Tamax=40;
tao=(Tamax-k2)/(k2-Tamin);
numerator=(Ta-Tamin).*(Tamax-Ta).^tao;
denominator=(k2-Tamin).*(Tamax-k2).^tao;
F2=numerator./denominator;
F3=1-k3*D;
rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4);
%% S-W model
Cp=1.013;  % specific heat capacity of the dry air in kJ/kg/K;
Ra=(delta+gamma).*raa;
Rs=(delta+gamma).*ras+gamma.*rss;
Rc=(delta+gamma).*rac+gamma.*rsc;
Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra)));
Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra)));
KA=.41;
Rns=Rn.*exp(-KA.*LAI);
A=Rn-G;
As=Rns-G;
ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gamma.*(1+rss./(raa+ras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*(1+rsc./(raa+rac)));
LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT;                         % total half-hourly ET in [W m-2] 

% air water vapor pressure deficit at the canopy height in [kPa] 

D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp); 
% half-hourly soil evaporation in [W m-2]
E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras)); 

% half-hourly canopy transpiration in [W m-2]
T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac));
%% convert units of evaporation and transpiration from [W m-2] to [mm m-2]
lambda=2500.78-2.3601*Ta;    
Em=E./lambda;
Tm=T./lambda;
%% calculate the daily accumulative soil evaporation and transpiration %% in [mm day-1]
for i=1:length(E)/48
    Emd(i,1)=sum(Em((i-1)*48+1:i*48));
    Tmd(i,1)=sum(Tm((i-1)*48+1:i*48));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the S-W model
% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors
: 

Gaofeng Zhu, Xin Li

%% Date   
:     
March 17, 2014
%% Address
:   
Lanzhou University

%% Purpose
: 

using the M-H algorithm to explore the posterior

%%


distribution   parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure

% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
% generate new parameter vector
rr=-.5+rand(1,length(cmin));
    cnew=co+rr.*(cmax-cmin)/5;
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics

    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program

The proposing efficiency of 
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 affects the efficiency of the algorithm, and hence should be properly designed to ensure a moderate sample acceptance rate. A rate of 23% is sometimes an optimal acceptance rate (Robert and Rosenthal, 1998). In our test study, the accepting rate using the uniform proposal function is generally low (~10%). Based on the test run, we constructed a normal distribution 
[image: image197.wmf](0,cov())

Nc

, where 
[image: image198.wmf]cov()

c

is the diagonal matrix of the parameter with its diagonal being set to the estimated variances of the parameter 
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from the initial test run and zeros elsewhere. Then, we adopted the following proposal distribution:
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Using this proposal distribution, the general acceptance rate can achieve between 20-50%. The Matlab code was shown as following:

function y=Generate(co,transT,eigV,cmin,cmax)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Purpose : using normal distribution to generate candidate
% Author  : Gaofeng Zhu, Xin Li, et al.,
% Date    : March 17, 2014
% the original code was developed by Xu et al., 2007;
% Please cited as:
% Xu T., White L., Hui DF., Luo YQ. Global Biogeochemical Cycle, 20, GB2007, 
% dio:10.109/2005GB002468, 2006
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
co=co';
while(true) 
% 6:  the number of parameter 
cT=randn(6,1).*[sqrt(eigV(1,1));sqrt(eigV(2,2));sqrt(eigV(3,3));sqrt(eigV(4,4));sqrt(eigV(5,5));sqrt(eigV(6,6))];
%generate a new configuration based on the estimated covariance matrix
c_new =transT*(transT'*co+cT);
 if c_new(1)>cmin(1)&c_new(1)<cmax(1)...
        &c_new(2)>cmin(2)&c_new(2)<cmax(2)...
        &c_new(3)>cmin(3)&c_new(3)<cmax(3)...
        &c_new(4)>cmin(4)&c_new(4)<cmax(4)...
        &c_new(5)>cmin(5)&c_new(5)<cmax(5)...
        &c_new(6)>cmin(6)&c_new(6)<cmax(6)...
        break
    end
end
y=c_new';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model

% Main Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
% load meteorological and biological driving data 
load data
% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S 
% Variables
ET  
=  data(:,1);           
% w m-2
Rn   
=  data(:,2);          
% w m-2
G    
=  data(:,3);          
% w m-2
u    
=  data(:,4);          
% m s-1
Ta   
=  data(:,5);          
% oC
RH   
=  data(:,6)/100;      
% humidity 
P    
=  data(:,7)/10;        
% kPa
SWC_2
=  data(:,8)/100;      
% m3 m-3
SWC_r
=  data(:,9)/100;      
% m3 m-3
LAI  
=  data(:,10);          
% m2 m-2;
hc   
=  data(:,11)/100;      
% canopy height in m
z    
=  3;                      
% reference height in m
S    
=  data(:,12);       
 
% solar radiation
load Edaily





% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1 
% saturated vapor pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
% air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;





 % actual vapor pressure in kPa
D=es-ea;                         % air vapor pressure deficit in kPa
% air density in kg m-3
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622;         %the ratio of water vapor and air         
gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1)
% calculate raa using equations from Shuttleworth and Wallace (1985) 

k=0.41;                         
% von Karman constant
% z0h=0.1*z0;                  % roughness length to the heat flux in [m];
n=2.5;                          
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
%  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% method 2 

% w=6/100;                                    % leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                                    % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));    
end
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure

% Prior estimate of covariance matrix of parameters 
% it was obtained from previous uniform run
cov_c=[0.9645
-0.0219
-0.3973
-0.0015
-0.0047
0.0314

-0.0219
0.0247
-0.0852
0.0003
0.0171
0.0322

-0.3973
-0.0852
5.3166
-0.0076
-0.0279
-0.0387

-0.0015
0.0003
-0.0076
0.0003
0.0025
0.0065

-0.0047
0.0171
-0.0279
0.0025
0.2524
0.6315

0.0314
0.0322
-0.0387
0.0065
0.6315
1.6916];

[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
e1=LETo-ET;
e2=Emdo-Edaily;
sigma1=sqrt(sum(e1.^2)/length(LETo));
sigma2=sqrt(sum(e2.^2)/length(Emdo));
logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2));
logL=logL1+logL2;
nsim=30000;









% iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for different data set
    e1=LETo-ET;
    e2=Emdo-Edaily;
    % estimate sigma of different data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24
    % calclaute the log-likelihood of different data set 
    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            
    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);            
    % calcualte the total log-likelihood  
    logLnew=logL1+logL2;                                  % Eqn.23
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics

    end
    sigma(i,:)=[sigma1,sigma2];         % save sigma

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the main program
2.3 Results of Multi-source Assimilation Scheme
The results of 10,000 evolution of MCMC using multi-source data are shown in Fig. B2
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Fig. B2 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using multi-source dataset

The comparison between observed and simulated half-hourly evapotranspiration (W m-2) were illustrated in Fig. B3. The simulated values were obtained using the median values of the posterior parameter distribution.
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Fig. B3 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.84x+0.18 (R2=0.83)

PART 3: Single Data Set Optimization Scheme 
3.1 M-H Algorithm:

To investigate how the estimation accuracy and parameters vary, a test case was also run by using one single data set (the EC-measured half-hourly ET; W m-2). In this case, the likelihood function was set as:
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where 
[image: image205.wmf]()

Ot

is EC-observed half-hourly ET (W m-2); 
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is simulated ET values  (W m-2; Eqn.1 in the manuscript); 
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et

is the model error (W m-2); and 
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 is the standard deviation on each data point. For a given parameter vector, 
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 is estimated as (Braswell et al., 2005):
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3.2 Matlab Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

%% The main code used to calculate the posterior distribution of parameters

%% This scheme using only the EC-measured half-hourly ET data

%% Authors: Gaofeng Zhu, Xin Li

%% Date:     March 17, 2014
%% Adress:   Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution 

%%           parameters in the S-W model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc
clear
format long
load data
% ET  Rn Gs_1  WS_3m  Ta_3m  RH_3m  P  Ms_2cm  Ms_10cm LAI h S 
% Variables
ET  =  data(:,1);           
% w m-2
Rn   =  data(:,2);          
% w m-2
G    =  data(:,3);          
% w m-2
u    =  data(:,4);          
% m s-1
Ta   =  data(:,5);          
% oC
RH   =  data(:,6)/100;      
% humidity 
P    =  data(:,7)/10;       
% kPa
SWC_2=  data(:,8)/100;      
% m3 m-3
SWC_r=  data(:,9)/100;      
% m3 m-3
LAI  =  data(:,10);         
% m2 m-2;
hc   =  data(:,11)/100;    
% canopy height in m
z    =  3;                 
 
% reference height in m
S    =  data(:,12);        
% solar radiation
load Edaily




% measured soil evaporation in mm day-1

% calculate wind speed at canopy height
z0  =   0.13*hc;            
% roughness length
d   =   0.67*hc;            
% zero plane displacement
uh  =   u.*log((hc-d)./z0)./log((z-d)./z0);
% Calculate meteorological variables
lambda=2500.78-2.3601*Ta;     
% saturated vapour pressure in kPa
es=.6108*exp(17.27*Ta./(Ta+237.3));
% slope of pressure to temperature
delta=4098*es./(Ta+237.3).^2;
%air density
Rd=287/1000;                    % the gas constant in kJ/kg/K
ea=es.*RH;
D=es-ea;
rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P));
%
Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K;
%the ratio between the mplecular weight of water vapor and air
epsilong=.622;         
gamma=Cp*P./(lambda*epsilong);
%% calculate raa
k=0.41;                        
% von Karman constant
% z0h=0.1*z0;                 
% roughness length to the heat flux in [m];
n=2.5;                         
% parameter in SW model
% LAI >4 
raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc-d)).*(exp(n*(1-(d+z0)./hc))-1)); 
% for bare surface
z0s=0.01;
ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;  % bare surface
% 
raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare;
%% calculate ras
% LAI >4 
ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*(1-(d+z0)./hc)));
% for bare surface
z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps));
ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare;
% calculate rac
% method 1
rb=50;
rac=rb./(2*LAI);
% w=6/100;                            
% leaf width in m
% rb=(100/n)*(w./u)*(1-exp(-n/2));
% rac=rb./(2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45;                         
% saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC_r)
    if SWC_r(i)>thetacr
        F4(i,1)=1;
    elseif SWC_r(i)>thetaw
        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw);
    else
        F4(i,1)=eps;
    end
end
% Calculate observed daily ET, E and T
ETo=ET./lambda;
for i=1:length(ET)/48
    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));
    Edaily(i,1)=ETdaily(i,1)*FracE(i,1);
    Tdaily(i,1)=ETdaily(i,1)*FracT(i,1);
end 
%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure
% Prior estimate of covariance matrix of parameters 
% it was obtained from test uniform run, which is similar to that used 

% in Part 1

%
cov_c=[2.649    -11.1951    0.4698  -0.011  -0.0843 0.5416
-11.1951    12139.2934  -80.9997    0.3606  11.5584 23.4091
0.4698  -80.9997    22.3938 -0.0033 0.3244  1.6035
-0.011  0.3606  -0.0033 0.0006  0.0007  -0.0004
-0.0843 11.5584 0.3244  0.0007  0.576   1.3829
0.5416  23.4091 1.6035  -0.0004 1.3829  4.4452];
[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,k1,k2,k3,b1,b2,
cmin(1)=0;cmin(2)=0;cmin(3)=20;cmin(4)=0;cmin(5)=4;cmin(6)=0;
cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8;
% initialize parameter
for i=1:length(cmin)
    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters    
end
[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
% only ET data set was used here, that is different form Part 1
e1=LETo-ET;
sigma1=sqrt(sum(e1.^2)/length(LETo));
logL=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2));
nsim=10000;                                     % iteration length
parameter=zeros(nsim,length(cmin));
sigma=zeros(nsim,2);
% begian to iterate
for i=1:nsim  
    % generate new parameter vector from normal destribution
    cnew= Generate(co,transT,eigV,cmin,cmax);
    % simulate using new parameter vector    
    [LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac);
    % calcualte model error for ET data set
    e1=LETo-ET;
    % estimate sigma of ET data set
    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24
    % calclaute the log-likelihood 
    logLnew=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);           
    % draw a rand number form uniform distribution  
    r=log(rand);                    
    if r<=logLnew-logL
        parameter(i,:)=cnew; % save parameter vales used to draw statistics
        logL=logLnew;
        co=cnew;
    else 
        parameter(i,:)=co;   % save parameter vales used to draw statistics
    end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program
3.3 Results 

The results of 10,000 evolution of MCMC using single data are shown in Fig. B4 (left). Comparing with multi-source assimilation scheme, we can see that the posterior distribution of soil resistance parameter (b1 and b2) varied wider.[image: image211.png]50 - 10000
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Fig. B4 The evolution of MCMC chain using the normal distribution proposal (left) and histograms of sample from posterior distribution (right) by using single dataset.

The slope (0.85) of the regression line between observed and simulated half-hourly ET for single data set assimilation scheme is slightly lower than that for multi-source data set assimilation scheme (0.86). Thus, we can conformed that that the multi-source data set assimilation scheme is more effective than the single data set scheme. 
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Fig. B5 Comparison between observed and simulated half-hourly evapotranspiration (W m-2). The regression lion between observed and simulated values was: y=0.83x-1.65 (R2=0.75)

PART 4: Comparisons Between Different Assimilation Schemes

4.1 Posterior distributions of parameter for different assimilation schemes  

For Scheme 1 (simultaneously assimilate all data sets), 
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Fig. B6 Uncertainty reductions of parameters using different assimilation schemes

Table B1 The correlation coefficient, derived form the posterior distribution of parameters using different assimilation schemes.

	rSTmin
	k1
	k2
	k3
	b1
	b2
	

	1
	-0.004
	-0.01
	0.02
	0.01
	0.004
	rSTmin

	
	1
	0.05
	-0.04
	-0.02
	0.06
	k1

	
	
	1
	-0.04
	-0.07
	0.07
	k2

	EC data Only
	1
	0.05
	-0.04
	k3

	rSTmin
	1
	
	
	1
	0.02
	b1

	k1
	-0.13
	1
	
	
	1
	b2

	k2
	-0.13
	0.06
	1
	
	
	

	k3
	-0.15
	0.02
	0.01
	1
	
	

	b1
	-0.09
	0.05
	0.04
	0.02
	1
	

	b2
	0.32
	0.02
	0.05
	-0.03
	0.84
	1

	
	rSTmin
	k1
	k2
	k3
	b1
	b2


* the upper triangular matrix for Scheme 1; the lower triangular matrix for Scheme 2
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Fig. B6 Histograms of samples from the posterior distributions of the parameters. The dashed vertical lines indicate mean parameter values. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only

4.2 Comparisons of model performance for different assimilation schemes  

Having parameterized the S-W model by different assimilation schemes as described above, we ran the model to simulate the half-hourly 
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(equation 9) values (W m-2). The daily estimations of evapotranspiration (ET; mm d-1) and soil evaporation (
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; mm d-1) were obtained by summing up the half-hourly simulated values. The statistical analysis of observed versus estimated values of water vapor fluxes at different time-scales for different assimilation schemes were summarized in Table B2. Overall, the simulations (half-hourly 
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 and daily soil evaporation) of the S-W model optimized by using all data sets simultaneously (Scheme 1) were comparable to the measurements (see Fig. 6 in the Manuscript). For example, the slope of regressive equation between the measured and modeled half-hourly 
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values for Scheme 1 was 0.84, with MBE of 24.2 W m-2, IA of 0.93 and EF of 0.74. A relatively good agreement between measured and estimated daily soil evaporation (E) was also obtained. The slope of regression equation was 1.01, with MBE of –0.01 mm day-1, IA of 0.94 and EF of 0.76. When only EC-measured data were used (Scheme 2), the performances of the S-W model optimized by Scheme 2 on simulations of half-hourly 
[image: image246.wmf]λ

ET

were not significantly different from that optimized by Scheme 1 (Fig. B7). The regression equation between the measured 
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 and the estimated 
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from the S-W model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m-2, IA of 0.67 and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly underestimated the soil evaporation (E). The slope of regression equation between the measured and the estimated E was 0.59, with MBE of 0.11 mm day-1, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model properly partition the total ET into its different components using only the half-hourly 
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 data, even thought the simulated values was in good agreement with measurements.   

The fluctuation of measured and estimated daily ET and E by the two different assimilation schemes was illustrated in Fig. B8. For both assimilation schemes, the simulated daily ET generally fluctuated tightly with the measured values with relative narrow uncertainties (97% posterior predication intervals). Also, we can observed that the 97% posterior prediction interval of soil evaporation for Scheme 1 was narrower than that for Scheme 2 (Fig. B8). Thus, we thought that the soil resistance in the S-W model was properly parameterized for the spring maize by the method with the multiple data sets simultaneously assimilated.
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Fig. B7 Relationship between measured and estimated by Scheme 1 (a) evapotranspiration (
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ET

; W m-2), (b) daily soil evaporation (E; mm d-1).
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Fig. B8 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil evaporation (E; mm day-1) measured by the EC system and modeled by the S-W model during the study period in Daman Oasis. Gap in the time series is caused either by the absence of flux measurements or missing ancillary data. (a) Simultaneously assimilate all data sets, (b) EC-measured λET data only.

Table B2 Statistical analysis of measured and estimated values of half-hourly evapotranspiration (λET; W m-2), daily soil evaporation (E; mm d-1), and daily evapotranspiration(ET; mm d-1) by different assimilation schemes for the spring maize in arid desert oasis during the study period.

	
	n
	Regressive equation
	R2
	Mean measured values 
	Mean simulated values
	RMSE
	MBE
	IA
	EF

	Scheme 1

	λET (W m-2)
	3578
	λETmodeled=0.84λETmeasured+0.18
	0.83
	161.4
	137.2
	80.7
	24.2
	0.93
	0.74

	E (mm d-1)
	56
	Emodeled=1.01Emeasured +0.01
	0.82
	0.26
	0.28
	0.05
	-0.01
	0.94
	0.76

	ET (mm d-1)
	95
	ETmodeled=0.83ETmeasured +0.19
	0.83
	2.02
	1.88
	0.32
	0.14
	0.94
	0.79

	Scheme 2

	λET (W m-2)
	3578
	λETmodeled=0.83λETmeasured-1.65 
	0.75
	161.4
	142.4
	89.1
	30.5
	0.90
	0.70

	E (mm d-1)
	56
	λETmodeled=0.59λETmeasured+0.01
	0.66
	0.26
	0.16
	0.12
	0.11
	0.67
	0.13

	ET (mm d-1)
	95
	λETmodeled=0.89λETmeasured+0.15
	0.85
	2.02
	1.94
	0.12
	0.07
	0.99
	0.97


n=the sample number; R2=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; IA= index of agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and Ortega-Farias (2009).
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Appendix C

C.1 Convergence of MCMC
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where 
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is the number M-H parallel chains; 
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is the running length of M-H algorithm; 
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c

is the ith component of the parameter vector 
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; 
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B

 and 
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W

 denotes the between and within-run variances; and 
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GR

 is the Gelman-Rubin (G-R) diagnostic of convergence of MCMC (Gelman and Rubin, 1992).

The evolution of GR diagnostic of convergence of MCMC was shown in Fig. C1. We can see that the GR values for all parameters tended to be less than 1.1 after 5000 iteration. 
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel chains with different initial values were used to calculate GR values.
B.2 Matlab Code 

clc
clear
load Chain 
% Chain is the matrix than contain N running length, K parallel chains
% it is a N*K matrix for parameter ci 
[N,K]=size(Chain); 
for k=1:K
    ss=0;
    for n=1:N
        ss=ss+Chain(n,k);
        cwb(n,k)=ss/n;               %calculate c.,k
    end
end 
for n=1:N
    st=0;
    for k=1:K
        st=st+cwb(n,k);
    end
    cst(n)=st/K;                      % calculate c.,.
end   
for n=1:N
    sb=0;
    for k=1:K
        sb=sb+(cwb(n,k)-cst(n))^2;
    end
    B(n)=n*sb/(K-1);                   % calculated B
end
for k=1:K
    sw=0;
    for n=1:N
        sw=sw+(Chain(n,k)-cwb(n,k))^2;
        swc(n,k)=sw/(n-1);
    end
end
for n=1:N
    s1=0;
    for k=1:K
        s1=s1+swc(n,k);
    end
    W(n,1)=s1/K;                        % calculated W
end
for n=1:N
    GR(n,1)=sqrt((W(n)*(n-1)/n+B(n)/n)/W(n));
end
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