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1 Summary

The first order, or Blatter-Pattyn equations describing the diagnostic solution
to ice flow are discretized using the finite element method and solved using
modular and highly scalable software libraries. The libraries provide built-in
facilities for UQ (uncertainty quantification) and optimization via AD (au-
tomatic differentiation). Similar models have been constructed in numerous
recent publications (see references in this paper), and its completion is not
novel enough to merit publication. However, several interesting applications
of the model are performed to explore its numerical properties, making this
an interesting paper. The applications are: 1) the homotopy, or a systematic
method of reducing a viscosity regularization parameter which improves con-
vergence, 2) the manufactured solutions which allow for verification of the
conservation of momentum solutions, 3) application of a multi-level algebraic
preconditioner, and 4) exploration of the vertical mesh spacing requirements
of the model. Each of the 4 applications have been performed in some way by
others, but I am not aware of another paper featuring as systematic and rig-
orous approach to model testing. Because of this, ice-sheet modelers should
find the results interesting and worthwhile to compare their own models to.

We thank the reviewer for his/her thoughtful feedback, which has been
addressed in the revised manuscript, and has helped us to improve our paper.
All changes to the original manuscript are marked in blue in the revision.
Responses to your comments (including those above) can be found below,
also in blue.
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2 Review

The utility of this paper is found in its applications of the new momentum
solver. I will treat the novelty and utility of each of the applications, in turn.

Homotopy is cool, but it looks like the stopping value of the regularization
parameter is close to the value used by many (10−10), which makes it seem
more like an additional burden faced by this model, rather than a feature that
improves numerical performance, particularly in the numerous models that
do not have (or perhaps fail to report on) difficulties reaching convergence.
I might find the treatment more satisfying if the sequence of alphas had
been continued to make the regularization exactly zero, assuring the choice
of parameter does not influence results. I am not clear on how the sequence
of values for alpha are selected, this should be clarified.

The sequence of values of α’s were calculated using a natural continuation
algorithm implemented in the LOCA package of Trilinos. Please see our
response to your comment #1 in Section 3 below for more details.

AMG is nice, but somewhat lacking in terms of details of how it is im-
plemented. The paper provides a good general overview of the method, as
well as insight into the particular challenges posed by ice-sheet modeling; low
aspect ratios and their impact semi-coarsening techniques. However, the dis-
cussion was not useful to a modeler interested in how AMG might be applied
to a particular matrix generated by Stokes equations. This comes back to
the editor’s note about code release and versioning; for the material on AMG
to be useful, it needs to be (minimally) accessible in the form of source code,
and preferably accompanied with a better explanation. The authors do state
that a second paper dealing with AMG is in preparation, and I think that
some details can be delayed, but more implementation specifics should be
provided now.

It was brought to our attention by the editor of Geophysical Model Devel-
opment, as well as several reviewers, that all papers submitted to this journal
must include a section entitled “Code availability” that contains instructions
for obtaining the code described in the paper and licensing information. We
have added such a section to the paper. In it are paths to the currently
released versions of Trilinos and Albany. The AMG algorithm is available in
the ML package of Trilinos (version 11.12 or later). An addendum to (Gee,
2014) describes how the multi-grid semi-coarsening algorithm is specified
from a user’s perspective (Tuminaro, 2014).

MMF Equations 22-23 are the shallow shelf approximation (SSA) equa-
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tions, right? Where are the vertical shear terms (du/dz, dv/dz, see eqns
2-8)? Are these zero in the case where the surface slope is zero? That makes
sense, but I wonder if the system has been simplified to the point where veri-
fications is done on a specialized case of the FO equations (SSA) and not the
true FO system? In this case, you’ve lost the most interesting part of the FO
eqns; the ability to estimate BOTH vertical shear AND membrane stresses.
This is probably the biggest issue with the paper as it is now written.

Equations (22)–(23) were obtained from the 3D FO Stokes equations by
neglecting the ∂/∂z terms. This is why the vertical shear terms are missing
from the equations. The test cases were not intended to verify the 3D FO
Stokes equations: rather, they were intended to be used as part of a multi-
stage code verification that includes also verification of the 3D FO Stokes
equations using code-to-code comparisons and mesh convergence studies on
realistic geometries (Sections 5 and 6 in the paper). We have attempted
to make this more clear in the paper, and also have made it clear that our
MMS problems are for a 2D version of the FO Stokes equations, not the 3D
equations.

We feel despite being simplified, our MMS test cases are nonetheless
useful. The task of deriving source terms for an MMS study for the 3D
FO Stokes equations is cumbersome, if not intractable. In contrast, our
MMS problems are simple enough to be implemented by anyone simply by
referring to the expressions in our paper.

We do agree with the reviewer that a test case based on equations that
include vertical shear would be worthwhile. To address this point, we have
derived an MMS test case for the FO Stokes equations in the x–z plane
(obtained by neglecting the v and ∂/∂y terms in the equations), and showed
some mesh convergence results for our code on this test case. Please see
Section 4.2 of the revised manuscript.

The exploration of the convergence for different mesh resolutions is sen-
sible and provides clear results. It’s a little difficult to relate reported errors
to something practical, like; how many layers are needed to eliminate errors
in prognostic runs of several hundreds of years. That is probably not an
easy question to answer, but if the paper is going to have significant im-
pact, making a clear statement about how important the errors are would be
helpful.
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3 Summary Statement

This is a long and important paper; providing a new means of solving a com-
plex set of equations, and giving significantly expanded means of verifying
the results are correct. There are some matters that have to be addressed
before it is publishable. They are:

1. Minor changes in the section dealing with homotopy to explain the
sequence of values that are used for alpha. It would be really nice
to know if homotopy is needed in time dependent problems, but it
seems beyond the scope of the problem. Could homotopy be used
when moving from coarser to finer grid resolutions to see if it reduces
Newton iterations?

For time-dependent problems, we would recommend using the homo-
topy only in the first time step (diagnostic solve), since the converged
solution at time tn is likely to be a reasonable initial guess for Newton’s
method in time tn+1, for n ∈ N. We have noted this in Section 3.1.1,
but do not provide numerical results, as time-dependent simulations
are beyond the scope of this paper.

We had stated in the paper that the sequence of α’s are calculated
using a step size control algorithm. We have added a sentence to add
more information on this algorithm, and added a reference to the LOCA
manual (Salinger et al., 2002) where the detailed algorithm is published.
The Allgower reference is appropriate as well.

Moving from coarser to finer meshes as a method to converge the non-
linear system on the finest mesh more rapidly (often called mesh se-
quencing) would be a valid approach, and could likely reduce computa-
tion time for convergence on the finest mesh. Homotopy would not be
appropriate to step through mesh resolution because mesh size is not a
continuous parameter. For this same reason, the mesh sequencing ap-
proach might be fragile in that there is no easy path to recovery from
a failed step. Furthermore, this would need to be implemented with
scripts that create and interpolate between meshes, a process that does
not match HPC platform usage (batch queuing systems) very well. We
have not implemented a mesh sequencing approach.

2. Major changes should be made to the section on AMG, providing better
insight into the implementation details. This might be most easily done
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by, Release source code, identify where it can be accessed, and provide
versioning, as per the requirements of GMD.

We have added the “Code Availability” section describing how the
codes can be obtained, in particular Trilinos, which contains the pack-
age where the AMG preconditioner is implemented, called ML. We have
also added a reference to a document (Tuminaro, 2014) that describes
how the multi-grid semi-coarsening algorithm is specified from a user’s
perspective (Section 3.1.2).

3. Reconsider the approach to manufactured solutions, which in the present
form do not appear to be verifying the solution of the FO equations.

We did reconsider the approach, as explained above. We have at-
tempted to make it more clear that our MMS problems are for a 2D
version of the FO Stokes equations, not the 3D equations. We have
also extended our MMS test cases to include one for the x–z FO Stokes
equations (obtained by neglecting the v and ∂/∂y terms in the equa-
tions). These provide a test in which the equations have vertical shear
terms, and in which the solution is more physical (the sum of SIA and
SSA solutions). The new MMS test case and some convergence results
for this problem can be found in Section 4.2.

4. Provide a roadmap detailing how this advancement in a single compo-
nent of an ice-sheet model will integrate with other components to be
more comprehensive and useful. How will the energy balance be com-
puted? What about ice transport? Integration with climate models?
I understand that this effort is coming from the national laboratories,
where there is significant activity on all of these components, but the
authors need to demonstrate that this is destined to become more than
‘just’ another momentum solver with no capacity for prognostic ice
sheet modeling.

Please see our response to Comment 2 below.

All of these can be addressed in the context of minor revisions. Unless
I misunderstand, the MMF will require serious reconsideration, but there is
enough in this paper that without the MMF the paper is still interesting.

Specific, but less significant issues in the text.
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Abstract:

• Why is “Template-Based Generic Programming” capitalized?

We agree that it need not be capitalized, and have changed it in the
paper.

Introduction:

1. “A primary development focus has been on improving the representa-
tion of the momentum balance equations over the ‘shallow ice’ (SIA;
Hutter, 1983) and ‘shallow-shelf’ (SSA; Morland, 1987) approximations
through the inclusion of membrane stresses over the entire model do-
main.”

Careful, membrane stresses are supported over the entire domain when
using the SSA. Wouldn’t it be more appropriate to say through inclu-
sion of BOTH vertical shear AND membrane stresses over the entire
model domain (CAPS just for emphasis). allowing for a quantifiably
optimal match between modeled and observed velocities There is no
guarantee that this match is globally optimal.

We have made some changes to this portion of the text along the lines
suggested by the reviewer in the first part of this comment. We do not
follow entirely the second part of the comment about optimal matching
between observed and modeled velocities. We do not make a claim that
the match between these two quantities is globally optimal.

2. p 8083, line 1-5: There is mention of integration into ESMs. It is
possibly true that the model can be easily integrated into ESMs, but if
how that is done is not discussed in the paper, then it really shouldn’t
be mentioned in the introduction because the issues is complex enough
that in a journal like GMD, such claims can not be made without some
supporting documentation.

How we plan to couple to ESMs and do prognostic model runs is a good
question. The reviewer is correct that Albany/FELIX can only be used
for the diagnostic stress-velocity solve, and does not discretize the ice
temperature and thickness evolution equations. To do prognostic runs
and couple our code to ESMs, we have coupled Albany/FELIX to two
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other land ice models: the CISM (Community Ice Sheet Model) and
the MPAS-LI (Model for Prediction Across Scales - Land Ice) codes.
In the resulting dynamical cores (dycores), termed CISM-Albany and
MPAS-Albany respectively, the steady state stress velocity solve occurs
in Albany/FELIX and the ice sheet thermal and geometric evolution is
calculated in CISM or MPAS-LI. The details of these ice sheet mod-
eling frameworks will be presented in a subsequent paper, so we had
intentionally omitted the discussion of these codes here. We agree
with the reviewer that some mention of these dycores is worthwhile
so the reader can see how we will do prognostic solves and couple
to ESMs. It has been added to the “Conclusions” section of the pa-
per. If the reviewer would like to learn more about CISM-Albany and
MPAS-Albany and see some results from prognostic runs produced by
these codes, there are some presentations on the subject available at:
http://www.scidac.gov/PISCEES/presentations.html.

3. p 8087, line 5 not an energy balance but a conservation of energy model.

We agree that “conservation of energy” is more appropriate of a term
than “energy balance”, and have changed the phrase.

4. p 8090, line 11 “horizonal” → “horizontal” x2

This was a typographical error, which we have corrected.

5. p 8090, line 26 How is the domain decomposition performed?

We partition in a uniform contiguous domain fashion a 2D cross-section
of the full 3D mesh, so that in the 3D mesh decomposition, all elements
having the same x and y coordinates are on the same processor (see
Section 6.1). The partitioning was done using the decomposition utility
(called decomp) available as a part of Sandia Engineering Analysis Code
Access System (SEACAS) database of Trilinos (see the “Code Avail-
ability” section). This utility was used to create a linear decomposition
of the 2D mesh. These details have been added to the text.

6. p 8091, line 5. Is the viscosity differentiated too, or just the strain
rates? That is to say, its the so called “incomplete adjoint” (Goldberg
and Sergienko 2010), or complete adjoint?

In our implementation, the viscosity is differentiated, not just the strain
rates. Since the problem is self-adjoint, the Jacobian is equivalent to
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the adjoint matrix. We would like to note that this is only relevant for
optimization problems, which go beyond the scope of this paper.

7. p 8093 line 21-23. OK, I don’t really know much here, but I thought
the basic idea of multigrid techniques was to use multiple resolutions
to speed the rate of information transfer across the domain. It’s more
difficult for me to understand error capture from a high level.

There are different views of how multigrid works. The basic principle is
to utilize multiple resolution versions of the original problem to acceler-
ate the iterative solution procedure. The key idea is that smooth error
components (in the current solution approximation) can be efficiently
damped by applying a simple iterative process to a coarse resolution
version of the problem. This coarse version essentially facilitates the
propagation of long range information across the domain. This dis-
cussion has been added to the paper for clarity (beginning of Section
3.1.2).

8. Eqn 26 contains the strain rates dot epsilon 1 and dot epsilon 2. These
should be updated to clarify their 2D counterparts.

We agree, and have added the definitions of the 2D versions of these
quantities.
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