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CROP	  PHYSIOLOGY	  CALIBRATION	  IN	  CLM	  
RESPONSE	  TO	  REVIEWERS	  

NOTES	  AND	  MAJOR	  REMARKS	  
• All	   changes	   made	   in	   the	   manuscript	   are	   marked	   with	   blue	   color	   (revised	   document	  

enclosed	  at	  the	  end	  of	  the	  response).	  
• The	   reviewers’	   comments	   in	   this	   document	   are	   presented	   in	   italics.	   Our	   response	  

follows	  each	  comment.	  
• In	  order	   to	  demonstrate	   the	   transferability	  of	   the	  calibrated	  parameters,	  we	   repeated	  

the	  validation	  experiment	  at	  one	  more	  location:	  Mead,	  NE,	  US.	  
• Addressing	  the	  reviewers’	  comments,	  we	  re-‐ran	  our	  calibration	  procedure	  with	  4	  more	  

parameters	   (i.e.,	   for	   a	   total	   of	   14	   parameters).	   The	   results	   of	   this	   experiment	   are	  
presented	  as	  Exhibit	  I	  of	  this	  response.	  

REVIEWER	  #2	  
The	   manuscript	   presents	   a	   calibration	   methodology	   for	   the	   physiological	  

parameters	   of	   the	   newly	   developed	   CLM-‐Crop	   model.	   The	   algorithmic	   scheme	   is	  
developed	   in	   a	   Bayesian	   framework	   using	   a	   sequential	   Monte	   Carlo	   sampling.	   The	  
performance	   of	   the	   proposed	   approach	   is	   tested	   using	   data	   from	   one	   AmeriFlux	   test	  
site,	  Bondville,	  and	  considering	  soybean	  as	  crop	  type.	  

	  

Overall,	  the	  study	  is	  well	  designed	  and	  the	  methodology	  is	  scientifically	  sound.	  The	  
illustrations	  are	  all	  good	  quality,	  and	  well	  organized.	  The	  issues	  discussed	  in	  this	  paper	  
should	  be	  of	  interest	  to	  the	  scientific	  community,	  and	  is	  suitable	  for	  GMD.	  I	  recommend	  
this	  manuscript	  being	  accepted	  with	   some	  minor/moderate	   revisions.	   The	   issues	   that	   I	  
have	   just	   require	   the	  presentation	  of	   few	  additional	   results	   that,	   in	  my	  opinion,	  would	  
strength	  the	  whole	  content	  of	  the	  manuscript.	  

MAJOR	  COMMENTS	  
1. Authors	  state	  that	  the	  numerical	  examples	  of	  their	  scheme	  can	  perform	  model	  calibration	  at	  

a	  fraction	  of	  time	  required	  by	  plain	  vanilla	  MCMC.	  Could	  this	  statement	  be	  corroborated	  with	  
a	   table/figure	   showing	   the	   comparative	   computing	   performance	   of	   the	   two	   approaches?	  
Moreover,	   could	   the	   authors	   show	   that	   their	   approach	   outperforms	  also	   in	   simulating	   the	  
selected	  model	  outputs?	  
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Our	   scheme	   offers	   three	   advantages	   compared	   to	   plain	   vanilla	   MCMC:	   1)	   It	   is	  
embarrassingly	   parallelizable;	   2)	   It	   starts	   from	  a	   flat,	   easy-‐to-‐capture	   version	  of	   the	  posterior,	  
and	  it	  adaptively	  moves	  to	  the	  truth;	  3)	  It	  adapts	  the	  proposal	  distribution	  to	  the	  intricacies	  of	  
the	   target	  probability	  density.	  All	   three	  of	   these	  aspects	  make	  our	  scheme	  considerably	   faster	  
than	  plain	  vanilla	  MCMC.	  The	   latter	   two	  attributes	  significantly	   reduce	  the	  number	  of	   forward	  
model	  evaluations	  required	  for	  a	  good	  representation	  of	  the	  posterior.	  However,	  even	  if	  MCMC	  
required	   the	   same	  number	  of	   forward	  model	  evaluations	  as	  our	   scheme,	  we	  cannot	  afford	   to	  
solve	  the	  problem	  with	  it.	  Namely,	  we	  estimate	  that	  a	  plain	  vanilla	  MCMC	  calibration	  of	  CLM	  at	  
an	   accuracy	   comparable	   to	   the	   one	  we	  obtain	   in	   this	   paper	  would	   require	   about	   280	   days	   in	  
(200,000	  forward	  model	  evaluations	  x	  2	  minutes	  in	  one	  CPU).	  Such	  a	  computation	  is,	  clearly,	  not	  
tractable.	  The	  ability	  of	  our	  scheme	  to	  make	  use	  of	  1280	  computational	  cores	  (or	  more)	  enables	  
us	  to	  solve	  the	  problem	  in	  6	  hours	  (or	  less).	  	  

2. Did	  authors	  verify	  the	  improvements	  of	  model	  performance	  shown	  in	  Figure	  6	  and	  Figure	  7	  
considering	   other	   “independent”	   variables?	   As	   an	   example,	   soil	   moisture	   and/or	   energy	  
fluxes	  (LE/H).	  Additional	  results	  along	  this	  line	  would	  make	  the	  final	  conclusions	  of	  the	  work	  
more	  robust.	  

We	  did	  look	  at	  latent	  heat	  and	  sensible	  heat	  at	  both	  the	  Bondville	  site	  and	  that	  Mead	  site	  
to	   determine	   if	   they	   were	   improved	   with	   the	   calibrated	   parameters.	   There	   was	   a	   slight	  
improvement	   in	   these	  model	   outputs	   compared	  with	   observations,	  which	   is	   encouraging,	   but	  
not	  convincing.	  As	  we	  continue	  to	  calibrate	  additional	  parameters	  that	  will	  be	  important	  drivers	  
of	  these	  fluxes	  we	  will	  find	  continued	  improvements.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

3. The	  list	  of	  calibrated	  parameters	  looks	  a	  bit	  narrow	  if	  compared	  with	  other	  studies	  existing	  in	  
literature	   (White	   et	   al.,	   2000).	   Could	   authors	   comment	   on	   the	   ratio	   of	   neglecting	   highly	  
sensitive	   parameters	   as	   the	   percent	   of	   leaf	   nitrogen	   in	   Rubisco	   and	   the	   slope	   of	   stomatal	  
conductance?	  

Our	  initial	  and	  primary	  focus	  for	  this	  paper	  was	  to	  calibrate	  the	  parameters	  for	  the	  six	  CN	  
ratios	   that	   are	   responsible	   for	   carbon	   and	  nitrogen	  partitioning	   in	   the	   crops	   since	  we	  did	   not	  
have	  observations	  for	  those	  parameters	  and	  they	  therefore	  had	  a	  great	  deal	  of	  uncertainty.	  We	  
added	  a	  few	  more	  parameters	  that	  we	  felt	  would	  play	  a	  role	  regarding	  crop	  development,	  but	  
certainly	  not	  all	  the	  parameters	  that	  govern	  crop	  productivity	  in	  the	  model.	  We	  felt	  adding	  too	  
many	   parameters	   with	   the	   quantity	   of	   observations	   we	   had	   would	   lead	   to	   overfitting	   of	   the	  
model.	   The	  goal	  of	   this	   study	  was	   to	  demonstrate	   the	  ability	  of	   SMC	   to	   calibrate	  parameters.	  
Since	   we	   have	   shown	   that	   this	   method	   works,	   we	   did	   expand	   to	   other	   parameters	   that	   are	  
important.	   We	   considered	   several	   parameters	   from	   Sargsyan	   et	   al.	   (2011),	   which	   were	  
considered	  important	  for	  GPP,	  LAI,	  and	  Total	  Vegetation	  Carbon.	  Correlating	  parameters	  across	  
these	   three	  variables,	  we	   find	   the	   following	   important	  parameters:	   the	  percent	  of	  nitrogen	   in	  
the	   leaf	   as	   rubisco,	   Q10	   parameter	   for	   heterotrophic	   respiration,	   Q10	   parameter	   for	  
maintenance	  respiration,	  and	  base	  rate	  for	  maintenance	  respiration.	  Including	  these	  additional	  
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parameters	   doesn’t	   change	   the	   results	   significantly,	   but	   does	  modify	   parameter	   values	  within	  
the	  limits	  of	  statistical	  error.	  We	  include	  this	  new	  analysis	  as	  Exhibit	  I	  of	  this	  response.	  

4. As	   an	   additional	   test	   I	   would	   consider	   applying	   the	   calibration	   approach	   using	   data	   from	  
another	   test	   site	   (e.g.	   Ponca	  City,	   AmeriFlux	   site)	   having	   a	   different	   crop	   type	   (e.g.	  winter	  
wheat).	  At	   least	  observations	  on	  NEE	  (GPP)	  and	  LAI	  should	  be	  available.	  This	  will	  enlarge	  a	  
bit	  the	  perspective	  of	  the	  work.	  

We	  agree	   and	   are	   interested	   in	   applying	   the	   calibration	   approach	   to	   alternate	   sites	  with	  
different	  crop	  types	  as	  a	  future	  study,	  particularly	  for	  maize	  crops	  (winter	  wheat	  is	  not	  in	  CLM).	  
The	  Bondville,	  IL	  AmeriFlux	  site	  was	  chosen	  based	  on	  the	  quantity	  of	  data	  available	  at	  that	  site,	  
not	   found	   at	   other	   sites.	  We	   are	   continuing	   to	   look	   for	   additional	   sites	   to	   use	   to	   expand	   our	  
calibration.	   Toward	   that	   effect,	   we	   performed	   a	   validation	   test	   with	   our	   new	   calibrated	  
parameters	  at	  another	  AmeriFlux	  site	  in	  Mead,	  NE,	  which	  we	  have	  added	  to	  the	  paper.	  	  Please	  
see	  response	  to	  comment	  1	  of	  reviewer	  1	  for	  additional	  details.	  	  

TYPOS/GRAMMATICAL	  ERRORS	  
5. Please	  check	  the	  caption	  (“unsing”)	  of	  Algorithm	  1.	  	  

Fixed.	  

6. Page	  6741,	  “x”	  should	  be	  replaced	  by	  z.	  

Fixed.	  
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EXHIBIT	  I	  

RERUNNING	  THE	  CALIBRATION	  PROCEDURE	  WITH	  ADDITIONAL	  PARAMETERS.	  
We	   re-‐ran	   the	   calibration	   procedure	   with	   4	   more	   parameters	   (i.e.,	   for	   a	   total	   of	   14	  

parameters).	  We	  considered	  parameters	  that	  are,	  presumably,	  important	  for	  GPP,	  LAI,	  and	  Total	  
Vegetation	  Carbon.	  Correlating	  parameters	  across	   these	   three	  variables,	  we	   find	   the	   following	  
important	   parameters:	   the	   percent	   of	   nitrogen	   in	   the	   leaf	   as	   rubisco,	   Q10	   parameter	   for	  
heterotrophic	   respiration,	   Q10	   parameter	   for	   maintenance	   respiration,	   and	   base	   rate	   for	  
maintenance	   respiration.	   Including	   these	   additional	   parameters	   doesn’t	   change	   the	   results	  
significantly,	  but	  does	  modify	  parameter	  values	  slightly.	  The	  results	  are	  presented	  in	  Pages	  8-‐13	  
of	  this	  exhibit.	  Their	  format	  is	  exactly	  the	  same	  as	  the	  paper’s.	  

TABLE	  1	  -‐	  PRIOR	  INFORMATION	  ON	  THE	  PARAMETERS.	  THE	  NEW	  PARAMETERS	  ARE	  IN	  BOLD	  FONTS.	  

Name	   Description	   Constraints	   Min	   Max	   Default	  
xl	   leaf/stem	  orientation	  index	   none	   -‐0.40	   0.60	   -‐0.40	  

slatop	   specific	  leaf	  area	  at	  top	  of	  canopy	   none	   0.00	   0.15	   0.07	  
leafcn	   leac	  C	   none	   5.00	   80.00	   25.00	  

flnr	   fraction	  of	  leaf	  N	  in	  the	  Rubisco	  
enzyme	  (gN	  Rubisco	  /	  gN	  leaf)	  

none	   0.04	   0.50	   0.41	  

frootcn	   fine	  root	  C	   none	   40.00	   100.00	   42.00	  

livewdcn	   live	  wood	  (phloem	  and	  ray	  
parenchyma	  C)	  

none	   10.00	   100.00	   50.00	  

grperc	   growth	  respiration	  factor	  1	   none	   0.10	   0.50	   0.25	  
grpnow	   growth	  respiration	  factor	  2	   none	   0.00	   1.00	   1.00	  

br_mr	   base	  rate	  for	  maintenance	  
respiration	   none	   4.00e-‐07	   1.00e-‐05	   2.53e-‐06	  

q10_mr	   Q10	  for	  maintenance	  respiration	   none	   1.00	   4.50	   1.50	  
q10_hr	   Q10	  for	  heterotrophic	  respiration	   none	   1.00	   4.50	   1.50	  
graincn	   organ	  carbon	  nitrogen	  ratio	   none	   20.00	   100.00	   50.00	  
fleafcn	   final	  leaf	  carbon	  nitrogen	  ratio	   >	  leafcn	   10.00	   100.00	   65.00	  
fstemcn	   final	  stem	  carbon	  nitrogen	  ratio	   >	  livewdcn	   40.00	   200.00	   130.00	  
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TABLE	   2	   -‐	   CALIBRATION	   RESULTS	   AFTER	   INCLUDING	   THE	   NEW	   PARAMTERS.	   THE	   OLD	   CALIBRATION	  
RESULTS	   (WHEN	   AVAILABLE)	   ARE	   IN	   PARENTHESIS.	   THE	   OBSERVED	   DESCREPANCIES	   BETWEEN	   THE	   TWO	  
CASES	  ARE	  WITHIN	   THE	   STATISTICALL	   ERROR.	  THE	   PARAMETERS	  WERE	   TIGHTLY	   BOUND	  BEFORE	   (SLATOP	  
AND	  LEAFCN)	  REMAIN	  SO	  AFTER	  THE	  INCLUSION	  OF	  THE	  NEW	  VARIABLES.	  

Name	   Median	   𝒑 = 𝟎.𝟎𝟓	   𝒑 = 𝟎.𝟗𝟓	  

xl	   -‐0.01	  (-‐0.09)	   -‐0.33	  (-‐0.32)	   0.35	  (0.51)	  
slatop	   0.06	  (0.06)	   0.05	  (0.05)	   0.06	  (0.07)	  
leafcn	   22.58	  (29.51)	   11.90	  (25.26)	   38.83	  (35.79)	  

flnr	   0.32	   0.17	   0.47	  

frootcn	   77.54	  (66.90)	   48.69	  (46.02)	   94.89	  (95.66)	  

livewdcn	   45.83	  (48.16)	   20.48	  (10.56)	   90.69	  (85.89)	  

grperc	   0.33	  (0.40)	   0.23	  (0.18)	   0.46	  (0.50)	  
grpnow	   0.32	  (0.54)	   0.04	  (0.05)	   0.84	  (0.91)	  

br_mr	   2.42e-‐06	   8.29e-‐07	   7.71e-‐06	  

q10_mr	   1.86	   1.19	   3.19	  
q10_hr	   2.88	   1.73	   4.01	  
graincn	   79.14	  (55.69)	   33.15	  (27.18)	   99.36	  (89.43)	  
fleafcn	   70.32	  (64.30)	   30.38	  (59.47)	   96.18	  (180.88)	  
fstemcn	   118.64	  (118.02)	   47.84	  (59.47)	   176.14	  (180.88)	  
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POSTERIORS	  OF	  NEWLY	  ADDED	  PARAMETERS	  
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CALIBRATED	  OUTPUT	  (BONDVILLE,	  IL,	  2004)	  
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VALIDATION	  EXPERIMENT	  (BONDVILLE,	  IL,	  2002)	  

s	  
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VALIDATION	  EXPERIMENT	  (BONDVILLE,	  IL,	  2004)	  
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Abstract. Farming is using more of the land surface terres-
trial ground, as population increases and agriculture is in-
creasingly applied to used for non-nutritional purposes such
as biofuel production. This agricultural expansion exerts an
increasing impact on the terrestrial carbon cycle. In order5

to understand the impact of such processes, the Community
Land Model (CLM) has been augmented with a CLM-Crop
extension that simulates the development of three crop types:
maize, soybean, and spring wheat. The CLM-Crop model is
a complex system that relies on a suite of parametric inputs10

that govern plant growth under a given atmospheric forcing
and available resources. CLM-Crop development used mea-
surements of gross primary productivity and net ecosystem
exchange from AmeriFlux sites to choose parameter values
that optimize crop productivity in the model. In this paper15

we calibrate these parameters for one crop type, soybean,
in order to provide a faithful projection in terms of both
plant development and net carbon exchange. Calibration is
performed in a Bayesian framework by developing a scal-
able and adaptive scheme based on sequential Monte Carlo20

(SMC). The model showed significant improvement of crop
productivity with the new calibrated parameters. We demon-
strate that the calibrated parameters are applicable across al-
ternative years and different sites.

25

1 Introduction

Development of Earth system models (ESMs) is a chal-
lenging process, involving complex models, large input
datasets, and significant computational requirements. As
models evolve through the introduction of new processes and30

through improvement of algorithms, the ability of the mod-
els to accurately simulate feedbacks between coupled sys-
tems improves, although results may not have the desired
impact on all areas. For example, Lawrence et al. (2012) es-

timate that changes to the hydrology parameterization may35

be responsible for the warm bias in high-latitude soils in the
Community Land Model (CLM) version 3.5 to switch to a
cold bias become cold biased in CLM4.0. Although testing
of ESMs is extensive, ensuring after new developments are
merged that the model can still perform with limited (if any)40

degradation, on rare occasions model behavior can be nega-
tively affected. The strong nonlinearity of such models also
makes parameter fitting a difficult task; and as global mod-
els are developed by several different user groups simultane-
ously, combinations of multiple alterations make identifying45

the specific cause that leads to a new model output challeng-
ing. The CLM has been augmented with a CLM-Crop ex-
tension that simulates the development of three crop types:
maize, soybean, and spring wheat (Drewniak et al., 2013).
The CLM-Crop model is a complex system that relies on50

a suite of parametric inputs that govern plant growth under
a given atmospheric forcing and available resources. CLM-
Crop development used measurements of gross primary pro-
ductivity (GPP) and net ecosystem exchange (NEE) from
AmeriFlux sites to choose parameter values that optimize55

crop productivity in the model.
Global climate models have historically been tuned or cali-

brated to meet certain requirements, such as balancing the top
of the atmosphere radiation budget (Bender, 2008; Hourdin
et al., 2012; Mauritsen et al., 2012). Various techniques have60

been applied to models to adjust parameters, including using
data assimilation (Pauwels et al., 2007), applying an ensem-
ble Kalman filter (EnKF) (Hargreaves et al., 2004; Annan
et al., 2005; Evensen, 2009), and using a sampling algorithm
such as multiple very fast simulated annealing (MVFSA)65

(Yang et al., 2012). , which can be used to calibrate one or
many parameters at a time in coupled or uncoupled modes.
Most calibration strategies can be traced to a Bayesian ap-
proach that in most cases is simplified (e.g., MVFSA) or
augmented with assumptions that make the problem tractable70
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(e.g., EnKF). The tuning parameters that are not directly ob-
served may be stated as an inverse problem (Tarantola, 2004).
Inverse problems are, in general, very challenging especially
when the data are sparse, the models are complex, and the
state space is large. This is the case for CLM-Crop model, as75

well as for ESMs ESMs as well as for the CLM-Crop model.
Our goal is to calibrate some of the CLM-Crop parameters

in order to improve model projection of plant development
and carbon fluxes. To this end, we follow a Bayesian ap-
proach (Tarantola, 2004; Kaipio and Somersalo, 2004). We80

start by summarizing our initial state of knowledge in a prior
probability distribution over the parameters we wish to cali-
brate. After making some observations, our updated state of
knowledge is captured by the posterior distribution. Since the
posterior is not analytically available, we attempt to approx-85

imate it using an ensemble of particles (samples) from it. To
construct this particle approximation, we employ ideas from
sequential Monte Carlo (SMC) Doucet et al. (2001). Basi-
cally, we define a one-parameter family of distributions of
increasing complexity that starts at the prior and ends at the90

posterior. Starting from a particle approximation of the prior,
we gradually move it toward the posterior by sequentially
applying importance sampling. The scheme is highly par-
allelizable, since each particle of the approximation can be
computed independently. The way we move the particle ap-95

proximation towards the posterior is adjusted on the fly using
the ideas developed by Bilionis and Koutsourelakis (2012)
and Bilionis and Zabaras (2014). Each intermediate step of
our scheme requires Markov chain Monte Carlo (MCMC)
(Metropolis et al., 1953) sampling of the intermediate dis-100

tributions. One of the novelties of this work, is the auto-
matic construction of MCMC proposals for those interme-
diate steps using Gaussian mixtures (Blei and Jordan, 2005).
The result is an algorithmic framework that can adjust itself
to the intricacies of the posterior. As demonstrated by the nu-105

merical examples, our scheme can perform model calibration
using very few evaluations and, by exploiting parallelism, at
a fraction of the time required by plain vanilla MCMC.

We present the results from a twin experiment (self-
validation) and calibration results and validation using real110

observations from two an AmeriFlux tower sites in the mid-
western United States, for the soybean crop type. The im-
proved model will help researchers understand how climate
affects crop production and resulting carbon fluxes, and ad-
ditionally, how cultivation impacts climate.115

2 The CLM-Crop model

CLM-Crop was designed and tested in the CLM3.5 model
version (Drewniak et al., 2013) and in CLM4 (Levis et al.,
2012). The crop model was created to represent crop veg-
etation similarly to natural vegetation for three crop types:120

maize, soybean, and spring wheat. The model simulates GPP
and yield driven by climate, in order to evaluate the impact

of climate on cultivation and the impact of agriculture on cli-
mate. Crops are modeled within a grid cell sharing natural
vegetation; however, they are independent (i.e., they do not125

share the same soil column). This approach allows manage-
ment practices, such as fertilizer, to be administered without
disturbing the life cycle of natural vegetation. For a full de-
scription of the crop model see the study by Oleson et al.
(2013); the harvest scheme is described by Drewniak et al.130

(2013).
Crops are modeled similarly to natural vegetation with

the main exception of how allocation is defined via a dif-
ferent growing scheme, which is separated into four phases:
planting, emergence, grain fill, and harvest. Although the135

design of the crop model fits within the framework of nat-
ural vegetation, crops have a significantly different grow-
ing scheme, separated into four phases: planting, emergence,
grain fill, and harvest. Each phase of growth changes how
carbon and nitrogen are allocated to the various plant parts:140

leaves, stems, fine roots, and grain. During planting, carbon
and nitrogen are allocated to the leaf, representative of seed.
This establishes a leaf area index (LAI) for photosynthesis,
which begins during the emergence phase. The emergence
phase allocates carbon and nitrogen to leaves, stems, and145

roots using functions from the Agro-IBIS model (Kucharik
and Brye, 2003). During the grain fill stage, decreased car-
bon is allocated to leaves, stems, and roots in order to fulfill
grain requirements. When maturity is reached, harvest oc-
curs: all grain is harvested, while leaves, stems, and roots are150

turned over into the litter pool. Residue harvest is not active
in the model.

The allocation of carbon to each plant part is driven largely
by the carbon-nitrogen (CN) ratio parameter assigned to each
plant segment. CLM first calculates the potential photosyn-155

thesis for each crop type based on the incoming solar radia-
tion and the LAI. The total nitrogen needed to maintain the
CN ratio of each plant part is calculated as plant demand.
If soil nitrogen is sufficient to meet plant demand, potential
photosynthesis is met; however, if soil nitrogen is inadequate,160

the total amount of carbon that can be assimilated is down-
scaled.

During the grain fill stage, a nitrogen retranslocation
scheme is used to fulfill nitrogen demands by mobilizing ni-
trogen in the leaves and stems for use in grain development.165

This scheme uses alternate CN ratios for the leaf and stem to
determine how much nitrogen is transferred from the leaves
and stems into a retranslocation storage pool. The total nitro-
gen transferred at the beginning of the grain fill stage from
the leaf and stem is represented by170

retransnleaf =
Cleaf

leafcn
� Cleaf

fleafcn
, (1)

retransnstem =
Cstem

livewdcn
� Cstem

fstemcn
. (2)

Cleaf and Cstem are the total carbon in the leaf and stem, re-
spectively; leafcn and livewdcn stemcn are the pregrain fill175
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CN ratios for the leaf and stem; and fleafcn and fstemcn are
the post-grain fill CN ratios for the leaf and stem. All of the
CN ratios are fixed parameters, which vary with crop type;
default values are reported in Table 1.

In addition to the above, CLM-Crop has a fertilizer appli-180

cation and soybean nitrogen fixation, described by Drewniak
et al. (2013). Planting date and time to maturity are based on
temperature threshold requirements (Levis et al., 2012). For
the calibration procedure, we used the actual planting date
reported for the Bondville site for the year 2004. Crops are185

not irrigated in the model, nor do we consider crop rotation.
Although rotation will have an impact on the carbon cycle
both above and below-ground, CLM does not support crop
rotation at this time.

The version of CLM-Crop detailed by Drewniak et al.190

(2013) was calibrated against AmeriFlux data for both the
Mead, NE, and Bondville, IL, sites’ plant carbon measure-
ments, for both maize and soybean, using optimization tech-
niques to fit parameters. When available, parameter values
were taken from the literature or other models. Remaining195

parameters were derived through a series of sensitivity simu-
lations designed to match modeled carbon output with Amer-
iFlux observations of leaf, stem, and grain carbon at the
Bondville, IL, site and total plant carbon at the Mead, NE,
(rainfed) site.200

When CLM-Crop was ported into the CLM4.5 framework,
the parameter values were no longer optimized as a result
of various changes in model processes that affected how
crops fit into the model framework. In addition, a new below-
ground subroutine of carbon and nitrogen cycling is included205

in CLM4.5 (Koven et al., 2013), which has a strong influ-
ence on crop productivity. Therefore, we needed to retune
the model parameters that represented crops with a more so-
phisticated approach described later in this paper.

2.1 Parameters affecting the crops210

Over 100 parameters are defined in CLM4.5 to represent
crops. Many of these parameters are similar to those that gov-
ern natural vegetation, but some are specific to crops. These
parameters define a variety of processes, including photosyn-
thesis, vegetation structure, respiration, soil structure, car-215

bon nitrogen dynamics, litter, mortality, and phenology. To
add further complication, parameters are assigned in various
parts of the model; some parameters are defined in an exter-
nal physiology file, some are defined in surface datasets, and
others are hardcoded in the various subroutines of CLM4.5.220

Performing a full model calibration for all parameters
would be a monumental task, so we began our calibration
process by narrowing down the parameters that are used only
in crop functions or might have a large influence on crop be-
havior. Of this list, parameter values can be fixed across all225

vegetation types (or crop types), vary with crop type, or vary
spatially and by crop type. We chose to limit the parameters
to those that are either constant or vary with crop type.

Crop parameters are taken from the literature (when avail-
able) and used to determine a range of values appropriate for230

each crop type. When parameters are not available, optimiza-
tion techniques are used to estimate parameter values based
on CLM performance. Determining a full range of accept-
able values was difficult for several parameters, and in some
cases not possible. Of the full list of parameters in need of235

calibration, we began our approach with the ten parameters
listed in Table 1 that may have a large influence on crop pro-
ductivity and have the greatest uncertainty because the val-
ues are based on optimization from a previous model ver-
sion. Six of the parameters are the carbon-nitrogen (CN) ra-240

tios for the various plant parts (leaf, stem, root, and grain).
Since the leaf and stem account for nitrogen relocation dur-
ing grain fill, they are represented by two separate CN ratios,
to separate pre- and postgrain fill stages of plant develop-
ment. They influence how carbon and nitrogen are allocated,245

thereby affecting growth, nutrient demand, photosynthesis,
and so on, and are included as part of the physiology data
file. Four additional parameters are included in the calibra-
tion process. The leaf/stem orientation is used to calculate
the direct and diffuse radiation absorbed by the canopy, the250

specific leaf area at the top of the canopy is used with the
leaf CN ratio to calculate the LAI, and the growth respiration
factors determine the timing and quantity of carbon allocated
toward respiration of new growth.

2.2 Description of the observational dataset255

We used observations from the Bondville, IL, AmeriFlux
tower located in the midwestern United States (40.01� N,
88.29� W) using an annual no-till corn-soybean rotation;
a full site description is given by Meyers and Hollinger
(2004). The site has been collecting measurements since260

1996 of wind, temperature, humidity, pressure, radiation,
heat flux, soil temperature, CO

2

flux, and soil moisture. Soy-
beans were planted in 2002 and 2004, and corn was planted
in 2001, 2003, and 2005. We used daily averaged eddy co-
variance measurements of NEE and derived GPP in our265

model calibration procedure, which are categorized as Level
4 data published on the AmeriFlux site, gap filled by using
the Marginal Distribution Sampling procedure outlined by
Reichstein et al. (2005). GPP is derived as the difference be-
tween ecosystem respiration and NEE, where ecosystem res-270

piration is estimated by using the method of Reichstein et al.
(2005). In addition, biomass information (which we convert
to carbon assuming half of the dry biomass is carbon) and
LAI have been collected for years 2001–2005 for the vari-
ous plant segments, including leaf (LEAFC), stem (STEMC),275

and grain (GRAINC), which are reported on the AmeriFlux
website (http://public.ornl.gov/ameriflux).The frequency of
biomass measurements is generally every seven days, begin-
ning a few weeks after planting and continuing through the
harvest. We chose to calibrate against the Bondville Ameri-280

Flux site because of the availability of unique biomass data

http://public.ornl.gov/ameriflux
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collected. By performing the calibration against site data that
includes crop rotation, we hope to indirectly include the ef-
fects of crop rotation on GPP and NEE in the model. Finally,
in order to assess the transferability of the calibrated parame-285

ters across sites, we perform one more validation experiment
using observations from the Mead, NE, AmeriFlux site, lo-
cated at 41.1741 N, -96.4396 W, is similar to the Bondville,
IL site growing a corn-soybean rotation under no-till condi-
tions. Although there are three fields, only one is under rain-290

fed conditions. The site was initialized in 2001, a description
can be found in (Verma et al., 2005). The data collected is
the same as the Bondville, IL Ameriflux site. Soybeans were
planted in 2002 and 2004.

The time-dependent observations are denoted by z(t) =295

{z
1

(t), . . . , z
6

(t)}, where the indices correspond to GPP,
NEE, GRAINC, LEAFC, STEMC, and TLAI. Because of
uncertainties in fertilization use and measured data, we fo-
cused on the peak observed values, as well as the growth
slope for GPP, NEE, LEAFC, and STEMC. To remove the at-300

mospheric induced noise in the NEE and GPP measurements
we filtered the time series by applying a moving average op-
erator with a width of 30 days. These operations are denoted
by the map

y = [y
1

, . . . ,y

10

]T

= [max(z
1

(t)),slope(z
1

(t)),
max(abs(z

2

(t))),slope(z
2

(t)),
max(z

3

(t),maxz
4

(t),slopez
4

(t),
max(z

5

(t),slope(z
5

(t)),max(z
6

(t)]T ,

(3)305

where z x represents the filtered z x and the slope is calcu-
lated in the beginning of the plant emergence phase, result-
ing in one maximum and one slope per variable per year. The
observed GPP and NEE slopes were computed as the slope310

between the 208th day and 188th day for 2002 and between
the 180th day and 160th day for 2004. The observed LEAFC
and STEMC slopes were computed based on observed val-
ues on 7/16-8/13 and 7/23-9/10 for 2002, and on 6/8-7/27
and 6/8-8/10 for 2004, respectively.315

2.3 Initial conditions and spin-up

CLM requires a spin-up to obtain balanced soil carbon and
nitrogen pools, which are responsible for driving decomposi-
tion and turnover. A global spin-up of the model is provided
with the model, using the below-ground biogeochemistry and320

spin-up method provided by Koven et al. (2013). Crops are
then interpolated to a higher resolution over the Bondville,
IL, site.

The meteorological forcing data used for the calibration
procedure (post spin-up) is from the Bondville, IL flux tower325

site. The atmospheric data covers the years 1996-2007, but
we focus on 2002 and 2004 for this experiment. The model
is run in point mode, meaning only one grid cell is simulated
at a resolution of roughly 0.1� ⇥ 0.1�.

3 Calibration strategy330

We represent the CLM-Crop model output relevant to Eq. (3)
by f(✓) = (f

1

(✓), . . . ,fq(✓)), where ✓ = (✓
1

, . . . ,✓d) are the
d time-independent parameters that we wish to calibrate and
q = 10 q = 11 is the number of outputs. The slopes estimated
from numerical simulations were computed as the variable335

slopes between the date when the fraction of growing degree
days to maturity reaches 0.3 and 20 days prior to this point
ahead of it, where growing degree days are accumulated each
day by subtracting the minimum temperature for growth (10�

C for soybean) from the average daily temperature; see (Ole-340

son et al., 2013).
We consider a set of ten calibration parameters that were

indicated by the model as being highly uncertain. This set
consists of: xl, slatop, leafcn, frootcn, livewdcn, grperc, grp-
now, graincn, fleafcn, and fstemcn. See Table 1 and Sect. 2.1345

for details.
The model calibration strategy aims to merge model pre-

dictions that depend on parameters ✓ with observational
datasets. We assume that the relationship between observa-
tion data and the true process follows a relationship of type350

Y = f(✓⇤)+ " , (4)

where ✓

⇤ are the perfectly calibrated parameters and " rep-
resents the observational errors. This holds under the as-
sumption that the model is a perfect representation of real-355

ity (Kennedy and O’Hagan, 2001). The problem statement
can be extended to account for imperfect models, but then
the statistical description of " tends to become much more
complicated. Therefore, for this study we start by consider-
ing a perfect model assumption.360

Following a Bayesian approach, we assume a prior distri-
bution on the calibration parameters:

p(✓)/ C(✓)

d
Y

i=1

1
[✓i,min

,✓i,max

]

(✓i), (5)

where ✓i,min

and ✓i,max

are the minimum and maximum al-365

lowed values for the parameter ✓i, respectively; 1A(x) is the
indicator function of a set A (i.e., 1A(x) is one if x 2A and
zero otherwise); and C(✓) models any physical constraints
that are known a priori. For the parameters we are consider-
ing, the constraints are as follows:370

C(✓) = 1
[✓fleafcn>✓leafcn](✓)1[✓fstemcn>✓livewdcn](✓). (6)

We define the likelihood as

p(y|✓)/N (y|f(✓),⌃obs) , (7)

where N (x|µ,⌃) is the Gaussian probability density375

with mean µ and covariance matrix ⌃. The covariance
matrix ⌃obs is taken to be diagonal, namely, ⌃obs =
diag

�

�

2

obs,1, . . . ,�
2

obs,q
�

, with each diagonal component �2

obs,i
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being the square of 10% of the corresponding observed
value. This choice of ⌃obs is equivalent to a priori assuming380

10% observational noise.
Our state of knowledge about the parameters ✓ after ob-

serving y (see Sec. 2.2) is captured by the posterior distribu-
tion:

p(✓|y)/ p(y|✓)p(✓) . (8)385

4 Approximating the posterior

We are going to construct a particle approximation of Eq. (8)
��

w

(i)
,✓

(i)
� N

i=1

, in the sense that

p(✓|y)⇡
N
X

i=1

w

(i)
�

⇣

✓� ✓

(i)
⌘

, (9)

where
PN

i=1

w

(i) = 1, and �(·) is Dirac’s delta function. This390

is achieved by using a combination of MCMC (Metropo-
lis et al., 1953; Hastings, 1970) and SMC methodologies
(Doucet et al., 2001). For more details on the methodological
aspects, we refer the reader to the work of Del Moral et al.
(2006); Koutsourelakis (2009) and Bilionis and Koutsoure-395

lakis (2012). Here we present the material briefly, focusing
only on the novel aspect of our approach that concerns auto-
matically tuning the MCMC proposals.

Let us define a sequence of bridging distributions:

p(✓|y,�t)/ p(y|✓)�t
p(✓) =: ⇡t(✓), (10)400

where 0 = �

0

< �

1

< · · ·< �t < · · · 1. Notice that for �t =
0 we obtain the prior and for �t = 1 the posterior. The key
idea of SMC is to start from a particle representation of the
prior (�t = 0), which is easy to obtain, and gradually increase
�t until it reaches 1, adjusting the weights along the way.405

We will show later how this sequence can be determined on
the fly by taking into account the degeneracy of the particle
representations.

4.1 Sequential importance sampling

Let
n⇣

w

(i)
t ,✓

(i)
t

⌘oN

i=1

be a particle representation of410

p(✓t|y,�t),

p(✓t|y,�t)⇡
N
X

i=1

w

(i)
t �

⇣

✓� ✓

(i)
t

⌘

, (11)

with the weigths being normalized (i.e.,
PN

i=1

w

(i)
t = 1). We

now examine how this particle representation can be updated
to a particle representation corresponding to �t+1

> �t. To-415

ward this goal, we introduce a fictitious probability density
on the joint space of ✓t and ✓t+1

by

qt(✓t,✓t+1

) = p(✓t+1

|y,�t+1

)Lt(✓t|✓t+1

)
/ ⇡t+1

(✓t+1

)Lt(✓t|✓t+1

),
(12)

where Lt is a backward transition density (i.e., Lt(✓t|✓t+1

)
is the probability of ✓t given ✓t+1

) properly normalized, that420

is,
R

Lt(✓t|✓t+1

)d✓t = 1. In addition, we introduce an impor-

tance sampling density,

⌘t(✓t,✓t+1

) = p(✓t|y,�t)Kt(✓t+1

|✓t)
/ ⇡t(✓t)Kt(✓t+1

|✓t),
(13)

where Kt is a forward transition density (i.e., K(✓t+1

|✓t) is
the probability of ✓t+1

given ✓t) properly normalized, that is,425
R

K(✓t+1

|✓t)d✓t = 1. Notice that

p(✓t+1

|y,�t) =
Z

p(✓t+1

|y,�t+1

)L(✓t|✓t+1

)d✓t

=

Z

qt(✓t,✓t+1

)d✓t

=

Z

qt(✓t,✓t+1

)

⌘t(✓t,✓t+1

)
⌘t(✓t,✓t+1

)d✓t

=

Z

qt(✓t,✓t+1

)

⌘t(✓t,✓t+1

)
p(✓t|y,�t)Kt(✓t+1

|✓t)d✓t430

⇡
N
X

i=1

w

(i)
t

qt

⇣

✓

(i)
t ,✓t+1

⌘

⌘t

⇣

✓

(i)
t ,✓t+1

⌘

Kt

⇣

✓t+1

|✓(i)t

⌘

.

This observation immediately suggests that to move the �t

particle representation of Eq. (11) to a �t+1

representation
n⇣

w

(i)
t+1

,✓

(i)
t+1

⌘oN

i=1

,

p(✓t+1

|y,�t+1
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N
X

i=1

w

(i)
t+1

�

⇣

✓� ✓

(i)
t+1

⌘

,435

with
PN

i=1

w

(i)
t+1

= 1, we must sample

✓

(i)
t+1

⇠Kt(✓t+1

|✓(i)t ), (14)

compute the incremental weights,

ŵ

(i)
t+1

=
⇡t+1

⇣

✓

(i)
t+1

⌘

Lt

⇣

✓

(i)
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⌘
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✓
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⌘
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✓

(i)
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⌘

0

@/
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✓

(i)
t ,✓
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⌘

⌘t

⇣

✓
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(i)
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⌘

1

A

,

(15)

get the unormalized �t+1

-weights,440

W

(i)
t+1

= w

(i)
t ŵ

(i)
t+1

, (16)

and get the normalized �t+1

-weights:

w

(i)
t+1

=
W

(i)
t+1

PN
j=1

W

(i)
t+1

. (17)
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4.2 Convenient choices for Lt and Kt

The preceding remarks hold for any backward and forward445

transition densities Lt and Kt, respectively. We now seek
a convenient choice that will simplify the form of the in-
cremental weights given in Eq. (15). Suppose for the mo-
ment moment that Kt is given and let us look for the optimal
choice of Lt. Since qt is the target distribution and ⌘t is the450

importance sampling density, the best choice of Lt is the one
that attempts to bring the two densities as close together as
possible. This is easily seen to be the conditional of ⌘t on ✓t,
in other words, the optimal choice is

L

⇤
t (✓t|✓t+1

) = ⌘(✓t,✓t+1

)R
⌘(✓0

t,✓t+1

))d✓0
t

= ⇡t(✓t)Kt(✓t+1

|✓t)R
⇡t(✓0

t)Kt(✓t+1

|✓0
t)d✓

0
t
.

(18)455

From a computational point of view, however, it is more con-
venient to work with the suboptimal choice,

L

⇤,s
t (✓t|✓t+1

) =
⇡t+1

(✓t)Kt(✓t+1

|✓t)
R

⇡t+1

(✓0t)Kt(✓t+1

|✓0t)d✓0t
, (19)

which is motivated by the expectation that consecutive den-
sities are similar (i.e. ⇡t ⇡ ⇡t+1

). For this choice the incre-460

mental weights of Eq. (15) become

ŵ

(i)
t+1

=
⇡t+1

⇣

✓

(i)
t+1

⌘

⇡t+1

⇣

✓

(i)
t

⌘

⇡t

⇣

✓

(i)
t

⌘

R

⇡t+1

(✓0t)Kt

⇣

✓

(i)
t+1

|✓0t
⌘

d✓

0
t

. (20)

To get rid of the integral in the denominator, we pick Kt to
be invariant with respect to ⇡t+1

:
Z

⇡t+1

(✓0t)Kt(✓t+1

|✓0t)d✓0t = ⇡t+1

(✓t+1

). (21)465

This can always be achieved with a suitable choice of a
Metropolis-Hastings transition kernel (see below). For this
case, the incremental weights simplify to

ŵ

(i)
t+1

=
⇡t+1

⇣

✓

(i)
t

⌘

⇡t

⇣

✓

(i)
t

⌘ = p

⇣

y|✓(i)t

⌘�t+1

��t

. (22)

4.3 Metropolis-Hastings-based Kt.470

As shown in the previous paragraph, it is convenient to select
Kt to be invariant with respect to ⇡t+1

. The easiest way to
achieve this is to associate Kt with one or more steps of the
Metropolis-Hastings algorithm. Let ht(✓

0|✓) be any proposal
density (e.g., a simple random walk proposal). The single-475

step Metropolis-Hastings forward transition density is

K

1

t (✓t+1

|✓t) = ht(✓t+1

|✓t)a(✓t+1

,✓t), (23)

where

a(✓t+1

,✓t) := min

⇢

1,
⇡t+1

(✓t+1

)ht(✓t|✓t+1

)

⇡t+1

(✓t+1

)ht(✓t+1

|✓t)

�

. (24)

Samples from Eq. (14) may be obtained by performing one480

step of the well-known Metropolis-Hastings algorithm. The
forward kernel corresponding to M > 1 Metropolis-Hastings
steps is given recursively by

K

M
t (✓t+1

|✓t) =
Z

K

M�1

t (✓t+1

|✓0)K1

t (✓
0|✓t)d✓0. (25)

The number of Metropolis-Hastings steps, M , at each �t is a485

parameter of SMC. This is the forward kernel we use in all
numerical examples. Theoretically, M = 1 is enough, since
the number of particles N !1. Therefore, we will use M =
1 in our numerical examples.

4.4 Resampling490

As SMC moves to higher values of �t, some of the parti-
cles might find themselves in low probability regions. Conse-
quently, their corresponding correspondings weights will be
small. This degeneracy of the weights can be characterized
by the effective effectice sample size (ESS) metric, defined495

by

ESS(�t) =
1

PN
i=1

⇣

w

(i)
t

⌘

2

. (26)

Notice Nottice that ESS is equal to N when the particles
are equally important (i.e., w(i)

t = 1/N ) and equal to 1 when
only one particle is important (e.g., w(1)

t = 1 and w

(i)
t = 0 for500

i 6= 1) and in general takes values between 1 and N for arbi-
trary weights. Resampling is triggered when the ESS falls
below a prespecified threshold ( 1

2

N in our numerical exam-
ples). The idea is to kill particles that have very small weights
and let the particles with big weights replicate. This process505

must happen in a way that the resulting particle ensemble
remains a valid representation of the current target proba-
bility density. This can be achieved in various ways. Perhaps
the most straightforward way is to use multinomial sampling.

Let the resulting particles be denoted by
n⇣

w̃

(i)
t , ✓̃

(i)
t

⌘oN

i=1

.510

In multinomial resampling the final weights are all equal:

w̃

(i)
t = 1/N. (27)

The sequence
n

✓̃

(i)
t

oN

i=1

is found by sampling a sequence of

integers ji ⇢ {1, . . . ,N} with probabilities {w(1)

t , . . . ,w

(N)

t }
and by setting515

✓̃

(i)
t = ✓

(ji)
t , (28)

for i= 1, . . . ,N .

4.5 Choosing �t+1 on the fly

We note that the incremental weights of Eq. (22) do not de-
pend on the �t+1

-samples obtained in Eq. (14). They depend520
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only on the likelihood of the �t-samples. In this part, we ex-
ploit this observation in order to devise an effective way of
selecting �t+1

based on the ESS. The idea is to pick the new
�t+1

so that the resulting particles do not become too degen-
erate. Their degeneracy is characterized by ESS(�t+1

) given525

in Eq. (26). From Eqs. (22), (16), and (17), evaluation of
ESS(�t+1

) does not require any new likelihood evaluations.
We select the new �t+1

by requiring that

ESS(�t+1

) = ⇣ESS(�t), (29)

where ⇣ is the percentage of the degeneracy degenaracy we530

are willing to accept (⇣ = 0.99 in our numerical examples). It
is fairly easy to show that ESS(�t+1

) is a strictly decreasing
function for �t+1

2 (�t,1]). Therefore, Eq. (29) has a unique
solution that can be easily found by using a bisection algo-
rithm.535

4.6 Adapting the KM
t on the fly

Based on the discussion above, we expect that p(✓t|y,�t)
should be similar to p(✓t+1

|y,�t+1

). To exploit this fact,
we pick the proposal ht(✓

0|✓) required by the Metropolis-
Hastings kernel KM

t given in Eq. (25) to be a mixture of540

Gaussians that approximates p(✓t|y,�t). In particular, we
pick

ht(✓
0|✓) =

L
X

i=1

ciN (✓0|µt,i,⌃t,i) , (30)

where the non-negative coefficients ci sum to one, µi,i 2 Rd,
and ⌃t,i 2 Rd⇥d are covariance matrices. The number of545

components L as well as all the parameters of the mixture
fitted to a resampled version of the particle approximation
of p(✓t|y,�t) (see Eq. (28)) using the procedure of Blei and
Jordan (2005) as implemented by Pedregosa et al. (2011).

4.7 Parallelization550

SMC is embarrassingly parallelizable. Basically, each CPU
can store and work with a single particle. Communication
is required only for normalizing the weights (see Eq. (17)),
finding �t+1

(see Eq. (29)), and resampling. The first two
have a negligible communication overhead and can be imple-555

mented easily. Implementation of the resampling step is more
involved and requires more resources. However, the cost of
resampling is negligible compared with the evaluation of the
forward model.

4.8 The final algorithm560

We now collect all the details of SMC discussed above in
a single algorithm for convenience; Algorithm 1. Our imple-
mentation is in Python and is provided at: https://github.com/
ebilionis/pysmc.

5 Results565

In this section we present our calibration results for the pa-
rameters described in Sect. 2.1 by using the observations de-
tailed in Sect. 2.2. In this study we focus only on the pa-
rameters affecting the soy crop and restrict our calibration
to year 2004. With these calibrated parameters we perform a570

validation experiment by using the data from year 2002. In
addition, we forecast 2004 through a 2002-2003-2004 simu-
lation. We recognize that the Bondville observations include
crop rotation during 2003 that will influence the sequence of
output; but since the model does not support crop rotation,575

we plant soybean during 2003. The role of the latter exper-
iment is to demonstrate the robustness of the proposed cal-
ibration scheme. Moreover, we perform a twin experiment
that consists of generating artificial data by using some con-
trol parameter values, then applying the calibration strategy580

to recover the control parameters.
In all our numerical examples we fix the planting and har-

vest days. This approach is essential in order to avoid overfit-
ting the physiological parameters due to offsets in the grow-
ing seasons. The planting dates for 2002 and 2004 are 06/02585

and 05/07, respectively. The harvest day is controlled via the
input variable “hybgdd” (growing degree days for maturity),
where growing degree days are defined in Sec. 3. The val-
ues of “hybgdd” that give the right harvest days for 2002 and
2004 are 1474 1474.3772 and 1293 1293.7799, respectively.590

The number of particles we use is N = 1280. Each par-
ticle is assigned to a different computational core, i.e., we
use 1280 computational cores. A simulated year takes about
2 min to complete if data localization is used. Calibration re-
quires approximately 100,000 simulations and completes in595

about 6 hours.

5.1 Validation of the method

We begin the twin experiment with the aim of validating the
proposed calibration strategy. We generate artificial observa-
tions by randomly sampling ✓ from its prior Eq. (5). We apply600

the calibration strategy on the artificial observations to see
whether the method can recover the ground truth. The adap-
tively selected �t sequence is shown in Fig. 1(a). In Fig. 2 we
compare the posterior of each parameter with the prior. The
true parameters are indicated by red dots. The fit to the arti-605

ficial outputs is shown in Fig. 3. The parameters that are not
specified precisely are parameters that have a small (if any)
effect on the observed outputs.

5.2 Calibration using real data

In our next experiment we calibrate the parameters listed in610

Table 1. The observational operator (Eq. 3) is defined by tak-
ing the annual maximum of the absolute value of LEAFC,
LAI, GRAINC, STEMC, GPP, and NEE; and the slope of
LEAFC, STEMC, GPP, and NEE as described in Sec. 2.2. In

https://github.com/ebilionis/pysmc
https://github.com/ebilionis/pysmc
https://github.com/ebilionis/pysmc
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Fig. 4, we compare the posterior we obtain with the prior. The615

default parameters are indicated by red dots. The fit to the ar-
tificial outputs is shown in Figures 5. The adaptively selected
�t sequence is shown in Fig. 1(b). In Table 2 we summarize
our findings, by showing the median and the p= 0.05 and
p= 0.95 quantiles of each calibrated parameter.620

5.3 Validation of real data results

To validate the generalization potential of our calibration we
perform a one-way validation We use the calibrated param-
eters to predict the observables in 2002. In Fig. 6 we plot
the median and 95% error bars of the calibrated time series625

and we compare the results with observations and the default
parameter output of 2002. We observe a notable improve-
ment in the ability of the model to explain the observations.
One of the most important improvements is related to LAI
calculations, which comes from improvements to the leaf630

CN ratio and the specific leaf area. The timing of maximum
LAI is important for the carbon allocation; when the crops
in CLM4.5 reach peak LAI, carbon allocation shifts from
above and below-ground to strictly below-ground (roots).
With the default parameter values, peak LAI occurred early635

in the growing season, resulting in large and unrealistic al-
location of carbon to roots and insufficient carbon to leaf,
stem, and ultimately ultimatly grain. The large increase in
stem carbon and the slower rate of growth and peak of GPP
are clear indications that the shift in allocation to roots no640

longer occurs with the new calibrated parameter values. The
grain carbon is still low, however, a result of the low leaf car-
bon and the overestimation of stem carbon, which increases
the amount of carbon allocated to maintenance respiration
at the expense of new growth for this year. The increase in645

uncertainty is likely a result of a limitation in nitrogen avail-
ability in some scenarios. When CN ratios are low, a higher
demand of nitrogen from plants contributes to an increase in
competition for resources with below-ground decomposition
processes. When the nitrogen demand from the two sources650

exceeds availability, the amount of carbon that can be assim-
ilated is downscaled, resulting in a lower GPP, increase in
NEE, and so on. We continue the simulation through 2003 to
2004 and compare the calibrated time series with the obser-
vations and the default parameter output in Fig. 7. The dif-655

ferences between this plot and Fig. 5 are due to differences
in the below ground conditions of carbon and nitrogen that
drive the dynamics for plant competition with below-ground
decomposition processes. Crops in CLM4.5 tend to be sensi-
tive to variation in carbon and nitrogen pools; and since we660

ran the calibration over one year and didn’t consider variabil-
ity in previous years’ carbon and nitrogen pools, demand for
nitrogen is likely different when the model is run for mul-
tiple years. Since the change in pools is minor, the result-
ing change in output by the model is also small. This is also665

likely responsible for the increased uncertainty in GPP and
NEE, which occurs from competition for resources as dis-

cussed above. Finally, in Fig. 8 show the results of the same
validation experiment at the Mead, NE, site.

6 Discussion670

In this paper, we sought to improve CLM-Crop model perfor-
mance by parameter calibration of a subset of model param-
eters governing, mostly, the carbon and nitrogen allocation
to the plant components. By using a Bayesian approach, we
were able to improve the model-simulated GPP, NEE, and675

carbon biomass to leaf, stem, and grain with the new pa-
rameter values. In addition, we demonstrated that the cali-
brated parameters are applicable across alternative years and
not solely representative of one year.

This study does have a few limitations stemming from680

a lack of observation data. Currently our results are suit-
able at one site across multiple years; testing at multiple sites
would give a better indication of how well the model can per-
form globally or even across a region. However, the limited
data over agricultural sites constrains our ability to determine685

parameter values that are relevant at a global scale. In addi-
tion, our use of actual planting dates is not a typical approach
with CLM4.5, which generally uses temperature thresholds
to trigger planting. Thus, the model may plant earlier or later
compared with observations, which, if significant, could in-690

fluence the growth cycle and resulting carbon fluxes. In addi-
tion, CLM-Crop does not have crop rotation, which is com-
mon across agricultural landscapes, including in the obser-
vation dataset. Crop rotation can modify below-ground car-
bon and nitrogen cycling that would have an impact on crop695

productivity through nutrient availability as well as NEE.
While we would like to include crop rotation, CLM does
not currently have the capability to support this function.
Therefore, we tried to include the effects indirectly by cal-
ibrating against data that includes crop rotation. As more so-700

phisticated crop representation is introduced into the model,
we will revisit the calibration to improve model parameters.
Moreover, we considered the initial litter, carbon, and nitro-
gen pools fixed by the values of the prior parameters because
a direct spin-up calculation would have made sampling pro-705

hibitively expensive. We will address this issue in a future
study by including these pools in the calibration procedure.

Our approach has focused on one crop type, soybean, with
the intent of determining the effectiveness of the proposed
calibration method. We consider the results promising and,710

as part of future work, hope to expand this research to ad-
ditional years, crop types, and other parameters. Many other
variables are of interest, including fertilization rate, timing
of the growth stages, and a few other parameters related to
photosynthesis. As the model continues to evolve with the715

addition of new or improved processes, we also may need
to revisit the parameter choices and evaluate their appropri-
ateness. Moreover, a calibration procedure carried for such
complex models with relatively little data and a few calibra-
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tion parameters has the potential to lead to overfitting. To as-720

sess this effect, we performed a validation experiment, which
provides good confidence, albeit not proof, of a robust cali-
bration of the parameters. Richer datasets will likely sharpen
the results and enhance the confidence intervals.

The introduction of new datasets documenting agriculture725

productivity or carbon mass will also allow us to determine
the applicability of our new parameter values across regions.
In general, the calibration results depend on an accurate spec-
ification of the observational errors. In this study we did
not have access to any information regarding the measure-730

ment process and, therefore, assumed a certain observational
noise. These calibration results can be sharpened by anno-
tating the observational data with levels of confidence. The
calibration strategy presented in this study has the potential
to improve model performance by helping modelers define735

parameters that are not often measured or documented.
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Data: N the desired number of particles, M the desired number of Metropolis-Hastings steps per SMC step, ⇣ 2 (0,1) the desired
effective sample size (ESS) reduction and ✏ 2 (0,1) the resampling threshold.

Result: A particle approximation
n⇣

w(i) = w(i)
1 ,✓(i) = ✓(i)1

⌘oN

i=1
of Eq.(8).

t 0;
�t 0;
w(i)

0  1/N, i= 1, . . . ,N ;
Sample ✓(i)0 ⇠ p(✓|y,�0 = 0) = p(✓), i= 1, . . . ,N ;
while �t < 1 do

Find �0 2 (�t,1] s.t.:

ESS(�0) =
1

PN
i=1

⇣

w(i)
�0

⌘2 = ⇣ESS(�t), (31)

where w(i)
�0 is the normalized version of W (i)

�0 = w(i)
�t ŵ

(i)
�0 with ŵ(i)

�0 =
p(✓

(i)
�t |y,�0)

p(✓
(i)
�t |y,�t)

.

if ESS(�0)< ✏N then
Resample according to Sec. 4.4;

end
Adjust the MCMC proposal ht(✓

0|✓) according to Sec. 4.6;
Perform M MCMC steps (see Sec. 4.3);
Adjust the next proposal ht(✓

0|✓);
�t+1 �0;
t t+1;

end
Algorithm 1: Sampling from the posterior using sequential Monte Carlo.

(a) Twin experiment (b) Calibration

Fig. 1: Adaptation of �t for the twin experiment (a) and the calibration (b). The small jumps indicate the locations where
resampling occurs.
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Fig. 2: Twin experiment: Comparison of the posterior with the prior. The red dot indicates the true parameter value. The figure
continues on the next page.
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Fig. 2 continued.

Table 1: Prior information on the parameters.

Name Description Constraints Min Max Default

xl leaf/stem orientation index none -0.40 0.60 -0.40
slatop specific leaf area at top of canopy none 0.00 0.15 0.07
leafcn leaf C none 5.00 80.00 25.00
frootcn fine root C none 40.00 100.00 42.00
livewdcn live wood (phloem and ray parenchyma C) none 10.00 100.00 50.00
grperc growth respiration factor 1 none 0.10 0.50 0.25
grpnow growth respiration factor 2 none 0.00 1.00 1.00
graincn organ carbon nitrogen ratio none 20.00 100.00 50.00
fleafcn final leaf carbon nitrogen ratio > leafcn 10.00 100.00 65.00
fstemcn final stem carbon nitrogen ratio > livewdcn 40.00 200.00 130.00
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Fig. 3: Twin experiment: Comparison of the true model output with samples from the posterior of the calibration.
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Fig. 4: Calibration experiment (Bondville, IL): Comparison of the posterior with the prior. The red dot indicates the default
parameter value. The figure continues on the next page.
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Fig. 4 continued.

Table 2: Posterior information on the parameters.

Name Median p= 0.05 p= 0.95

xl 0.09 -0.32 0.51
slatop 0.06 0.05 0.07
leafcn 29.51 25.26 35.79
frootcn 66.90 46.02 95.66
livewdcn 48.17 10.56 85.89
grperc 0.40 0.18 0.50
grpnow 0.54 0.05 0.91
graincn 55.69 27.18 89.14
fleafcn 64.30 33.68 89.43
fstemcn 118.02 59.47 180.88
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Fig. 5: Calibration experiment (Bondville, IL): Comparison of the observed data for 2004 with calibrated outputs. The grey
areas correspond to 95% confidence error bars.
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Fig. 6: Validation experiment (Bondville, IL): Comparison of the observed data for 2002 with the model. The grey areas
correspond to 95% confidence error bars.
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Fig. 7: Validation experimen (Bondville, IL)t: Comparison of the observed data for 2004 with the model started on 2002. The
grey areas correspond to 95% confidence error bars.
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Fig. 8: Validation experiment (Mead, NE): Comparison of the observed data for 2002 with the model (top). Comparison of the
observed data for 2004 with the model (bottom).
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