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General Comments 

This paper presents a new inversion method for CO2 fluxes and applies it 

to the period 2002–2008. The novelty in the method is the inclusion of 

CO2 concentration in the state vector allowing the relaxation of the 

perfect model assumption for transport. The ensemble method used 

makes this large augmentation of the state vector possible. The explicit 

treatment of transport error as part of the forecast error also allows 

better treatment of the observational error since this is now much closer 

to the observations (previously it was dominated by errors in the 

transport model). The paper also introduces to Ensemble Kalman Filter 

inversions the techniques of objective estimation of covariance scaling 

parameters. These are called inflation parameters in this study but play 

the same role as the scaling parameters of Michalak et al. (2005). 

Incidentally I think this paper should be cited. No doubt the authors came 

to their objective function via the KF literature but a citation would point 

out the familiarity of the approach to the conventional atmospheric 

inverse community. 



The paper makes an important methodological contribution. It is well 

written and, most pleasingly, the algorithm is clearly enough described 

that it could be copied by someone with reasonable knowledge of the 

field. Analysis of the results is less developed but this is GMD and 

hopefully this can be taken up at a later date. I have no overall 

suggestions for the paper but do suggest a couple of small extra pieces of 

analysis in the specific comments below. 

Our reply: 

Thank you for your valuable comments. 

The inflation parameters in this study do play the same role as the 

scaling parameters in Michalak et al. (2005).  

We have cited Michalak’s paper in the revised version and added the 

following sentence in 2) Error Step of Section 3.1:  

“Michalak et al. (2005) used a similar objective function for 

estimating the statistical parameters in the atmospheric inverse 

problems of surface fluxes.” 
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Michalak, A. M., Hirsch, A., Bruhwiler, L., Gurney, K. R., Peters, W., and Tans, P. P.: Maximum likelihood 
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Specific Comments 

overall It would be good to list the size of the state vector in various 



configurations (with and without concentration). 

Our reply: 

Thank you for your comment. 

The size of the state vector without concentration is 145 (size of 

scaling factors tλ ) and the size of the state vector with concentration is 

145 (size of scaling factors tλ ) + 128×64×28× 8×7 (size of 

concentration: lon×lat×lev×times/day×days). 

We have listed the size of the state vector at the beginning of Section 

3 in the revised manuscript: 

“The size of the state vector in this study is 128×64×28×8×7 ( : 

lon×lat×lev×times/day×days) plus 145 ( ).” 

 

Eq. (1) Can you justify the 2/3 1/3 split? See later comment for why 

this might be important. 

Our reply: 

Thank you for your comment.  

Actually we choose the (2/3,1/3) split by trial tests. We have tested 7 

values of a  in the following formula, 
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The forecast CO2 concentrations in 2002 and 2003 are compared to the 

measurements in the following steps. First, the monthly means are 

calculated at each site (for example, Fig. R1 shows the monthly means of 
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forecast minus measurement at site TAP_01D0).  

 

Figure R1. Residuals of monthly mean forecast minus measurement on site 

TAP_01D0 for four cases: a=0,1/3,2/3,1. The numbers in the legend are root mean 

square errors of monthly means. 

Then we can define a root mean square error at individual sites as 
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where ,site month
r  is the monthly mean of forecast minus measurement and 

M  is the number of months when there are observations. Finally for all 

the sites in 2002 and 2003, we use the following relative root mean 

square error to test different choices of parameter a  
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where 2

sitev  is the given error variance for each site and S  is the 



number of sites. The results are listed in Table R1. We can see that in 5 

cases a=0,1/6,1/3,1/2,2/3 perform similarly while a=1 performs the 

worst among all cases. The performance of the case when a=5/6 is 

between the cases of a=2/3 and a=1. We then chose the median value 

a=1/3 between a=0 and a=2/3 in our formula. Furthermore, the inflation 

on forecast error covariance will decrease the impact of different choices 

of coefficient a . 

Table R1. Overall relative root mean square error for 7 cases. 

 a=0 a=1/6 a=1/3 a=1/2 a=2/3 a=5/6 a=1 
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(dimensionless) 

1.07 1.07 1.06 1.06 1.05 1.12 1.21 

 

 

Sec 3.2 We need a little more discussion on the relationship between 

the iteration of the forecast and analyzed state and the tuning of the 

inflation parameters. This tuning is set up to ensure that the assumed 

and actual statistics of departures and innovations are consistent with 

those assumed in the relevant covariances. 

Our reply: 

Thank you for your comment.  

As discussed in Tarantola (2005), we can calculate the 2χ  statistic of 

the analysis state for testing the error covariance constructed in this 

study, 
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and θ , µ  are the estimated inflation factors for the week associated 

with �
f

tX .  should be distributed according to the Chi-square 

probability density with  degree of freedom, where  is the 

number of observations within tth week. Since the mean and the 

variance of  are 1 and , respectively, the value of 

 should be close to 1.  

The Chi-square statistics for the error covariance matrices without 

using the analysis state can be defined similarly, but with  replaced 

by . They are denoted as ,  and  for the cases of no 

inflation, inflation on forecast error only and inflation on both forecast 

and observation errors, respectively. The closer  to 1 is, 

the better the corresponding error statistics. 
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Figure R2. 
2χ  statistic of the analysis state for four estimates of error 

covariance. “Original” refers to the case without inflations; “One Inf” refers to the 

case with inflation only on forecast error covariance; “Both Inf” refers to the case 

with inflations on both forecast and observation error covariance and “Iteration” 

refers to the case with both inflations and further using analysis to improve forecast 

error statistics. The closer 2
/ obsnχ  is to 1, the better the corresponding error 

estimates. 

For validating the construction of error statistics used in this study, 

the weekly time series of  from 2002 to 2003 is shown in Fig. 

R2. It is remarkably close to 1. The weekly time series of ,  

and  for the cases of no inflation, inflation on forecast error only 

and inflation on both forecast and observation errors are also shown in 

Fig. R2. All of them are not as close to 1 as that of . This 

indicates that the construction of error statistics using the analysis state 

iteratively is effective for correctly estimating the error statistics. Figure 

R2 also shows that  is closer to 1 than  is, and both are 

closer to 1 than  is. This suggests that the inflation on forecast 
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error and observation error are also both effective in improving the 

estimation of error statistics. 

The above discussions have been added to the revised manuscript.  
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I’m not quite sure what consistency is enforced by the iteration in Sec 

2.2 and am a little concerned that the observations might be implicitly 

used twice, once via the analyzed state now used to describe the forecast 

uncertainty then again in the update step. This probably reflects limited 

understanding on my part but I doubt I am alone. 

Our reply: 

Now we have given some proof of the effectiveness of using analysis 

to improve the estimation of forecast error covariance by Chi-square test. 

On the other hand, theoretically the basic assumption of EnKF 

assimilation is that the forecast and observation are statistically 

independent. In our iterative scheme, the ensemble forecast is always 

the same, that is, using observations to estimate the forecast uncertainty 

do not change the ensemble forecast, so this basic assumption is not 

violated. Furthermore, in all existing schemes for adaptive estimation of 

the inflation factor, observations are also used to estimate the forecast 



uncertainty since it is the forecast uncertainty being inflated (e.g. 

Anderson (2007), Li et al. (2009), Michalak et al. (2005), Miyoshi (2011), 

Wang and Bishop (2003)). Therefore, we feel that using observations to 

estimate the forecast uncertainty is justified. 
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P6530 it’s a fascinating idea that by hugely increasing the size of the 

state vector (including concentration) you can actually reduce the 

computational cost. Shouldn’t this be compensated by requiring different 

ensemble sizes to span the much larger space? 

Our reply: 

Thank you for your comments. 

We fully agree with you that if we increase hugely the size of the 

state vector, we have to increase the ensemble sizes.  



However, since the size of scaling factor vector tλ  is 145 in this study, 

the degrees of freedom of surface flux sets are less than 145.  

On the other hand, the concentrations mix rapidly by diffusion in one 

week. An intuitional example is given in Fig. R3. We started from one 

modeled concentration field in July 1
st

, 2003, and forecasted the 

concentration field in the following week without any carbon fluxes at 

land surface (i.e. zero boundary conditions). In this way the diffusion and 

advection of CO2 existing in atmosphere at July 1
st

, 2003, can be 

investigated. We have plotted the lowest vertical model level since it is 

most strongly influenced by previous carbon fluxes and thus has largest 

varibilities at the starting time. It can be seen that after one week the 

concentration field becomes very smooth. Therefore, the atmospheric 

CO2 concentration is mixed rapidly with time and it does not have as 

large degree of freedom as the size itself. 



 
Figure R3. Forecast of concentration field in the lowest vertical model level in one 

week without carbon fluxes as boundary conditions. 

 

Actually we determined the size of ensemble (150) by experiments. 

The difference of the assimilated carbon budgets in 2002 is within 10% 

and the patterns are very similar when we use different ensemble sizes 

of 150 and 200.  

For all above reasons we chose 150 as the default ensemble size in 

GCAS-EK. 

 

P6531 The bias in the simulation after analysis could be disturbing if 

it represents a miscalculation of the trend in concentration. Could you 

plot this bias as a function of time? If there is an error in the 

concentration trend this would suggest an error in the long-term fluxes. 



This is worth discussing since it’s always seemed possible in these 

weak-constraint formulations that we might not match the long-term 

growth rate. 

Our reply: 

Thank you for your comments.  

Following your advice, we calculated the long-term growth rate in 

different cases. Atmospheric CO2 concentration is generated using the 

sequential forecast of CO2 concentration with the prior and optimized 

carbon fluxes, respectively, from 2002 to 2008. The annual mean growth 

rate with optimized flux (2.17 ppm yr
-1

) is much closer to observations 

(2.14 ppm yr
-1

) than that with prior flux (3.13 ppm yr
-1

), indicating that 

we have a good match with the long-term growth rate after optimization. 

The time series of the bias look similar to the scatter plot in Fig. 6 in the 

revised manuscript.  

We have added the analysis of the long-term growth rates in the 

revised manuscript. 

 

Sec 6.2] Some of the concern over low variability in may be explained 

by Eq. 1. The division by 3 should have the effect of strongly smoothing. 

What would happen if you replaced Eq. 1 with a pure random walk 

model? 

Our reply: 

Thank you for your comments.  



Some comparisons between Eq. 1 (a=1/3) and a pure random walk 

model (a=0) can be found in our reply to Specific Comment 2. The overall 

relative root mean square errors of forecasted CO2 observations are very 

close. The estimated annual carbon budget in 2002 and 2003 with the 

model with a=1/3 is 15% more on average than that with the model with 

a=0. 

However these two models perform differently at individual sites. It 

can be found in Fig. R4 that which model performs better at each 

observation site. The sites at which the a=1/3 model performs better are 

mostly located in or closely to land areas. Since we focus on the 

optimization of ecosystem carbon fluxes, we prefer to use the strong 

smoothing model with a=1/3. 

 

Figure R4. Performance of model a=0 and a=1/3 at different sites. The green stars 

indicate that these two models have almost equal performance. The red stars 

indicates that the model with a=0 performs much better at these sites than the 

model with a=1/3. The blue stars indicates that the model with a=1/3 performs much 



better at these sites than the model with a=0. 


