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RRAWFLOW: Rainfall-Response Aquifer and Watershed
Flow Model (v1.15)

A.J. Long!

[1]{ U.S. Geological Survey, 1608 Mountain View Rd, Rapid City, South Dakota, USA}
Abstract

The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-
parameter model that simulates streamflow, springflow, groundwater level, or solute transport
for a measurement point in response to a system input of precipitation, recharge, or solute
injection._| introduce the first version of RRAWFLOW available for download and public use

and describe additional options. The, open-source code is written in the R language and is

__{ Deleted: RRAWFLOW

available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.htm|, along with an
example model of streamflow. RRAWFLOW includes a time-series process to estimate

recharge from precipitation and simulates the response to recharge by convolution; i.e., the
unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-
response functions (IRFs); a combination of two gamma functions results in a double-peaked
IRF. A spline fit to a set of control points is introduced as a new method for estimation of
nonparametric IRFs. Options are included to simulate time-variant systems by several
different methods. For many applications, lumped models simulate the system response with
equal accuracy to that of distributed models, but moreover, the ease of model construction and
calibration of lumped models makes them a good choice for many applications; e.g.,
estimating missing periods in a hydrologic record. RRAWFLOW provides professional
hydrologists and students with an accessible and versatile tool for lumped-parameter

modeling.

1 Introduction

| Deleted: included in the online supplement to tf
article

[ Deleted: springflow

//{ Formatted: Heading 2

P

1.1 Lumped versus distributed models

Hydrologic models, commonly referred to as a “lumped-parameter” or “lumped” models,
generally have a small number of parameters, each representing a property of the entire
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hydrologic system; conceptually, many physical processes are lumped into a few parameters.
In contrast to lumped models, distributed models discretize the system into small
compartments or cells, each of which has several parameters defined. All hydrologic models,
however, are lumped to some degree. Models that frequently are considered physically based
simulate numerous small-scale physics by lumping these processes into simplified
mathematical forms (Beven, 1989). The use of the term “physically based” to describe any
hydrologic model, therefore, should be discouraged (Beven and Young, 2013). Both
distributed and lumped models, however, have components that can represent different
hydrologic processes that can be interpreted in physically meaningful ways (Beven and
Young, 2013). For example, the IRF estimated in many lumped models represents the
physical response to an impulse into the system and provides mechanistic insights into that
system, including the peak response time and magnitude and the hydrologic memory of the
system (von Asmuth and Knotters, 2004; Beven and Young, 2013; Young, 2013). The IRF
could be measured directly at the outflow point (e.g., a spring) if a short, intense recharge
event follows a long, dry period. Most commonly_however, the outflow, or system response,
results from a series of superposed responses to repeating recharge events, and the lumped

model is used to estimate the IRF iteratively and to simulate the system response.

In a comparison of lumped models to distributed models, Reed et al. (2004) concluded that
lumped models had better overall performance than distributed models but also cited several
other studies indicating that distributed or semi-distributed models may or may not provide
improvement over lumped models. In another comparison, Smith et al. (2013) concluded that
distributed models provided improvements over lumped models in 12-24% of the cases
tested, depending on the criteria of evaluation. The mixed results of these comparisons
indicate that lumped models are a good choice when the objectives do not require a
distributed model.

A major advantage of a lumped model is its ease of construction and calibration because of
the small number of parameters to estimate and because there is no need to assemble large
datasets representing the physical properties of the system. Lumped models are useful for
karst aquifers, where the geometry of the conduit network frequently is unknown. Lumped
models provide an efficient means to simulate the response to possible future changes in the
system input (e.g., precipitation). A lumped groundwater model might be more effective than

a distributed model in regard to conditional validation and predictive modeling because of its
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simplicity, as will be discussed. The primary advantage of distributed models is to simulate

the response to possible changes within the system, such as urban development or increased
groundwater pumping, for example. The choice to use a lumped or distributed model,
therefore, depends on a study’s objectives and available resources; a lumped model likely is

the better choice if it meets the study’s objectives.

1.2 RRAWFELOW overview

The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped
model that is partially based on unit-hydrograph theory applied to streamflow (Nash, 1959).

RRAWFLOW simulates a time-series record for a measurement point of streamflow,
springflow, groundwater level, or solute transport in response to a system input of
precipitation, recharge, or solute injection. A preliminary version of RRAWFLOW was
developed by Long and Mahler (2013) and used to classify karst aquifers and characterize
time-variant systems. This preliminary version also was used by Symtad et al. (2014) to
simulate future scenarios of streamflow and groundwater level in a cave in Wind Cave
National Park, United States and by the U.S. Geological Survey to simulate future scenarios
of springflow and groundwater levels (https://nccwsc.usgs.gov/display-
project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647). Although this preliminary
version was applied primarily, but not exclusively, to karst, RRAWFLOW is suitable for

aquifers and watersheds of any type, and non-karst systems generally are easier to model than

karst systems. The overarching methods used in RRAWFLOW have been applied extensively

to non-karst surface-water and groundwater systems (e.g., Nash, 1959; Blank et al., 1971;
Delleur and Rao, 1971; Dooge, 1973; Neuman and de Marsily, 1976; Maloszewski and
Zuber, 1982; Besbes and de Marsily, 1984; Beven, 1989; Jakeman and Hornberger, 1993; von
Asmuth et al., 2002; Reed et al., 2004; von Asmuth and Knotters, 2004; Olsthoorn, 2008;
Jurgens et al., 2012; Smith et al., 2013).

The purpose of this paper is to present a new version of RRAWFLOW with added

functionality, to make the code publicly available, and to quide users in its operation. New

functions in this version include (1) the gamma function for parametric impulse-response

functions (IRFs), (2) a spline curve or straight-line segments fit through a set of control points
for nonparametric IRFs, (3) a new option for time-variant systems that uses a continuously
changing IRF scale, (5) two methods to determine wet and dry periods, and (5) any user-

3
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defined IRF. To my knowledge, the spline-curve method previously has not been used for the
IRF. The open-source code written in the R language (http://www.r-project.org/index.html)
can be downloaded from http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html

along with a user’s manual, example model, and a quick-start guide for the R novice.

Time-invariant and time-variant systems were described by Jenkins and Watts (1968). For
example, Larocque et al. (1998) described high-flow periods exhibiting distinctly different
response characteristics from low-flow periods. RRAWFLOW includes several options to
simulate time-variant systems that generally are not available for distributed watershed
models (e.g., PRMS; http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html). If a
distributed model is required for a specific study, RRAWFLOW might be a comlimentary

Deleted: and is included in the online supplem
to this article.

/{ Deleted: useful as an

exploratory tool to analyze the system’s sensitivity to time-variant response characteristics.
RRAWFLOW is useful for estimation of missing periods in a hydrologic record and as an
educational tool for hands-on instruction of some of the basic principles in hydrology. Several
example applications that demonstrate model options and calibration and validation
procedures are included herein. Input, output, and calibration files are available from the
RRAWFLOW website, for one of these examples.

/{ Deleted: in the online supplement

2 The model

The model‘s time-step interval is determined by the input data record, which must have equal

time _steps, and model output is generated for the same time step. Hydrological and

meteorological data commonly are available for a daily time step, which is suitable for most

simulations over a time frame of months to decades. Time steps shorter than one day can be

used when high-resolution responses are of interest. Any time-step interval can be used

because the equations are not time-unit specific. However, the time step should be equal to or

less than the quickest identifiable response; longer time steps will result in a loss of

information about response dynamics (Jakeman and Hornberger, 1993). RRAWFLOW also is

independent of specific units for flow, water level, or solute concentration, and the user

should maintain unit consistency. Air temperature is always in °C.

2.1 Precipitation recharge

Effective precipitation for a watershed is the amount of precipitation that results in

streamflow exiting the watershed. This consists of infiltration to groundwater below the root

4
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zone that reemerges as streamflow, springflow, shallow groundwater interflow, and overland
runoff. Processes that apply to effective precipitation for watershed modeling also apply to
infiltration recharge to groundwater that causes a response in springflow or groundwater

level, except that overland runoff generally does not contribute to groundwater recharge, In

//{ Deleted: is not included in this case

RRAWFLOW, the term “recharge” is used for both watershed modeling and groundwater
modeling. Methods used in RRAWFLOW to simulate precipitation recharge are described in

Long and Mahler (2013), and the equations also are presented in Appendix A herein for

convenience and reference in the RRAWFLOW User’s Manual, which is available at
http://sd.water.usgs.gov/projectssRRAWFLOW/RRAWFLOW.html.

2.2 Other recharge options

Recharge estimated outside of RRAWFLOW can be used as model input. For example, this
applies to precipitation recharge estimated by a soil-water-balance model (e.g., Westenbroek
et al., 2010) or sinking-stream recharge in karst aquifers that can be estimated by methods
such as those described by Hortness and Driscoll (1998). This is system-input option 2 (Table
1).

2.3 Convolution

Convolution is a time-series operation (Jenkins and Watts, 1968; Smith, 2003) that is
commonly used in non-distributed hydrologic models to simulate streamflow, springflow, or
groundwater level in response to recharge (e.g., Nash, 1959; Dooge, 1973; Dreiss, 1989;
Olsthoorn, 2008). The use of convolution in modeling also has been described as a linear-
reservoir model and a transfer-function model (e.g., Nash, 1959; Young, 2013; von Asmuth et
al., 2002). The descrete form of the convolution integral for uniform time steps used in
RRAWFLOW is

vi = At ¥ o Bihi—juj + @; + do ij=0,1,...,N 1)

where h;j is the IRF; u; is the input, or forcing function; j and i are time-step indices
corresponding to system input and output, respectively; N is the number of time steps in the
output record; £ is an optional time-varying IRF scaling coefficient; ¢; represents the errors
resulting from measurement inaccuracy, sampling interval, or simplifying model assumptions;

and dy is a hydraulic-head datum used in simulation of groundwater levels. dy is the level to

5
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which hydraulic head would converge on if the local recharge was eliminated. Local recharge
is assumed to be the only forcing that results in hydraulic-head fluctuation or that causes
hydraulic head to rise above do. The errors ¢; are not explicitly simulated but are shown in Eq.
(1) for clarity. Further details and background are provided in Long and Mahler (2013).

The quantity i — j represents the delay time from impulse to response, and the IRF represents a
distribution of these delay times. In RRAWFLOW, the input function u; can be recharge or
input of a solute. The system response y; can be streamflow exiting a watershed, springflow
from a groundwater system, groundwater level, or solute concentration at an outlet.
Physically, the IRF is the system response y; per unit impulse of u; and also can be described
as the response produced by a system when the input is a delta function (Smith, 2003).
Conceptually, convolution is the superposition of a series of IRFs that are initiated at the time
of each impulse of u; and are scaled proportionally by the magnitude of the corresponding
impulse (Fig. 1).

2.4 Solute transport

RRAWFLOW can simulate transport of a solute, similarly to the approach of Maloszewski

and Zuber (1982). In this case, the user-provided system input u; is the solute concentration,

and a constant recharge rate is assumed. The response in solute concentration at the outlet of a

system is simulated by the convolution integral (Eq. 1) with the IRFs described in the
following section. Convolution temporally disperses a system input of a solute, according the

IRF characteristics, at the system outlet. This is system-input option 3 (Table 1).

2.5 Impulse-response function (IRF)

‘ The IRF characterizes the relation between system input and output by convolution (Eq. 1)
and has been described by other terms, including instantaneous unit hydrograph, transfer
function, and kernel (e.g., Nash, 1959; Dreiss, 1989; Berendrecht et al., 2003; Smith, 2003;

Juki¢ and Deni¢-Juki¢, 2006)._ However, the term “transfer function* should only be applied

to the Fourier transform of the IRF (Smith, 2003). The IRF of a hydrologic system can be

approximated by a parametric function, where its shape is defined by one or more parameters,

| or a nonparametric function that is not constrained by common curve types.

—| Deleted: To compare convolution with frequen

analysis, the frequency spectrum is a function that
characterizes a single time series at a glance,
whereas the IRF is a function that characterizes th
relation between system input and output.
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Parametric functions that have been used to approximate the IRF for hydrologic systems
include exponential, lognormal, and gamma functions (Nash, 1959; Besbes and de Marsily,
1984; Jakeman and Hornberger, 1993; von Asmuth et al., 2002; Berendrecht et al., 2003; von
Asmuth and Knotters, 2004; Long, 2009; Long and Mahler, 2013). The gamma function is
equivalent to the Pearson type Ill function: the three parameters of the Pearson type Il
function can be combined into the two parameters of the gamma function (Haan, 2002).
Estimation of parametric IRFs generally consists of model-calibration techniques to optimize
the parameters with the aim of minimizing the difference between the observed and simulated
system response; i.e., fitting the model. The parametric functions previously described (other
than Pearson type I11) have one or two of these fitting parameters. As the number of fitting
parameters increases, the risk of over-fitting the model also increases; i.e., fitting the errors ¢
in Eq. (2).

For a parametric approximation of the IRF, RRAWFLOW uses the gamma function:
lntr]fleflt

V(t):Tn)

/1,77>0 (2)

T ="t dt 3
where 4 and # are unitless shape parameters, and the mean and variance are #/4 and 5//?,
respectively. Eq. (3) is approximated in RRAWFLOW by the discrete form

I(n7) =At) t7e @

t=t,

where t is time centered on each discrete time step; to and N are time centered on the initial
and final time steps, respectively; and At is the time step duration. The gamma function can
produce a variety of shapes, including exponential (y = 1), reverse-J (y < 1), and positively
skewed shapes with a peak at t = (5 — 1)/2 (Fig. 2; Haan, 2002). The gamma function can
produce nearly identical shapes to those of the lognormal function when # > 1, and therefore,
can produce nearly all possible shapes of the exponential and lognormal functions combined
when 5 > 1, plus the additional reverse-J shape when 7 < 1. The RRAWFLOW option to use
parametric IRFs is specified as IRF type 1 (Table 1).
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The gamma function (Eq. 2), which has an area under its curve of unity, requires the

additional scaling coefficient ¢ for use as the IRF in many hydrologic applications:
h(t) = &y (t) ®)

where ¢ [unitless] compensates for hydrologic systems that do not have a one-to-one relation
between system input and output (Olsthoorn, 2008). For example, if (1) the system input u; is
in cubic meters per day of recharge, (2) the system response y; is springflow with the same
units, and (3) 100% of this recharge emerges as springflow with nothing else contributing to
springflow, then ¢ would be set to unity. For most other hydrologic applications, ¢ would not
equal unity. Similarly, if 100% of a solute entering the system does not exit the system at the
observation point, then the area under the IRF should be less than unity (¢ < 1). Maloszewski
and Zuber (1982) simulated solute transport with IRFs that were approximated by the
exponential or dispersion-model functions. The gamma function has a similar shape to that of
the dispersion-model function and could be used as an approximation of the dispersion-model
function, or the exact dispersion-model function can be provided to RRAWFLOW as a user-
defined IRF.

RRAWFLOW allows the use of as many as two superposed gamma functions, herein referred

to as double-gamma IRFs, to produce additional IRF shapes_such as a double-peaked curve;

several examples are shown in Long and Mahler (2013), except with lognormal functions.

Approaches similar to this have been used to represent the components of quick flow and
slow flow in watershed modeling (Jakeman and Hornberger, 1993) and for conduit and
diffuse flow in karst systems (Pinault et al., 2001; Long, 2009; Long and Mahler, 2013). In
these examples, each parametric function represents one of two flow components. The use of
a double-gamma IRF also might be useful when a single function cannot produce the
necessary IRF approximation (e.g., an extra-long tail). The scaling coefficient ¢ can be set to
different values for the two gamma functions; e.g., to allow for a larger component of slow

flow than of quick flow.

I\ onparametric IRFs

The process of determining an unknown IRF from observed system input and output data is
known as deconvolution (e.g., Neuman and de Marsily, 1976). To define a nonparametric
IRF, an ordinate value is defined for each time step, and any shape desired is possible.

Deconvolution methods include Fourier harmonic time-series analysis (Blank et al., 1971;

8
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Delleur and Rao, 1971), linear programming (Neuman and de Marsily, 1976), and time-
moment analysis (Dreiss, 1989). Estimations of nonparametric IRFs by model calibration
include those described by Pinault et al. (2001)_and Juki¢ and Deni¢-Jukié¢ (2006), A potential

//{ Deleted: , and Long and Mahler (2013)

problem with nonparametric IRFs is that hundreds or even thousands of IRF ordinates may be
needed to define the IRF, depending on the IRF length and time step. Optimization of each
individual ordinate would result in a mathematically underconstrained and over-fit model. An
extreme example of over-fitting is to determine the IRF by means of deconvolution in the
frequency domain (Smith, 2003) that results in a numerically perfect model fit but also an IRF
that commonly is highly oscillatory and cannot be explained physically (Blank et al., 1971;
and Delleur and Rao, 1971) because the errors ¢ (Eq. 1) are included in the fitting process.

Filtering the IRF in the frequency domain (i.e., transfer function; Smith, 2003) or smoothing

the IRF in the time domain (Long and Derickson, 1999) are options for IRF estimation by

Fourier analysis, which may require trial-and-error calibration. Further, an over-fitted model

results in a poor model fit when tested on a conditional validation period that was sequestered
from the fitting process. Pinault et al. (2001), Juki¢ and Deni¢-Juki¢ (2006), and Ladouche et
al. (2014) described different methods to constrain the nonparametric IRF and reduce the

number of fitting parameters.

The method proposed herein uses a small number of ordinates to define a smoothly shaped
nonparametric IRF; ordinates of the IRF are defined at spaced intervals (IRF control points),
and a spline curve is fit through these points (Fig. 3) (IRF type 2, Table 1). Another option is
to apply straight-line segments connecting the control points (IRF type 3, Table 1). Similar to
parametric IRFs, these two nonparametric options are convenient for the estimation of the IRF
through model calibration and conditional validation because of the ability to control the
number of fitting ordinates. If a model is suspected of having been over-fit, the humber of
control points should be reduced; this consists of increasing the control-point intervals,
resulting in a smoother shape, or by reducing the tail length by setting posterior control points

to zero. Trial and error generally is required to determine the optimum number of control

points for a given application. The minimum number of control points is two: at least one to

define the non-zero part of the curve and one to define where the function becomes zero.

Another option allows a predefined IRF to be supplied to RRAWFLOW if the IRF is
determined by some other method (IRF type 4, Table 1). The scaling coefficient ¢ is not

necessary for nonparametric IRFs because the area is defined by the ordinate values.
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‘ I carity and time variance

/ Deleted: System linearity

The terms “linear,” “nonlinear,” time invariant,” and “time variant” may cause some
| confusion. Estimated recharge (Appendix A) is a nonlinear process, where recharge as a
fraction of precipitation varies with antecedent soil-moisture conditions. Convolution (Eg. 1),

which simulates the system response to recharge, is a linear system (Jenkins and Watts, 1968;

| Dooge, 1973), This linear system can be either time variant or time invariant, depending on

whether or not the IRF changes with time (Jenkins and Watts, 1968). Most commonly, a time-
invariant (i.e., static) IRF is assumed in hydrologic convolution models (e.g., von Asmuth et
al., 2002; Deni¢-Juki¢ and Juki¢, 2003). In many hydrologic systems, however, the IRF
changes with changing climatic conditions, resulting in a change in response characteristics

\
\

| (Larocque et al., 1998; Long and Mahler, 2013). Additional details and examples of time-

variant IRFs for hydrologic applications include Pinault et al. (2001), Juki¢ and Deni¢-Jukié¢
(2006), and Long and Mahler (2013).

‘ Il Time-variance (TV) options

RRAWFLOW has three options for time variance in convolution (Table 1). In time-variance
(TV) option 1, the IRF is time invariant, or static. TV option 2 applies a time-variant IRF,
similarly to the method proposed by Long and Mahler (2013), which uses a minimal number
of fitting parameters but also represents the dominant transient characteristics of the system.
In this method, the system-input record is separated into climatically wet or dry periods. One
IRF represents all of the wet periods, and the other represents all of the dry periods.

scaling variable S (Eqg. 1) is set to unity for TV options 1 and 2.

All of the parametric and nonparametric IRF-type options previously described can be used in
TV option 2 (Table 1). An advantage of this method is that both the size and shape of the IRF
can change, while the fitting parameters are kept to a minimum, because IRFs are not defined
continuously but rather for two different periods only. A potential disadvantage of this
method is that the IRF changes abruptly between wet and dry periods; however, this was not a
detrimental factor for several models in which this method was applied (Long and Mahler,
2013). Also, the superposition of many responses applied in convolution results in smooth
transitions in the simulated response between wet and dry periods. Juki¢ and Deni¢-Jukié¢

10
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process for a variety of watersheds of differing si:
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(2006) proposed a similar time-variant approach, where three different IRFs were applied to

one of three different hydrologic periods determined by an index of antecedent recharge.

Pinault et al. (2001) varied the IRF’s vertical scale continuously with hydraulic head.
However, because hydraulic head also is used for model calibration, this approach cannot
undergo conditional validation or be used to simulate periods without observed system-

response data; e.g., future periods that might be simulated with climate projections. TV option
3 in RRAWFLOW (Table 1) is similar to the approach of Pinault et al. (2001), except that the
IRF scaling variable g (Eq. 1), varies according to the input for convolution u; (e.g. recharge)
by

B =mx, m =0 (6)

where x; is the moving average of u; (Eq. 1) that is scaled to range from 0 to 1, and m
determines the range of . A moving average of u; is used so that the IRF transitions
smoothly. Generally, g is assumed to vary directly with x (m > 0). Advantages of this method
are that it requires fewer fitting parameters than TV option 2 and the IRF does not change
abruptly; the disadvantage is that only the vertical scale of the IRF changes, whereas the
shape is static. All of the parametric and nonparametric IRF-type options previously described
can be used in this option. TV option 3 has longer run times than TV options 1 or 2 because

of the additional computation required, mainly within the convolution loop.

For time-invariant systems, the cross-correlation function (CCF) has the same shape as the
IRF but only if the input to the convolution process is completely random (Jenkins and Watts,
1968). If the convolution input has a strong autocorrelation, typical of recharge in hydrologic
systems, then there is large error in using the CCF to estimate the IRF (Jenkins and Watts,
1968; Bailly-Comte et al., 2011) and therefore should be avoided.

2.6 Determining wet and dry periods

RRAWFLOW includes two options to determine wet and dry periods on the basis of the

precipitation input record when using TV option 2. The first option assigns each calendar year

to a wet period if the annual mean precipitation is greater than the overall mean Ppean_for the

entire input record, and other years are set to dry years (wet-switch option 1; Table 1). The

second option sets wet and dry periods according to the slopes of a cumulative precipitation

function in which upward or downward slopes indicate wet or dry periods, respectively (wet-

11
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switch option 2; Table 1). This option (1) calculates a record of the cumulative departure from

Phmean, (2) calculates the annual mean cummulative departure (CDpmean) from this record, (3)

sets the time period from the mid-point of a calendar year to the mid-point of the following

year to a wet period if CDmean_has a net increase during this interval, and (4) sets all other

periods to dry. A third option allows the user to provide a record of wet and dry periods in the

model input (wet-switch option 0; Table 1).

2.7 Model outputs

Model outputs consist of time series for simulated system response y;, the dry-period and wet-
period IRFs_(if using TV option 2), the soil-moisture index s; (Eq. A1, Appendix A), and the

input to convolution u;. Other outputs consist of a coefficient of efficiency E to measure the
similarity between simulated and observed system response (residuals) and the hydrologic
memory of the system. This system memory is the time that the response to an impulse
effectively persists, which is defined by the length of the IRF. Because the gamma function is
asymptotic and has infinite length, system memory is arbitrarily defined in RRAWFLOW as
time ty, on the IRF time scale at which 95% of the curve area is in the range 0 — tp.

2.8 Evaluating model fit and over-fitting

The calibration period is the period of the data record used to calibrate the model. By default
in RRAWFLOW, the conditional validation period is the part of the data record following the
calibration period that is used to test the model calibration against system-response
observation data not used in calibration (i.e., model prediction of streamflow or springflow).
Assessing the conditional validation period is an indication of the expected model
performance to predict a future period on the basis of climate simulations, for example;
moreover, this assessment indicates if the model is being over-fit. This validation is
considered conditional because the model cannot yet be tested against additional
observational data that will be available in the future (Beven and Young, 2013).
RRAWFLOW calculates a modified form of the Nash-Sutcliffe coefficient of efficiency
(Nash and Sutcliffe, 1970; Legates and McCabe, 1999) to quantify model fit, as_proposed by

Long and Mabhler (2013). This modification calculates the, coefficient of efficiency E for a

///{ Deleted: . The

partial period, either calibration or conditional validation, in a manner that allows the two

periods to be compared directly:
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where yos and ysm are time series of the observed and simulated system responses,

1
™

E=1-

respectively; Ymean iS the mean value of yos; the subscripts p and T refer to the partial and total

periods, respectively; and | is the time length of the respective period. Conceptually, E is the

ratio of the magnitude of model residuals (numerator) to the overall variability in the
observation record (denominator) subtracted from unity and theoretically can vary from —oo

(poorest fit) to unity (perfect fit).

In addition to quantifying model fit, E provides a useful way to evaluate possible over-fitting

of the model. Although model fit for the calibration period might improve as parameters are
added, if the validation period indicates that this added complexity is not helpful, the model
has been over-fit (von Asmuth et al., 2002). To test this condition, E is calculated for the

calibration and conditional validation periods separately (Ecy and Eya) by the modified Nash—

Sutcliffe coefficient of efficiency (Eq. 7), which makes Ec,_and E,,_directly comparable

(Long and Mahler, 2013). ;This method is particularly important for comparison of two

periods with different fluctuation amplitudes.

Legates and McCabe (1999) describe limitations of correlation-based measures to guantify

model fit, such as the coefficient of determination R?, and the benefits of the Nash—Sutcliffe

coefficient of efficiency and the index of agreement. The sum of the squared and weighted

residuals (Doherty, 2005) is another useful metric used for this purpose. Hartmann, et al.

(2013) provides an example of using multiple metrics to evaluate model performance.

A value of Ecy that is much larger, than Eyy might indicate over-fitting, in which case a /%Deleted:wi”

\

\
\

\

simpler model (i.e., fewer fitting parameters) should be tested. For example, if a double-
gamma IRF is used, then a second model calibration with a single-gamma IRF could be tested
to determine if greater similarity in the Eyy and Ecy values is achieved. For nonparametric
IRFs, a reduction in the number of IRF control points could be tested. A time-variant IRF
requires more parameters than a time-invariant IRF, and this also can be tested. Thoroughly
considering model complexity in light of E,y and Ecy provides context for conditional

validation. For example, Long and Mahler (2013) described decision criteria to evaluate

13
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model complexity and the number of fitting parameters on the basis of Ecy and E,q, with

several examples of calibrated models.

The number of gamma functions or fitting parameters might correspond to different

conceptual models of the system, and model complexity issues can be investigated by testing

multiple conceptual models (e.g., Hartmann et al., 2013). Numerous other researchers have

investigated issues related to model complexity and its effect on model-prediction uncertainty
(e.g., Young et al., 1996; Jakeman and Hornberger, 1993; Arkesteijn and Pande, 2013).
Prediction uncertainly crucially depends on model complexity (Arkesteijn and Pande, 2013).
Although Vapnik—Chervonenkis generalization theory suggests that models with higher
complexity tend to have higher prediction uncertainty, model complexity is not necessarily

proportional to prediction uncertainty, (Fienen et al., 2010). Doherty and others (2010)

/{ Deleted: related to the number of parameters

described a method for predictive uncertainty and sensitivity that tests the range of each

parameter’s potential values on the basis of expert knowledge and propagates this uncertainty

to model predictions. Estimating this potential range of IRF parameter values, however, might

be more difficult than, for example, estimating hydraulic conductivity or streambed roughness

in a distributed model. Although a rigorous assessment of prediction uncertainty is beyond the

scope of this article, effective tools are available for this purpose (Doherty, 2005; Fienen et
al., 2010).

3 Example model applications

Deleted: two
The model was applied to three hydrologic systems in the United States with responses of /£

streamflow, springflow, and groundwater level. Several examples with different

RRAWFLOW options and different levels of parameterization are described, including

examples of model over-fitting. The hydrologic_systems were selected to provide a wide

range of examples that required different levels of model complexity. The first hydrologic

system is _streamflow from a watershed, for which a simple model was appropriate. Karst

settings were selected for the second and third hydrologic_systems to provided examples in

which more complex models are needed. For precipitation and air-temperature inputs, gridded

data (e.g. Daymet: http://daymet.ornl.gov/) can be used, or a single weather station can be

assumed to represent the recharge area. All examples used a daily time step.,
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Model spin-up is the initial simulation period in which antecedent effects of the system are
not fully incorporated into the simulation, and therefore, model output for this period is not
valid. When the simulation is past the number of time steps equal to the system memory, then
the system antecedent effects are fully incorporated into the model. Therefore, the model
input record must start n time steps prior to the calibration period, where n is the system
memory, as a number of time steps. Because the system memory is not known until the IRF is
estimated, it is useful to start the simulation at the earliest date for which input data are
available. Estimated system-input values can be used if observation data are not available for
this antecedent-period requirement, and a constant value equal to the long-term mean can be
used if a better estimate is not available; in this case, the antecedent effects will be smoothed.

Another option is to select a period from the input data record and use this as input for the

spin-up period.

The parameter optimization software PEST (Doherty, 2005) was used for parameter

estimation in these examples. RRAWFLOW is a stand-alone model independent of PEST

and, therefore, can be used with any optimization method, including trial and error. For

optimization of nonparametric IRFs, the last control point was used to set the system memory
by assigning a fixed (non-optimized) value of zero to that control point (Fig. 3). Posterior to
this point, a series of control points fixed at zero was specified, resulting in a spline fit with a

constant value of zero.

3.1 Streamflow in Boxelder Creek

Boxelder Creek is located in the Black Hills of South Dakota, USA, with a watershed area of
250 km? upstream from U.S. Geological Survey streamgage 06422500, with daily streamflow

available from http://waterdata.usgs.gov/nwis. The watershed primarily is pine forest and

contains metamorphic rocks of Precambrian age (Carter et al., 2001). Gridded daily
precipitation and air temperature data from the Daymet dataset are available at 1-km grid
spacing for 1980-2013. These data were obtained from the Geo Data Portal
(http://cida.usgs.gov/gdp/) and spatially averaged for the watershed to produce a daily time

series of precipitation and air temperature for 1980-2013, which was used as model input.
The calibration period was 1980-1996, and validation was for 1997-2013 (Fig. 4). A 5-year
model spin-up period was applied by inserting data for 1980-1984 into the period 1975-1979.

15
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This estimated spin-up period affected the calibration period minimally, because the system

memory was only about 3-months long.

The example models described used system-input option 1 (precipitation recharge, Table 1).
Five example models are presented for Boxelder Creek, all of which used single-gamma IRFs
(Table 2). All other trials with double-gamma IRFs resulted in minimization of one of the
IRFs, indicating that single-gamma IRFs were appropriate for this system. All Boxelder Creek
gamma functions optimized to # < 1, which is the reverse-J shape (Fig. 5). Example BC1 used
TV option 1 (time-invariant IRF, Table 1), resulting in Ecy and E,q values of 0.62 and 0.46,
respectively (Table 2). Examples BC2 and BC3 used TV option 2 (time-variant IRF) with
wet-dry options 1 and 2, respectively. For BC3, E,4 was higher (0.56) than for BC1 and BC2
(Table 2). Example BC4 and BC5 used TV option 3, in which a time-variant IRF that changes
continually was used with a single-gamma IRF and moving-average (MA) windows of 1 and
10 years (Eq. 6), respectively. Of the five examples, BC3 had the highest E,, value; BC5 had
the second highest E,u value and with fewer parameters (Table 2). Comparison of model fit
for examples BC4 and BCS5 indicates that the time-variant aspects of this system respond to
general climatic changes over decadal periods more so than annual. Table 3 shows optimized

IFR parameters for selected example models.

3.2 Springflow from Barton Springs

Barton Springs is a group of springs that flow from the Edwards aquifer, a carbonate aquifer
in south-central Texas that is contained mostly within the Edwards Group (Lower Cretaceous
geologic age). Model input data consisting of daily precipitation and air temperature and

system-response _observation data used for model evaluation are described in Long and

Mahler (2013) along with details describing the hydrogeology, physiography, and climate.

The example models described used system-input option 1 (precipitation recharge, Table 1).

Seven example models are presented for Barton Springs (Table 2). Model fit varied more

widely than for the Boxelder Creek models, possibly as a result of karst features in the

Edwards aquifer that result in complex groundwater flow. For this reason, IRFs with added

complexity are tested for the Barton Springs examples, and examples of over-fitting are

demonstrated. Generally, Ecy is proportional to the number of optimized parameters for each

Deleted: The collective flow from these springs
was simulated in these examples. The springs
respond to surface recharge to the Edwards aquife
that occurs from multiple sinking streams that cro
onto the aquifer’s recharge area and precipitation
recharge (Mahler et al., 2008).

Deleted: Although recharge for Barton Springs
also includes sinking-stream recharge, option 1
provided an approximation of total recharge.

example; however, high E., values often resulted in low values of E,y, which might indicate
over fitting (Table 2).

Deleted: These examples also serve to describe
model settings for simulation of streamflow, beca
the model settings for springflow and streamflow
identical.
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Examples F1-F9 used wet-switch option 2. Examples F1, F5, F7 used gamma functions with

an increasing number of parameters for the three examples, which were characterized as low
Eva (F1), good Eq_(F5), and an over-fit model (F7) that is indicated by a high Eg, and low

Eva_(Table 2). Example F5, with a moderate number of parameters, is considered the best

choice of the three. Examples F8 and F9 used 7 and 16 optimized control points, respectively,

in total (Figs. 6 and 7); F8 was considered a good choice, and F9 was over fit with too many

control points (Table 2). OFf the time-variant examples F5-F9, the two examples with the

smallest number of optimized parameters (F5 and F8) had the largest Ey4 values (Table 2).

Examples F2 and F3 used TV option 3, with a single-gamma IRF and moving-average (MA)
windows of 1 and 10 years (Eq. 6), respectively, but resulted in low E,,_values. Similarly to

Boxeler Creek, increasing the MA window from 1 to 10 years improved Ecy and E,q values, \

which, indicates that the time-variant aspects of this system respond to general climatic \
\ o\
changes over decadal periods more so than annual. \ \
\ 1\

\
\
PEST was used to calculate 95% confidence intervals for the optimized parameters, as \

Deleted: Examples F5-F9 used TV option 2, in
which time variance is applied as different IRFs f
wet and dry periods. Example F5 used single-gan
IRFs (Figs. 5 and 6), resulting in Ecy and E,y valu
of 0.88 and 0.72, respectively (Table 2), which
represent an improvement in model fit compared
example N1. Example F7 used double-gamma IR
(Fig. 7), resulting in Ecy and E.q values of 0.90 an
0.63, respectively (Table 2); the added parameters
for this example resulted in a higher Ecy value but
lower E,q value than for example F5, indicating tr
example F5 is the better choice for hydrologic
projections and that example F7 was over-fit.
Example F8 used nonparametric IRFs with a splir
curve fit to 4 and 3 optimized (non-zero) control
points for the wet and dry periods, respectively (F
8a; Eca = 0.88, E\q = 0.72), which is the same mo
fit as for example F5. Example F9 is the same as
example F8, except with 8 optimized control poin
for each of the two periods (Fig. 9), which resulte
in a higher Ec, (0.92) but a much lower E,g (0.61)
than for example F8, indicating an over-fit model.

described in Doherty (2005), which are shown graphically for example F8 (Figs. 6). Example \
F9, with a total of 16 control points, had 32% wider parameter confidence intervals than did |

Deleted: For these examples, Ec, and E. value
were equal to or smaller than all other time-varian
examples (Table 2).

example F8, with 7 control points. Confidence intervals generally widen with an increasing

number of parameters because of a decrease in individual parameter sensitivity.

Deleted: ; this, and the fact that the wet and dry
periods defined for examples F5—F9 generally are
multi-year periods,

3.3 Groundwater level in well LA88C

Well LA88C, located in western South Dakota, is open to the karstic Madison aquifer that is

composed of limestone and dolostone of Mississippian geologic age. Model input data /{

Deleted: and is contained within the regionally
extensive Madison Limestone

consisting of daily precipitation and air temperature and system-response observation data

used for model evaluation are described in Long and Mahler (2013) along with details

describing the hydrogeology, physiography, and climate. The example models described used

system-input option 1 (precipitation recharge, Table 1).

Examples W1-W3 used TV option 2 with wet-switch option 2 for time variance (Table 1).

Deleted: This formation is exposed at the land
surface on all flanks of the Black Hills of South
Dakota and Wyoming and dips radially outward il
all directions below the land surface. Water level
the well responds to surface recharge to the Madi:
aquifer that occurs from direct precipitation and
sinking streams that cross onto the aquifer’s recha
area (Carter et al., 2001).

All three examples for well LA-88C optimized to double-peaked IRFs, which were necessary ///{

Deleted: As with Barton Springs, all Ecy values
were larger than E.q (Table 2).

for this system, as indicated by additional tests of single-peaked IRFs, probably as result of

karst features (Figs. 8-10). In example W2, the last two control points for the wet period and

the last control point for the dry period were optimized to zero, resulting in only 15 non-zero

Deleted: Example W1 used double-gamma IRF
(Figs. 10 and 11). Example W12 used nonparame
IRFs with spline curves fit to 10 and 8 optimized
control points for the wet and dry periods,
respectively (Fig. 12; Ecy = 0.93, Eya = 0.70).
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| control points. Of the three examples for well LA88C, W3 had the fewest optimized IRF
parameters and resulted in the largest E,y value (Table 2), indicating that this is a good
| choice. JIRFs for example W3 approach zero abruptly, resulting in negative values in the

spline curve (Fig. 10); in these cases, RRAWFLOW sets all negative IRF ordinates to zero.
4 Discussion and conclusions

Watersheds simulated by Long and Mahler (2013) and Long (2009), which included karst and
non-karst systems, had IRF shapes similar to the reverse-J shape for Boxelder Creek (Fig. 5),

except that double-exponential IRFs were used to achieve this shape. A single reverse-J

gamma function (Fig. 5) requires only three parameters, whereas the double-exponential IRF

requires four parameters. IRFs for karst and non-karst watersheds commonly have quick-flow

and slow-flow components (Jakeman and Hornberger, 1993; Long, 2009; Long and Mabhler,

2013). The reverse-J IRF (Fig. 5) also exhibits quick-flow and slow-flow components in the

form of a high peak and long tail, respectively, but fewer paramters for the gamma function is

an advantage over the exponential function.

Although RRAWFLOW can be applied to any type of watershed or aquifer, karst aquifers

might require_ more complex models. A non-karst system was compared with two karst

systems, which indicated that the best model choices for the karst systems generally had a

larger number of parameters than the best choices for the non-karst system (Table 2). Also,

differences between wet- and dry-period IRFs were more pronounced for the karst systems

than for Boxelder Creek (Figs. 5-9), possibly as result of heterogeneity. Example F5 is

another karst example, with a reverse-J (7 < 1) dry-period IRF and a delayed-peak (7 > 1)

wet-period IRF (Table 3). In karst aquifers, fluctuating groundwater levels might saturate or

desaturate different conduit networks that result in different hydrologic responses between

wet and dry periods.

Examples F5 and F8 are the two preferred models for Barton Springs and are nearly identical
in terms of Ey4 and the number of optimized parameters (Table 2). Choosing between these
two models, therefore, might be a matter of modeler preference. Use of the gamma function
(example F5) has the advantage of being a common function. The control-points method
(example F8) has the advantage that confidence intervals for the IRF can be easily shown in a

graph (Fig. 6). Showing confidence intervals for a gamma function also could be done but
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with additional steps involved, in which the gamma function would have to be calculated for
all combinations within the 95% parameter confidence intervals (i.e., Monte Carlo
simulations). Then this family of curves would be plotted, and the maximum upper and lower
curve extents would show the confidence intervals for the IRF. A disadvantage of the control-
points method is the need to select the temporal locations of control points and also to set the
system memory a priori by setting a zero-value control point at the end of the IRF. These

settings generally require trial and error.

Additional functionality can be added to RRAWFLOW by the user and could possibly be
included in future versions. For example, additional methods to estimate parametric or
nonparametric IRFs (e.g., the dispersion-model IRF) or the degree-day method for estimating
snowmelt (Rango and Martinec; 1995) could be added. If there were a need to include
precipitation recharge and sinking-stream recharge simultaneously in one system, this could
easily be added. An adjustment to the calculation of the soil-moisture index s could be
included to account for watershed changes such as tree coverage. Revisions, additions, and
corrections to the RRAWFLOW code can be sent to the author of this article for potential

incorporation into subsequent official versions. The code is not yet available in the

comprehensive R archive network (CRAN) but could be included in the future. Optimization

packages also are available in CRAN and could be built seamlessly into RRAWFLOW.

Comparison of the modified Nash—Sutcliffe coefficient of efficiency for the calibration and

conditional validation periods (Ecy and Eyq) is useful for assessing over-fitting._ Conceptual-

model options that maximize E,a can evaluated by multiple tests. Too many fitting

parameters, as well as too few, can result in low values of Ey. The ratio E,./Ec,_might be a

useful metric for comparison of different models and possibly in setting the lengths of the

calibration and validation periods. As in any model, this all should be considered in reference

to a physical understanding of the system; e.g., two distinct permeability domains might be

best simulated by two gamma functions.

The record length of the observed response should be considered in light of the system
memory: there is less confidence in the predictive strength of a model if the observed
response is shorter than the system memory than if it is longer, because, in the former case,

the effects of the IRF tail are not fully tested against observation. Ideally, the validation
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period alone should be longer than the system memory, and if it is several times longer, then

the full range of the IRF is tested several times over.

Konikow and Bredehoeft (1992) discuss the numerous uses of the term “validation,” which

has resulted in confusion, and also highlighted philosophical considerations associated with

the term. They arque that conditional validation, as described herein [split-sample test in

Konikow and Bredehoeft (1992)], is not useful for distributed groundwater models because of

their_limited predictive accuracy that results from non-unique solutions in calibration of

complex models. Further, they argue that the split-sample-test period must be independent of

any antecedent effects from the calibration period, which they say rarely can be achieved for a

large-scale aquifer system. These arguments highlight an advantage of lumped models,

because (1) a small number of parameters minimizes the problem of non-unigue solutions, (2)

selecting one model from multiple models via a validation process also reduces the problem

of non-unique solutions, and (3) a lumped model provides an estimate of the system memory,

which indicates the time span for antecedent effects following a calibration period. More than

one half of the groundwater sites simulted by Long and Mahler (2013) had conditional

validation periods that extended beyond the antecedent effects of the calibration period, and

therefore, E,._could be calculated for this restricted period only if desired.

RRAWFLOW is useful for estimation of missing periods of a hydrologic record and is
suitable for hydrograph-separation methods to estimate stream base flow, as described by
Jakeman and Hornberger (1993) and Long (2009). For the simulated hydrograph,

RRAWFLOW can be used to compute the base-flow component by executing the model

without the quick-flow IRF._If using a single reverse-J gamma IRF instead of a double-

exponential IRF that can be easily separated, the reverse-J function would need to be separted

into_its quick-flow (peak) and slow-flow (tail) components. To estimate the base-flow

component of the observed hydrograph, a graphical separation program can be used, such as
PART (Rutledge, 1998); however, because the different options and settings in PART (or
similar programs) result in different base-flow estimates, the RRAWFLOW estimated base
flow is helpful as guide to using PART (Long, 2009). For example, the PART settings can be
adjusted so that the observed hydrograph separation has similar characteristics to those of the
simulated hydrograph separation. The RRAWFLOW-simulated hydrgrograph separation also

could be used as a benchmark model for comparison to more elaborate methods, such as

geochemical hydrograph separation (e.g., Rimmer and Hartmann (2014).
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5 Code availability

The RRAWFLOW program written in R language, RRAWFLOW manual, quick-start guide,

and an example model are included in a download package available at

http://sd.water.usgs.gov/projectssRRAWFLOW/RRAWFLOW.htm|. The model included is ///{Deleted: included in the online supplement to t

article

example BC3 for Boxelder Creek (Table 2). It is not necessary to know the R language to
execute the model, but R must be installed on the user’s computer. The example is set up to
run on the Microsoft® Windows operating system but could be slightly modified to run on a

Linux operating system. RRAWFLOW is in the public domain, and no license is needed.

Deleted: The
Although the example model is set up for parameter optimization using the PEST software /

program (Doherty, 2005), RRAWFLOW can be used with any optimization routine, including
trial and error. All RRAWFLOW input and output files are included along with PEST input,

output, and executable files. The file 00_Quick_Start Guide.pdf in the download package, ——{ Deleted: 00_ReadMe.pdf in the supplement

contains instructions for executing RRAWFLOW in the R environment and basic instructions

for PEST execution for this example. The RRAWFLOW manual has detailed input and output —{ Deleted: t

instructions. The download package, can be used as a template for a new modeling project by —{ Deleted: supplement

editing the input files accordingly. The R language program and PEST can be downloaded at
no cost from http://www.r-project.org/index.ntml and http://www.pesthomepage.org/,
respectively. Supplemental tables 1-4 contain model input values for all examples previously
described.
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Appendix A: Precipitation recharge

To simulate recharge from direct precipitation, a soil-moisture index s [unitless] is estimated
for each time step in RRAWFLOW. Quantitatively, s is the fraction of precipitation that
infiltrates and becomes recharge. To account for the antecedent effects of rainfall on soil
moisture, the past rainfall record is weighted by a backward-in-time exponential decay
function (Jakeman and Hornberger, 1993):

S, =Cr + (1—z<i‘1) S,

:c[ri+(1—/<i’l)ri4+(1—K(1)2 ri72+...} (A1)

i=0,1,..,N  0<s<1

Deleted:
where ¢ [L™] is a scaling coeffient to constrain the value of s; x [unitless] adjusts the effect of /{

antecedent rainfall and is related to evapotranspiration; r is total rainfall [L]; and i is the time
step, In RRAWFLOW, this method is option 1 for system input (Table 1). For watershed

Deleted:
[ Deleted:

v {1V

coefficient that limits s to the range 0-

//{ Deleted: , typically in days

modeling, the value of ¢ can be set to satisfy the assumption that the total recharge volume
within a watershed is equal to the total outflow volume for the calibration period. This
assumption neglects the net change in total watershed storage during this period, which is
assumed to be small in comparison to the total inflow or outflow for the same period. Also,
this assumption does not apply if recharge to the watershed exits the watershed through deep
groundwater and bypasses the stream outlet. Recent rainfall has the largest effect on s in Eq.

(A1), whereas earlier rainfall has the least effect.

The effect of changing air temperatures on evapotranspiration is accounted for by (Jakeman
and Hornberger, 1993):

Kk =aexp[(20-T,)f ] >0, (A2)

where o [unitless] is a scaling coefficient; T [°C] is mean air temperature at the land surface;
and f is a temperature modulation factor [°C™]. As air temperature T decreases, s in Eq. (Al)
increases with sufficient past rainfall. RRAWFLOW can be executed without air-temperature
data if unavailable (air-temperature option 2 in Table 1). Recharge for each time step u; [L] is

calculated as the fraction s of precipitation by
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Typically, s is largest during wet periods and rarely reaches a maximum value of 1.0 (Fig.

14).

Considerations for parameters c and K

An additional function of parameters ¢ and « is to adjust for differences in the runoff effects
between watershed and groundwater modeling. Also, for groundwater applications, ¢ in Eq.
(A1) cannot be determined empirically if the recharge area that affects a spring or well is not
precisely defined. Therefore, for groundwater applications, ¢ can be set to a value that results
in a predefined maximum s value or estimated mean recharge rate, or ¢ can be optimized
through model calibration. In practice, the error in the estimation of ¢ is compensated by an
adjustment in the IRF area during model calibration; e.g., an overestimation of ¢ by 10%
would result in a 10% underestimation in IRF area.

Depending on the values of ¢ and «, the value of s can incorrectly have values <0 or >1; when
this occurs, RRAWFLOW sets s to 0 or 1, respectively. This is most likely to occur early in
the calibration process when parameter values might be far from optimum, and forcing the

constraint 0 <s < 1 assists in the efficiency of the calibration process. To ensure that the range

f://{ Deleted:

of s is appropriate for the model area, this parameter should always be plotted after model
calibration; i.e., s should be a physically plausible function that fluctuates in response to local
precipitation and air temperature (Fig. 11). For example, in humid climates with high annual

precipitation, s might frequently have a value >0.9, which is less likely in dry climates.

Snow precipitation

For cold climates where winter snowfall is common, a method proposed by Long and Maher
(2013) is applied. To determine the form of precipitation for each time step, an air
temperature threshold value Ts is set, below which precipitation is assumed to occur as snow
(typically Ts = 0°C). To determine time steps when melting occurs, a melting threshold value
Tm is set. If daily snow-depth data are available, T,, can be determined empirically as the mean
air temperature for time steps when snow depth decreases to zero from a previous time step
with a snow depth greater than zero. Long and Mahler (2013) determined that Tr, = 9°C for a

23
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study area in central North America. Sublimation is accounted for by a sublimation fraction
St. Snow precipitation is summed for each series of snow-precipitation time steps occurring

prior to each snowmelt time step by

P = a- Sf )Z p; Ti<Ts (A4)

where pn, is the accumulated snow precipitation that is assumed to melt when T; > Tp, St is the
sublimation fraction [unitless], p; is the snow precipitation in height of water, and N is the
number of snow-precipitation time steps occurring between melt time steps. Prior to
calculating Eq. (A1), pm is added to the rainfall record for the time step following a snowmelt
time step because snowmelt is assumed to have the same effect as rainfall on the value of s.

24
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/| Convolution is a time-series operation (Jenkins ar
|| Watts, 1968; Smith, 2003) commonly used in non

distributed hydrological models to simulate
streamflow, springflow, or groundwater level in
response to recharge (e.g., Nash, 1959; Dooge, 19
Dreiss, 1989; Olsthoorn, 2008). The use of
convolution in hydrology has its origins in unit-
hydrograph theory for watershed runoff modeling
(Nash, 1959; Dooge, 1973). Convolution has beer
used to simulate solute transport of tracers (e.g.,
Maloszewski and Zuber, 1982; Long and Putnam,
2004; Jurgens et al., 2012), groundwater response
recharge from a sinking stream (Long and
Derickson, 1999), flow through karst conduits
(Cornaton and Perrochet, 2002), and cave drip (Lt
and Mahler, 2013). Mathematically, convolution i
the integration of an input function (e.g., recharge
with an IRF that describes the system response to
unit impulse of the input function:

y(t) = j:oh(t—r)u(r)dr

(A5) 1
where y(t) is the system response, or output; h(t —
is the IRF; u(z) is the input, or forcing, function; ¢
and t are time variables corresponding to system
input and output, respectively (Jenkins and Watts,
1968; Dooge, 1973; Olsthoorn, 2008). The quanti
— z represents the delay time from impulse to
response, and the IRF represents a distribution of
these delay times. In RRAWFLOW, the input
function u(z) can be recharge or input of a solute.
The system response y(t) can be streamflow exitir
watershed, springflow from a groundwater systen
groundwater level, or solute concentration at an
outlet. Physically, the IRF is the system response
per unit impulse of u(z) and also can be described
the response produced by a system when the inpu
a delta function (Smith, 2003). Conceptually,
convolution is the superposition of a series of IRF
that are initiated at the time of each impulse of u(x
and are scaled proportionally by the magnitude of
the corresponding impulse (Fig. 1).1

For uniform time steps, the discrete form of Eq. (/
is |

Yi :Zhi—juj + o,
j=0

N (A-6) T

where h;; is the IRF; u; is the input, or forcing,
function; and j and i are time-step indices
corresponding to system input and output,
respectively; N is the number of time steps in the
output record; and ¢ represents the errors resulting
from measurement inaccuracy, sampling interval,
simplifying model assumptions. For simulation of
groundwater levels, a datum hg at which hydraulic
head equals zero must be established. Conceptual
ho is the level to which hydraulic head would
converge if the local recharge was eliminated. Lo
recharge is assumed to be the only forcing that
results in hydraulic-head fluctuation or that cause:

i,j=0,1,

hydraulic head to rise above h.
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Table 1. RRAWFLOW options.

System input
1 = System input is precipitation that results in recharge to the system (Egs. 1-4).
2 = System input is recharge estimated outside of RRAWFLOW (skip Egs. 1-4).
3 = System input is solute concentration (skip Eqgs. 1-4).

System output
1 = System output is groundwater level.
2 = System output is springflow or streamflow.

3 = System output is solute concentration (System input = 3).

IRF type
1 = Parametric IRF—gamma functions.
2 = Nonparametric IRF—spline fit to IRF control points.
3 = Nonparametric IRF—linear fit to IRF control points.

4 = Nonparametric IRF—user-defined IRF.

Time-variance (TV) option
1 = Time-invariant (static) IRF.
2 = Wet-period IRF and dry-period IRF are defined separately, and each are time invariant within these
respective periods.
3 = Variable IRF vertical scale, where g in Eq. (1) is variable.

Wet-switch option

0 = The wet and dry periods are provided by the user.

1 = Wet and dry periods are calculated by RRAWFLOW. Any calendar year when the mean precipitation is

above the mean for the entire precipitation record is a wet year, and other years are dry years.

2 = Wet and dry periods are calculated by RRAWFLOW according to the annual cumulative departure from
mean precipitation.

Air-temperature option
1 = Use air temperature adjustment (Eq. A2).

2 = Do not use air temperature adjustment.
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1 Table 2. Summary of example models. The shaded rows indicate the best choices. [--, not

2 applicable]

Time- No. of
variance Wet- Description of impulse- optimized Time
Site Example  Figure (Tv) :wtli::z response function (IRF) IRF variant Eca Eua Comments
option® s parameters
BC1 - 1 - Single-gamma IRF (static) 3 no 0.62 046 LowE,
BC2 - 2 1 Single-gamma IRFs 6 yes 0.63 047 LowE,
BC3 5 2 2 Single-gamma IRFs 6 yes 0.61 0.56 BestE,y
Boxelder Single-gamma, variable-
Creek BC4 - 3 - scale IRF; 1-year window 4 yes 063 046 LowEw
Single-gamma, variable- Good Ea and
BC5 - 3 - scale IRF; 10-year window 4 yes 0.68 0.53  small number of
parameters
F1 - 1 - Single-gamma IRF (static) 3 no 0.84 0.63 LowEy
F5 - 2 2 Single-gamma IRFs 6 yes 0.88 072 Good Eyy
F7 - 2 2 Double-gamma IRFs 12 yes 0.90 0.63 Overfit
8 6 2 2 7 optimized control points 7 yes 0.88 072 Good Eyy
Barton ” |
Springs 16 optimized contro §
pring F9 7 2 2 points 16 yes 092 061 Overfit
Single-gamma, variable-
F2 - 3 - scale IRF; 1-year window 4 ves 080 046  low Eu
Single-gamma, variable-
F3 - 3 - scale IRF; 10-year window 4 ves 084 061  LowEw
w1 8 2 2 Double-gamma IRFs 12 yes 092 073 -
18 optimized control
w2 9 2 2 points (double-peaked 18 yes 093 0.70 -
Well IRF)
LA88C
10 optimized control Best £,y and
w3 10 2 2 points (double-peaked 10 yes 0.88 0.75  smallest number
IRF) of parameters
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1  Table 3. Impulse-response function (IRF) parameters for selected example models.

Example BC3 BC5 F5 F7 w1

Site Boxelder  Boxelder Barton Barton Well
Creek Creek Springs Springs LA88C

Dry period
Az 1.45E-02 2.08E-02 2.15E-04 5.26E-04 5.15E-03
N 5.40E-01 4.15E-01 6.26E-01 6.61E-01 1.15E+00
€ 8.32E+00 1.07E+01 2.01E+01 1.65E+01 1.08E+02
Az 0 0 0 3.82E-02 1.31E-02
nz 0 0 0 5.10E+01 6.36E+00
£ 0 0 0 4.98E+00 1.42E+02

Wet period
Az 6.34E-03 0 6.39E-03 7.77E-03  1.57E-03
ns 3.12E-01 0 1.14E+00 1.22E+00 1.16E+00
£ 9.68E+00 0 1.09E+01 1.11E+01 2.50E+02
Aq 0 0 0 9.53E-02  1.89E-02
Na 0 0 0 4.95E+01 3.86E+01
£ 0 0 0 8.03E-01 5.28E+01
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List of figures

Figure 1. Superposition of sequential impulse-response functions (IRFs). Each IRF is in response to an
impulse of the input function u; and is scaled by the magnitude of that impulse.

Figure 2. Gamma functions for different values of its two shape parameters.

Figure 3. Impulse-response function defined by a spline curve fit through control points. The last
control point with a value of zero is not adjusted during model calibration.

Figure 4. Example B3: observed (gray) and simulated (black) flow for Boxelder Creek.

Figure 5. Example B3: impulse-response functions (IRFs) for Boxelder Creek using single-gamma
IRFs.

Figure 6. Example F8: nonparametric impulse-response functions (IRFs) for Barton Springs using a
total of 7 control points showing (a) optimized IRFs and (b) upper and lower 95% confidence limits
for the IRFs.

Figure 7. Example F9: nonparametric impulse-response functions for Barton Springs using a total of
16 control points.

Figure 8. Example W1: impulse-response functions (IRFs) for well LA88C using double-gamma IRFs
for both periods; i.e., wet and dry.

Figure 9. Example W2: nonparametric impulse-response functions for well LA88C using a total of 18
control points.

Figure 10. Example W3: nonparametric impulse-response functions for well LA88C using a total of
10 control points.

Figure 11. The soil-moisture parameter s (Eq. Al) for example BC2. The function s typically is largest
during wet periods (shaded gray).
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