
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2014/05/30 6.91 Copernicus papers of the LATEX class copernicus.cls.
Date: 22 January 2015

Firedrake-Fluids v0.1: Numerical modelling of
shallow water flows using a
performance-portable

::::
an

::
automated solution

framework
Christian T. Jacobs1 and Matthew D. Piggott1

1Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

Correspondence to: Christian T. Jacobs (c.jacobs10@imperial.ac.uk)

1

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Abstract

This model description paper introduces a new finite element model for the simulation of non-
linear shallow water flows, called Firedrake-Fluids. Unlike traditional models that are written by
hand in static, low-level programming languages such as Fortran or C, Firedrake-Fluids uses the
Firedrake framework to automatically generate the model’s code from a high-level abstract lan-5

guage called UFL. By coupling to the PyOP2 parallel unstructured mesh framework, Firedrake
can then target the code in a performance-portable manner towards a desired hardware archi-
tecture to enable the efficient parallel execution of the model over an arbitrary computational
mesh. The description of the model includes the governing equations, the methods employed to
discretise and solve the governing equations, and an outline of the automated solution process.10

The verification and validation of the model, performed using a set of well-defined test cases, is
also presented along with a roadmap for future developments and the solution of more complex
fluid dynamical systems.

1 Introduction

Traditional approaches to numerical model development involve the production of hand-written,15

low-level (e.g. C or Fortran) code for the specific set of equations that need to be solved. This
task alone can be highly error-prone, often resulting in sub-optimal code, and can make the
efficiency, readability and longevity of the codebase difficult to maintain (Rognes et al., 2013;
Farrell et al., 2013; Mortensen et al., 2011; Maddison and Farrell, 2014). Moreover, parallelisa-
tion of the code is usually accomplished by introducing explicit calls to parallel programming20

libraries such as OpenMP or CUDA. By doing so, computational scientists are frequently faced
with the additional task of having to re-write their model’s code as new parallel hardware ar-
chitectures and platforms emerge. At the current rate that new hardware is introduced, this
development workflow is unsustainable and places an infeasible requirement on the developer
to not only be a subject/domain specialist adept in computational methods, but also well-versed25

in software engineering and parallelisation principles. A change to the traditional programming

2

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

paradigm is clearly necessary if numerical model development is to continue in a sustainable
manner.

Recent investigations into the use of automated solution techniques have shown great poten-
tial in mitigating some of the issues faced with traditional approaches to writing numerical mod-
els. The FEniCS project (Logg et al., 2012) is a well-known example of a framework which uses5

such a solution technique to automatically generate low-level model code to solve ordinary and
partial differential equations (using the finite element method) from a near-mathematical high-
level language, rather than by hand

::
the

:::::
user

::::::
having

::
to

:::::
write

::::
the

::::::::
low-level

:::::
code

::::::::::
themselves. This

hides complexity through abstraction, and allows users to focus only on the problem specifica-
tion and the end results of simulations. Furthermore, optimal or near-optimal performance can10

be achieved through code optimisations that would be tedious to implement by hand (Ølgaard
and Wells, 2010). These benefits have been realised in numerous applications in the geosciences.
For example, the use of the FEniCS framework by Maddison and Farrell (2014) allowed the
runtime of their adjoint models to be as small (or even smaller) than an equivalent model gen-
erated and optimised by hand, and

:
.
:::::
Also,

:
the extension of FEniCS by Rognes et al. (2013) to15

solve partial differential equations on the sphere permits ocean and atmospheric models to be
written with just a few lines of high-level code rather than several thousand lines of low-level
C or Fortran code

:::::::
intuitive

:::::
code

:::::::::
(although

:::
the

:::::::::
potential

::
of

:::::::
writing

::::::
fewer,

:::::
more

::::::::
intuitive

:::::
lines

::
of

::::::
model

:::::
code

::
is
::::

not
:::::::
unique

::
to

::::::::::
automated

:::::
code

::::::::::
generation

::::::::::::
approaches,

::
as

:::::::::::::
demonstrated

:::
by

:::
the

:::::::::
interfaces

::
of

:::::
other

:::::::::
modelling

:::::::::::
frameworks

:::::
such

::
as

:::::::::::
OpenFOAM

::::::::::::::::::::
(OpenFOAM, 2014) ,

::::::
deal.II20

:::::::::::::::::::::
(Bangerth et al., 2007) ,

:::::
Dune

::::::::::::::::::::::
(Dedner et al., 2010) and

:::::::::::
FreeFem++

::::::::::::::
(Hecht, 2012)). Several other

application areas using automated solution techniques have demonstrated similar benefits (see
e.g. the works by Farrell et al. (2013); Funke and Farrell (Submitted); Logg et al. (2012)).

Despite the success of FEniCS, the portability of its performance across different current and
future high-performance computing hardware is limited since the generated code is independent25

of the architecture it can execute on . In contrast, the Firedrake project (Imperial College London, 2013) is
geared towards performance-portability

:::
The

:::::::::
Firedrake

:::::::
project

::::
aims

::
to

:::::::
further

::::::
extend

:::
the

:::::::::::
abstractions

::::::
offered

:::
by

::::::::::
automated

::::::::
solution

:::::::::::
approaches,

:::
by

::::::::
creating

::
a

:::::::::
separation

:::
of

:::::::::
concerns

::::::::
between

:::
the

:::::::::
automated

:::::::::
low-level

::::::::::::
discretisation

:::
of

:::
the

::::::
model

:::::::::
equations

::::
and

:::
its

:::::::::
execution

:::
on

:::
the

::::::::::
underlying

3

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

:::::::::::::
computational

:::::
mesh

::::::::::::::::::::::::::
(Rathgeber et al., Submitted) ,

::::::
whilst

::::
still

:::::::
keeping

:::
the

:::::
same

:::::::::
high-level

::::::::
problem

::::::
solving

:::::::::
interface

:::
for

:::::::::
end-users.

::::
This

::::::::
provides

:::
the

:::::::::
potential

:::
for

:::::
easier

::::::::::
portability

::
of

:::
the

:::::::::
generated

::::
code

:
across different hardware platforms (e.g. multi- and many-core CPUs and GPUs), as well

as the efficient handling of
::::::::::::
computations

::::
over

::
a
:::::
given

:
mesh topology (e.g. taking advantage of

the semi-structured nature of a three-dimensional layered mesh extruded in the vertical, as of-5

ten employed in ocean/atmospheric applications), and computational operations (e.g. avoiding
the re-assembly of time-independent finite element discretisation matrices by caching them
(Maddison and Farrell, 2014)). Essentially, Firedrake provides the same high-level problem
solving interface, with enhanced performance benefits. Performance-portability

:
.
::::
This is achieved

by interfacing with the PyOP2 parallel unstructured mesh computation framework, which tar-10

gets the automatically generated code towards specific high-performance computing platforms
(Rathgeber et al., 2012; Markall et al., 2013) . Recent application of PyOP2’s code optimisation
strategies has demonstrated up to a factor 4 speed-up compared to running FEniCS-generated
code (?) . Furthermore, for a suite of benchmark problems (including Cahn-Hilliard, advection-diffusion
and Poisson equation-based problems), Firedrake is at least as fast, if not faster, than the FEniCS15

framework (?)
:::
(Rathgeber et al., 2012; Markall et al., 2013; Luporini et al., 2015) . In additionto

performance benefits, the
:
,
:::
the

:::::::::
enhanced abstraction-based approach employed by Firedrake can

also help future-proof models from hardware changes and removes a great deal of effort required
by computational scientists to maintain the codebase.

In light of the issues surrounding the use of static, hand-coded numerical models, and the ben-20

efits that the Firedrake framework can bring, a new numerical model called Firedrake-Fluids
has been developed for computational fluid dynamics (CFD)-related applications. The long-
term goal of the project is to facilitate a re-engineering of Fluidity (Piggott et al., 2008), another
CFD package (also developed at Imperial College London) comprising hand-written Fortran
code whose efficiency, readability and longevity has become challenging to maintain as the25

package has grown over many years. In contrast to Fluidity, Firedrake-Fluids has been written
in the high-level Unified Form Language (UFL) and uses Firedrake to automate the solution
process. Currently it is capable of solving the non-linear shallow water equations which are
widely used in the ocean modelling community for applications such as tidal turbine dynamics

4

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

(Divett et al., 2013; Kramer et al., 2014; ?)
:::
(Divett et al., 2013; Kramer et al., 2014; Martin-Short et al., 2015) ,

array optimisation (Funke et al., 2014), tsunami modelling (Hill et al., Submitted), flow dynam-
ics over submerged islands (Lloyd and Stansby, 1997), and dam breaching and flooding (Capart
and Young, 1998). In addition to the core model, Firedrake-Fluids offers upwind stabilisation
methods, a variety of diagnostic fields, and the Smagorinsky LES model (Smagorinsky, 1963)5

for the parameterisation of turbulence.
Section 2 details the set of equations that are solved and the assumptions under which they

are valid. Section 3 describes the numerical methods that are used to discretise and solve the
governing equations, followed by an overview of the automated solution techniques employed
by the Firedrake framework. Section 4 presents results from a suite of test cases used to verify10

the correctness of the numerical model’s implementation, and show how well it describes the
physics. A discussion regarding the future developments and direction of Firedrake-Fluids is
presented in Section 5, along with some concluding remarks in Section 6. Finally, section 7
contains information regarding the availability of the Firedrake-Fluids codebase, the license
under which it is released, and where the model’s documentation can be found.15

2 Model equations

The model described in this paper solves the non-linear, non-rotational shallow water equations.
These are a set of depth-averaged equations which model the dynamics of a free surface and

::
an

associated depth-averaged velocities (Zhou, 2004) .
:::::::
velocity

:::::
field

:::::::::::::
(Zhou, 2004) .

::::
This

::::::::
velocity

::::
field

::
is

::::::::
denoted

:::
by

:::::::::::::
u = u(x,y, t)

:::::::
(where

::
x

::::
and

:
y
::::

are
:::
the

:::::::
spatial

:::::::::::
coordinates,

::::
and

::
t
::
is

::::::
time).20

For modelling purposes, the free surface is split up into a mean component H
::::::::::::
H =H(x,y)

and a perturbation component h (where
:::::::::::
h= h(x,y, t)

:::
as

:::::::::
illustrated

:::
in

::::::
Figure

::
1.

:::::
Note

::::
that

:
h is

generally assumed to be much smaller than H) as illustrated in Figure 1.

5

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

H

h

6

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 1. Diagram showing the mean free surface height H (also known as the depth or the distance to
the seabed, shaded gray) and the free surface perturbation h, within the shallow water model.

The shallow water equation set comprises a momentum equation and a continuity equation,
each of which are defined below.

::::
The

::::::::
unknown

::::::
fields

::
u

:::
and

::
h
:::
are

:::::::
sought.

:

2.1 Momentum equation

The momentum equation is solved in non-conservative form such that

∂u

∂t
+u · ∇u =−g∇h+∇ ·T−CD

||u||u
(H +h)

||u||2u
(H +h)
:::::::

, (1)5

where t is time, g is the acceleration due to gravity (set to 9.8 ms−2 throughout this paper),
u≡ u(x,y) is the depth-averaged velocity, and CD is the

:
a non-dimensional drag coefficient.

The
:::::::::
Euclidean

:::::
norm

:::::::::::::::
||u||2 =

√
u ·u

::
is

:::::
used

:::::
here,

::::
and

::::::::::
throughout

:::
the

::::
rest

:::
of

::::
this

::::::
paper.

::::
The

stress tensor T is given by

T = ν
(
∇u+∇uT

)
− 2

3
ν (∇ ·u)I, (2)10

where ν is the kinematic viscosity, which is assumed to be isotropic here, and I is the identity
tensor1.

1Note that,
:::
The

:::::::
interior

::::::
penalty

:::::::
method

::::::::::::::
(Arnold, 1982) is

::::::
applied

:::
to

:::
the

:::::
stress

::::
term when using dis-

continuous basis functions for the velocity field (see Section 3.2),
::::
since the form

:::::::
gradient of

::::::
velocity

:::
has

::
to

::
be

::::::
treated

::::::::
carefully

::
at

:::
the

:::::::::
boundaries

:::::::
between

::::::::::::
discontinuous

::::::::
elements.

::::::::
Although

::
it
::
is

:::::::
possible

::
to

:::::
extend

:
the

:::
UFL

:::::::::::::
implementation

::
to

:::
the

:::
full

:
stress tensoris currently restricted ,

:::
the

::::::
current

:::::::::::::
implementation

::
of

:::
the

:::::::
method

:::::::
restricts

:::
the

:::::
form to T = ν∇u

:::
for

:::::::::
simplicity.

::
In

:::
the

::::::::::
near-future

:::::
when

::::::
tensor

:::::::
function

:::::
spaces

:::
are

:::::::::
supported

::
in

:::
the

::::::::
Firedrake

::::::
library,

:::
the

:::::::::::
Bassi-Rebay

:::::::
method

::::::::::::::::::::::::
(Bassi and Rebay, 1997) will

::
be

::::::::::
implemented

:::::::
instead

:::
and

::::
will

:::::::
consider

:::
the

:::
full

::::
form

:::
of

:::
the

:::::
stress

:::::
tensor.

7

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

2.2 Continuity equation

The continuity equation is given by

∂h

∂t
+∇ · ((H +h)u) = 0. (3)

2.3
::::::
Initial

::::
and

:::::::::
boundary

:::::::::::
conditions

::
In

:::::
order

:::
to

::::::
march

:::
the

:::::::::
equations

::::::::
forward

::
in

:::::
time,

::::::
initial

::::::::::
conditions

:::
for

::::
the

::::::::::
prognostic

:::::
fields

::
h5

:::
and

::
u

:

h(x,y, t= 0) = h0,u(x,y, t= 0) = u0,
::::::::::::::::::::::::::::::::::

(4)

::::
must

:::
be

:::::::::
specified.

:::::::::::
Throughout

:::
the

::::::::::
simulation,

:::::::
values

::
of

:::
the

:::::
free

:::::::
surface

:::::::::::
perturbation

:::::
field

::
h

::::
may

:::
be

::::::::
enforced

::
(in

::::
the

::::::
strong

::::::
sense)

::
at

:::
the

:::::::::
boundary

:::::
using

::
a

::::::::
Dirichlet

:::::::::
boundary

:::::::::
condition10

h= hD on Γ,
::::::::::::

(5)

:::::
where

:::::::
Γ⊂ Ω

::
is

:::
the

:::::::
portion

::
of

:::
the

:::::::::
boundary

:::
on

::::::
which

:::
the

:::::::::
boundary

:::::::::
condition

::::
(hD

::
in

::::
this

:::::
case)

:
is
::::::::
applied.

:::::
Note

::::
that

:::
this

:::::::::
boundary

:::::::::
condition

::::
can

::::
vary

::::
both

:::
in

::::
time

::::
and

::
in

::::::
space.

:

::
In

::::::::
addition

::
to

:::
the

::::::::
standard

:::::::::
Dirichlet

::::::::
boundary

:::::::::
condition

:::
for

:::
the

::::::::
velocity

::::
field

:

u = uD on Γ,
::::::::::::

(6)15

:::::
where

::::
uD

:::
is

:::
the

::::::
value

::
of

::::
the

::::::::
velocity

:::
to

::
be

:::::::::
enforced

:::
at

:::
the

::::::::::
boundary,

:::::
there

::::
are

::::
two

:::::
other

:::::::::
conditions

::::
that

::::
may

:::
be

:::::::
applied.

::::
The

::::::::::
no-normal

::::
flow

:::::::::
condition

::::::::
enforces

:

u ·n = 0 on Γ.
:::::::::::::

(7)

:::::
where

::
n
::
is
::::
the

:::
unit

:::::::
normal

:::::::
vector.

8

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::
The

::::::::::::::::::::::
Flather (1976) boundary

::::::::
condition

::::::::
enforces

:

u−u∗ =

√
g

H
(h−h∗) on Γ,

:::::::::::::::::::::::::::

(8)

:::::
where

:::
u∗::::

and
:::
h∗ :::

are
:::
the

::::::::
expected

::::::::
velocity

::::
and

::::
free

::::::
surface

::::::::::::
perturbation

:::::::
exterior

::
to

:::
the

::::::::
domain,

:::::::::::
respectively.

:::::
Any

:::::::::
difference

::::::::
between

::::
the

:::::::::
expected

::::
and

:::::::::
simulated

::::
free

:::::::
surface

:::
is

::::::::
allowed

::
to

:::::::::
propagate

:::
out

::
of

::::
the

:::::::
domain,

::::::::
thereby

::::::::::
minimising

::::::::
spurious

::::::::::
reflections

:::::
from

:::
the

:::::::::
boundary.

:::::
Note5

:::
that

:::::
both

::
of

:::::
these

:::::::::
boundary

:::::::::
conditions

::::
can

::::
only

:::
be

:::::::
applied

::
in

:::
the

:::::
weak

::::::
sense;

:::
the

::::::::
velocity

:::::
value

::::
must

:::
be

:::::::
applied

::
in

::::
the

:::::::
surface

:::::::
integral

:::::
term,

::::::
which

:::::
only

:::::::
appears

::
if
::::
the

::::::::::
divergence

::::
term

:::
in

:::
the

:::::::::
continuity

::::::::
equation

::
is

:::::::::
integrated

:::
by

:::::
parts.

:::
An

::::::
option

:::
for

::::::
doing

::::
this

::
is

::::::::
available

::
in

:::
the

::::::::::
simulation

::::::::::::
configuration

::::
file,

:::::::::
discussed

::::
later

::
in

:::::::
Section

::::
3.4.

:

2.4
:::::::::::
Turbulence

:::::::::
modelling10

:::
The

:::::
core

:::::::
shallow

::::::
water

::::::
model

:::
on

:::
its

::::
own

::::
has

:::
no

::::
way

:::
of

:::::::::
capturing

:::
the

:::::::
effects

:::
of

::::::::::
turbulence,

:::::
unless

::::
the

:::::::::::
underlying

:::::
mesh

::
is
:::

of
::

a
::::::::
suitably

::::
fine

::::::::::
resolution

:::
to

::::::::
perform

:
a
:::::::

Direct
::::::::::
Numerical

::::::::::
Simulation

::::::
(DNS)

::
at

:::
all

::::::::::
turbulence

::::::
length

::::::
scales.

:::::
This

::
is

:::::
often

::::::::::::
prohibitively

::::::::::
expensive,

::::
and

::
so

:::::::::
turbulence

:::::::::::::::
parameterisation

::
is

:::::::::
required.

:::
The

::::::::::::
Smagorinsky

::::::
Large

:::::
Eddy

::::::::::
Simulation

::::::
(LES)

::::::
model

:::::::::
represents

::::
one

:::::::
possible

::::
way

:::
of

:::::
doing

:::::
this.

::
It

::::::::::::
parameterises

:::
the

::::::::::
turbulence

:::
via

:::
an

:::::
eddy

::::::::
viscosity15

::::::::::::::::::::::::::::::::::
(Smagorinsky, 1963; Deardorff, 1970)

ν ′ = (Cs∆e)
2 |S|.

:::::::::::::::
(9)

:::::
where

:::
Cs::

is
::::
the

::::::::::::
Smagorinsky

::::::::::
coefficient,

::::
and

:::
∆e::

is
:::
an

::::::::
estimate

::
of

:::
the

:::::
local

:::::
mesh

::::
size

::::::
which

::
is

::::::
defined

:::::
here

::
as

:::
the

:::::::
square

::::
root

::
of

::::
the

::::
area

::
of

:::::
each

:::::::
element

:::
(in

::::
the

:::
2D

::::::
case).

:::
|S|

::
is

:::
the

::::::::
modulus

::
of

:::
the

:::::
strain

::::
rate

::::::
tensor

:::::::
defined

:::
by20

S =
1

2

(
∇u+∇uT

)
, |S|=

√
2
∑
i

∑
j

SijSij .

::

(10)

9

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

:::::
where

::::
Sij ::

is
:::
the

:::::::
(i,j)-th

::::::::::
component

:::
of

::
S.

::::
The

:::::
eddy

:::::::::
viscosity

:::
ν ′,

::::::
which

:::::::
models

:::
the

::::::::::
dissipating

::::::
effects

::
of

:::::::::::
small-scale

::::::::
turbulent

::::::
eddies

:::
on

:::
the

::::::::
resolved

:::::
flow,

::
is

::::::
added

::
to

:::
the

::::::::
physical

::::::::
viscosity

::
ν

::
in

:::
the

:::::
stress

:::::
term

::
of

:::
the

:::::::::::
momentum

:::::::::
equation.

3 Methods

3.1 Automated code generation5

Solving a given set of equations in the Firedrake framework requires only the weak forms of
the model equations (along with associated boundary and initial conditions) to be

:::::::::
discretised

:::::
(both

::::::::::
temporally

::::
and

::::::::
spatially)

::::
and

:
expressed in a near-mathematical language called Unified

Form Language (UFL), an embedded language that uses Python as its host (Alnæs et al., 2014).
An example of a model defined in UFL which solves a two-dimensional advection-diffusion10

problem is given in Figure 2 (with associated results in Figure 3), and highlights how the im-
plementation can be accomplished with just a few lines of intuitive statements. This one file
containing approximately 50 lines of UFL is automatically compiled into over 600, much more
complicated, lines of low-level C code which are executed over the entire mesh by PyOP2 to
perform the assembly of the finite element system.15

10

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

11

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 2. Sample Python code which uses the high-level Unified Form Language (UFL) to solve the
advection-diffusion equation with the finite element method. The solution field c has a Gaussian profile
at t = 0, which is then advected with a prescribed velocity field u = [0.1,0]T.

12

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

13

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 3. Visualisation of the solution field c at t = 0, 2.5, and 5 s from the advection-diffusion problem
defined in Figure 2. The initial Gaussian profile is advected from left-to-right, out of the domain, and
slowly diffuses over time. The field has been warped in the z direction.

The UFL code is compiled at run-time, using a modified version of the FEniCS Form Com-
piler (FFC)2 (Kirby and Logg, 2006; ?)

:::
(Kirby and Logg, 2006; Luporini et al., 2015) , into an

intermediate representation as an abstract syntax tree (AST) before being passed into the PyOP2
library, as shown in Figure 4. Furthermore, optimal numbering of the solution nodes in the do-
main is important to avoid cache misses and ensure efficient computation; therefore, the topol-5

ogy of any mesh that is provided by the user (e.g. from the Gmsh mesh generator (Geuzaine
and Remacle, 2009)) is described using a PETSc DMPlex object which is also passed to PyOP2
along with the AST. PyOP2 then performs additional optimisations on the AST using the COF-
FEE compiler (?)

::::::::::::::::::::
(Luporini et al., 2015) which outputs the model’s optimised low-level C code.

Finally, PyOP2 calls a back-end compiler (e.g. GNU gcc or the Intel C compiler for CPUs)10

to compile the generated code on demand at run-time (known as just-in-time compilation),
and then executes it efficiently over the entire domain. As previously mentioned, in addition
to targetting

::::::::
targeting

:
the code towards multi-core CPUs, PyOP2 can also target the generated

code towards a specific parallel platform using, for example, the PyOpenCL and PyCUDA com-
pilers for GPUs.

::::
Note

:::::
that,

::::::::
however,

::
as

::
a
:::::
result

:::
of

:::::::
current

::::::::::::::
implementation

::::::::::
restrictions

:::::
(e.g.

:::
the15

:::::::
solution

:::
of

:::::::::
non-linear

:::::::::
problems

::
is

::::
not

:::
yet

::::::::
possible

::::
with

:::::::
PyOP2

:::
on

:::::::
GPUs)

:::
the

:::::
work

:::::::::
presented

::
in

:::
this

::::::
paper

::::
only

:::::::::
considers

:::
the

:::::::::::
compilation

:::
of

::::
code

::::::
using

:::
the

:::::
GNU

::::
gcc

::::::::
compiler

:::
on

::::::
CPUs.

:

2The original version of FFC which is part of the FEniCS project compiles the UFL into low-level
C++ code called UFC (Kirby and Logg, 2006; Logg and Wells, 2010), whereas the modified version in
Firedrake first compiles the UFL into an abstract syntax tree for further manipulation and optimisation
by the PyOP2 framework (?)

::::::::::::::::::
(Luporini et al., 2015) .

::::
The

::::::::
modified

::::::
version

::
of

::::
FFC

::
is

::::::::
available

::::
from

:::
the

::::::::
MAPDES

:::::::::
Bitbucket

:::::::::
repository:

:
https://bitbucket.org/mapdes/ffc

:
.
::::::::
Revision

:::::::::
6c0d70d

::
in

:::
the

::::::::
master

:::::
branch

::::
was

::::
used

:::::
when

::::::::::
performing

::
the

::::::::::
simulations

::::::::
presented

::
in
::::
this

:::::
paper.

14

https://bitbucket.org/mapdes/ffc

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Firedrake framework

PyOP2 framework

Unified Form
Language (UFL)

FEniCS Form
Compiler (FFC)

DMPlex objects

PyOP2 interface

Weak form of the
problem

UFL passed to
form compiler.

Code generation
begins

Mesh in
e.g. Gmsh format

Description of
mesh topology

COFFEE optimiser and compiler

Parallel scheduling
and code generation

CPU-targetted
(MPI/OpenMPI

backends)

GPU-targetted
(CUDA/OpenCL

backends)

Code for
future

architectures

Intermediate
representation

(abstract syntax tree)
passed to PyOP2

C kernels with parallel loops
to execute kernels

efficiently over mesh

Code targetted towards
specific hardware architectures

15

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 4. Overview of the key components of the Firedrake and PyOP2 frameworks
(?)

:::::::::::::::
(Rathgeber, 2014) .

16

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

3.2 Spatial and temporal discretisation

The spatial discretisation of the model equations is performed using the Galerkin finite element
method. The first step of the method involves deriving the variational/weak form of the model
equations by multiplying them through by a so-called test function w ∈H1(Ω)3, whereH1(Ω)3

is the first Hilbertian Sobolev space (Elman et al., 2005), and integrating over the whole domain5

Ω; this yields, in the case of the momentum equation (1):∫
Ω

w · ∂u
∂t

dV +

∫
Ω

w · (u · ∇u) dV =

−
∫
Ω

gw · ∇h dV+−
:

∫
Ω

∇w ·T dV

−
∫
Ω

CDw ·
||u||u

(H +h)

||u||2u
(H +h)
:::::::

dV. (11)

Note that the stress term has been integrated by parts and it is assumed that the normal stress10

gradient at all boundaries is zero. In this weak form, a solution u ∈H1(Ω)3 is sought for all
w ∈H1(Ω)3.

The test function and the solution u (also known as the trial function) are then replaced by
discrete representations, given by a linear combination of basis functions {φi}

Nu_nodes
i=1 which

may be continuous or discontinuous across the cells/elements of the mesh:15

w =

Nu_nodes∑
i=1

φiwi, (12)

u =

Nu_nodes∑
i=1

φiui, (13)

17

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

where Nu_nodes is the number of velocity solution nodes in the mesh, wi are arbitrary, and
the coefficients ui are sought using a numerical solution method. The free surface perturbation
field h, which needs to be solved for in addition to the velocity field, is also represented by a
(possibly different) set of basis functions {ψi}

Nh_nodes
i=1 :

h=

Nh_nodes∑
i=1

ψihi, (14)5

where Nh_nodes is the number of free surface solution nodes, and hi are the coefficients to be
found.

The discrete system of size Nu_nodes×Nu_nodes for the momentum equation then becomes:

M
∂u

∂t
+A(u)u+Ku =−Ch+−Ku−

::::::
D(u,h)u, (15)

where M, A, K, C and D are the mass, advection, stress, gradient and drag discretisation10

matrices, respectively. The notation A(u) and D(u,h) is used to highlight the non-linear de-
pendence of the matrices on the velocity and free surface fields. A similar process is performed
for the continuity equation (3), resulting in a full block-coupled system.

The temporal discrisation
:::::::::::
discretisation

:
is performed using the implicit backward Euler method,

yielding:15

M
un+1−un

∆t
+A(un+1)un+1+Kun+1 =

−Chn+1+−Kun+1−
::::::::::

D(un+1,hn+1)un+1, (16)

where the superscript n represents the current time level and n+1 represents the next time level.
The backward Euler method gives first-order accuracy in time. Newton iteration is employed to
deal with the non-linearity introduced via the advection and drag terms, although this does not20

need to be implemented explicitly by the model developer; instead, it can be performed using
a PETSc Scalable Nonlinear Equations Solvers (SNES) object.

:::::
Other

:::::::::
temporal

::::::::::::
discretisation

18

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::::::::
approaches

::::
such

:::
as

:::
the

::::::::::::::
Crank-Nicolson

:::::::
method

::::
can

::
be

:::::::
readily

::::::::::::
implemented

::
in

:::::
UFL,

::::
but

:::
are

:::
not

::::::::
currently

::::::::
available

:::
in

:::::::::::::::
Firedrake-Fluids.

:

A wide variety of basis functions of arbitrary order are available through FIAT (the FInite
element Automatic Tabulator) (Kirby, 2004). For the simulations presented in this paper, only
the P2-P1 (i.e. piecewise-quadratic basis functions representing the velocity field and piecewise-5

linear basis functions representing the free surface field) and P0-P1 (i.e. piecewise-constant
(discontinuous) basis functions for velocity and piecewise-linear basis functions for the free
surface) element pairs will be considered. Unless otherwise stated, the P2-P1 element pair will
be used in preference to P0-P1, in order to obtain higher-order solutions.

::::::::
However,

:::::
users

:::
are

::::
free

::
to

::::::
choose

::::
the

:::::
order

::::
and

:::::::::
continuity

:::
of

:::
the

:::::
basis

:::::::::
functions

::::::::
through

:::
the

::::::::::
simulation

::::::::::::
configuration10

:::
file

::::::::::
(discussed

::
in

::::::::
Section

::::
3.4).

::::::::::
Currently,

:::::::::::::::
Firedrake-Fluids

:::::
only

::::::
allows

:::::::::
Lagrange

:::::::::::
polynomial

::::
basis

:::::::::
functions

:::
to

::
be

::::::
used,

::::::::
although

:::::
other

:::::
basis

:::::::::
function

:::::::
families

::::
are

::::::::
available

::::::::
through

:::::
FIAT

::::
(e.g.

::::::::::::::::
Raviart-Thomas).

::
In

:::::::
Section

::
2,

::
it
::::
was

::::::::::
mentioned

::::
that

:::
the

:::::
form

:::
of

:::
the

:::::
stress

::::::
tensor

::
is

:::::::::
currently

:::::::::
restricted

::
in

:::
the

::::
case

::
of

::::::
using

::::::::::::
discontinuous

:::::
basis

::::::::::
functions.

::
In

:::
the

:::::::
future,

::::
once

::::::
tensor

::::::::
function

:::::::
spaces

:::::::
become15

::::::::
available

::
in

:::
the

:::::::::
Firedrake

:::::::::::
framework,

:::
the

:::::::::::
Bassi-Rebay

::::::::
method

::::::::::::::::::::::::::
(Bassi and Rebay, 1997) will

::
be

:::::::::::
implemented

:::::::
instead

::::
and

::::
will

::::::::
consider

:::
the

:::
full

:::::
form

:::
of

:::
the

:::::
stress

::::::
tensor.

:::
In

::::::::
addition,

:::::
some

:::::
more

:::::::::::
complicated

:::::::::
numerical

::::::::::
techniques

:::::::
cannot

:::
be

::::::::::
formulated

:::
in

:::
the

:::::
UFL

:::::::::
language,

:::::
such

:::
as

:::::
slope

:::::::
limiters.

:::::::::
However,

::
it

::
is

::::::::
possible

::
to

::::::::::
implement

:::::
them

::
in

::::::::::
lower-level

:::::
code

::
in

::::
the

::::
form

:::
of

:
a
:::::::
PyOP2

:
C
::::::
kernel

::::::
which

::::::::
interacts

::::::::
directly

::::
with

:::
the

::::::
nodal

::::
data

::
to

:::::::::::
accomplish

::::
this.20

3.3 Solution methods

Firedrake assembles the full block-coupled form of the discrete system of linear equations,
:
and

attempts to solve it using a suite of iterative (as well as direct) numerical solution methods.
Firedrake links with the PETSc library which

::::::::::::::::::
(Balay et al., 2014) .

:::::::
PETSc contains a variety

of linear solvers and preconditioners(Balay et al., 2006) , and has proven itself in facilitating25

geoscientific model development (Katz et al., 2007).
:
It

::
is
::::::::

possible
:::

to
::::
use,

::::
for

:::::::::
example,

:::
the

::::::::
GMRES

::
or

:::::::::
Conjugate

:::::::::
Gradient

:::::::
iterative

::::::::
method,

::::
and

::::::::::::::
preconditioners

::::
such

:::
as

::::::
Jacobi

::::
and

:::::
SOR.

For the simulations presented here
:
in

::::
this

::::::
paper, the GMRES linear solver (Saad and Schultz,

19

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

1986) is chosen and used in conjunction with the fieldsplit preconditioner (Brown et al., 2012)
which is especially suited to block-coupled systems such as the one considered here.

::::
The

:::::::::::::
block-coupled

::::::
system

:::::
takes

::::
the

:::::::
general

::::
form

:[
A B
C D

][
u
h

]
=

[
fu
fh

]
:::::::::::::::::::

(17)

:::
for

::::::
matrix

::::::
blocks

:::
A,

:::
B,

::
C

::::
and

:::
D,

:::
and

::::::::::
right-hand

:::::
sides

::
fu::::

and
:::
fh.

:
5

::::
The

::::::
matrix

::
on

:::
the

:::::
LHS

:::
can

:::
be

:::::::::
factorised

:::::
using

:::::
LDU

:::::
block

::::::::::::
factorisation

::
to

::::
give

::::::::::::::::::
(Elman et al., 2008)

[
I 0

CA−1 I

][
A 0
0 S

][
I A−1B
0 I

]
::::::::::::::::::::::::::::::

(18)

:::::
where

:::::::::::::::::
S =D−CA−1B

::
is

:::
the

:::::
Schur

::::::::::::
complement.

::::
The

:::::::
inverse

::
of

:::
the

:::::::::
factorised

:::::::
system

::
is

:::::
given

::
by

:

P =

[
I −A−1B
0 I

][
A−1 0

0 S−1

][
I 0

−CA−1 I

]
::

(19)10

::
It

::
is

:::
the

:::::
goal

::
of

::::
the

::::::::
fieldsplit

::::::::::::::
preconditioner

::
to

:::::
find

::::::::::::::
approximations

::
to

::::
the

:::::::
actions

:::
of

::::
S−1

:::
and

:::::
A−1

::::::
which

:::::
will

::
in

:::::
turn

::::
give

:::
an

::::::::::::::
approximation

:::
to

:::
the

:::::::
action

::
of

:::
P

::::::
which

::::
can

:::
be

:::::
used

::
to

::::::::::::
precondition

:::
the

:::::::::::::
block-coupled

::::::::
system.

::::::
PETSc

::::::::
features

::
a
:::::
wide

::::::::::::
configuration

::::::
space

:::
for

:::
its

::::::::
fieldsplit

:::::::::::::
preconditioner,

::::::::::
permitting

:::
the

:::
use

:::
of

:::::::
different

::::::::
iterative

:::
(or

::::::
direct)

:::::::
solvers

:::
and

::::::::::::::
preconditioners

:::
for

:::
the

:::::::::::::
‘sub-problems’

:::::
S−1

:::
and

:::::
A−1.

::::::
Unless

::::::
stated

:::::::::
otherwise,

:::::::::::
incomplete

:::
LU

:::::
(ILU)

::::::::::::
factorisation15

:::
will

:::
be

::::
used

:::
as

::
an

::::::::::::
approximate

:::::
solver

:::
for

:::::
S−1

:::
and

:::::
A−1

::
in

:::
all

::::::::::
simulations

:::::::::
presented

::::
here

:::::::
(except

:::::
when

:::::::
running

:::
in

:::::::
parallel,

::::::
where

::::::
block

::::::
Jacobi

::
is

:::::::
applied

::::::::
globally

::::
and

:::
the

:::::::::
individual

:::::::
blocks

:::
are

::::::
solved

:::::::::::
sequentially

:::::
using

:::::
ILU

:::::::::::::::::::
(Balay et al., 2014)).

::::
The

:::::::::::
convergence

::::::::
criterion

::::
for

::
all

::::::::
iterative

::::::
solvers

::
is

::
a

:::::::
relative

:::::
error

::
of

:::::
10−7.

:

20

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

3.4 Setup and execution

Firedrake-Fluids uses an XML-based configuration file, normally edited with the Diamond
graphical user interface (GUI) (Ham et al., 2009), to set up simulations. Users can enter op-
tions concerning the simulation’s name, the path to any input files (e.g. mesh files), the fields
to be solved, discretisation

:::
and

::::::
linear

:::::
solver

:
options, and also the inclusion of auxiliary models5

such as the Smagorinsky LES model (Smagorinsky, 1963). In addition, initial and boundary
conditions for each field can be specified either as a constant value, or as a C++ expression for
time-varying or spatially-varying conditions. An example of the GUI is shown in Figure 5. In
the case of the shallow water model, all simulation configuration files have the extension .swml
(Shallow Water Markup Language).10

21

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

22

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

23

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 5. The Diamond (Ham et al., 2009) graphical user interface for editing Firedrake-Fluids simula-
tion configuration files.

All UFL model code is stored in the models directory of Firedrake-Fluids. Execution of, for
example, the shallow water model is performed by calling the Python interpreter and providing
the path to the simulation configuration file; an example for the test case involving flow past a
square cylinder (discussed in Section 4) would be:
python models/shallow_water.py tests/swe_flow_past_a_square/5

swe_flow_past_a_square.swml

::::::::::
Simulation

:::::::
settings

::::
are

::::
first

:::::
read

::
in

::::::
using

::::
the

::::::::::
libspud

:::::
library

::::::::::::::::::
(Ham et al., 2009) .

:::::
This

:
is
:::::::::

followed
:::
by

::::
the

:::::::::
execution

:::
of

:::
the

:::::
UFL

::::::::::
statements

:::::::
which

::::::
define

:::
the

:::::::
model.

:::::
Note

:::::
that

:::
the

:::::
weak

:::::
form

::
of

::::
the

:::::::
shallow

::::::
water

:::::::::
equations

::
is
::::::::

defined
::
in

:::::
UFL

:::::
only

:::::
once,

:::::::
before

::::::::
entering

:::
the

::::::::::::
time-stepping

:::::
loop.

:::::
Upon

::::::::
entering

:::
the

:::::::::::::
time-stepping

::::
loop

:::
for

:::
the

::::
first

:::::
time,

:::
the

:::::
form

:
is
:::::::::
compiled10

:::
and

:::
the

:::::::::
low-level

:::::::::
assembly

:::::
code

::
is

:::::::::
generated.

::::
For

::::::::::
subsequent

::::::::::
time-steps,

::::::::
caching

::
is

::::
used

:::::
such

:::
that

:::
no

::::::::::::::
re-compilation

::
of

:::
the

:::::
UFL

::
is
::::::::::
necessary.

:
Solution fields are

::::::::
currently

:
written to files in

VTK format for visualisation.

::::
Note

::::
that

::::
the

::::
UFL

:::::
code

:::
for

::::
the

::::
LES

::::::
model

:::::::::
described

:::
in

:::::::
Section

:::
2.4

::
is
:::::::
defined

:::
in

:
a
::::::::
separate

::::
class

::::::
within

::::
the

:::::::::::::::
Firedrake-Fluids

:::::::
package

:::
(in

::::
the

:::
file

:::::::::
les.py)

:::
for

:::::::::::
modularity,

::::
and

::
to

::::::::
facilitate15

::
its

::::::
re-use

::
in

::::::
future

::::::::::
numerical

::::::
models

::::
that

:::::
may

::::::
require

::::::::::
turbulence

::::::::::::::::
parameterisation.

::
In

::::
the

::::
case

::
of

:::
the

:::::::
shallow

::::::
water

::::::
model

::::::::::::
implemented

::
in

::::::::::
shallow

::::::::::::::
SUBSCRIPTNB

::
w

:::::::::
ater.py

:
,
:::
the

::::
UFL

::::
for

:::
the

:::::
LHS

:::
and

:::::
RHS

::
of

::::
the

:::::
eddy

::::::::
viscosity

::::::::
equation

:::
(9)

:
is
:::::

first
:::::::::
imported,

::::
and

::
a

:::::::
separate

:::::::
solver

:::::::::
computes

:::
the

:::::
eddy

:::::::::
viscosity

::::
field

:::
at

:::
the

:::::
start

::
of

:::::
each

:::::::::
time-step,

:::::
using

:::
the

::::::::
velocity

:::::
from

:::
the

::::::::
previous

:::::::::
time-step.

::::
The

:::::::::
viscosity

::::
used

:::
in

:::
the

:::::
stress

:::::
term20

:
is
:::::
then

::::::::
updated,

:::
but

::::::
doing

:::
so

::::
does

::::
not

::::::
require

::::
the

:::::::::::::
re-compilation

:::
of

:::
the

:::::
UFL.

::::::::::
Similarly,

::
at

:::
the

:::
end

:::
of

::::
each

:::::::::
time-step

::
in

::::::::::
shallow

::::::::::::::
SUBSCRIPTNB

::
w

:::::::::
ater.py

:
,
:::::::::
diagnostic

::::::
fields

:::::
such

:::
as

::::
the

::::::::::
divergence

:::
of

::
a

::::::
vector

:::::
field,

::::
the

:::::::
Courant

::::::::
number,

::
or

:::
the

::::
grid

::::::
Peclet

:::::::
number

:::::
field,

:::
can

:::
be

:::::::::
computed.

::::
The

::::::::
routines

::::
used

::
to

::::::::
compute

:::::
these

:::::::::
diagnostic

:::::
fields

::::
are

:::::::::
contained

::
in

:::::::::::::::::::
diagnostics.py.

:
25

24

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

4 Verification and validation

The following subsections describe some of the key verification and validation test cases in-
cluded in Firedrake-Fluids. These tests are executed using the Buildbot automated testing frame-
work whenever a change is made to the software (Farrell et al., 2011) to ensure that any bugs
introduced during the development of Firedrake-Fluids (or through the development of Fire-5

drake itself and other dependencies such as PETSc) are detected and promptly resolved by the
developers.

4.1 Convergence analysis

Since no general analytical solution to the shallow water equations exists, the Method of Man-
ufactured Solutions (MMS) (Roache, 2002) was used to perform a convergence analysis and10

verify the correctness of the model implementation. The first step of MMS involves inventing
or ‘manufacturing’ a function and modifying the original equation such that this manufactured
function is the analytical solution of the modified equation. Substituting this function into the
shallow water equations will generate a non-zero source term which can then be placed on the
right-hand side, such that the manufactured/invented solution is now the analytical solution to15

this modified set of equations.
A two-dimensional domain with dimensions 0≤ x≤ 1 m and 0≤ y ≤ 1 m was used for

the MMS simulations. Simulations were run with three different structured meshes with char-
acteristic element lengths ∆x = 0.2, 0.1 and 0.05 m,

:::::::::::
comprising

::::
36,

::::
121

::::
and

::::
441

::::::::
vertices,

::::::::::
respectively. The time-steps were set to ∆t = 0.01, 0.005, 0.0025 s respectively, to enforce20

a near-constant bound on the Courant number. A zero initial condition was used for both the
velocity and free surface fields, and Dirichlet boundary conditions which agreed with the ana-
lytical/manufactured solutions for the velocity and free surface were enforced along all walls of
the domain.

:::
All

:::::::::::
simulations

:::::
were

:::
run

:::::
until

:::
the

:::::::::::
steady-state

::::::::::
conditions

:::::::::::::::::::::
||un+1−un||2 ≤ 10−6

:::
and

:::::::::::::::::::::
||hn+1−hn||2 ≤ 10−6

::::
were

::::::::
attained.

:
25

25

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Both the P2-P1 and P0-P1 element pairs were considered. The manufactured solutions were
h= sin(x)sin(y) and u = [cos(x)sin(y),sin(x2) + cos(y)]T. The physical parameters, given
in Table 1, were chosen arbitrarily and used across all the simulations.

26

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Table 1. Parameters used in the MMS test cases.

27

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Parameter Description Value

CD Drag coefficient 0.0025
ν Kinematic viscosity 0.6 m2s−1

H Mean free surface height 20 m

The P2-P1 element pair was first considered to check the Galerkin method with continuous
basis functions. As shown in Figures 6(a) and 6(b), this exhibited second-order convergence
for both the velocity field and

::::::
spatial

:::::::::::
convergence

::::
for

:
the free surface field which gave

:::
and

:::::::::::::
approximately

::::::::::
third-order

:::::::::::
convergence

::::
for

:::
the

::::::::
velocity

:::::
field,

::::::
giving confidence in the correct-

ness of the implementation. While
::::
Note

::::
that

:::
the

:::::::::::::
discretisation

::::
error

::::
will

:::
be

::
a

:::::::::::
combination

:::
of

:
a5

:::::::::
first-order

:::::
error

::
(in

::::
∆t)

:::::
from

:::
the

:::::::::
backward

:::::
Euler

:::::::::::::
time-stepping

::::::::
scheme,

:::
and

:::
(in

:::
the

:::::
case

::
of

:
a
:::
P2

:::::::
velocity

:::::
field)

:
third-order

::::
error

:::
(in

::::
∆x)

:::::
from

:::
the

::::::
choice

:::
of

::::::
spatial

:::::::::::::
discretisation.

::::
The

:::::::
choices

::
of

:::
∆t

:::
and

::::
∆x

::
in

:::
the

:::::::::::
simulations

:::::::::
presented

::::
here

:::
are

:::::
such

:::
that

::::
the

::::::
spatial

::::
term

::::::::::
dominates.

:::::::::
However,

:
if
::::

the
:::::
mesh

::
is
:::::::

refined
:::::::
further

:::::
(and

:::
the

:::::::::
time-step

:::::::::
decreased

:::::::::::
accordingly

:::
to

::::::::
maintain

::::
the

:::::
same

:::::
bound

:::
on

::::
the

:::::::
Courant

:::::::::
number),

:::
the

::::::::::
third-order

:::::::
spatial

::::
term

::::
will

::::::::
decrease

:::
at

:
a
::::::
much

:::::
faster

::::
rate10

::::
than

:::
the

:::::::::
first-order

:::::::::
temporal

::::
term

::::::
which

::::
may

::::::
begin

::
to

:::::::::
dominate.

:

::
In

:::
the

:::::
case

:::
of

::::::
P0-P1,

:::::
both

:::
the

::::::::
velocity

::::
and

::::
free

:::::::
surface

::::::::::::
perturbation

::::::
fields

::::::::
exhibited

:::::
only

:::::::::
first-order

::::::
spatial

:::::::::::::
convergence.

::::::
While

::::::::::::
second-order

:::::::
spatial

:
convergence may have been ex-

pected for the velocity
::::
free

:::::::
surface

:
field because of the use of a P2

::
P1

:
function space, the

reduced order of convergence was
:::::
likely

:
the result of the coupling between the velocity and15

free surface fields such that the lower order of convergence in the free surface field dominated.
A similar effect can be seen with the P0-P1 where both the velocity and free surface perturbation
fields exhibited only first order convergence; it was the error in the velocity field that dominated
here

:::::
fields

:::
and

::::
the

:::
use

:::
of

::
a

:::::::::
first-order

:::::::
upwind

:::::::
scheme

::::
for

:::
the

:::::::::
advection

:::::
term

::
at

:::::::::::::
discontinuous

:::::::
element

:::::::::::
boundaries.

::::
The

:::::::::
low-order

:::::::
scheme

:::::
may

::::
have

:::::::::::
introduced

::::::::::
additional,

::::::::::
dominating

:::::
error20

:::
that

::::::::
polluted

:::::
both

::::::::
solution

:::::
fields

::::
via

:::
the

::::::::
coupled

:::::::
system,

::::::::
thereby

:::::::
keeping

::::
the

:::::::
overall

::::::
spatial

:::::::::::
convergence

::
at

:::
no

::::::
higher

::::
than

::::::::::
first-order.

28

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

10−1

Characteristic element length (m)

10−4

10−3

10−2

10−1

E
rr

or
in

L
2

no
rm

Free surface perturbation, P0-P1
First-order convergence
Free surface perturbation, P2-P1
Second-order convergence

(a)

10−1

Characteristic element length (m)

10−5

10−4

10−3

10−2

10−1

E
rr

or
in

L
2

no
rm

Velocity (x-component), P0-P1
Velocity (y-component), P0-P1
First-order convergence
Velocity (x-component), P2-P1
Velocity (y-component), P2-P1
Third-order convergence

(b)

1
29

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 6. The orders of convergence for (a) the free surface field and (b) the velocity field, in the P2-P1
and P0-P1 MMS test cases.

:::
All

:::::::::::
simulations

::::
were

::::
run

::
in

:::::
serial

:::
on

::
a

:::::::::
dual-core

::::
Intel

:::::
Core

:::::::::
i7-3537U

:::::::::
processor

::::
with

::
a
:::::
clock

:::::
speed

:::
of

:
2
:::::

GHz
::::
and

:::
at

::::
least

::
2
::::
GB

:::
of

::::::::
available

::::::
RAM.

:::
In

:::
the

::::::
P2-P1

::::::
case,

:::
the

:::::::::
run-times

:::::
were

:::
3.8

::
s,

:::
6.9

::
s
::::
and

::::
31.7

::
s,

:::
for

::::
the

:::::::
meshes

::::
with

::::
∆x

::
=

::::
0.2,

:::
0.1

::::
and

:::::
0.05

:::
m,

:::::::::::
respectively.

:::::
Note

::::
that

:::::
these

::::::::::
simulations

:::::
were

::::
run

::::
with

::
a

:::::::
‘warm’

:::::
cache

:::::
such

::::
that

:::
the

:::::::::
high-level

:::::
UFL

:::
has

:::::::
already

:::::
been

::::::::
compiled

::::::
down

::
to

:::::::::
low-level

::
C

:::::
code;

:::::
from

::
a
::::::
‘cold’

::::::
cache

::::
(i.e.

:::::::::
including

:::
the

:::::
code

:::::::::::
compilation5

:::::
time),

::::
the

:::::::::
run-times

:::::
were

::::
9.4

::
s,

:::::
12.5

:
s
::::

and
:::::

37.7
::
s.

:::
In

:::::
both

:::
the

::::::
P2-P1

::::
and

:::::::
P0-P1

::::::
cases,

:::
the

::::::::::
simulations

::::::::
typically

::::::::
required

::::
2–3

::::::::::
non-linear

:::::::
Newton

:::::::::
iterations

:::
per

::::::::::
time-step,

::::
and

:::
the

:::::::
number

::
of

::::::::
GMRES

::::::
solver

:::::::::
iterations

:::::
taken

:::
per

::::::::::
non-linear

::::::::
iteration

::::::
varied

:::::::
between

:::
12

::::
and

:::
17.

:::::::::
However,

::
in

:::
the

::::::
P0-P1

::::::
case,

:::
the

:::::::
‘warm’

::::::
cache

:::::::::
run-times

:::::
were

::::::::::::
significantly

::::::
larger

:::
as

:
a
::::::

result
:::
of

:::::
more

:::::::::
time-steps

:::::
being

::::::::
required

:::
to

:::::
reach

:::::::::::
steady-state:

:::::
41.4

::
s,

::::
85.8

::
s,

:::::
177.8

::
s.
:

10

4.2 Dam failure

Dam failure (also known as dam break) problems are commonly used to test the performance
of shallow water models. The presence of a discontinuity in the initial condition makes them
particularly difficult to accurately solve. Both one-dimensional and two-dimensional results are
presented.15

The one-dimensional case considers a channel 0 ≤ x≤ 2,000 m. A dam wall is located at
x = 1,000 m which holds back the water contained in the upstream reservoir. The water in
the reservoir has a total depth of 10 m, while downstream the total water depth is set to 5 m.
The water is initially at rest. At t= 0 the dam is instantaneously removed, thereby simulating its
failure, allowing water to rush into the downstream section. Typical shock characteristics for the20

velocity and free surface perturbation fields were observed and compared well with the semi-
analytical solutions of the corresponding one-dimensional Riemann problem shown in Figure 7
at t= 60 s. Note that the simulation used an element length of ∆x = 5 m and a time-step of 0.25
s, as per the simulations of Liang et al. (2008) which consider the same scenario. The kinematic
viscosity was set to 1 m2s−1, and the drag coefficient was set to zero.25

30

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

0 500 1000 1500 2000
x (m)

0

1

2

3

4

5

Fr
ee

su
rf

ac
e

pe
rt

ur
ba

tio
n

(m
)

Numerical (Firedrake-Fluids)
Analytical

(a)

0 500 1000 1500 2000
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
el

oc
ity

(m
s−

1)

Numerical (Firedrake-Fluids)
Analytical

(b)

31

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 7. Numerical solutions of the 1D dam failure problem. The semi-analytical solutions, found by
solving a set of equations defined in the book by Trangenstein (2009), are also plotted.

The two-dimensional case considers a square domain with dimensions 0 ≤ x≤ 200 m and 0
≤ y ≤ 200 m. A 10 m-thick dam is placed in the centre of the domain as shown in Figure 8. In
this scenario, only a partial failure of the dam is simulated; water rushes into the downstream
area through a 75 m-long breach in the dam wall. As before, the water is initially at rest. The
upstream reservoir contains water with a total height of 10 m, while the downstream section5

contains water with a total height of 5 m. No-normal flow boundary conditions are applied
along all walls (including those of the dam). Once again, the time-step (∆t = 0.2 s) and the
characteristic element length (∆x = 5 m) were the same as those chosen by Liang et al. (2008).
The kinematic viscosity was set to 1 m2s−1, and the drag coefficient was set to zero.

32

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

200 m

200 m

10 m

30 m

95 m

Figure 8. Dimensions of the domain for the 2D dam failure problem. The dam (with a 75 m-wide breach)
is situated in the centre.

The results at t = 7.2 s are shown in Figure 9. The water that rushed into the downstream area
formed a tidal bore wave which has started to spread out laterally, while a depression/rarefaction
wave has started to propagate upstream. Furthermore, small vortices are visible where the flow
has separated from the dam wall immediately downstream of the breach, resulting in a total free
surface height of less than 5 m (the initial mean height downstream). These qualitative results5

closely agree with those from the numerical simulations by Liang et al. (2008) and Mingham
and Causon (1998).

33

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

34

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 9. Free surface perturbation h at time t = 7.2 s, from the 2D dam failure simulation. The field has
been warped in the z direction to emphasise the collapse of the water column.

4.2.1
::::::
Solver

::::::::::::
performance

:::
The

::::::::::::
performance

:::
of

:::
the

::::::::
iterative

::::::
solver

::
in

::::::::::::
combination

:::::
with

:::
the

::::::::
fieldsplit

::::::::::::::
preconditioner

::::
was

::::::::::
investigated

:::
on

::
a

:::::
much

:::::
larger

::::::::
system.

::::
The

:::::
mesh

:::
was

:::::::
refined

:::::
such

:::
that

:::
the

:::::::::::::
characteristic

:::::::
element

:::::
length

::::
was

:::
set

::
to

::::
∆x

::
=

::::
0.25

:::
m,

::::::::
resulting

::
in

:::::::
817,488

::::::::
vertices.

::::
The

:::::::::
time-step

:::
∆t

::::
was

::::
also

:::::::
lowered

::
to

::::
0.01

::
s
::
to

::::::::
maintain

::::
the

:::::
same

:::::
upper

:::::::
bound

::
on

::::
the

:::::::
Courant

::::::::
number.

::::
The

::::::
strong

:::::::
scaling

:::
of

:::
the5

:::::::
iterative

::::::
solver

::::::::::
(GMRES,

:::::
with

:::
the

::::::::
fieldsplit

:::::::::::::::
preconditioner)

::::
and

:::
the

:::::::::
assembly

:::
of

:::
the

:::::::
system

:
is
:::::::

shown
::
in

:::::::
Figure

:::
10.

:::
All

:::
of

:::::
these

::::::::::::
performance

:::::::::::
simulations

:::::
were

:::::::::
performed

:::
on

::::::::::
ARCHER

::
(a

::::
Cray

::::::
XC30

:::::::::::::::
supercomputer),

:::::::::::
comprising

::::::::
12-core

::::
Intel

::::
Ivy

:::::::
Bridge

::::::::::
processors

::::::::
running

::::
with

::
a

:::::
clock

:::::
speed

:::
of

:::
2.7

:::::
GHz,

:::::
with

::
32

::::
GB

::
of

::::::
RAM

::::::::
available

::
to

:::::
each

::::
one.

:

35

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

100 101 102 103

Number of MPI processes

100

101

102

103

104

To
ta

lt
im

e
ta

ke
n

to
co

m
pl

et
e

10
tim

es
te

ps
(s

)

GMRES with SOR (Solver)
GMRES with SOR (Assembly)
Incomplete LU (Solver)
Incomplete LU (Assembly)
Ideal speed-up

36

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 10.
::::::
Strong

::::::
scaling

::
of

:::
the

:::
2D

::::
dam

:::::
break

:::::::::
simulation,

::::
with

::::
∆x

::
=

::::
0.25

::
m.

::::
The

::::
total

:::::::
run-time

:::::
spent

::
in

::
the

::::::::
assembly

::::
and

:::::
solver

::::
over

::
10

:::::::::
time-steps

::
is

::::::
shown.

:::
The

:::::::
internal

::::::::::::::
Firedrake/PyOP2

::::
and

::::::
PETSc

:::::
timers

::::
were

::::
used

::
to

::::::
obtain

:::
the

:::::
timing

:::::
data.

::
As

:::::::::
expected,

:::
the

::::
time

::::
spent

::
in
::::::::
assembly

:::::
does

:::
not

::::
vary

::::::::::
significantly

:::::::
between

::::
runs

::::
since

::
it

::
is

::::::::::
independent

::
of

:::
the

:::::::::
difference

::
in

:::::
solver

::::::
setups.

::::
The

::::::::
GMRES

::::::::
iterative

:::::::
method

::::
was

:::::
also

:::::
used

::
in

:::::::::::
conjunction

:::::
with

:::
the

::::::
SOR

:::::::::::::
preconditioner

:::::
when

::::::::::
computing

:::
the

:::::
action

:::
of

:::
the

::::::::
matrices

::::
A−1

:::
and

:::::
S−1.

::::
This

::::::::
resulted

::
in

:::::
fewer

:::::::
‘outer’

::::::::
iterations

::::::::
(typically

::
2
:::

or
:::
3)

:::::
when

:::::::
solving

::::
the

:::::::::::::
block-coupled

:::::::
system

:::
as

::
a

::::::
whole

::
as

::
a
::::::
result

::
of

::
a
::::::

better

:::::::::::::
preconditioned

:::::::
system.

::::
On

:::
the

:::::
other

:::::
hand,

:::::::::::
incomplete

:::
LU

:::::::::::::
decomposition

:::::::::
provided

:
a
:::::::::
relatively

:::
less

::::::::
accurate

:::::::::::::
approximation

:::
to

::::
A−1

::::
and

::::
S−1

:::::::::
(resulting

::
in

::::::::
typically

::::::
10–30

::::::
‘outer’

::::::::::
iterations)

:::
but5

:::
was

::::::
faster

::::
than

::::
the

::::::::
GMRES

:::::
with

:::::
SOR

:::::
runs,

::
as

:::::::
shown

::
in

:::::::
Figure

:::
10,

:::::::
despite

:::
the

:::::
extra

:::::::
‘outer’

:::::::::
iterations.

::
It

::
is

:::
for

::::
this

::::::
reason

::::
that

::::::::::
incomplete

::::
LU

:::::::::::
factorisation

::::
was

:::::
used

::
as

::::
the

:::::::::::::
preconditioner

::
of

:::
the

::::::::::::::
‘sub-problems’

:::::
A−1

:::
and

:::::
S−1

::::::::::
throughout

::::
this

::::::
paper.

::::
Note

::::
that

:::::::
smaller

::::::::
systems

::::
with

::::
∆x

:
=
::::

0.5
::
m

::::
and

::
1
:::

m
:::::
were

:::::
also

::::::::::::
investigated;

::
it

::::
was

::::::
found

::::
that

::::
the

:::::::
number

:::
of

::::::
solver

:::::::::
iterations

:::
was

:::::
near

::::::::
constant

:::
as

:::
the

::::
size

:::
of

:::
the

:::::::
system

:::::::::
changed,

:::::::::
regardless

:::
of

:::
the

::::::
setup

::
of

::::
the

::::::::
fieldsplit10

:::::::::::::
preconditioner.

:

37

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

4.3 Tidal flow over a regular bed

The test case described by Bermudez and Vazquez (1994) considers tidal flow in a one-dimensional
domain of length L = 14,000 m. The mean water height (and hence the topography of the bed)
is defined by

H(x) = 50.5− 40x

L
− 10sin

[
π

(
4x

L
− 1

2

)]
. (20)5

The initial conditions h(x,0) = 0 and u(x,0) = 0 are applied along with the following
::::::::
Dirichlet

boundary conditions for the free surface and velocity:

h(0, t) = 4− 4sin

[
π

(
4t

86,400
+

1

2

)]
, (21)

to simulate an incoming sinusoidally-varying tidal wave, and

u(L,t) = 0, (22)10

at the outflow boundary.
This simulation was performed with a mesh element length of ∆x = 14 m. The time-step

∆t was set to 2.5 s and the simulation finished at t = 9,117.5 s (the same time considered by
Zhou (2004)). The kinematic viscosity was set to 1 m2s−1, and the drag coefficient was set
to zero. The results in Figure 11 illustrate how the velocity of the flow increases in deeper15

regions of the body of water as expected. The numerical results also display good accuracy with
the analytical solutions given by Bermudez and Vazquez (1994), thereby further validating the
numerical model.

::::
The

::::
total

:::::::::
run-time

::
of

:::
the

::::::::::
simulation

:::::
was

::
26

::::::::
minutes

::::::
when

:::
run

:::
in

:::::
serial

:::
on

:
a
:::::::::
dual-core

:::::
Intel

:::::
Core

:::::::::
i7-3537U

:::::::::
processor

::::
with

::
a
:::::
clock

::::::
speed

:::
of

:
2
:::::
GHz

::::
and

::
at

:::::
least

::
2

::::
GB

::
of

::::::::
available

::::::
RAM.20

38

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

39

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 11. Numerical solutions from the tidal flow simulation over a regular bed, at t = 9,117.5 s.
The analytical solutions are given by Bermudez and Vazquez (1994) and almost completely overlap the
numerical solutions. Note that the free surface plot (a) includes the mean free surface height, such that
the y axis represents h+H .

4.4 Tidal flow over an irregular bed

A second version of the tidal flow test case considered previously is one that involves an irregu-
lar bed topology, with sharp peaks and troughs which can be a challenge to represent accurately.
This test case is described by Zhou (2004).

The test case considers a one-dimensional domain of length L = 1,500 m. The irregular5

topography of the bed B(x) is defined in Table 2, and the mean water height is given by
H(x) = 20−B(x). The initial conditions h(x,0) =−4 and u(x,0) = 0 are applied along with
the following

::::::::
Dirichlet

:
boundary conditions for the free surface and velocity:

h(0, t) =−4sin

[
π

(
4t

86,400
+

1

2

)]
, (23)

10

u(L,t) = 0, (24)

The element length ∆x = 7.5 m and the time-step ∆t = 0.3 s, as per the setup of Zhou (2004).
The simulation was performed until t = 10,800 s. All remaining components of the setup were
the same as the regular bed test case described in Section 4.3.

40

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Table 2. Bed heights along the seabed from Zhou (2004).

41

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

x (m) Bed height B(x) (m)

0 0
50 0
100 2.5
150 5
250 5
300 3
350 5
400 5
425 7.5
435 8
450 9
475 9
500 9.1
505 9
530 9
550 6
565 5.5
575 5.5
600 5
650 4
700 3
750 3
800 2.3
820 2
900 1.2
950 0.4
1000 0
1500 0

42

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 12 once again demonstrates a good match between the numerical results and the an-
alytical solution, and demonstrates the robustness of the numerical model in accurately repre-
senting more rapidly varying areas of the solution.

:::
The

:::::
total

::::::::
run-time

::
of

:::
the

::::::::::
simulation

::::
was

::::
56.7

:::::::
minutes

:::::
when

::::
run

::
in

:::::
serial

:::
on

::
a

::::::::
dual-core

:::::
Intel

:::::
Core

:::::::::
i7-3537U

:::::::::
processor

::::
with

::
a
:::::
clock

::::::
speed

::
of

:
2
:::::
GHz

:::
and

:::
at

::::
least

::
2

:::
GB

:::
of

::::::::
available

::::::
RAM.

:
5

43

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

44

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 12. Numerical solutions from the tidal flow simulation with an irregular bed topography. The
analytical solutions (Zhou, 2004; Bermudez and Vazquez, 1994) agree very well with the numerical
solutions from Firedrake-Fluids.

45

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

4.5 Flow past a square cylinder

Simulations of laboratory-scale flow past solid objects are commonly used to validate turbu-
lence models due to the vast amount of available experimental data at high Reynolds numbers.
In this work, the Smagorinsky LES model in Firedrake-Fluids was employed to evaluate its
ability to parameterise the effects of turbulent flow past a square cylinder. The setup used in the5

experiments by Lyn and Rodi (1994) and Lyn et al. (1995) (and the numerical simulations by
Rodi et al. (1997)) was considered.

The dimensions of the domain are given in terms of the width/length of the square d = 0.04 m
in Figure 13. An unstructured mesh with a characteristic element length ∆x = d/15, generated
with Gmsh (Geuzaine and Remacle, 2009), was used; this value of ∆x is comparable to the10

minimum element lengths used in the numerical simulations presented in the paper by Rodi
et al. (1997). The free surface mean height was set toH = 4d (the depth of the experimental flow
tank). The physical kinematic viscosity of the fluid was set to 10−6 m2s−1, which corresponded
to a Reynolds number of 21,400 when using d as the length scale. The Smagorinsky LES model
parameterised the turbulence via an eddy viscosity (Smagorinsky, 1963; Deardorff, 1970)15

ν ′ = (Cs∆e)
2 |S|.

where
:::::::::
coefficient

:
Cs is the Smagorinsky coefficient (

::
in

:::
the

::::::::::::
Smagorinsky

:::::
LES

::::::
model

::::
was set to

0.164here, within the typical range of Cs values (Deardorff, 1971)), and ∆e is an estimate of
the local mesh size which is defined here as the square root of the area of each element. |S| is
the modulus of the strain rate tensor defined by20

S =
1

2

(
∇u+∇uT

)
.

This eddy viscosity, which models the dissipating effects of small-scale turbulent eddies on the
resolved flow, is added to the physical viscosity in the stress term of the momentum equation.

Initially the velocity and free surface perturbation fields were set to zero. At the inlet, a
constant velocity boundary condition of 0.535 ms−1 was enforced; the inflow was laminar and25

46

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

no turbulent eddies were seeded along the boundary. No-normal flow boundary conditions were
applied along the side walls, while no-slip boundary conditions were applied along all walls of
the square. At the outflow, a Flather boundary condition (Flather, 1976) (specifying an external
velocity equal to that at the inlet, and a free surface perturbation of zero) was used to allow flow
out of the domain whilst minimising reflections. A time-step of ∆t = 5 × 10−4 s was chosen,5

and the simulation was performed until t = 15 s.

::::
The

:::::::::
simulation

::::
was

::::::::::
performed

::
on

::::::::::
ARCHER

::
(a

::::
Cray

::::::
XC30

::::::::::::::
supercomputer)

:::::
using

::::
two

:::::::
12-core

::::
Intel

::::
Ivy

:::::::
Bridge

::::::::::
processors

::::::::
running

::::
with

::
a
::::::

clock
::::::
speed

::
of

::::
2.7

::::::
GHz,

::::
with

::::
32

:::
GB

:::
of

::::::
RAM

::::::::
available

::
to

:::::
each

::::
one.

::::
The

::::
total

::::
run

::::
time

::::
was

:::
7.7

::::::
hours.

:

47

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

x

y

14d

4.5d d 19.5d

Figure 13. The dimensions of the two-dimensional domain containing a square cylinder (filled black) of
length/width d. The incoming flow is from the left boundary, as denoted by the black arrows.

Soon after the flow began to enter the domain through the inlet, boundary layers began to
form around the sides of the square where the transition to turbulence took place. A strong
recirculating region formed immediately behind the square, followed by continuous turbulent
vortex shedding which commenced after approximately 4 s of simulation time. The vortex street
is clearly visible in Figure 14 which shows the x component of the velocity field at t = 10 s.5

48

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

49

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 14. Visualisation of the x component of the velocity field, from the simulation of flow past a
square at t = 10 s.

The stream-wise velocity along the centreline, time-averaged over a period of 15 s from the
start of the simulation, was compared with the experimental data presented by Lyn et al. (1995)
and Rodi et al. (1997); the results in Figure 15 show a good match with the experimental data
behind the square cylinder in the recirculating region where turbulent vortex shedding occurs,
thereby illustrating the benefits of using the Smagorinsky LES model to accurately capture the5

turbulent flow characteristics. However, the wake recovery region was poorly represented; the
unfortunate lack of accuracy in this region has also been observed in other numerical models
(Rodi et al., 1997), and additional parameterisations and the full three-dimensionality of the
problem may need to be considered to properly represent the wake.

50

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

51

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 15. Time-averaged stream-wise velocity along the centreline from the simulation of flow past a
square. Note that the velocity has been normalised by the inlet velocity U = 0.535 ms−1.

52

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

5 Roadmap

The long-term aim is to extend Firedrake-Fluids into a suite of numerical models which en-
compass a much wider range of flow types, as well as additional equation sets (e.g. the full
Navier-Stokes equations) and constitutive equations (e.g. for describing Darcy’s law in porous
media). Essentially, Firedrake-Fluids seeks to facilitate a complete re-engineering of the Flu-5

idity CFD code, whilst maintaining the mature modelling functionality that Fluidity offers.
::
In

:::::::
addition

:::
to

:::
the

::::::::
potential

::::
for

::::::::::
portability

::
of

::::
the

:::::::::
low-level

::::
code

:::::::
across

::::::::
different

:::::::::
backends,

:::::
such

::
as

:::
the

:::::
Intel

::
C

:::::::::
compiler

:::
and

::::::::
CUDA,

::
it

::
is

::::::
hoped

::::
that

:::::::::
Firedrake

::::
will

::::
also

:::::::
enable

:::
the

::::::::::
portability

::
of

:::
the

::::::
code’s

::::::::::::
performance

:
.
::::
This

::::
has

:::
yet

:::
to

::
be

:::::::::::::
demonstrated

:::
on

::::::::::
large-scale

:::::::::
problems,

::::
and

::::
will

::::::::
therefore

:::
be

:::
one

:::
of

:::
the

:::::
main

::::::::
focusses

::
of

::::
this

:::::
work

::
in

:::
the

:::::::
future.10

One of the first application areas that Firedrake-Fluids will focus on
:::::::
consider, using the shal-

low water model described in this paper, is flow around tidal turbines. This will contribute
to an on-going effort towards understanding the potential of renewable energy systems. The
multi-scale nature of the application will necessitate the use of high-performance computing,
and Firedrake’s ability to target code towards more modern hardware architectures such as15

GPU clusters will be utilised. Regarding the application area itself, the integration of adjoint
optimisation models is of particular related interest. For example, recent progress in the opti-
misation of the layout of a tidal turbine farm using the FEniCS automated solution framework
has proven to be a successful technique for maximising the theoretical amount of generated
power (Funke et al., 2014). The DOLFIN-adjoint library (Farrell et al., 2013) was used for this20

purpose. Although FEniCS and Firedrake both expect UFL statements as input, not all of the
UFL interfaces are compatible with each other at present; a similar adjoint library for Firedrake
(Firedrake-adjoint) is therefore under development by the authors of DOLFIN-adjoint, and its
use in the shallow water model is one of the shorter-term goals of the Firedrake-Fluids project.
The issue of compatibility is being addressed by the developers of Firedrake.25

Realistic tidal and atmospheric modelling simulations will require boundary values to be
read in from forcing files. Popular formats include NetCDF and ERA-40/GRIB, for which ro-
bust data readers will be required. Therefore, another short-term item on the roadmap is the

53

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

evaluation and integration of existing readers into the Firedrake-Fluids framework (or their de-
velopment in-house, should no suitable reader exist).

Further to the existing Smagorinsky (1963) LES turbulence model, the roadmap features sup-
port for additional turbulence parameterisations including RANS-type models, such as those
considered by Mortensen et al. (2011) for the FEniCS framework. Alternative discretisation5

schemes, including control volume methods which have desirable boundedness and conserva-
tiveness properties (Wilson, 2009), and high-order slope limiters for the existing discontinu-
ous Galerkin method, will also be implemented. It is expected that a large proportion of this
work will need to be undertaken within the Firedrake and PyOP2 frameworks, in addition to
Firedrake-Fluids, in order to correctly describe the mesh topology (including that of the dual10

mesh in the case of control volume methods).

6 Conclusions

This model description paper has introduced a new open-source finite element model, Firedrake-
Fluids, for the simulation of shallow water flows. The model is written in the high-level, near-
mathematical Unified Form Language and uses the Firedrake framework (coupled with the15

PyOP2 library) to automate the solution processand provide performance-portability across
different hardware platforms.

::::::::::::
Furthermore,

:::
the

:::::::::
Firedrake

::::::
library

::::::::
provides

:::
the

:::::::::
potential

::
for

:::::::
porting

:::
the

::::
code

:::::::
across

::
to

::::::::
different

:::::::::
hardware

:::::::::
backends,

:::::::::
although

:::
this

::::
has

:::
not

:::::
been

:::::::::::::
demonstrated

::::
here

:::
and

::::
will

:::
be

::
a

::::::::::::
consideration

::
of

::::::
future

:::::
work. The automated solution approach allows the focus

to be on the equations that are solved and the numerical results, and removes the requirement20

for model developers to be experts in parallel programming and software engineering. Fur-
thermore, the high-level specification of the problem facilitates better maintainability of the
Firedrake-Fluids code base; in comparison with the shallow water model in the Fluidity CFD
code, which features static hand-written Fortran, the Firedrake-Fluids source code is consid-
erably shorter and more intuitive.

::::
This

::
is
::
a
:::::
result

:::
of

:::
the

:::::::::::::::::
near-mathematical

::::::::
notation

:::::
used,

::::
and25

:::
the

::::
fact

::::
that

::::
code

::::::::::
generation

::::
and

:::::::::
assembly

::::
are

:::::::
handled

:::
by

:::
the

::::::::
external

:::::::::
Firedrake

::::
and

:::::::
PyOP2

::::::::
libraries. Firedrake-Fluids uses approximately 400 lines (excluding comments and blank lines),

54

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

compared to many thousands to perform the same task in Fluidity. Note that the 400 lines
include code to obtain user settings, initial conditions, etc from the simulation configuration
file, and to make the model as generic as possible; if the model were to be written for a spe-
cific setup, the number of lines could potentially be further minimised to just a few dozen.

:
It
:::::::

should
:::
be

:::::
noted

:::::
that

:::
this

:::::::
benefit

::
is
::::

not
:::::::
unique

::
to

::::
the

:::::::::::::::
Firedrake-Fluids

:::::::
model,

::::
nor

::
to

:::::
UFL5

::
in

:::::::
general,

:::::
since

::
it
::
is

::::
also

::::::::
possible

::
to

:::::
write

:::::::
models

:::::
with

:
a
:::::::::
relatively

:::::
small

::::::::
amount

::
of

:::::
code

::::
with

:::::
other

::::::::
packages

::::
such

:::
as

:::::::::::
OpenFOAM

::::::::::::::::::::
(OpenFOAM, 2014) ,

::::::
deal.II

:::::::::::::::::::::
(Bangerth et al., 2007) ,

:::::
Dune

::::::::::::::::::::::
(Dedner et al., 2010) and

:::::::::::
FreeFem++

::::::::::::::
(Hecht, 2012) .

At run-time, the high-level model specification defined in Firedrake-Fluids is converted by
Firedrake (and the PyOP2 framework) into optimised, low-level C code. This is then compiled10

with a back-end compiler appropriate for the target architecture(e.g. the Intel
:
;
::::::::
however,

::::
this

::::
work

::::
has

::::
only

::::::::::
considered

:::
the

::::::
GNU

:::
gcc

:
compiler for CPUs, the CUDA C compiler for NVIDIA

GPUs, or OpenCL for AMD GPUs)
::::
since

::
it
::
is

:::
not

:::
yet

::::::::
possible

::
to

:::::::::
assemble

:::
and

::::
run

:::
the

:::::::::
non-linear

::::::::
problems

::::::::
detailed

::
in

:::
this

::::::
paper

::
on

::::::
GPUs. As new high-performance architectures are introduced

in the future, only the PyOP2 layer which deals with code targetting
::::::::
targeting

:
needs to be15

modified; model developers are not burdened with the task of specialising the model code itself,
which is presently a common problem even in modern finite element models.

Several verification and validation test cases were performed to ensure the correctness of
Firedrake-Fluids and its ability to accurately simulate physical problems. These included a con-
vergence analysis with different finite element pairs, a simulation of dam breaching, and tidal20

flow dynamics over different seabed topologies. Overall, the numerical results were highly sat-
isfactory and displayed good agreement with analytical solutions, experimental data and obser-
vations.

7 Code availability

Firedrake-Fluids is an open-source software package that has been released under the GNU25

General Public License (Version 3). The codebase is hosted by GitHub in a public repository
and can be obtained at the following URL: https://github.com/firedrakeproject/firedrake-fluids.

55

https://github.com/firedrakeproject/firedrake-fluids

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

The particular version of Firedrake-Fluids considered in this paper (version 0.1) is available
from the releases page.

Acknowledgements. This work was funded by
:::
The

:::::::
authors

:::::
would

::::
like

::
to

:::::::::::
acknowledge

:::::::
funding

:::::
from

Imperial College London
:::
and

::
an

:::::::::
ARCHER

:::::
eCSE

:::::
grant

::::::::::
(eCSE03-7). The authors

:::
also

:
acknowledge the

use of the Imperial College High Performance Computing Service
:
,
:::
and

:::
the

:::
UK

:::::::
National

::::::::::::::
Supercomputing5

::::::
Service

::::::::::
(ARCHER).

::::::::::
Thoughtful

::::::
reviews

::::
from

::::::
Marie

::::::
Rognes

:::
and

:::::::
Andreas

:::::::
Dedner

::::
were

::::::::
gratefully

:::::::
received.

References

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified Form Language: A
domain-specific language for weak formulations of partial differential equations, ACM Transactions
on Mathematical Software, 40, 2014.10

Arnold, D. N.: An Interior Penalty Finite Element Method with Discontinuous Elements, SIAM Journal
on Numerical Analysis, 19, 742–760, doi:10.1137/0719052, 1982.

Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Smith, B. F., and Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 Revision 2.3.2.,
Argonne National Laboratory, 2006.15

Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.,
Kaushik, D., Knepley, M., Curfman McInnes, L., Rupp, K., Smith, B., and Zhang, H.: PETSc Users
Manual, Tech. Rep. Revision 3.5, Argonne National Laboratory, 2014.

Bangerth, W., Hartmann, R., and Kanschat, G.: deal.II–A general-purpose object-oriented finite element
library, ACM Transactions on Mathematical Software, 33, doi:10.1145/1268776.1268779, 2007.20

Bassi, F. and Rebay, S.: A High-Order Accurate Discontinuous Finite Element Method for the Numerical
Solution of the Compressible Navier-Stokes Equations, Journal of Computational Physics, 131, 267–
279, doi:10.1006/jcph.1996.5572, 1997.

Bermudez, A. and Vazquez, M. E.: Upwind methods for hyperbolic conservation laws with source terms,
Computers & Fluids, 23, 1049–1071, doi:10.1016/0045-7930(94)90004-3, 1994.25

Brown, J., Knepley, M. G., May, D. A., McInnes, L. C., and Smith, B. F.: Composable Linear Solvers
for Multiphysics, in: Proceeedings of the 11th International Symposium on Parallel and Distributed
Computing (ISPDC 2012), pp. 55–62, doi:10.1109/ISPDC.2012.16, 2012.

Capart, H. and Young, D. L.: Formation of a jump by the dam-break wave over a granular bed, Journal
of Fluid Mechanics, 372, 165–187, doi:10.1017/S0022112098002250, 1998.30

56

http://dx.doi.org/10.1137/0719052
http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1006/jcph.1996.5572
http://dx.doi.org/10.1016/0045-7930(94)90004-3
http://dx.doi.org/10.1109/ISPDC.2012.16
http://dx.doi.org/10.1017/S0022112098002250

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Deardorff, J.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,
Journal of Fluid Mechanics, 41, 453–480, doi:10.1017/S0022112070000691, 1970.

Deardorff, J. W.: On the magnitude of the subgrid scale eddy coefficient, Journal of Computational
Physics, 7, 120–133, doi:10.1016/0021-9991(71)90053-2, 1971.

Dedner, A., Klöfkorn, R., Nolte, M., and Ohlberger, M.: A generic interface for parallel and adaptive5

discretization schemes: Abstraction principles and the DUNE-FEM module, Computing, 90, 165–
196, doi:10.1007/s00607-010-0110-3, 2010.

Divett, T., Vennell, R., and Stevens, C.: Optimization of multiple turbine arrays in a channel with tidally
reversing flow by numerical modelling with adaptive mesh, Philosophical Transactions of the Royal
Society A, 371, 1471–2962, doi:10.1098/rsta.2012.0251, 2013.10

Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., and Tuminaro, R.: A taxonomy and comparison of
parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, Journal of
Computational Physics, 227, 1790–1808, doi:10.1098/rsta.2012.0251, 2008.

Elman, H. C., Silvester, D. J., and Wathen, A. J.: Finite Elements and Fast Iterative Solvers: with appli-
cations in incompressible fluid dynamics, Oxford University Press, 2005.15

Farrell, P. E., Piggott, M. D., Gorman, G. J., Ham, D. A., Wilson, C. R., and Bond, T. M.: Automated
continuous verification for numerical simulation, Geoscientific Model Development, 4, 435–449,
doi:10.5194/gmd-4-435-2011, 2011.

Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Automated derivation of the adjoint of
high-level transient finite element programs, SIAM Journal on Scientific Computing, 35, C369–C393,20

doi:10.1137/120873558, 2013.
Flather, R. A.: A tidal model of the northwest European continental shelf, Memoires de la Société Royale

des Sciences de Liège, 10, 141–164, 1976.
Funke, S. W. and Farrell, P. E.: A framework for automated PDE-constrained optimisation, ACM Trans-

actions on Mathematical Software, Submitted.25

Funke, S. W., Farrell, P. E., and Piggott, M. D.: Tidal turbine array optimisation using the adjoint ap-
proach, Renewable Energy, 63, 658–673, doi:10.1016/j.renene.2013.09.031, 2014.

Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-
processing facilities, International Journal for Numerical Methods in Engineering, 79, 1309–1331,
doi:10.1002/nme.2579, 2009.30

Ham, D. A., Farrell, P. E., Gorman, G. J., Maddison, J. R., Wilson, C. R., Kramer, S. C., Shipton, J.,
Collins, G. S., Cotter, C. J., and Piggott, M. D.: Spud 1.0: generalising and automating the user inter-

57

http://dx.doi.org/10.1017/S0022112070000691
http://dx.doi.org/10.1016/0021-9991(71)90053-2
http://dx.doi.org/10.1007/s00607-010-0110-3
http://dx.doi.org/10.1098/rsta.2012.0251
http://dx.doi.org/10.1098/rsta.2012.0251
http://dx.doi.org/10.5194/gmd-4-435-2011
http://dx.doi.org/10.1137/120873558
http://dx.doi.org/10.1016/j.renene.2013.09.031
http://dx.doi.org/10.1002/nme.2579

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

faces of scientific computer models, Geoscientific Model Development, 2, 33–42, doi:10.5194/gmd-
2-33-2009, 2009.

Hecht, F.: New development in FreeFem++, Journal of Numerical Mathematics, 20, 251–265,
doi:10.1515/jnum-2012-0013, 2012.

Hill, J., Collins, G. S., Avdis, A., Kramer, S. C., and Piggott, M. D.: How does multiscale modelling5

and inclusion of realistic palaeobathymetry affect numerical simulation of the Storegga Slide tsunami,
Ocean Modelling, Submitted.

Imperial College London: The Firedrake Project, http://firedrakeproject.org/, 2013.
Katz, R. F., Knepley, M. G., Smith, B., Spiegelman, M., and Coon, E. T.: Numerical simulation of

geodynamic processes with the Portable Extensible Toolkit for Scientific Computation, Physics of the10

Earth and Planetary Interiors, 163, doi:10.1016/j.pepi.2007.04.016, 2007.
Kirby, R. C.: Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions,

ACM Transactions on Mathematical Software, 30, 502–516, doi:10.1145/1039813.1039820, 2004.
Kirby, R. C. and Logg, A.: A compiler for variational forms, ACM Transactions on Mathematical Soft-

ware, 32, 417–444, doi:10.1145/1163641.1163644, 2006.15

Kramer, S. C., Piggott, M. D., Hill, J., Kregting, L., Pritchard, D., and Elsaesser, B.: The modelling
of tidal turbine farms using multi-scale, unstructured mesh models, in: Proceedings of the 2nd In-
ternational Conference on Environmental Interactions of Marine Renewable Energy Technologies,
(EIMR2014), Stornoway, Scotland, 2014.

Liang, S.-J., Tang, J.-H., and Wu, M.-S.: Solution of shallow-water equations using least-squares finite-20

element method, Acta Mechanica Sinica, 24, 523–532, doi:10.1007/s10409-008-0151-4, 2008.
Lloyd, P. M. and Stansby, P. K.: Shallow-Water Flow around Model Conical Islands of Small Side

Slope. II: Submerged, Journal of Hydraulic Engineering, 123, 1068–1077, doi:10.1061/(ASCE)0733-
9429(1997)123:12(1068), 1997.

Logg, A. and Wells, G. N.: DOLFIN: Automated finite element computing, ACM Transactions on Math-25

ematical Software, 37, doi:10.1145/1731022.1731030, 2010.
Logg, A., Mardal, K.-A., Wells, G. N., et al.: Automated Solution of Differential Equations by the Finite

Element Method, Springer, doi:10.1007/978-3-642-23099-8, 2012.
Luporini, F., Varbanescu, A. L., Rathgeber, F., Bercea, G.-T., Ramanujam, J., Ham, D. A., and Kelly,

P. H. J.: Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly, ACM30

Transactions on Architecture and Code Optimization, 11, doi:10.1145/2687415, 2015.

58

http://dx.doi.org/10.5194/gmd-2-33-2009
http://dx.doi.org/10.5194/gmd-2-33-2009
http://dx.doi.org/10.5194/gmd-2-33-2009
http://dx.doi.org/10.1515/jnum-2012-0013
http://firedrakeproject.org/
http://dx.doi.org/10.1016/j.pepi.2007.04.016
http://dx.doi.org/10.1145/1039813.1039820
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1007/s10409-008-0151-4
http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:12(1068)
http://dx.doi.org/10.1145/1731022.1731030
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1145/2687415

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Lyn, D. A. and Rodi, W.: The flapping shear layer formed by flow separation from the forward corner
of a square cylinder, Journal of Fluid Mechanics, 267, 353–376, doi:10.1017/S0022112094001217,
1994.

Lyn, D. A., Einav, S., Rodi, W., and Park, J.-H.: A laser-Doppler velocimetry study of ensemble-averaged
characteristics of the turbulent near wake of a square cylinder, Journal of Fluid Mechanics, 304, 285–5

319, doi:10.1017/S0022112095004435, 1995.
Maddison, J. R. and Farrell, P. E.: Rapid development and adjoining of transient finite el-

ement models, Computer Methods in Applied Mechanics and Engineering, 276, 95–121,
doi:10.1016/j.cma.2014.03.010, 2014.

Markall, G. R., Rathgeber, F., Mitchell, L., Loriant, N., Bertolli, C., Ham, D. A., and Kelly, P. H.:10

Performance-Portable Finite Element Assembly Using PyOP2 and FEniCS, in: 28th International
Supercomputing Conference, ISC, Proceedings, vol. 7905 of Lecture Notes in Computer Science, pp.
279–289, Springer, 2013.

Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., and Piggott, M. D.: Tidal resource
extraction in the Pentland Firth, UK: potential impacts on flow regime and sediment transport in the15

Inner Sound of Stroma, Renewable Energy, 76, 596–607, doi:10.1016/j.renene.2014.11.079, 2015.
Mingham, C. G. and Causon, D. M.: High-Resolution Finite-Volume Method for Shallow Water Flows,

Journal of Hydraulic Engineering, 124, 605–614, doi:10.1061/(ASCE)0733-9429(1998)124:6(605),
1998.

Mortensen, M., Langtangen, H. P., and Wells, G. N.: A FEniCS-based programming framework for20

modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations, Advances in Water Re-
sources, 34, 1082–1101, doi:10.1016/j.advwatres.2011.02.013, 2011.

Ølgaard, K. B. and Wells, G. N.: Optimisations for quadrature representations of finite element
tensors through automated code generation, ACM Transactions on Mathematical Software, 37,
doi:10.1145/1644001.1644009, 2010.25

OpenFOAM: OpenFOAM User Guide, Version 2.3.1, 2014.
Piggott, M. D., Gorman, G. J., Pain, C. C., Allison, P. A., Candy, A. S., Martin, B. T., and Wells, M. R.:

A new computational framework for multi-scale ocean modelling based on adapting unstructured
meshes, International Journal for Numerical Methods in Fluids, 56, 1003–1015, doi:10.1002/fld.1663,
2008.30

Rathgeber, F.: Productive and Efficient Computational Science Through Domain-specific Abstractions,
Ph.D. thesis, Imperial College London, 2014.

59

http://dx.doi.org/10.1017/S0022112094001217
http://dx.doi.org/10.1017/S0022112095004435
http://dx.doi.org/10.1016/j.cma.2014.03.010
http://dx.doi.org/10.1016/j.renene.2014.11.079
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:6(605)
http://dx.doi.org/10.1016/j.advwatres.2011.02.013
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1002/fld.1663

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Rathgeber, F., Markall, G. R., Mitchell, L., Loriant, N., Ham, D. A., Bertolli, C., and Kelly, P. H.: PyOP2:
A High-Level Framework for Performance-Portable Simulations on Unstructured Meshes, in: High
Performance Computing, Networking Storage and Analysis, SC Companion, pp. 1116–1123, IEEE
Computer Society, 2012.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., McRae, A. T. T., Bercea, G.-T., Markall,5

G. R., and Kelly, P. H. J.: Firedrake: automating the finite element method by composing abstractions,
ACM Transactions on Mathematical Software, http://arxiv.org/abs/1501.01809, Submitted.

Roache, P. J.: Code Verification by the Method of Manufactured Solutions, Journal of Fluids Engineering,
124, 4–10, doi:10.1115/1.1436090, 2002.

Rodi, W., Ferziger, J. H., Breuer, M., and Porquié, M.: Status of Large Eddy Simulation: Results of a10

Workshop, Transactions of the ASME, 119, 248–262, 1997.
Rognes, M. E., Ham, D. A., Cotter, C. J., and McRae, A. T. T.: Automating the solution of PDEs on

the sphere and other manifolds in FEniCS 1.2, Geoscientific Model Development, 6, 2099–2119,
doi:10.5194/gmd-6-2099-2013, 2013.

Saad, Y. and Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving non-15

symmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7, 856–869,
doi:10.1137/0907058, 1986.

Smagorinsky, J.: General Circulation Experiments with the Primitive Equations, Monthly Weather Re-
view, 91, 99–164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.

Trangenstein, J. A.: Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge Uni-20

versity Press, 2009.
Wilson, C.: Modelling Multiple-Material Flows on Adaptive Unstructured Meshes, Ph.D. thesis, Imperial

College London, 2009.
Zhou, J. G.: Lattice Boltzmann Methods for Shallow Water Flows, Springer, 2004.

60

http://arxiv.org/abs/1501.01809
http://dx.doi.org/10.1115/1.1436090
http://dx.doi.org/10.5194/gmd-6-2099-2013
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2

