Geosci. Model Dev. Discuss., 7, C2869–C2870, 2015 www.geosci-model-dev-discuss.net/7/C2869/2015/
© Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "An approach to enhance pnetCDF performance in environmenta modeling applications" by D. C. Wong et al.

R. Latham (Referee)

robl@mcs.anl.gov

Received and published: 5 January 2015

I would say the authors have done a better-than-average job of addressing the I/O overhead in CMAQ. Often, applications will encounter I/O problems and throw up their hands. These authors do a bit more, but I would like to see even more detail.

I live in the parallel-netcdf and MPI-IO layer, so my tendency is to encourage a more technical evalutaion than the authors perhaps intended.

First, altering IOAPI and PARIO to do true parallel I/O is a necessary engineering effort, but it not novel in 2014. (Authors do not spend a lot of time on this point, so I think they understand and would agree with me).

second, application level aggregation is not novel: in climate/weather it has been C2869

done/published in GCRM (a cloud resolving model) and PIO (for climate simulations). The approach described here, where the aggregation is done according to MPI processor topology, sounds a tiny bit novel, but does not get a lot of text.

I am not sure how much tuning the authors did after adopting parallel-netCDF. Evalutaions suggest stripe size and stripe count were the two knobs chosen. As was demonstrated in Behzad and Lu's 2013 SC paper (http://dl.acm.org/citation.cfm?id=2503210.2503278), tuning the I/O stack on machines like Edison and Kraken can have a 7-fold impact on performance. Now it must be said that a further point of the 2013 paper was that it's a burden to expose these detailed tuning approaches to application scientists, so it's ok if the authors only explored those two settings. I just want it explicitly mentioned.

Is the simplified CMAQ model used in these experiments available for others to use, or will it be made avaliable? The I/O community is a voracious consumer of such I/O kernels: if you publish the one you have created for CMAQ, then a small battalion of grad students and I/O researchers will add it to their list of kernels they consider when evaluating new i/o strategies and designing new i/o subsystems.

What aspects of the I/O stack made pnetcdf under-perform? Are there lessons to be learned from CMAQ that could be applied to the I/O stack (pnetcdf, MPI-IO, and Lustre layers) that would benefit all applications on Edison and Kraken?

Interactive comment on Geosci. Model Dev. Discuss., 7, 7427, 2014.