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Abstract 9 

The specification of state background error statistics is a key component of data assimilation 10 

since it affects the impact observations will have on the analysis. In the variational data 11 

assimilation approach, applied in geophysical sciences, the dimensions of the background 12 

error covariance matrix (B) are usually too large to be explicitly determined and B needs to be 13 

modeled. Recent efforts to include new variables in the analysis such as cloud parameters and 14 

chemical species have required the development of the code to GENerate the Background 15 

Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community 16 

model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework 17 

that gathers methods used by some meteorological operational centers and researchers.  18 

We present the advantages of this new design for the data assimilation community by 19 

performing benchmarks of different modeling of B and showing some of the new features on 20 

data assimilation test cases. As data assimilation for clouds remains a challenge, we present a 21 

multivariate approach that includes hydrometeors in the control variables and new correlated 22 

errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics 23 

for chemical species, which shows that it is a tool flexible enough to implement new control 24 

variables. While the generation of the background errors statistics code has been first 25 

developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to 26 

other domains of science and be chosen to diagnose and to model B. Initially developed for 27 

variational data assimilation, the model of the B matrix may be useful for variational 28 

ensemble hybrid methods as well.  29 
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1 Introduction 1 

Since the best estimate of the background error covariances matrix (B) is a key component for 2 

data assimilation improvements, various meteorological operational centers such as the 3 

European Centre for Medium‑Range Weather Forecasts (ECMWF), the National Centers for 4 

Environmental Prediction (NCEP), and the UK Met office, continue to develop new 5 

algorithms, techniques, and tools (Bannister, 2008a, b) to model B within a variational 6 

framework. The probability errors are supposed to be normally distributed and B is 7 

determined for a limited set of variables, called control variables. The dimensions of B are 8 

also reduced by diagnosing several parameters that drive a series of operators to model B. 9 

However, necessities to extend the capabilities of B subsist. For example, improving cloud 10 

(Auligné et al., 2011) and pollution forecast are major drivers of development of cloud and 11 

chemical data assimilation. In the meantime, as more and more observational datasets coming 12 

from radars, satellites, airplanes, and ground stations become available in real time, there is a 13 

tendency to generalize data assimilation to a large set of sensors that may involve more 14 

variables, which are present in geophysical numerical models.  15 

 16 

The opportunity has been taken to redesign the GEN_BE code by extending its capabilities to 17 

investigate and to estimate new error covariances. Originally, the GEN_BE code was 18 

developed by Barker et al. (2004) as a component of a three-dimentional variational data 19 

assimilation (3DVAR) method to estimate the background error of the fifth-generation Penn 20 

State/NCAR Mesoscale Model (MM5, Grell et al., 1994) for a limited-area system. Since this 21 

initial version, various branches of code have been developed at the National Center for 22 

Atmospheric Research (NCAR) and at the UK Met Office to address specific needs using 23 

different models such as the Weather Research Forecast (WRF, Skamarock et al., 2008) and 24 

the Unified Model (UM, Davies et al, 2005) on different data assimilation platforms such as 25 

the Weather Research Forecast Data Assimilation system (WRFDA, Barker et al., 2012) and 26 

the Grid point Statistical Interpolation system (GSI, Kleist et al., 2009). Different choices of 27 

control variables and their correlated errors used to mimic general physical balance 28 

(geostrophic, hydrostatic, ...) in the atmosphere have been largely investigated by different 29 

operational centers and referenced in Banister (2008b). Since then, such multivariate 30 

relationship approaches has been studied to characterize hererogeneous background errors in 31 

precipitating and nonprecipitating areas for regional applications (Fillon and al. 2010; 32 
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Montmerle and Berre, 2010). Special emphasis is made in Michel et al. (2011) to include 1 

hydrometeors in the background error statistics as their direct analysis increment can come 2 

from data assimilation of radar reflectivity and satellites radiances. The framework of the 3 

GEN_BE code version 2.0 has been developed to merge these different efforts using linear 4 

regression to model the balance between variables, Empirical Orthogonal Functions (EOFs) 5 

decomposition techniques and diagnostic of length scales to apply recursive filters (RFs). It 6 

allows reading input from different models and providing output for different data 7 

assimilation platforms. This new flexibility associated with the possibility to define a set of 8 

control variables and their covariance errors as an input should reduce future developments of 9 

the code considerably and should benefit to a larger community in geophysical science. 10 

 11 

This document describes the methods included in the GEN_BE code version 2.0 to investigate 12 

modeling of B for cloud and chemical data assimilation applications. Section 2.0 presents the 13 

role of the background error covariance and how a series of different operators (i.e. balance, 14 

vertical and horizontal transforms) can model B. The third section describes the general 15 

structure of the code, the methods to estimate the different parameters that model B and their 16 

role in the data assimilation processes. It explains how to modify, to extend the control 17 

variables and to define multivariate background errors when correlated errors between 18 

variables are modeled by linear regression (i.e. balance transform Up). Section 4 presents 19 

results of a benchmark performed on two different systems of data assimilation (WRFDA and 20 

GSI) using different model of B based on WRF model forecast involving the same set of five 21 

control variables (referenced as CV5 hereafter) available in GSI (Kleist et al., 2009). Finally, 22 

Sect. 5 presents results of a multivariate cloud data assimilation approach that includes 23 

hydrometeors as control variables (referenced as CV9 hereafter)  and their correlated error 24 

with humidity. In addition, the diagnostic of parameters such as standard deviation, vertical 25 

and horizontal length scales are discussed for carbon monoxide (CO), nitrogen oxides (NOx) 26 

and ozone (O3) chemical species in a variational data assimilation framework.  27 

 28 

29 
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2 Role of the background error covariance matrix in the variational data 3 

assimilation method 4 

2.1 The Variational method 5 

The solution of three-dimensional variational data assimilation (3DVAR) is sought as the 6 

minimum of the following cost function (Courtier et al. 1994): 7 

J(x) = Jb (x)+ Jo(x) =
1
2
(xb − x)

T B(xb − x)+
1
2
[yo − H (x)]

T R−1[yo − H (x)]    (1) 8 

Where x is the state vector composed of the model variables to analyse, at every grid point of 9 

the 3-dimensional (3-D) model computational grid. xb is the background state vector, and 10 

usually provided by a previous forecast. yo is the vector of observations and H, called the non-11 

linear observation operator, is a map from the gridded model variables to the observation 12 

locations. The Jo term contains R, the observational error covariance matrix. The Jb term 13 

contains B, the background error covariance matrix defined in Eq (2): 14 

 B = (xb − xt )(xb − xt )
T          (2) 15 

where xt is the true state vector and the overbare represent an average over a number of 16 

forecasts. 17 

 By definition, exact values of R and B would require the knowledge of the true state of the 18 

atmosphere at all times and everywhere on the model computational grid. This is not possible, 19 

and both matrices have to be estimated in practice. Often, the R matrix is assumed to be 20 

diagonal, i.e. uncorrelated observation errors, with empirically prescribed variances. Notice 21 

also that the dimension of the B matrix is the square of the 3-D model grid multiplied by the 22 

number of analyzed variables. For typical geophysical applications as in meteorology, the size 23 

of the B matrix, being comprised of nearly 108 x 108 = 1016 entries, is too large to be calculate 24 

explicitly and to be stored in present day computer memories. As a result, the B matrix needs 25 

to be modeled. 26 
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2.2 Modelling of the background error covariance matrix 1 

2.2.1 Control variable transform 2 

The cost function as defined in Eq. (1) is usually minimized after applying the change of a 3 

variable:  4 

δ x = (xb − x) = B
1/2u           (3) 5 

as it improves the conditioning (Courtier et al. 1994) and therefore accelerates the 6 

convergence. B1/2 is the square root of the background error covariance matrix. The variable u 7 

is called the control variable and the cost function becomes: 8 

J(u) = 1
2
uTu + 1

2
(d − HB1/2u)T R−1(d − HB1/2u)       (4) 9 

Where d is the innovation vector defined as d=(yo-H(xb)) and it represents the difference 10 

between observations and their modeled values using a non-linear observation operator H. H 11 

is the linearized observation operator, which makes the cost function quadratic and easier to 12 

minimize. 13 

 14 

2.2.2 Background errors covariance matrix modelled by a succession of 15 

operators. 16 

The square root of the B matrix as defined in Eq. (3) is decomposed to a series of sub-17 

matrices, each corresponding to an elemental transform that can be individually modeled: 18 

B1/2 =UpSUvUh           (5) 19 

where: 20 

- The Up matrix, called physical transform or balance operator, defines the set of control 21 

variables and their relationships. In practice, the control variables are calulated using the 22 

model variables and selected to minimize their cross-correlations. Also, the existing cross-23 

correlations, called balanced part, can be reduced by appling statistical linear regressions 24 

(explained Sect. 3.2). The idea is that those new variables are less correlated with each other 25 

and so the corresponding off diagonal terms in the matrix vanish. 26 

- The S matrix is diagonal and composed of the standard deviations of the background errors. 27 
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- The Uv matrix, called vertical transform, defines the vertical auto-correlations for each of the 1 

u control variables. It is modeled by either homogeneous Empirical Orthogonal Functions 2 

(EOFs) or application of a recursive iterative filter. 3 

- The Uh matrix, called horizontal transform, defines the horizontal auto-correlations for the u 4 

control variables. It is modeled through successive applications of recursive filters (Purser et 5 

al., 2003a and 2003b).  6 

Wu et al. (2002), Barker et al. (2004), and Michel and Auligné (2010) explain in more detail 7 

the methods used to construct these operators. 8 

9 
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 1 

3 Five stages to generate the background error covariance statistics 2 

(GEN_BE code version 2.0) 3 

The general structure of the GEN_BE code version 2.0 has been designed to split the input, 4 

output, and algorithms in independent stages. The five steps, from stage 0 to 4, that model a 5 

background error covariance matrix, become independent of the choice of control variables 6 

and model input, which allows for more flexibility (Fig. 1). Stage 0 estimates the 7 

perturbations of the control variables based on variables coming from a Numerical Weather 8 

Prediction (NWP) model forecast. Stage 1 removes the mean of these perturbations and define 9 

the applied binning. Stage 2 defines the balance operator (Up) by estimating covariance errors 10 

between the control variables using linear regressions. Stage 3 determines the S operator by 11 

estimating the standard deviation that weighs the analysis increment for a given variable. It 12 

also computes the necessary parameters to spread out the information vertically (Uv) in data 13 

assimilation processes. Stage 4 computes the horizontal length scale parameter used by the 14 

recursive filter to model correlated error on a two dimensional plane (Uh). Technical details 15 

are presented in three Appendices. Appendix A describes the new features of the codes and 16 

should help to compute and to implement new modeling of B. Appendix B presents the 17 

namelist options and Appendix C explains how to compile and run the code.  18 

Figures shown in the following Sect. were obtained from a numerical experiment with the 19 

Advanced Research WRF (WRF-ARW, called WRF hereafter) model involving an ensemble 20 

of 50 members (D-ensemble) over the CONUS (CONtiguous United States) domain at 15 km 21 

resolution (Res. 15 km, Figure 2). Figure 3, shows the Pressure (hPa) against vertical model 22 

levels. Each member, is a six hour forecast valid at 12:00z on 3 June 2012. The Ensemble 23 

Adjustement Kalman Filter (EAKF), coming from the community system Data Assimilation 24 

Research Testbed (DART, Anderson et al. 2009), was used by Romine et al. (2014) to 25 

generate the analysis ensemble. In addition, Table 2, shown in Sect. 4, contains detailed setup 26 

information of this data assimilation experiment. 27 

3.1 Sampling and binning (stage 0 and stage 1) 28 

Since the background error covariance matrix is a statistical entity, samples of model 29 

forecasts are required to estimate the associated variances and correlations. Traditionally, two 30 

distinct techniques are used and available in stage 0 to compute the perturbations: 31 
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- Differences between two forecasts valid at the same time but initiated at different dates 1 

(time lagged forecast, e.g. 24 hour minus 12 hour forecasts), can be used to represent a sample 2 

of model background errors. This is an ad hoc technique, called the NMC (named for the 3 

National Meteorological Center) method (Parish and Derber, 1992), which has been widely 4 

used in operational centers where large databases of historical forecasts are available.  5 

- Background error statistics can be evaluated from an ensemble of perturbations valid at the 6 

same time (Fisher, 2003; Pereira and Berre, 2006). This method tends to be more accurate 7 

because it better represents the background error of the day, rather than a climatological error, 8 

as with the NMC method. However, more computational resources are required to run an 9 

ensemble simulation and it may not provide automatically the optimum B for a particular 10 

system (Fisher 2003).  11 

Pereira and Berre (2006) highlight the consequences of the evaluation of perturbations using 12 

the NMC method versus an ensemble approach (called ensemble of the day, D-ensemble). 13 

The authors point out that the NMC method tends to underestimate the background errors in 14 

data-sparse areas (when the forecast comes from cycling analysis). They show that correlation 15 

length scales, as described by Daley (1991), are smaller in D-ensemble methods compared to 16 

NMC. Table B1 summarizes the general options to compute these raw perturbations.  17 

Since the number of sample of perturbations can be limited, a strategy to model a static error 18 

covariance over an entire domain and filter the sampling noise is used. The statistics are 19 

spatially averaged by gathering grid points with similar characteristics. The different options 20 

available for this technique, referred as binning, are described in Table B2, and can be setup 21 

in the namelist input file (Table B3). The simplest way to compute statistics for a domain can 22 

be done by vertical levels (bin_type=5). Moreover, such formulation of B, which allows 23 

modeling of homogeneous and istropic covariance, may be inadequate to specify natural 24 

phenomena. Other binning option can be applied to the different transform Up, Uv, Uh and S to 25 

have a heterogeneous formulation of B. For example, options bin_type=1, 2, 3, 4 compute 26 

statistics across the zonally averaged ensemble perturbations, to create a latitude-dependent 27 

correlation function, usually used for large and global domains where latitude flow 28 

dependency occurs (Wu et al., 2002). For example, the statistics of hydrometeors, as cloud 29 

liquid water, which are characterized by a high spatial and temporal variability can be skewed 30 

(Michel et al., 2011) if, at a given grid point, only few members of the D-ensemble indicate 31 

the presence of clouds. For that reason, it may be preferable to use a cloud mask in the 32 
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hydrometeor cloud calculations, which is referred as “geographical binning“. Montmerle and 1 

Berre (2010) and Michel et al. (2011) show improvements using rain mask (option 7) with the 2 

vorticity and divergence control variables to characterize convection events. 3 

For this reason, the GEN_BE code has been modified to facilitate the introduction of new 4 

binning options for specific applications (see Appendix B). Stage 1 removes the mean of the 5 

perturbations and defines the binning which is an important component in the model of B as it 6 

is applied in the following stages, especially in stage 2 for the balance operator. 7 

3.2 Balance through linear regressions (stage2) 8 

Analysis increment for one variable may impact an another if they have correlated errors. The 9 

simplest way to model these multivariate error cross-covariances is to use linear regressions 10 

that mimic physical balance between variables. First, regression coefficient between variables 11 

can be estimated by solving Eq. (6) following the example of the regression of the 12 

temperature (t) by the stream function (psi): 13 

α psi,t (b,k,l)•VARpsi (b,k) = COVARpsi,t (b,k,l)       (6) 14 

Where αpsi,t is the regression coefficient estimated, COVARpsi,t(b,k,l) represents the vertical 15 

cross-covariance between t and psi averaged over the vertical level k, l for the given binning 16 

class index b, and VARpsi(b,k) is the variance.  17 

In practice, the regression coefficient can be directly calculated as the ratio of the inverted 18 

variance with the covariance or by performing a Cholesky decomposition (see Appendix B 19 

for more details). Then, linear regressions are performed to derive uncorrelated (i.e. 20 

unbalanced) perturbations by removing the balanced part from other perturbation variables. 21 

Eq. (7) shows how the unbalanced part of the t perturbation (δtu) is deduced by substrating its 22 

full perturbation (δt) to its balanced part coming from psi: 23 

δ tu (i, j,k) = δ t(i, j,k)− α psi,t (b,k,l)δ psi
l=1

Nk

∑ (i, j,l)       (7) 24 

where b is the index of the binning class according to the triplet indexes of the grid point 25 

position (i,j,k). Nk is the total number of vertical model levels. 26 

Note, that in variational data assimilation process, balance operator Up is applied to the 27 

variable themselves. It models correlations between variables and allows to transform the B 28 
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matrix as a block diagonal in the control (uncorrelated) space. The GEN_BE code version 2.0, 1 

has been developed to allow the use of a broad set of control variables (shown in Table 1) and 2 

to allow the definition of the Up transform in a namelist input file. For example, Table B4 3 

presents how to define the balance transform that involves five control variables (CV5) as it 4 

can be used in the GSI system developed at NCEP for analyses operational purpose (Kleist et 5 

al., 2009). The parameters covar equals 1 means the unbalanced part of the velocity potential 6 

(chiu), the temperature (tu), and the pressure surface (psu) are calculated by substracting their 7 

balanced part coming from the stream function (psi). Benchmark results of pseudo 8 

temperature test involving different modeling of B and the same Up transform (CV5) are 9 

shown Sect 4. 10 

Futhermore, Bannister (2008b) described the Up transform used in different operational 11 

centers with special emphasis on the definition of the balance operator for humidity. To 12 

determine a balance operator, diagnostics of vertical cross-covariance or vertical cross-13 

correlation are helpful to analyze the relationship between variables and can also be done 14 

through stage 2. For example, Fig. 4 shows the cross-correlation between humidity and 15 

temperature for all atmosphere conditions (mixing dry and wet conditions). The errors are 16 

mostly anti-correlated, and specific humidity (Fig. 4a) has weaker correlated errors with 17 

respect to temperature than relative humidity (Fig. 4b). Moreover, the errors between specific 18 

humidity and temperature become highly correlated close to saturation (Holm et al., 2002; 19 

Ménétrier and Montmerle, 2011). At saturation, these statistics likely rely on processes of 20 

condensation and precipitation when the released latent heat flux warms the atmosphere 21 

(Holm et al., 2002). These characteristics highlight how binning that differentiates 22 

background statistics in the presence of clouds can be important according to the choice of 23 

control variables. Thus, various studies have been dedicated to better estimate the background 24 

error of humidity in cloudy areas (Carron and Fillon, 2010; Montmerle et Berre 2010; 25 

Ménétrier and Montmerle 2011). Carron and Fillon (2010) use the specific humidity (qs) and 26 

show benefit to characterize heterogeneous formulation of B defined for dry and precipitation 27 

areas. For a winter test-case where stratiform-type precipitation is predominant, they explain 28 

that geostrophic imbalance in precipitation areas, can be characterized by the linear balance 29 

operator between the stream function and the mass fields (t and ps).  Montmerle and Berre 30 

(2010) show potential improvements at convective scale by using a rainy mask in a 31 

multivariate approach for specific humidity that involves vorticity, divergence, temperature 32 

and surface pressure variables. While Ménétrier and Montmerle (2011) show the benefit of 33 
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balancing the specific humidity only with the mass fields (t and ps) for fog data assimilation 1 

purposes. Dynamical variables such as vorticity and divergence are not included in the 2 

balance humidity operator since they do not drive fog formation processes. 3 

Finally, result of an experiment that include hydrometeors and its correlated errors with 4 

humidity (CV9) are presented Sect. 5.1 and defined by the namelist input file Table B5. 5 

3.3 Estimation of the vertical correlation and the variance (stage3) 6 

After calculating the vertical auto-covariance matrix (VACM), two techniques are currently 7 

available in stage 3 to compute the parameters useful to model the mean vertical auto-8 

correlation transform (Uv). The first method diagonalizes the VACM performing an EOF 9 

decomposition (i.e. computing eigenvectors and eigenvalues). The variable is re-written in 10 

this new base for each EOF. Stage 4 will later evaluate a length scale for each EOF mode. The 11 

vertical transform occurs with the change of base EOF-physical space and the variances are 12 

represented by the eigenvalues. The second method estimates,  a vertical length scale from the 13 

vertical auto-correlation matrix directly in the physical space, to propagate the increment via 14 

recursive filters. The diagnostic of the vertical length scale (Lv) comes from Daley’s formula 15 

(1991, p110) for a one dimension homogeneous and isotropic case: 16 

Lv =
1

∂2ρ(0)
∂2 z

          (8a) 17 

with  the correlation taken at the origin. 18 

 19 

Approximating Eq (8a) with finite difference to the second order derivatives of  and 20 

assuming ρ is symmetric around the origin results in: 21 

Lvp =
δ z

2[1− ρ(δ z)]
          (8b) 22 

where Lvp represents the vertical length scale approximate by a parabolic function.  23 

 24 

If the correlation is approximated at the origin by a Gaussian function as follows:
  

25 

!(0)

!(" z)
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ρ(δ z) = exp(− δ z
2Lvg

2 )
          (9a) 

1 

the length scale Lvg can be written: 2 

Lvg =
δ z

−2 lnρ(δ z)
          (9b) 3 

Pannekoucke et al. (2008) studied the sensitivity of sampling errors of these formulae and 4 

shows that the Gaussian and the parabolic approximation give similar results. Furthermore, 5 

the vertical length scale can be computed uniform by vertical model level or binned. Table B6 6 

in Appendix B contains description of the namelist option to define the vertical length scale in 7 

stage 3 and the horizontal length scale in stage 4. 8 

3.4 Estimation of the horizontal correlation (stage 4) 9 

Horizontal auto-correlations can be computed for each control variable at each grid point. 10 

Figure 5 shows a diagnostic of correlation for a few selected points of the WRF 11 

computational domain around 500 m above the ground (model level 5). The stream function 12 

(5a) and velocity potential control variables have larger and more isotropic spatial correlations 13 

while the temperature (5b) and the humidity (5c) control variables show smaller and 14 

anisotropic correlations at different locations. The radius of the area where the correlation 15 

overpasses 0.9 is within a range of 100 km to 400 km for stream function while this radius 16 

reaches its maximum around 100 km for temperature and humidity. Hydrometeors mixing 17 

ratio show even more local structures due to their sparse location on the horizontal and the 18 

vertical (5d). 19 

In stage 4, we estimate horizontal length scales averaged by vertical level or EOF mode for a 20 

field analysis in a 2-D plane. It represents the radius of influence, calculated in grid point 21 

space, around the position of an observation and is an input parameter for recursive filters to 22 

spread out horizontally the increment (Uh). The different options available, as described 23 

below, are also contained in Table B6. 24 

The first method (ls_method=1) employs a distribution function to fit the correlation for a 2-D 25 

field by vertical level or by EOF mode as explained in Sect 3.3. If a Gaussian function is 26 

chosen, the length scale is determined by solving Eq. (10a): 27 
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ρ(r) = exp(− r2

2L
)          (10a) 1 

where ρ(r) is the correlation calculated for a distance r between two grid points. 2 

If a second order autoregressive (SOAR) correlation function is used, the length scale L is 3 

determined by solving Eq. (9b): 4 

ρ(r) = (1+ r
L
)• exp(− r

2

L
)         (10b) 5 

However, as this procedure is both computationally expensive and prone to sampling errors, a 6 

second option (ls_method=2) based on the ratio of the variance of a field (ϕ) and the variance 7 

of its laplacian, has been added: 8 

L = 8•Variance(ϕ )
Variance(∇2ϕ )

⎛
⎝⎜

⎞
⎠⎟

1
4

         (11) 9 

Eq. (11) was used by Wu et al. (2002) and is similar to the diagnosic of Pereira and Berre 10 

(2006), which was analyzed in Pannekoucke et al. (2008).  11 

The horizontal length scale can be uniformally calculated over a vertical model level or can be 12 

statistically binned. Homogeneous recursive filters are able to handle a unique length scale 13 

defined by model vertical level, or EOF mode. Inhomogeneous recursive filters (Purser et al., 14 

2003b), as implemented in GSI, are able to handle heterogeneous length scale. In this case, 15 

the increment is spread out with a length scale according to the bin class of each grid point. 16 

Moreover, spatial filtering to smooth the length scale may be required because of recursive 17 

filters normalization issues (Michel and Auligne 2010).  18 

19 
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 1 

4 Comparison of different modelling of B for two data assimilation systems 2 

We present a benchmark of different modeling of B perfomed on the GSI and WRFDA data 3 

assimilation platforms. Both systems can handle the set of five control variables (CV5) and 4 

their balance operator (Up) defined Table B4. By default, the GSI system allows using a B 5 

matrix statisitics (Bnam), pre-computed over an enlarged CONUS domain, using the NMC 6 

method and NAM (North American Mesoscale) forecasts. Bnam is used with GSI (Wu, 2005)  7 

to produce daily forecasts with NDAS (NAM Data Assimilation System; Rogers et al., 2009). 8 

Based on the D-Ensemble dataset coming from the DART experiment (i.e. Sect 3. and  9 

Romine et al. 2014), we present in Sect. 4.1 the parameters that define the vertical transform 10 

Uv by using EOF decomposition for WRFDA (Beof) and by using recursive filters for GSI 11 

(Brcf). Table 2, gathers the general setup that leads to the modeling of these three B matrices 12 

(Beof, Brcf and Bnam) and additional information about the used datasets. The physics of the 13 

model can be found in Romine et al. (2014), Rogers et al. (2009). Sect 4.2 compares the 14 

results of a pseudo single observation test experiment using Beof, Brcf and Bnam on the WRFDA 15 

and GSI data assimilation system. 16 

4.1 Statistics of the background error covariance matrix for different 17 

transforms 18 

4.1.1 Decomposition by EOF and length scale 19 

If the EOF decomposition is used, the eigenvectors model the vertical transform (Uv) and the 20 

associated eigenvalues represent the variance. The length scale is estimated in the EOF space 21 

and represents the horizontal transform (Uh). In the data assimilation process, the eigenvalues 22 

weight the analysis increment and the recursive filter first spreads out the information in the 23 

EOF space according to length scale value. Then, the transformation from EOF mode to 24 

physical space spreads out the information vertically. The first five eigenvectors are shown in 25 

Figure 6 for the control variables (CV5) and Figure 7 shows the associated eigenvalues. 99% 26 

of the variance of the stream function and the velocity potential are represented by the first ten 27 

and twenty modes respectively, while more than 30 modes are useful for temperature and 28 

relative humidity. Also, the EOF decomposition allows optionally some filtering as the largest 29 
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variances (i.e. eigen values) are associated with the first EOFs, the latest EOFs may be not 1 

taken into account if they mostly represent vertical noise in the system. 2 

The horizontal length scales, estimated by Eq. (11), are presented in Figure 8. The stream 3 

function and the velocity potential have the largest length scale value reaching 600 km (39 4 

grid points) for the first EOF mode. While, the unbalanced temperature length scale has a 5 

strong variation for the three first EOFs passing approximately from 135 km to 30 km  (9 to 2 6 

grid points) and from there, slightly decreases from 30 km to reach 15 km (2 to 1 point grid) 7 

for the last EOF mode. Relative humidity length scale remains small, decreasing from 8 

approximately 30 km to 15 km as a function of the EOF mode. The unbalanced temperature 9 

and the relative humidity have a relatively small length scale, which means that they have 10 

more local features represented by a small radius of influence. Thus, the analysis increment 11 

from these variables will remain closer to the observation. As the horizontal length scale is 12 

associated to EOF mode and not directly related to a vertical model level and futher 13 

discussions on the association of length scale with physiscal event may be difficult. 14 

4.1.2 Horizontal and vertical length scales defined in physical space 15 

The horizontal correlation is modeled by the application of recursive filters based on the 16 

estimation of the horizontal length scale solving Eq. (11), applied at every vertical model 17 

level for each variable, as shown in Figure 9. The horizontal length scales diagnosed for each 18 

control variable by vertical level (Figure 9) or by EOF mode (Figure 8) have the same range 19 

of value. The length scales of the stream function and the velocity potential control variables 20 

have the largest values above 150 km (10 grid points) for all the vertical model levels, while 21 

the length scales of temperature and relative humidity remain in a range of 30 km to 60 km (1 22 

to 2 grid points) below 200 hPa level. Temperature and humidity, which have more local 23 

structures, are modeled with smaller length scales. Globally, the horizontal length scales of 24 

different variables increase from the bottom to the top of the model as they represent larger 25 

scale events. Direct comparison of these statistics with the Bnam horizontal length scale is 26 

difficult as they are performed with different methods, models, configurations, and physical 27 

options (i.e. Table 2). However, it can be noted than the horizontal length scale was 28 

approximately twice as small than those for Bnam (Wu 2005) performed by using the NMC 29 

method. Usually, sharper correlations are found in the D-ensemble compared to the NMC 30 

method (Fisher, 2003; Pereira and Berre, 2006). Furthermore, a factor contributing to this 31 
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difference may arise from the fact that we are comparing statistics from forecasts of different 1 

lengths. 2 

The vertical correlation is modeled by the application of recursive filters based on the 3 

estimation of the vertical length scale coming from Eq. (8b). The stream function and the 4 

velocity potential in Figure 10 that represent large scale horizontal flow have a bigger vertical 5 

length scale than those of temperature and humidity. The vertical gradients of temperature and 6 

humidity can vary strongly locally, decreasing the vertical correlation. 7 

4.2 Pseudo single observation test on WRFDA and GSI data assimilation 8 

systems 9 

The single pseudo-observation is a powerful way to provide a benchmark as it allows 10 

visualizing the increment of an isolated observation and its impact on other variables. Thus, 11 

the following are pseudo observation tests of temperature with an innovation of 1 Kelvin and 12 

an obervation error of 1 Kelvin using different modeling of B (Beof, Brcf and Bnam). The 13 

position of the pseudo-observation is arbitrarily taken at the center of the domain and at 500 14 

hPa pressure level. The series of plots (Figure 11-13) represent horizontal and vertical slices 15 

of the resulting increment for temperature and wind components.  16 

As expected, the horizontal cross-section at the 500 hPa level for temperature shows an 17 

isotropic response to the innovation of 1 Kelvin. The maxima of intensity simulated depend 18 

on the standard deviation (diagonal matrix S) value coming from the B matrix. 19 

On one hand, the operator (Uv) employs EOF decomposition, the Jb term of the cost function 20 

is weighted by the standard deviation coming from the square root of the eigenvalues of Beof. 21 

On the other hand, Uv is modeled by the estimation of a length scale and the recursive filters 22 

applied on the vertical (Brcf), the analysis is weighted by the standard deviation directly 23 

averaged on the vertical mesh grid. The increments of temperature are close for the three 24 

different tests and the increment from Bnam is slightly larger than that of Brcf and Beof. In the 25 

case of Bnam, recursive filters spread out the information in a larger area over a horizontal 26 

plane due to its larger length scales. 27 

For the vertical cross-section (XZ), vertical increments coming from Brcf and Beof spread out in 28 

the same range of altitude (~ between the 800 hPa and 450 hPa pressure levels). Based on the 29 

same D-ensemble datasets, the Uv operator using EOF decompostion and recursives filters 30 

gives similar results on different platforms, as expected. Moreover, the temperature increment 31 



 17 

from Brcf spreads out even more along the vertical compared to the Bnam experiment on the 1 

GSI system. This discrepancy can be associated with the computed vertical length scales from 2 

two different datasets. The length scales diagnosed over a D-ensemble are larger in this case 3 

for Brcf than the one averaged over a long period of time (60 perturbations selected over a 4 

year) in the NMC method. Also, statistics of Bnam are perfomed over an Eta grid of 60 vertical 5 

levels of WRF-NMM while the statistics of Brcf and Beof come from WRF defined on a 6 

hybrid-sigma grid of 39 vertical levels. Thus, the raw statistics of Bnam are interpolated on the 7 

WRF vertical grid in GSI before performing 3D-VAR data assimilation. Furthermore, 8 

differences in the definition of the physics of the model and the assimilated data may be 9 

contributing factors. 10 

Finally, the multivariate approach, defined by CV5, induces increments in the wind 11 

components. The horizontal cross-section (XY) plotted for U and V showed dipole lobes, 12 

which can be explained by the geostrophic balance adjustment that the linear cross-13 

covariances statistics reproduce. The vertical cross-section (XZ) follows the isocontour of 0 m 14 

s-1 for U while some differences can be observed on the slices of V for the Beof, Brcf, and Bnam 15 

experiments. A larger spread of the V increment along pressure levels is observed for Beof and 16 

Brcf compared to experiment of Bnam. 17 

These ensemble based background error Beof and Brcf covariance matrices potentially have 18 

more skill in estimating error statistics related to the present meteorological event and using 19 

the same model configuration. 20 

21 
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5 Cloud and chemistry variational data assimilation 3 

5.1 Generation of a multivariate background error covariance for 4 

hydrometeors. 5 

Code modifications have been done in the WRFDA code  to add a multivariate balance 6 

operator for the hydrometeor variables: cloud liquid water mixing ratio (qcloud), rain mixing 7 

ratio (qrain), ice mixing ratio (qice), snow mixing ratio (qsnow), so that the WRFDA 8 

minimization is now performed over nine 3-D fields instead of the five previously included. 9 

The main scientific issue in this task is to define a proper B matrix and particularly, the cross-10 

correlation terms that will ensure that the analysis of the hydrometeors is multivariate i.e. the 11 

observed and unobserved model fields are modified simultaneously and consistently during 12 

the analysis. The question of the estimation of the forecast error covariance matrix is the focus 13 

of this section. Figure 3 provides the conversion from vertical model level to pressure level. 14 

5.1.1 Definition of the Balance operator for hydrometeors (CV9) 15 

The Up transform CV5 (defined Table B4) is modified in the WRFDA code to include a 16 

multivariate analysis for humidity and hydrometeors (Eq. 12a-c). In a first approach, relative 17 

humidity (rh) is balanced in Eq. (12a) with the mass fields of unbalanced temperature (tu), 18 

unbalanced surface pressure (psu) and does not include dynamic variables such as the stream 19 

function (psi) and unbalanced velocity potential (chiu):  20 

   (12a) 21 

The statitics coming from GEN_BE v2.0 code, i.e. regression coefficients and unbalance part 22 

of the variable, can be estimated only by modifying the namelist file input. In this case, the 23 

line covar5 of Table B5 that describes the covariances between the fifth control variable, 24 

(relative humidity), with the third control variables tu and the fourth psu is: covar5 = 0, 0, 1, 1, 25 

0, 0, 0, 0, 0, 0. In the meantime, the control variables are expanded to include the mixing 26 

ratios of cloud water condensate (qcloud), rain (qrain), ice (qice) and snow (qsnow). The 27 

hydrometeors qcloud and qice are balanced with respect to relative humidity as their presence or 28 

absence is directly related. The regression coefficients can be computed without any 29 

rhu(i, j,k) = rh(i, j,k)! " rh,tu
(b,k,l)tu

l=1

Nk

# (i, j,l)!" rh,psu
(b,k)psu(i, j)
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assumptions (Figs. 14a-b), or filtered to take into account the perturbations that represent the 1 

transition of a non-cloudy to a cloudy area only (Figs 14c-d). This latter choice is made to 2 

intensify the statistical relationship of the statistical balance to be able to remove misplaced 3 

clouds, or to create clouds. However, we may want to localized this balance around a given 4 

vertical model level. For this reason, the line covar6 = 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 represented by 5 

Eq. (12b) can be replaced by the line covar6 = 0, 0, 0, 0, 2, 0, 0, 0, 0, 0 represented by the Eq. 6 

(12c). In this case, only the diagonal terms of the regression coefficient are calculated and the 7 

increment is spread out by the recursive filters. 8 

   (12b) 9 

    (12c) 10 

Similar balance is applied to qice. qrain and qsnow are defined univariate. Table B5 summarizes 11 

the definition of this balance operator called CV9  12 

 13 

5.1.2 Statistics of the background error covariance matrix for 14 

hydrometeors. 15 

The vertical and horizontal transforms retained are the recursive filters making the 16 

interpretation of the length scale parameter easier as they are directly associated to a vertical 17 

model level. The four main hydrometeors have been added in this study, as they could be 18 

useful for data assimilation in remote sensing such as satellite cloudy radiances and radar 19 

reflectivity. 20 

The horizontal length scale values of the different hydrometeors shown in Figure 15a are 21 

smaller in comparison of other control variables (less than 30 km, 2 grid points). Significant 22 

values of length scale, that overpass 15 km (1 grid point), are related to the presence of 23 

hydrometeors: it occurs below 150 hPa pressure level for qice and qsnow and below 400 hPa 24 

pressure level for qcloud and qice. The maximum of qcloud length scale, located approximately at 25 

950 hPa, can be associated to the presence of low maritime clouds above the Pacific ocean 26 

noted by the high standard deviation in Figure 18a and b. In the lower levels of the model, the 27 

length scale of qice vanishes as expected. 28 

qcloudu (i, j,k) = qcloud (i, j,k)! " qcloudu ,rhu
l=1

Nk

# (b,k,l)rhu(i, j,l)

qcloudu (i, j,k) = qcloud (i, j,k)!" qcloudu ,rhu
(b,k)rhu(i, j,k)
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The vertical correlation maxima of the precipitating hydrometeors are higher compared to that 1 

of cloud water, or cloud ice hydrometeors as they can drop freely through multiple levels 2 

(Figure 16a). The vertical length scale of qrain increases regularly from around 500 hPa until 3 

reaching a maximum at the ground. As the length scale increases fast after 800 hPa, where the 4 

highest density of the lower levels occurs, an arbitrary cut-off equal to one third of the total 5 

vertical grid point value is applied in order to avoid spreading out increment information 6 

outside the area of potential presence of rain with the recursive filter. The length scale of qsnow 7 

has two local maxima. The first one happens where the precipitating hydrometeors have the 8 

highest density at around 400 hPa. A steep increase occurs from 950 hPa until reaching the 9 

highest value close to the ground. The high rate of presence of snow mixing ratio equal to 10 

zero at these low levels tends to artificially enforce vertical correlation as well. 11 

 12 

5.1.3 Example of a pseudo single observation of cloud mixing ratio in a 13 

multivariate approach. 14 

To verify that our analysis is multivariate, we conducted a series of tests in which pseudo 15 

observations of hydrometeors were assimilated into WRFDA and the corresponding analysis 16 

increment was plotted. Figure 17 shows the analysis response for the qcloud and qvapor model 17 

variables when three simulated observations of cloud liquid water are assimilated. One 18 

obervation is taken over the Pacific ocean, a second one over Texas and the last one in 19 

Canada. 20 

The intensity of the increment can be weighted by the 1-D variance or by the 3-D variance (S 21 

operator) coming from the ensemble. The 1-D variance, displayed in Figure 18a, gives a 22 

general information by vertical level and binning type without any assumption of horizontal 23 

location. It is most of the time used when the perturbations come from the NMC method or 24 

when the variance is not diagnosed at the analysis time. In our test case, the increment is 25 

modulated by the 3-D variance computed from a 6-hour ensemble forecast with 50 members. 26 

The cloudy area coming from the background of the different members is represented by a 27 

high value of variance in Figure 18b while low variance takes place in the dry area. The 28 

increment is most likely greater than 10-3 g/kg where the variability of cloud presence exists 29 

(Figure 17). The strongest increment occurs over the Pacific Ocean for higher qcloud standard 30 
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deviation. A minimum value would likely need to be set to retain possibility of increments in 1 

the dry area. 2 

The covariance between mixing ratio of cloud water condensate and relative humidity, 3 

described in Sect. 5.1.1 can reinforce the ability of adding clouds in the dry area or removing 4 

clouds in the cloudy area. The univariate version of the balance operator for hydrometeors 5 

may be beneficial at the analysis time as hydrometeors can be directly assimilated. The 6 

multivariate balance is present to help to propagate the qcloud increment in the forecast by 7 

balancing it with a qvapor increment. 8 

The determination of the balance of humidity and hydrometeors is a difficult task as it 9 

involves the microphysical processes of meteorological NWP models and different local 10 

phenomena. The use of local covariances coming from the D-ensemble may help to balance 11 

those high sensible variables. Furthermore, operational centers, such as Météo-France with 12 

the Application of Research to Operations at Mesoscale system (AROME, Seity et al., 2011) 13 

and the Met Office with the Met Office Global and Regional Ensemble Prediction System 14 

(MOGREPS, Bowler et al., 2008; Migliorini et al., 2011), already use ensemble forecasts at 15 

high resolution to more accurately characterize specific meteorological events, such as 16 

precipitation and convection. Nowadays, their ensemble size remains small (often less then 10 17 

members) because the cost of CPU (Central Processing Unit) time is still elevated. Studies 18 

have been dedicated to evaluate the sampling errors in the ensemble method and in the 19 

parameters, such as correlation length scales, that usually model the background errors 20 

(Pannekoucke et al., 2008; Ménétrier et al., 2014). !When the ensemble size is small, methods 21 

that combine general statistics of the background errors and local balance are found to 22 

perform better (Hamill and Snyder, 2000). Figures 15a, b and Figure 16a, b, that display 23 

horizontal and vertical length scales parameters respectively, for the hydrometeors in regards 24 

of the number of members, show stable results. 25 

 26 

27 
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5.2 Background Error for Chemical Species 3 

As a proof of concept, this last section shows the direct applicability of the GEN_BE v2.0 4 

code as a diagnostic tool for other topics than meteorology. In recent decades, a large number 5 

of studies that investigate chemical data assimilation have been conducted. Some of the first 6 

studies on stratospheric and tropospheric chemistry data assimilation were performed roughly 7 

two decades ago (e.g. Austin, 1992; Fisher and Lary, 1995; and Elbern et al., 1997). During 8 

the last two decades, efforts have been made in order to improve atmospheric chemical 9 

modeling and data assimilation scheme performances.  10 

The well characterization of the background error covariance matrix B in chemistry is a very 11 

important aspect of a successful data assimilation system. During the last few years, different 12 

studies have used different techniques to characterize the B matrix. Barré et al. (2013) and 13 

Emili et al. (2014) estimated a quasi-constant B based on the Ménard and Chang (2000) and 14 

Desroziers et al. (2005) a posteriori statistics, for tropospheric and stratospheric ozone data 15 

assimialtion. Since the latter studies put their interests on large-scale events (global scale 16 

chemical assimilation and synoptic events) data assimilation perform reasonably well with 17 

those first order B matrix estimation. Depending on the region of the atmosphere that is 18 

analyzed B needs to be updated at different timescales. Massart et al. (2012) showed the 19 

importance of using a monthly B matrix ensemble estimate for stratospheric ozone data 20 

assimilation purposes. For surface ozone assimilation Jaumouillé et al. (2012) and Gaubert et 21 

al. (2014) showed that an hourly ensemble estimate of B that represent diurnal variations of 22 

model errors improves the data assimilation skills. The last few years, studies on aerosol data 23 

assimilation within WRF-Chem (Pagowski et al., 2010, 2014, Schwartz et al., 2012) showed 24 

the importance of having a detailed estimation of the B matrix. 25 

Statistics were analyzed in detail to ensure that B reproduced relevant correlation structures 26 

during data assimilation process. Since data assimilation of chemical species is more recent 27 

than for meteorology, the GEN_BE code version 2.0 may be useful to test new definitions of 28 

background error covariance matrices and to allow its usage on different platforms. Several 29 

chemical trace gases such as CO (Carbon Monoxide), NOx (Nitrogen Oxides) and O3 (Ozone) 30 
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but also dust, sea salt, particulate matter (PM) have been already included as new possible 1 

control variables in the GEN_BE code. Results for CO, NOx and O3 are shown next.  2 

The statistics are estimated using 20 members over the CONUS domain. Each member comes 3 

from a 12h forecast of WRF-CHEM (WRF model coupled with Chemistry, Grell et al., 2005), 4 

valid at 12:00z on 14 June 2008, at 36 km of horizontal resolution and 33 vertical levels. The 5 

lateral boundary conditions coming from MOZART (Model for OZone And Related chemical 6 

Tracers, Emmons et al., 2010) and factors coming from MEGAN (Model of Emissions of 7 

Gases and Aerosols from Nature, Guenther et al., 2006) are perturbed using a pseudo-normal 8 

random noise. In order to avoid unphysical or negative values of concentration and emissions 9 

and keep ensemble mean boundary conditions values close to the original values, we then 10 

perturb the boundary conditions (emissions and boundary conditions) by using a standard 11 

deviation (sigma) of 25% of the original boundary condition value and we limit the 12 

perturbation to be no more than 3 sigma (i.e. 75%).  13 

Figure 19 present the standard deviations for the chemical species of interest. Standard 14 

deviation of the background error is directly related to the species concentrations. Most of the 15 

ozone variability takes place in the middle atmosphere (stratosphere) on the ozone layer 16 

around 100 hPa (Fig 19a). Concerning NOx concentration fluctuates as well in Figs 19b and 17 

19c, due to photochemistry in the stratosphere and in the troposphere. Because the NOx are 18 

also emitted from the ground with a short lifetime, a strong peak of standard deviation is 19 

observed. Carbon monoxide (Figure 19d), which is also emitted at the surface and has 20 

relatively long life time (1-2 months), show significant standard deviation values in all the 21 

troposphere with a maximum in the boundary layer. 22 

Figure 20 displays the calculated horizontal chemical length scales. Ozone show horizontal 23 

length scales are around 100 km in the troposphere and around 125 km in the stratosphere. 24 

Pagaowski et al., 2010, used a NMC method and found that ozone horizontal length scale are 25 

around 100 km (150 km) in the troposphere (in the stratosphere). Concerning NO2, GEN_BE 26 

v2.0 evaluates the tropospheric horizontal length scale between 70 km and 90 km. This range 27 

of values is consistent with the values found by Silver et al., 2013 that uses the NMC method. 28 

Horizontal length scales increase in the upper troposphere mostly due to the strong circulation 29 

(jets) and then advection of trace gases that increase the horizontal correlations.  30 

Concerning the vertical correlations (Fig. 21), all the 4 species diagnosed, present a maximum 31 

close to the surface where they are emitted or secondarily produced for ozone. Then, they 32 
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sharply decrease between 1000 hPa and 850 hPa. This strong decrease is not  fully understood 1 

and need further work to be conclusive. A first hypothesis to explain this strong decrease 2 

would be caused by the reactions with the other short-lived species emission perturbations 3 

and create strong correlation in the lowest model levels. Another factor explaining this 4 

decrease would be the strong increase of first model levels layer thickness close to the 5 

surface. Vertical correlation then also decrease around 800 hPa due to weaker vertical mixing 6 

above the planetary boundary layer height and creates a decrease of correlations with the 7 

lower levels. Above 850 hPa, which is around the top of the boundary layer, the evolution of 8 

the vertical length scale decreases slowly from approximately 2 to 1 grid point. Then in the 9 

free troposphere, vertical diffusion of possible data assimilation increments will be less 10 

significant than in the boundary layer. Compared to Pagowski et al., 2010, the ozone vertical 11 

length scale profile present the same behavior. Strong vertival correlation close to the surface, 12 

followed by a strong decrease to the levels directly above and then a lower values in the upper 13 

levels of the boundary layer. 14 

 Here we have shown that  the GEN_BE v2.0 code is able to model a B matrix for chemical 15 

variables with features that are associated with physical processes i.e. ozone layer, tracer 16 

lifetime, emissions and planetary boundary layer mixing. The diagnostics of simple statistics 17 

of the background for chemical species are straight forward with the GEN_BE code version 18 

2.0. Moreover, data assimilation of chemistry components remains a challenge because of the 19 

uncertainties of various parameters that predict chemical processes as emission factors, 20 

deposition velocity and (photochemical) reaction constant. For these reasons, the analysis 21 

may fit the observation even if data assimilation does not involve the origin of the mismatch. 22 

Hybrid and ensemble methods may help to diagnose complex covariance structures in future 23 

work. In this paper, the chemical B matrix generated by GEN_BE v2.0 has not been 24 

extensively diagnosed. More investigations such as, the balance between chemical species, 25 

standard deviation and correlation length time and space variability could be investigated in 26 

further studies by the atmospheric chemistry modeling community using GEN_BE v2.0. 27 

 28 
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6 Summary and discussions 3 

While variational methods have been successfully used in operational centers for a long time, 4 

the estimation of background errors needs to be continuously improved to assimilate new 5 

observations and to provide more accurate statistics. The GEN_BE v2.0 code has been 6 

developed to investigate and model univariate or multivariate covariance errors from control 7 

variables defined by a user as an input. It gathers some methods and options that can be easily 8 

applied to different model inputs and used on different data assimilation platforms by 9 

extending its former capabilities. The flexibility of the framework of the GEN_BE V2.0 code 10 

should help the diagnostics of correlated errors and the implementation of new background 11 

error modeling. 12 

This document describes first the different stages and transforms that lead to the modeling of 13 

the background error covariance matrix B by performing benchmark tests and showing 14 

examples that use these new functionalities based on WRF and WRF-CHEM forecasts. 15 

Parameters such as length scales, eigenvectors, eigenvalues, standard deviation and linear 16 

regression coefficients were first estimated for the control variables (CV5) described in Kleist 17 

et al. (2009) for the GSI system developed at NCEP.  18 

Second, the GEN_BE v2.0 code has been validated through multivariate single observation 19 

tests of temperature using three different modeling of B (Beof, Brcf, and Bnam) and on two 20 

different platforms. Based on the first dataset, D-ensemble, the single observation test 21 

performed with Beof (Uv, EOF decompostion) in WRFDA shows similar results than the single 22 

observation test of temperature performed with Brcf (Uv recursive filters) in GSI. The 23 

increments were spread out in a larger area along the vertical than those coming from the test 24 

using the Bnam statititics calculated with the NMC method on a different vertical grid. While, 25 

the horizontal increments were spread out in a larger area using Bnam. 26 

Third, the GEN_BE code has been used to perform the statistics over an extended set of 27 

control variables that include mixing ratio of hydrometeors (CV9) for multivariate cloud data 28 

assimilation purpose. As clouds have an intermittent presence, the 3-D variance coming from 29 

an ensemble of the day gives a spatial envelope useful to weight the analysis relatively to the 30 

observation and the background confidence. The hydrometeors of cloud and ice condensate 31 

water are also balanced with humidity to be potentially able to create or remove misplaced 32 
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clouds. The regression coefficients calculated, can be conserved for a next cycle analysis as 1 

they are averaged by bins or recalculated as they are not so expansive with regard to CPU 2 

time. In this paper, a pseudo observation test of cloud mixing ratio was performed using 3 

WRFDA and the next step is to test cloudy radiance data assimilation. Finally, statistics of 4 

background are estimated for chemical species such as carbon monoxide (CO), nitrogen 5 

oxides (NOx) and ozone (O3) coming from an ensemble of forecasts of WRF-CHEM, 6 

discussed and compared with existant studies. It has been shown that the statistics diagnosed 7 

are related to physical and chemical processes. 8 

In these previous examples, GEN_BE code version 2.0 can handle input datasets coming from 9 

WRF, a model defined on a C-Arakawa grid, and the background error statistic outputs are 10 

computed on unstaggered A-Arakawa grid. Within minor modifications, the code would be 11 

able to handle other horizontal grids. Also, statitics could easily be done on models with 12 

different vertical grid definition. If we consider performing the background errors statistics on 13 

an unstructured grid, the structure of the code can remain the same but few mathematical 14 

operators, such as differential and laplacian, and estimation of the distance between two grid 15 

points, would need to be re-defined according to the grid. In fact, the Up transform needs to be 16 

performed in the unstructured grid according to the user’s choice of control variables. Uv 17 

transform will remain identical and Uh transform would be modified according to the 18 

mathematical operators. Another option would be to interpolate first the input dataset on a 19 

regular grid according to the data assimilation system used and then compute the statistics. 20 

Thus, implementation of models with different grid can be done in the GEN_BE v2.0 code 21 

based on its general framework and may be completed by adding new diagnostics. 22 

The current trend is to model a more complex background error, expanding the control 23 

variables and correlated errors and using techniques to achieve more heterogeneity and 24 

anisotrpy. The geographical binning and the 3-D variance available in the GEN_BE v2.0 code 25 

can be utilized with new data assimilation algorithms. For example, hybrid data assimilation 26 

that combines variational and ensemble methods may be helpful especially by adding flow 27 

dependence in the estimation of the background error and to reduce the ensemble size due to 28 

CPU time constraints (Hamill and Snyder, 2000). Wang et al. (2008a, 2008b) performed a 29 

study using a hybrid 3DVAR-ETKF (Ensemble Transform Kalman Filter) technique that 30 

combines static (modeled) error and ensemble error covariances. Better results were obtained 31 

over North America at a coarse resolution (200 km) especially in data-sparse areas compared 32 
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to those performed solely with 3DVAR. The extended control variable technique (Lorenc 1 

2003) allows blending flow dependent errors with static covariance errors. Bannister et al. 2 

(2011b) investigated the benefit of a convection permitting prediction system ensemble (24 3 

members) at a finer scale (i.e. 1.5 km of resolution) for nowcasting purposes based on 4 

MOGREPS (Migliorini et al. 2011a). Even though, the authors show how general balances 5 

that drive synoptic flow, in particular geostrophic balance, can diminish in convective 6 

situations at small scales, they highlight the necessity for a data assimilation system to better 7 

represent both the large scale and mesoscale components of the flow. In addition, Ménétrier et 8 

al. studied heterogeneous flow dependent background error covariances at a convective scale 9 

and showed that a small ensemble (6 members from AROME) contains relevant information 10 

with sampling noise, which can be reduced through filtering. Finally, the GEN_BE code may 11 

be a tool to diagnose inhomogeneous 3-D localization parameters in ensemble methods. The 12 

GEN_BE v2.0 code has been tested in atmospheric science but the flexibility of the code may 13 

be useful in other geophysical applications. 14 

15 
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 1 
Appendix A:  FORTRAN code and input/output description. 2 

 3 

New FORTRAN modules have been developed to generalize the calculation of the error 4 

covariance matrix from different input models and for new control variables. Table A1 5 

contains a complete list of these modules and their contents. All the algorithms from stage 1 6 

to stage 4 are now independent of the choice of control variables and driven by a unique 7 

namelist file, called namelist.input, and read by the FORTRAN module configure.f90. 8 

Flexibility has been added for future experiments. Only few modifications are needed in stage 9 

0 to add new control variables. The FORTRAN module io_input_models.f90 converts the 10 

standard variables from a given model to the analysis variables. The interface is already made 11 

with the WRF model. Only the FORTRAN module io_input_model.f90 needs to be updated 12 

to implement new model input and to run the different stages. The NetCDF format has been 13 

chosen to improve robustness and flexibility in the input and output of the different stages as 14 

shown in Table A2. The final NetCDF output file be.nc contains all the information needed 15 

for a variational data assimilation system, as shown in Table A3. Several converters from 16 

NetCDF format to binary have been developed to ensure backward compatibility to another 17 

data assimilation system. A binary file be.dat can be generated for the WRFDA application 18 

using the program gen_be_diags.f90 and a binary file be_gsi.dat can be created for GSI using 19 

the converter gen_be_nc2gsi.f90. 20 

 21 

 22 

23 
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Appendix B:  Description of the namelist options. 1 

 2 

The “namelist.input” file drives the different stages 0 to 4 contains four different sections.  3 

The namelist section "&gen_be_info", described in Table B1, defines the options to compute 4 

perturbations in stages 0 and 1 from input forecast model (e.g. WRF). Also, the data 5 

assimilation system can specified. 6 

Table B2, presents eight binning available option and Table B3 explains how to set up the 7 

namelist section "&gen_be_bin". In the GEN_BE code version 2.0, all the information that 8 

defines a binning option are encapsulated in the type bins_type. Since the algorithms of the 9 

different stages from 1 to 4 do not make any specific assumption on the binning option used, 10 

the implementation of new option is simplified as it needs to be defined just once in the 11 

da_create_bins FORTRAN routine of the module io_input.f90. In case of implementing 12 

geographical mask, developers have to introduce the method to update the mask in the 13 

update_dynamical_mask routine. All information related to binning is contained in the 14 

NetCDF file bin.nc created in stage 1.  15 

The Up transform is defined in section "&gen_be_cv" where the used control variables and 16 

balance operator are set up. Table B4 presents the CV5 control variable currently used in  the 17 

GSI system (Kleist et al. 2009). In this example, the use of the relative humidity (rh) (line 18 

covar5) allows to performed statistics in GEN_BE for the normalized relative humidity 19 

described by Holm (2002) and implemented in GSI. Furthermore, when the regression 20 

coefficients are computed for a GSI regional application, a Cholesky decomposition is used 21 

and additional filtering is applied to the regression coefficients between stream function and 22 

temperature, and between stream function and pressure surface. This part of the code coming 23 

from the NCEP is flagged with use_cholesky variable in the gen_be_stage2.F FORTRAN 24 

program, and the called subroutines are contained in the io_output_applications.f90 Fortran 25 

module. Table B5 shows the Up transform, called CV9, which includes hydrometeors in a 26 

multivariate approach.  27 

Table B6 contains the namelist section "&gen_be_lenscale" to diagnose parameters of the Uv 28 

and Uh transforms for stage 3 and stage 4 respectively. The vertical transform Uv can be 29 

performed by estimating a vertical length scale by model levels (data_on_level=true) or by a  30 

EOF decomposition (data_on_level=false). By default, statitics are binned with the same 31 



 30 

option defined section "&gen_be_bin" of the namelist.input file. Otherwise, the statistics are 1 

averaged by vertical level if the flag global_bin is true (which is equivalent to the defininition 2 

of bin_type=5). 3 

4 



 31 

 1 

Appendix C: Installation, compilation, set up and visualization. 2 

 3 

The GEN_BE code version 2.0 is a standalone package that can be installed on different 4 

UNIX/LINUX systems. It has been tested with the Intel FORTRAN compiler, the Portland 5 

Group FORTRAN compiler, and the GNU FORTRAN compiler. It requires compilation of 6 

NetCDF libraries. First, a configuration file needs to be created using the command configure 7 

in the main directory of the code. Then, the compilation, is launched by the command compile 8 

gen_be. Once successfuly completed, the executables are created in the src directory. 9 

Korn-shell scripts available in the scripts directory allow to setup the experiment. The 10 

wrapper script, named gen_be_wrapper.ksh, sets up some global variables and launches the 11 

main script gen_be.ksh. The user needs to setup most of the other options that determine the 12 

way to model the B matrix in the namelist.template file. The gen_be.ksh script fills out the 13 

initial date and the final dates, the frequency of date available (interval) coming from the 14 

global variables setup in the wrapper script and in the gen_be_set_defaults.ksh script, and 15 

generates a namelist.input file in the working directory during the first stage. The 16 

namelist.input file contains four main parts presented in Appendix B. Each stage can then be 17 

run successively by setting the environmental variable RUN_GEN_BE_STAGE [0,1,2,3,4] to 18 

true in the gen_be_set_defaults.ksh script. The output of the stages 0, 1, 2, 3 and the be.nc file 19 

can be easily visualized with existing tools (Ncview, NCL, Python, MatLab). 20 

 21 

22 
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 1 

Table 1: Description of the control variables available for the meteorology. 2 

 3 

Nomenclature of the 

control variables  

Description 

psi Stream function (ψ) 

chi Velocity potential (χ) 

vor Vorticity 

div Divergence 

u Horizontal wind component in x direction 

v Horizontal wind component in the y direction 

t Temperature 

ps Surface pressure 

rh Relative humidity 

qs Specific humidity 

qcloud Cloud water mixing ratio 

qrain Rain water mixing ratio 

qice Ice mixing ratio 

qsnow Snow mixing ratio 

sst Sea Surface Temperature 

 4 

5 



 40 

 1 

Table 2: Description of the setup of the background error matrix modelling diagnosed over 2 

the CONUS Domain. Beof and Brcf  are diagnosed using GEN_BE code version 2.0 and the D-3 

Ensemble method while Bnam is performed by NCEP using the NMC method. 4 

B Modeling 

 Beof and Brcf Bnam 

Model configuration WRF model, resolution 15 km, 

39 verticals levels on sigma 

hybrid grid 

WRF-NMM model, 

resolution 12 km, 60 verticals 

levels on eta grid 

Data assimilation setup DART, EAKF with adaptative 

covariance inflation, cycling 

period of 6 h, Perturbated 

Boundary conditions from 

GFS, assimilation of 

conventional and cloud track 

winds observations 

NDAS-GSI system, cycling 

period of 3 h, boundary 

conditions from GFS, 

assimilation of conventional 

and satellite radiances (clear- 

sky) observations 

Method to compute the 

perturbations 

D-ensemble method applied to 

50 pertubations coming from 6 

h forecasts of the different 

members of the ensemble  

NMC method applied to 60 

perturbations taken over a 

year, coming from time-

lagged forecasts of 12 h and 

24 h valid at the same time 

B transforms CV5 control variables  

Brcf: Uh and Uv transforms 

defined by recursives filters 

Beof: Uv transform defined by 

EOF decomposition 

Statistics of Brcf et Beof 

averaged by vertical level. 

CV5 control variables  

Bnam: Uh and  Uv transforms 

defined by recursives filters 

Statistics Bnam binned by 

latitude band of 1 degree 

 5 

6 
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Table A1. FORTRAN code description of the GEN_BE v2.0 framework.  2 

FORTRAN modules Comments 

variables_types.f90 It defines, declares and allocates new types as state_type, 

mesh_type, bin_type, state_matrix. Some basics 

operations as addition substraction, calculation of 

variance, covariance are available. 

configure.f90 It reads the namelist.input file and initialize the variables 

io_input_models.f90 It reads input standard variables from a model define by 

the user and convert them into control variables. If the 

user needs to introduce new input model, only this 

module needs to be updated to read and transform the 

data.  

io_input.f90 It reads NetCDF input data and initialize new types 

io_output.f90 It writes NetCDF output format for all new types  

io_output_applications.f90 It writes output for different application needs 

 3 

4 



 42 

 1 

Table A2. Input and output of the different components of the GEN_BE v2.0 code. 2 

Programs Input output comments 

gen_be_stage0.F Various models (ex: WRF) pert.ccyymmddhh  It contains the perturbations for all the 

control variables defined in the namelist 

  mesh_grid.nc  

All_mesh.grid.nc 

It contains all the static data as latitude 

array, longitude array, map factors 

  mask.ccyymmddhh This file exists only with the option 

dynamical_mask which is activated with 

bin_type=7 or bin_type=8 

  standard_variable.txt 

control_variable.txt 

It contains the list of the control 

variables in ASCII format. 

gen_be_stage1.F pert.ccyymmddhh var. ccyymmddhh The input file is split per variables 

  bins.nc All the information related to the 

binning options are included in this file. 

gen_be_stage2.F var. ccyymmddhh 

 

gen_be_stage2_regcoeff.nc All the regression coefficients are 

included in this file 

  var(_u) ccyymmddhh 

 

If a linear regression is applied to the 

current variable to remove its balanced 

part, an unbalanced output variable is 

written under this nomenclature 

gen_be_stage3.F var(_u). ccyymmddhh gen_be_stage3_vert_lenscale.var(_u).nc It contains the vertical length scale 

parameter for the full or unbalanced part 

of the variable 

  gen_be_stage3_varce.var(_u).nc Variance 3 dimensions by grid point 

  gen_be_stage3_vert_varce(_u).nc Binned  vertical variance. 

  var(_u).ccyymmddhh.ennn.kkk Intermediate binary files split by 

vertical level. 

gen_be_stage4.F var(_u).ccyymmddhh.ennn.kkk sl_print.blll.qcloud Intermediate ASCII file format that 

contain the horizontal length scale. 

gen_be_diags.F Results of the precedents 

stages from 2 to 4 

be.nc Final netcdf file that contains all the 

information to model B. 

gen_be_nc2gsi.F be.nc be_gsi_little_endian.gcv 

be_gsi_big_endian.gcv 

Binary format directly readable by GSI. 

 3 

4 
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 2 

 3 

Table A3. Content of the final output file be.nc (NetCDF format) of the GEN_BE v2.0 code. 4 

Name of the field  Description 

Fields defined by control variable name (e.g. cv1) 

Lenscale_cv1 Horizontal length scale in EOFs space or physical space 

vert_lenscale_cv1 Vertical length scale available only if the flag data_on_levels 

is true and the control variable number 1 is 3D. 

vert_variance_cv1 Vertical variance of the control variable number 1 per bin 

eigen_value_cv1 Eigenvalue of the control variable number 1 only available if 

the flag data_on_levels is false 

eigen_vector_cv1 Eigenvector of the control variable number 1 only available if 

the flag data_on_levels is false 

varce_cv1 Variance 3D 

Regression coefficients 

list_regcoeff Complete list of the regression coefficients used in the balance 

constraint. 

regcoeff_cv1_cv2 Example of regression coefficient between the control variable 

1 and 2. It can be 1D, 2D or 3D 

vert_autocov_cv1 Vertical autocovariance of the control variable number 1 

Binning parameters 

bin_type Bin_type option selected  

bin2d Binning field 2D array  

bins Binning field 3D array 

 5 

6 
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 2 

 3 

Table B1. General information defining the experiment in the namelist iput file 4 

(&gen_be_info part). 5 

&gen_be_info Namelist options Description 

model ‘WRF’ Set up the acronym for the model input allows 

GEN_BE to read different input model in the 

stage 0. 

application ‘WRFDA’ ‘WRFDA’ and ‘GSI’ interface have been 

developed and tested. 

be_method ‘ENS’ or ‘NMC’ Compute perturbations from an ensemble or  

from different time lagged forecast. 

ne Number of members If NMC method ne=1. 

cut  0, 0, 0, 0, 0, 0, Allow to subset an area of a domain, defined 

in grid points. imin, imax, jmin, jmax, kmin, 

kmax. 

use_mean_ens ‘false’ If be_method=‘ENS’ is selected, the 

perturbation can be calculated from the mean 

of all the members or from 2 different 

members. 

start_date ‚_START_DATE_’ Initial date, format ccyymmddhh. 

end_date ‚_END_DATE_’ Final date, format ccyymmddhh. 

interval ‘hh’ Frequency of the historical date data available, 

defined in hour (useful for the NMC method 

only). 

 6 

7 
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Table B2. Description of the binning options. 2 

Bin_type  Description 

0 Binning by grid point. 

1 Binning by vertical level along the x direction point of the model. 

2 Binning by vertical heights and by latitude num_bins_lat. The parameters 

binwidth_lat and binwidth_hgt define the width that splits the bins. 

3 Binning by vertical model level and latitude dependent. The parameters 

lat_min, lat_max are computed from the model input data and the 

parameter binwidth_lat is defined in the namelist.input file.  

4 Binning by vertical model level and along the y direction. 

5 Binning on vertical model level including all the horizontal point. 

6 Average over all points. 

7 Binning rain/no-rain by vertical model level and based on thresholds in 

the model background (Michel and al., 2011.). 

 3 

4 
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Table B3. Parameters defining the binning options of the namelist input file (&gen_be_bin 1 

part). 2 

&gen_be_bin Namelist 

options 

Description 

bin_type 0-7 Bin type option 

lat_min, lat_max  Minimum and Maximum of latitude defined in 

degree. Used if bin_type = 2 

binwidth_lat 5.0 Width of the bins defines by latitude in degree 

Used if bin_type = 2, 3, 4 

hgt_min 1000.0 Used if bin_type = 2 (height, meter) 

binwidth_hgt 2000.0 Width of bins defines by height in meter 

Used if bin_type = 2 (meter) 

 3 

4 
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 3 

Table B4. Information related to the control variables and their covariance errors in the 4 

namelist input file (&gen_be_cv part, example CV5). At present, the parameter covar can take 5 

three values: 0, 1, and 2, meaning “no regression”, “full regression” and “diagonal only”.  6 

&gen_be_cv Namelist options Description 

nb_cv 5,  Number of control variables 

cv_list ’psi’,’chi’,’t’,’ps’,’rh’, Variables used for the analysis 

fft_method  1,2 Conversion of u and v to psi and chi 

1=Cosine, 2=Sine transform 

covar1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, First variable does not have covariance 

covar2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, Covariance of variable 1 (psi) and variable 2 (chi) 

covar3 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, Covariance of variable 1 (psi) with variable 3 (t) 

covar4 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, Covariance of variable 1 (psi) with variable 3 (ps) 

covar5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Relative humidity univariate 

covar6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Other possible variable 

use_chol_reg .false. by default, compute the regression coefficient as a 

ratio of covariance by variance. If true, use a 

cholesky decomposition (specific to GSI, CV5).  

 7 

 8 

9 
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Table B5. Information related to the control variables and their covariance errors in the 2 

namelist input file (&gen_be_cv part, example CV9, definition of multivariate humidity and 3 

hydrometeors error covariance matrix). 4 

&gen_be_cv Namelist Options 

nb_cv  9, 

cv_list  ’psi’,’chi’,’t’,’ps’,’rh’,’ qcloud’,’ qice’,’ qrain’,’ qsnow’, 

covar1  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

covar2  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

covar3  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

covar4  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

covar5  0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 

covar6  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 

covar7  0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 

covar8  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

covar9  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

 5 
6 
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Table B6. Description of the options available in the namelist input file (&gen_be_lenscale 2 

part) to diagnose length scale parameter. 3 

&gen_be_lenscale Namelist options Description 

data_on_levels ‘true’ The statistics can be computed by vertical 

model level (GSI) or by EOF mode 

(WRFDA) in stage 3 

vert_ls_method 1, 2 Estimate  the vertical length scale (stage 3)  

Option 1: parabolic approximation formula 

Option 2: gaussian approximation formula 

ls_method  1, 2 Estimate horizontal length scale (stage 4) 

See Sect. 3.4 for more details. 

use_med_ls ‘false’ Estimate the length using the median value 

or not. 

stride 1 Subset of point to speed up the stage 4 

n_smth_ls 2 Number of point to smooth the length scale 

use_global_bin ‘false’ The statistics can be binned 

(use_global_bin=false) or not in stages 3 

and 4. Only inhomogeneous recursive filters 

can handle binned length scale. 

 4 

 5 

6 
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 2 

Figure 1. General structure of the code to generate a background error covariance matrix. The 3 

input and output are represented by the orange boxes and the five main stages that lead to 4 

model B are in blue. 5 

6 
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Figure 2. WRF domain over the conus area at the resolution of 15 km. Based on this 2 

configuration, the 50 members coming from a 6h forecast (DART experiment) are used to 3 

generate background error statistics. 4 

 5 

 6 

Figure 3. Plot of Pressure (hPa) against vertical model levels (WRF, Res. 15 km). 7 

 8 
 9 

10 
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 2 

  

Figure 4. (a) Vertical cross-correlation between temperature (t) and specific humidity (qs), (b) 3 

vertical cross-correlation between temperature (t) and relative humidity (rh); (WRF, Res. 15 4 

km, D-ensemble). 5 

 6 
7 

(a) (b) 
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Figure 5. Horizontal autocorrelation performed at the center of each square grid over vertical 3 

model level 5, around 950 hPa, for the control variables (a) stream function (psi), (b) 4 

temperature (t), (c) relative humidity (rh), and (d) cloud mixing ratio (qcloud). Larger 5 

correlations are observed for stream function compared to temperature and relative humidity. 6 

Cloud mixing ratio has the smallest correlation due to sparce location of hydrometeors (WRF, 7 

Res. 15 km, D-ensemble). 8 

9 

 

(c) (d) 

(a) (b) 
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Figure 6. Representation of the first five eigenvectors resulting from the EOF decomposition 3 

of the vertical autocovariance matrix, eigenvectors of (a) psi, (b) chiu, (c) tu, and (d) rh. The 4 

eigenvectors are parameters that define the vertical transform (Uv); (WRF, Res. 15 km, D-5 

ensemble, EOFs). 6 

7 

(a) (b) 

(c) (d) 
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Figure 7. Eigenvalues computed by EOF mode for (a) psi, (b) chiu, (c) tu and (d) rh. They 2 

represent the variance of the control variables (WRF, Res. 15 km, D-ensemble, EOFs).  3 

 4 

Figure 8. Length scales defined in grid point through EOF mode for CV5. The analysis 5 

control variables representating the dynamical variables, psi and chiu, have longer length 6 

scales than tu, and rh (WRF, Res. 15 km, D-ensemble, EOFs). 7 

8 

(a) (b) 

(c) (d) 
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Figure 9. Horizontal length scales for CV5. tu and rh, which have more local structures, are 2 

modeled by shorter length scales (WRF, Res. 15 km, D-ensemble, RFs). 3 
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Figure 10. Vertical length scale for CV5 (WRF, Res. 15 km, D-ensemble, RFs). 2 

3 
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Figure 11. Pseudo observation test of temperature (innovation of +1 K) from the WRFDA 2 

application. The three plots on the left panel show, from top to bottom, horizontal cross-3 

section (XY) of t (K), U and V wind component (m s-1) respectively. Then, the right panel 4 

shows the corresponding cross-section (XZ) of the former variables (Beof: WRF Res. 15 km, 5 

D-ensemble, EOFs). 6 

7 
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Figure 12. Pseudo observation test of temperature (innovation of +1 K) from the GSI 2 

application. The three plots on the left panel show, from top to bottom, horizontal cross-3 

section (XY) of t (K), U and V wind component (ms-1) respectively. Then, the right panel 4 

shows the corresponding cross-section (XZ) of the former variables. (Brcf: WRF Res. 15 km, 5 

D-ensemble, RFs). 6 

7 
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 3 

Figure 13. Pseudo observation test of temperature (innovation of +1 K) from the GSI 4 

application. The three plots on the left panel show, from top to bottom, horizontal cross-5 

section (XY) of t (K), U and V wind component (ms-1) respectively. Then, the right panel 6 

shows the corresponding cross-section (XZ) of the former variables. (Bnam:WRF-NMM Res. 7 

12 km, NMC, RFs). 8 
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Figure 14. (a) Raw vertical cross-correlations between cloud mixing ratio (qcloud) and relative 3 

humidity (rh), (b) filtered vertical cross-correlations between qcloud and rh, (c)  raw vertical 4 

cross-correlations between ice mixing ratio (qice) and rh, (d) filtered vertical cross-correlations 5 

between qice and rh. Taking into account the perturbations coming from the transition of a 6 

(a) (b) 

(c) (d) 
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cloudy to a non-cloudy area only when reaching the threshold mixing ratio of 10-6 kg kg-1, 1 

intensifies the vertical correlation (WRF, Res. 15 km, D-ensemble).  2 

 3 

4 
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Figure 15. “Horizontal length scale for the hydrometeors using  (a) 50 members and (b) using 2 

5 members. The plots show similar characteristics regardless to the ensemble members (WRF, 3 

Res. 15 km, D-ensemble). 4 

 5 

  

Figure 16. Vertical length scale for the hydrometeors using  (a) 50 members and (b) using 5 6 

members. The plots show similar characteristics regardless to the ensemble members (WRF, 7 

Res. 15 km, D-ensemble). 8 

9 

(a) (b) 

(a) (b) 
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Figure 17. (a) Horizontal slide (vertical model level 5) of a pseudo observation test of cloud 3 

water condensate (Innovation and observation error of 0.1 g kg-1) in a multivariate approach 4 

using the 3-D variance, (b) as a consequence there is a positive increment on qvapor (WRF, 5 

Res. 15 km, D-ensemble, RFs). 6 

 7 

 

 

Figure 18. (a) Profile of standard deviation of liquid water condensate mixing ratio (qcloud in g 8 

kg-1) averaged along the vertical and (b) horizontal cross-section of standard deviation of 9 

(a) (b) 

(a) (b) 
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qcloud at the vertical model level 5 (950 hPa). Both plots indicate the presence of low maritime 1 

clouds noted by high standard deviation (WRF, Res. 15 km, D-ensemble). 2 

3 
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Figure 19. Vertical standard deviation in ppmv of  (a) O3, (b) NO2, (c) NO, and (d) CO 3 

(WRF-CHEM, Res. 36 km, D-ensemble). 4 
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 6 
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Figure 20. Horizontal length scale of O3, NO2, NO, and CO (WRF-CHEM, Res. 36 km, D-2 

ensemble). 3 

 4 

Figure 21. Vertical length scale of O3, NO2, NO, and CO (WRF-CHEM, Res. 36 km, D-5 

ensemble). 6 

 7 

 8 

 9 

 10 
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