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Abstract

This study evaluates the ability of the JULES Land Surface Model (LSM) to simulate pho-
tosynthesis using local and global datasets at 12 FLUXNET sites. Model parameters include
site-specific (local) values for each flux tower site and the default parameters used in the Hadley
Centre Global Environmental Model (HadGEM) climate model. Firstly, Gross Primary Produc-5

tivity (GPP) estimates from driving JULES with data derived from local site measurements were
compared to observations from the FLUXNET network. When using local data, the model is
biased with total annual GPP underestimated by 16 % across all sites compared to observations.
Secondly, GPP estimates from driving JULES with data derived from global parameter and at-
mospheric reanalysis (on scales of 100 km or so) were compared to FLUXNET observations.10

It was found that model performance decreases further with total annual GPP underestimated
by 30 % across all sites compared to observations. When JULES was driven using local param-
eters and global meteorological data, it was shown that global data could be used in place of
FLUXNET data with a 7 % reduction in total annual simulated GPP. Thirdly, the global me-
teorological datasets, WFDEI and PRINCETON, were compared to local data to find that the15

WFDEI dataset more closely matches the local meteorological measurements (FLUXNET). Fi-
nally, the JULES phenology model was tested by comparing results from simulations using the
default phenology model to those forced with the remote sensing product MODIS Leaf Area
Index (LAI). Forcing the model with daily satellite LAI results in only small improvements in
predicted GPP at a small number of sites compared to using the default phenology model.20

1 Introduction

The atmosphere and biosphere are closely coupled and carbon is transported between the two
via the carbon cycle (Cao and Woodward, 1998). Although the carbon cycle is significantly
affected by global warming, much still remains to be understood about its behaviour (Schimel,
2007). Atmospheric CO2 represents only a small amount of carbon in the Earth System with25

the rest tied up in various reservoirs (Ciais et al., 2013). These reservoirs can be either sources
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(release more carbon than they absorb) or sinks (absorb more carbon than they release). Sources
can be either man-made (combustion of fossil fuels, deforestation) or natural (plant and litter
decomposition, soil respiration, ocean release) and sinks include land vegetation, soils, oceans
and geological reservoirs, such as deep-sea carbonate sediments and the upper mantle (Ciais
et al., 2013). Of the carbon dioxide emitted into the atmosphere from the burning of fossil fuels,5

roughly half remains in the atmosphere and the rest is absorbed by carbon sinks on land and in
the oceans (Le Quéré et al., 2009).

Global warming can affect terrestrial ecosystems in two ways. Firstly, increasing atmospheric
CO2 concentrations have led to an increase in photosynthesis (Beck et al., 2011; Fensholt et al.,
2012), which has increased both carbon uptake and storage by terrestrial ecosystems (Norby10

et al., 2005; Leakey et al., 2009). This is known as CO2 fertilisation. This increase in atmo-
spheric CO2 has led to an increase in growing season Leaf Area Index (LAI) Piao et al. (2006).
It also reduces plant transpiration and increases plant water use efficiency through the partial
closure of stomata (Warren et al., 2011). Secondly, a warmer climate can accelerate the decom-
position of litter and soil organic carbon, and increase plant respiration.15

Predictions of the future uptake of atmospheric CO2 by the terrestrial biosphere are uncertain
and this uncertainty comes from whether the terrestrial biosphere will continue to be a sink or
source for CO2. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP)
was the first major study to examine the coupling between climate change and the carbon cycle
(Friedlingstein et al., 2006). One of its main conclusions was the reduced efficiency of the earth20

system, in particular the land carbon sink, to absorb increased anthropogenic CO2. However,
the magnitude of this effect depended on the model used.

Land surface models (LSMs) are an important component of climate models and simulate
the interaction between the atmosphere and terrestrial biosphere. They represent the surface
energy and water balance, climate effect of snow and carbon fluxes (Pitman, 2003) and are25

considered the lower boundary condition for Global Climate Models (GCMs) (Best et al., 2011).
GCMs require the carbon, water and energy fluxes between the land surface and atmosphere
to be specified. Meteorological data, vegetation and soil characteristics are provided as inputs
to LSMs, and using these, LSMs can predict fluxes, such as latent and sensible heat, upward
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longwave radiation and net ecosystem exchange of CO2, which is used to determine global
atmospheric CO2 concentrations. Various LSMs have been designed over the last 40 years to
calculate these fluxes (Dai et al., 2003).

The earliest GCMs to include a representation of the land surface, based it on the simple
“bucket” model. In this model, the soil is assumed to have a fixed water capacity (like a bucket)5

and at each land gridbox and timestep, the bucket is filled with precipitation and emptied by
evaporation (Carson, 1982). The excess above its capacity is termed runoff. This model does
not take vegetation or soil types into account. The second generation of land surface schemes
attempted to explicitly represent the effects of vegetation in surface energy balance calculations
and include the Biosphere-Atmosphere Transfer Scheme (BATS) (three soil layers and one10

vegetation layer) (Dickinson , 1986) and the Simple Biosphere (SiB) Model (three soil layers
and two vegetation layers) (Sellers et al., 1986). The current generation of models include the
biological control of evapotranspiration with biochemical models of leaf photosynthesis linked
to the biophysics of stomatal conductance (Farquhar et al., 1980; Bonan, 2008) and can respond
to changes in atmospheric CO2 in a more realistic way.15

LSM components are designed using results from research literature, idealized laboratory ex-
periments and observations from limited field campaigns (Stöckli et al., 2008; Williams et al.,
2009). This can lead to sources of uncertainty in the parameterisation of processes and as LSMs
become more advanced, there is a need to understand their complexity and accuracy. LSMs
can be tested in a variety of ways. Multimodel intercomparison projects provide a measure of20

how various LSMs behave under controlled conditions (Schaefer et al., 2012; Cadule et al.,
2010; Randerson et al., 2009; Dirmeyer et al., 2006; Henderson-Sellers et al., 1996). Parame-
ter perturbation experiments evaluate a single model and numerous simulations are performed
where either one parameter is changed at a time within a given range (Knorr, 2000; Knorr and
Heimann, 2001; El Maayar et al., 2002) or maximum and minimum values of parameters are25

used (Hallgren and Pitman, 2000). Recently, in the LSM community, there has been effort to
create a more standardised form of model evaluation known as benchmarking, whereby pub-
licly available datasets, at various temporal and spatial resolutions, along with metrics and areas
of model performance to be evaluated, are used by different modelling groups to test model
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performance (Abramowitz, 2012; Luo et al., 2012). This has previously been carried out by
Abramowitz et al. (2008) and Blyth et al. (2011).

Blyth et al. (2011) evaluated JULES at 10 FLUXNET sites, representing a range of biomes
and climatic conditions, where model parameter values were taken as if the model was em-
bedded in a GCM, in order to assess the model’s ability to predict observed water and carbon5

fluxes. We extend this work by performing model simulations whereby model parameters (Ta-
ble 1) are set to observed local site conditions and compared to those using global and satellite
data. Local site conditions are those relevant to a particular flux tower site and were obtained
from the research literature, communications with site Primary Investigator and the Ameriflux
data archive. Global data refers to model parameters taken from datasets used by the global10

operational version of JULES and meteorological data from global gridded datasets extracted
for each flux tower gridbox. The satellite data refers to LAI data from the MODerate resolu-
tion Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s Earth Observing System
(EOS) satellites, Terra and Aqua (http://modis.gsfc.nasa.gov).

In this study, we use 12 FLUXNET sites that cover a range of ecosystem types; temperate (6),15

boreal (2), mediterranean (2) and tropical (2) (Table 2), to investigate differences between using
local, global and satellite-derived datasets when performing model simulations with JULES
version 3.0 (Clark et al., 2011; Best et al., 2011). In particular, we address the following research
questions:

– How well does JULES perform when using the best available local meteorological and20

parameter datasets? Can the model simulate interannual variability?

– How well does JULES perform when using global data?

– Of the global meteorological datasets used in this study which one compares best to
FLUXNET data?

– Are improvements in simulated GPP observed when forcing JULES with daily satellite25

phenology compared to using the default phenology module?
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2 Methods and model

2.1 Model description

The Joint UK Land Environment Simulator (JULES) is the land surface scheme of the UK
Met Office Unified Model (UM) (current version 8.6), a family of models which includes the
Hadley Centre Global Environmental Model (HadGEM) climate model (http://www.metoffice.5

gov.uk/research/modelling-systems/unified-model). It has evolved from the Met Office Surface
Exchange Scheme (MOSES) (Cox et al., 1999). JULES is a mechanistic model and is able to
model such processes as photosynthesis, evapotranspiration, soil and snow physics, and soil
microbial activity (Blyth et al., 2011). Each model gridbox is composed of 9 different surface
types, five of which are vegetation, referred to as Plant Functional Types (PFTs) (broadleaf trees,10

needleleaf trees, C3 (temperate) grass, C4 (tropical) grass and shrubs), and four non-vegetation
types (urban, inland water, bare soil and land-ice). Each gridbox can be made up of the first
8 surface types or is land-ice. For single-point model simulations, as used in this study, each
point is treated as a gridbox with data such as surface type fractions, soil texture fractions and
meteorological data used as input to the model.15

The surface fluxes of CO2 associated with photosynthesis are computed on each timestep for
each PFT using a coupled photosynthesis-stomatal conductance model (Cox et al., 1998). These
accumulated carbon fluxes are passed to TRIFFID (Top-down Representation of Interactive
Foliage and Flora Including Dynamics), JULES’ dynamic global vegetation model and also its
terrestrial carbon cycle component (Cox, 2001) TRIFFID updates the areal coverage, LAI and20

canopy height for each PFT on a longer timestep (usually every 10 days), based on the net
carbon available to it and competition with other vegetation types (Cox, 2001). For these model
simulations, vegetation competition has been disabled, which means the PFT fractions for each
site are prescribed and do not vary with time. If vegetation competition was switched on during
the spin-up process, this would introduce error into the model simulations due to unrealistic25

vegetation fractions.
In JULES, phenology is, typically, updated once per day by multiplying the annual maximum

LAI by a scaling factor, which is calculated by using temperature-dependent leaf turnover rates
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(Clark et al., 2011). When calculating GPP, a multi-layer canopy was used for the scaling up of
leaf-level photosynthesis to canopy level. The option used takes into account the vertical gradi-
ent of canopy photosynthetic capacity (decreasing leaf nitrogen from top to bottom of canopy)
and includes light inhibition of leaf respiration. LAI is calculated for each canopy level (default
number is 10), with a maximum LAI prescribed for each PFT. Clark et al. (2011) contains more5

information on the options available for the calculation of canopy photosynthesis. Two versions
of JULES were used in this study. JULES3.0 is the original and publicly available release code
of JULES version 3.0. The source code can be downloaded from https://jules.jchmr.org/. In ad-
dition, JULES3.0 was modified in order to force it with daily MODIS LAI (JULESmod). The
local (standalone) and global operational versions of JULES are quite similar. Since UM v8.110

(using JULES v3.0), the JULES code for both have been the same with some exceptions, such
as the UM/standalone initialisation code. The science code (e.g. photosynthesis, hydrology and
soil processes) remains the same between the two. A more detailed description of JULES can
be found in Clark et al. (2011) and Best et al. (2011).

2.2 Experimental design15

Offline single point simulations of GPP were performed at each of the 12 flux tower sites using
various global and local datasets (Table 3). Correct simulation of GPP is important since errors
in its calculation can propagate through the model and affect biomass and other flux calcula-
tions, such as Net Ecosystem Exchange (NEE) (Schaefer et al., 2012). In JULES, NEE is not
a model output and is calculated as total ecosystem respiration minus GPP. The correct rep-20

resentation of leaf level stomatal conductance has an influence on GPP and transpiration and
errors in GPP can also introduce errors into simulated latent and sensible heat fluxes. These
study sites (Blyth et al., 2011; Abramowitz et al., 2008, Table 4) were chosen to validate model
performance in carbon flux simulation since gap-filled meteorological data, local observations
of vegetation and soil characteristics and observed GPP fluxes were available.25

One year model simulations were performed and span a range of years due to limited avail-
ability of local gap-filled meteorological data, observations of GPP fluxes and vegetation char-
acteristics (Table 2). Prior to performing the model simulations, the soil carbon pools at each site

5347

https://jules.jchmr.org/


D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

were brought to equilibrium using a 10 year spin-up by cycling 5 year averaged meteorological
data (in equilibrium mode), followed by a 1000 year spin-up by cycling observed meteorolog-
ical data (in dynamical mode). At Tumbarumba, Santarem Km67 and Santarem Km83, 3 year
averaged meteorological data was used in the first part of the spin-up process due to limited data
availability. More information on model spin-up can be found in Clark et al. (2011).5

2.3 Data

JULES requires meteorological data at 6 hourly intervals or less in order to drive the model
offline. In this study, half-hourly/hourly meteorological data was used for model runs using
local data and 3 hourly data for simulations using global data. For offline simulations, the
model requires downward shortwave and longwave radiation (W m−2), rainfall and snowfall10

rate (kg m−2 s−1), air temperature (K), wind speed (m s−1), surface pressure (Pa) and specific
humidity (kg kg−1) (Table 1). Gap-filled meteorological forcing data at the local scale was ob-
tained from the FLUXNET network and data at the global scale was obtained from two gridded
datasets; WFDEI Weedon et al., 2014, 2011) and that developed by Sheffield et al. (2006) (re-
ferred to as PRINCETON).15

Vegetation and soil parameters (Table 1) were adjusted to local or global values depend-
ing on the model simulations (Table 3) performed at the 12 flux tower sites. Local vegetation
(Table 4, Table 5) and soil parameters (not shown) were obtained from the research literature,
communications with site Primary Investigator and the Ameriflux data archive. Global veg-
etation (Table 4, Table 5) and soil parameters (not shown) were taken from datasets used in20

the global operational version of JULES as used in the Hadley Centre Global Environmental
Model (HadGEM) climate model. These datasets include the Global Land Cover Characteriza-
tion (version 2) database (http://edc2.usgs.gov/glcc/glcc.php) (PFT fractions), and the Harmo-
nized World Soil Database (version 1.2) (Nachtergaele et al., 2012) (soil texture fractions).

There are several global LAI datasets available, such as ECOCLIMAP (1992) (Masson et al.,25

2003), CYCLOPES (1997-2007) (Baret et al., 2007), GLOBCARBON (1998-2003) (Deng
et al., 2006), MOD15 (2000-present) (Yang et al., 2006) and MISR LAI (2000-present) (Diner
et al., 2008; Hu et al., 2007). For the majority of sites used in this study, gap-filled meteoro-
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logical data and GPP flux observations are only available for the 2000s and therefore, a global
dataset of satellite LAI was required that covered this period. We used the MODIS LAI product
because it is a high spatial and temporal resolution dataset with global coverage.

2.3.1 Forcing data

FLUXNET, a “network of regional networks”, is a global network of micrometeorological tower5

sites that measure the exchange of carbon dioxide, water vapour and energy between the bio-
sphere and atmosphere across a range of biomes and timescales (Baldocchi et al., 2001). Data
and site information are available at http://www.fluxnet.ornl.gov/. Over 500 tower sites are lo-
cated worldwide on five continents and are used to study a range of vegetation types such
as temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal10

forests, crops, grasslands, wetlands, and tundra (Baldocchi et al., 2001).
The WATCH Forcing Data (WFD) (1901-2001) was created in the framework of the Water

and Global Change (WATCH) project (http://www.eu-watch.org/), which sought to assess the
terrestrial water cycle using land surface models and general hydrological models. WFD was
derived using the 40 yr ECMWF Re-Analysis (ERA-40) for 1958–2001 and data for 1901–195715

was obtained using random years extracted from the ERA-40 data (Weedon et al., 2011). WFD
was extended by applying the WFD methodology to the ERA-Interim data for the 1979–2009
period (WFDEI) (Weedon et al., 2014). Within WFD and WFDEI, there are two precipitation
products, the first corrected using the Climate Research Unit at the University of East Anglia
(CRU) observations and the second using Global Precipitation Climatology Centre (GPCC)20

observations. The WFDEI datasets incorporating the GPCC- and CRU-corrected precipitation
products are referred to as WFDEI-GPCC and WFDEI-CRU, respectively. WFDEI is only avail-
able for land points including Antarctica, and consists of 3 hourly, regularly (latitude-longitude)
gridded data at half-degree (0.5◦× 0.5◦) resolution. This resolution produces a global grid of
360 x 720 grid cells and is equivalent to a surface resolution of about 56 km x 56 km at the25

equator and 56 km x 32 km at 55 degrees north (temperate regions).
The Sheffield et al. (2006) dataset (PRINCETON) is a global 60 yr meteorological dataset

for driving land surface models developed by the Land Surface Hydrology Research Group at
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Princeton University. PRINCETON is only available for land points (excluding Antarctica), and
consists of 3 hourly, 1◦ resolution, meteorological data for the 1948–2008 period. This dataset
has a resolution half that of WFDEI with a global grid of 180 x 360 grid cells and is equivalent
to a surface resolution of about 111 km x 111 km at the equator and 111 km x 64 km at 55
degrees north. The resolution (both spatial and temporal) of the meteorological data can affect5

the output of land surface and atmospheric chemistry models (Pugh et al., 2013; Ashworth et al.,
2010; Ito et al., 2009; Guenther et al., 2006) and may introduce a systematic bias.

2.3.2 Observational data

Local observations of GPP were obtained from the FLUXNET network. Flux tower sites use
the eddy covariance method to measure net ecosystem exchange (NEE), which is defined as the10

net flux of CO2, and is separated into GPP and ecosystem respiration with a ‘flux-partitioning
algorithm’ (Reichstein et al., 2005). There are a number of approaches used to separate NEE
into its two component fluxes, which include extrapolating night-time respiration measurements
to the daytime and fitting light-response curves to daytime NEE measurements (Lasslop et al.,
2010). In addition to flux-partitioning, the data must also be gap-filled due to unfavourable15

meteorological conditions and instrument failure (Reichstein et al., 2005). These processes carry
with it some uncertainty which must be quantified. Hagen et al. (2006) found that the uncertainty
at the half-hourly timescale was of the order of the observations themselves (i.e. ~100%), but
only ~10% at annual timescales for a temperate deciduous forest.

2.3.3 Ecological and soil data20

The Global Land Cover Characterization (version 2) database, generated by the US Geological
Survey, the University of Nebraska-Lincoln, and the European Commission’s Joint Research
Centre, is a 1 km resolution global land cover dataset for use in environmental and modelling
research (Loveland et al., 2000). Land cover is classified into 17 categories using the Interna-
tional Geosphere–Biosphere Programme (IGBP) scheme. The land cover category for each of25

the flux tower sites was extracted from the GLCC database (IGBP code in Table 4). These IGBP
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codes are then used to derive the annual maximum LAI and canopy height for each PFT from
the look-up tables used in the global operational version of JULES. Further information on how
these variables are derived can be found in Appendix A.

Global soil texture fractions (% of sand, silt and clay) for each of the 12 FLUXNET sites (not
shown here) were extracted from the Harmonized World Soil Database (version 1.2) (HWSD)5

(Nachtergaele et al., 2012). The equations used to compute soil hydraulic and thermal charac-
teristics were taken from the Unified Model Documentation Paper No 70 (Jones, 2007). Note
that the equations in Jones (2007) apply only to mineral soils, as organic soils behave differently
(Gornall et al., 2007). In this study, the soils are classified as mineral at all 12 sites. Since the
HWSD contains soil textures for two soil depths (0–30 and 30–100 cm) and JULES contains10

four soil layers (thicknesses of 0.1, 0.25, 0.65 and 2.0), the 0–30 cm soil textures were assigned
to the top two model soil layers (thicknesses 0.1 and 0.25 m, respectively), and the 30–100 cm
textures were assigned to the bottom two layers (thicknesses 0.65 and 2.0 m, respectively). The
local soil textures are provided as site averages and therefore, each model soil layer (4 in total)
is assigned the same set of soil textures.15

2.3.4 MODIS LAI products

The MODIS LAI product, computed from MODIS spectral reflectances, provides continuous
and consistent LAI coverage for the entire global land surface at 1 km resolution (Yang et al.,
2006). Some gaps and noise in the data are possible due to the presence of cloudiness, sea-
sonal snow cover and instrument problems, and this can limit the usefulness of the product20

(Gao et al., 2008; Lawrence and Chase, 2007). In this study, we use the MODIS Land Prod-
uct Subsets, created by the Oak Ridge National Laboratory Distributed Active Archive Center
(ORNL DAAC), which provide summaries of selected MODIS Land Products for use in model
validation and field site characterisation and include data for more than 1000 field sites and flux
towers (http://daac.ornl.gov/MODIS/).25

The MODIS Land Product Subsets (ASCII format) contain LAI data for a 7km× 7 km grid
of 49 pixels, with each pixel representing the 1km× 1 km scale, at 8 day composite intervals.
The average of the 3× 3 pixel gridbox centred on the flux tower is taken to be that day’s LAI
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value. Only pixel values with an even quality control (QC) flag was used for the averaging and
this produced a time-series of 8 day observations at each of the sites. Missing data were dealt
with by using the previous good value in the time-series. The exception to this was Bondville,
where missing data occurred in January 2000, since MODIS only started recording data in
February 2000 (this year was used due to limited data availability at the site). To gap-fill the5

missing data, an 11 year average was computed and the missing data replaced with the average
for January 2000. Finally, each time-series of 8 day composite values was linearly interpolated
to obtain a daily LAI time-series.

2.4 Outline of experiments

This section describes the model simulations performed in the study. In the model simulation10

names, local and global refer to the parameter set and F, WEIG, WEIC and P refer to the
meteorological forcing dataset used (Table 3). Vegetation competition has been switched off for
all model simulations.

2.4.1 Effect of local data on simulated GPP

Using JULES3.0, we compare model simulations using local parameter and meteorological15

datasets (local-F; Table 3) to observations of GPP from the FLUXNET network. For this set of
model simulations, the default phenology model (used to update LAI) and TRIFFID were used.

The ability of the model to simulate interannual variability was also examined. Multi-year
model simulations were performed for 6 of the sites using local data; one from each of the
various climate zones (Harvard Forest, Vaira Ranch, Hyytiala, Santarem Km67), the Southern20

Hemisphere site (Tumbarumba) and the temperate site, Morgan Monroe. Since meteorological
data was available for multiple years at these sites, but not model parameter data, the same
parameter datasets used for the single-year runs (Table 2) would be used for the multi-year runs
at specific sites.
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2.4.2 Effect of global data on simulated GPP

Using JULES3.0, we compare model simulations using parameter sets from the HadGEM
model and global meteorological data (global-WEIG, global-WEIC and global-P; Table 3) to
observations of GPP from the FLUXNET network. In addition to this, we quantify how much
error is introduced into model simulations (using local model parameters) when using global5

(WFDEI-GPCC) instead of local meteorological data (local-WEIG and local-F in Table 3). In
these model simulations, the default phenology model and TRIFFID were used.

2.4.3 Comparison of global to local meteorological data

The WFDEI-GPCC, WFDEI-CRU and PRINCETON datasets are compared to FLUXNET to
find out which one more closely captures the local meteorological conditions.10

2.4.4 Daily satellite phenology

Using JULES3.0 and JULESmod, we test the ability of the JULES phenology model to simulate
the seasonal cycle of GPP by comparing model simulations where JULES uses MODIS LAI
data (local-FM and local-FNM; Table 3) to those using the default phenology model (local-F;
Table 3). When using the default phenology module, LAI is computed internally by scaling15

the annual maximum LAI, which is then used to calculate GPP. When forcing JULES with
daily MODIS data (local-FM), the phenology module is switched off and the MODIS LAI is
used to compute GPP. For model simulations using MODIS data and the default phenology
module (local-FNM), the annual maximum MODIS LAI is set to be the annual maximum LAI.
Vegetation competition has been switched off and local parameters are used for both sets of20

model simulations (local-FM, local-FNM)

2.5 Model analyses

To quantify differences between output from the various model simulations and observations,
we used Root Mean Squared Error (RMSE) (Eq. 1), which is a measure of the average error of
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the simulations, bias (Eq. 2), which is the average difference between model and observations
(a measure of under- or overprediction), and the absolute (Eq. 3) and percentage differences
(Eq. 4).

RMSE =

√∑t=n
t=1 (xt−xo, t)2

n
(1)

Bias =

∑t=n
t=1 xt−

∑t=n
t=1 xo, t

n
(2)5

xt and xo, t are model and observed daily GPP fluxes, respectively, which have been smoothed
using a 7 day moving average since we are interested in the long-term average and not daily
variability. n is the number of paired values (number of days in year). The absolute difference
(∆GPP) between the model and observations is the absolute value of the difference in total10

annual GPP for each and the percentage difference (∆%) is the absolute difference divided by
the observed total annual GPP.

∆GPP = |
∑

GPP obs−
∑

GPPmodel| (3)

∆% =
∆GPP∑
GPP obs

× 100 (4)
15

3 Results

3.1 Effect of local data on simulated GPP

When driven with local meteorological and parameter datasets (local-F; Fig. 1), JULES has a
negative bias with total annual GPP underestimated by 16 % (3049 g C m−2 year−1; Table 6)
across all sites compared to observations. By using local data, JULES performs very well at20

the temperate forest sites, Harvard Forest, Morgan Monroe, Hyytiala and Tharandt, where RM-
SEs range from 1.1–1.4 g C m−2 day−1, biases from −0.2 to +0.3 g C m−2 day−1 (Fig. 2a)
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and absolute differences from 40–211 g C m−2 year−1 (Table 6), but performs very poorly
at Tumbarumba, El Saler, Bondville and Vaira Ranch and the tropical sites, Santarem Km67
and Santarem Km83, with RMSEs ranging from 1.8–4.1 g C m−2 day−1, biases from −3.7 to
−0.2 g C m−2 day−1 and absolute differences from 71–1340 g C m−2 year−1.

At the temperate forest sites, JULES simulates the summer carbon uptake and leaf onset and5

senescence quite well. For example, at the needleleaf forests, Hyytiala and Tharandt, the model
correctly captures the timing and magnitude of the seasonal cycle of GPP (Fig. 1). JULES is
able to capture the beginning and ending of the growing season, but underestimates the summer
carbon uptake at Tumbarumba, a temperate sclerophyll forest (forests dominated by plants that
have hard leaves and are adapted to drought) (Fig. 1). At the tropical sites, Santarem Km6710

and Santarem Km83, the seasonal cycle has been modelled very poorly with the total annual
GPP being underestimated by 42 % (1340 g C m−2 year−1) and 21 % (583 g C m−2 year−1),
respectively (Table 6).

JULES can simulate interannual variability when using local data with average RMSEs
across all 6 sites for all years being within 0.7 g C m−2 day−1 and average biases within15

1.2 g C m−2 day−1 of model results from the corresponding single-site runs (Figure 3). Inter-
annual variability is captured very well at the temperate sites (Harvard Forest, Hyytiala and
Morgan Monroe) and Vaira Ranch with RMSEs ranging from +1 to +3 g C m−2 day−1 and
biases from +1 to -1 g C m−2 day−1. As observed with the single-site model simulations, the
model fails to capture interannual variability at Santarem Km67 and Tumbarumba (Figure 3).20

Overall, JULES performs very well with the use of local data (meteorological and param-
eter datasets) with negative biases observed at the tropical sites and the Southern Hemisphere
site, Tumbarumba, with the same trend also observed when the model simulates interannual
variability.

3.2 Effect of global data on simulated GPP25

By replacing the local data with global parameter and meteorological data, JULES had a much
greater negative bias with total annual GPP underestimated by 30 % (6703 g C m−2 year−1;
Table 6) on average across all sites compared to observations (global-WEIG, global-WEIC
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and global-P; Fig. 1). This is also shown in the annual average GPP which has been plotted
for each of the model simulations and observations at the 12 sites (Fig. 1) and the percent-
age differences (Table 6), which are, in general, larger for simulations using global data than
for those using local. This trend occurs at all sites, with the exception of the wetland site,
Kaamanen, and Santarem Km83, where modelled total annual GPP (2684 g C m−2 year−1 and5

492 g C m−2 year−1, respectively) is overestimated (global-P; Table 6) compared to model runs
using only local data (2141 g C m−2 year−1 and 119 g C m−2 year−1, respectively; Table 6).

As well as quantifying differences in model simulations using either local or global data, it is
useful to know how global meteorological data affects local model runs. Global meteorological
data can be used in place of FLUXNET data in order to drive JULES (local-WEIG; Table 3).10

This is important for ecological research sites where there is limited or no local meteorological
data available. Using the WFDEI-GPCC meteorological dataset (local-WEIG; Table 3) to force
the model increases the negative bias of model simulations using only local data (Fig. 2f), with
a 7 % reduction in simulated total annual GPP (15 469 g C m−2 year−1 for local-F reduced to
14 193 g C m−2 year−1 for local-WEIG; Table 6).15

Forcing the model with WFDEI-GPCC (local-WEIG) results in decreases in model perfor-
mance (increases in bias and RMSE) at the majority of sites. The tropical sites, Santarem Km67
and Santarem Km83, are two exceptions and show a noticeable improvement in modelled yearly
GPP (66 % and 61 % reduction of bias, respectively) and changes to modelled seasonal cycle
(25 % increase and 65 % reduction of RMSE, respectively). However, at some sites, such as20

Tharandt, Kaamanen and Hyytiala, forcing JULES with global meteorological data has not
introduced large negative biases into GPP predictions (Table 6), with RMSEs ranging from
1.1–1.3 g C m−2 year−1 (Fig. 2f).

In general, we found the meteorological data had a greater impact on modelled GPP fluxes
than model parameters. Larger differences exist between local-WEIG and local-F (localWEIG−F;25

Fig. 2d), which differ only in the atmospheric forcings dataset used, compared to between
global-WEIG and local-WEIG (global− localWEIG; Fig. 2e), which differ only in the model
parameter sets used.
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The ability of JULES to capture yearly GPP (bias) and the seasonal cycle (RMSE) is affected
at the majority of sites when using global meteorological data (Fig. 2d), with improvements
observed at Santarem Km67 and Santarem Km83. However, model parameters were found to
affect bias at all 12 sites (Fig. 2e) with the tropical sites being the most influenced. With the
exception of Tumbarumba, biases associated with meteorological data compensate for those5

associated with model parameters at the tropical sites (globalWEIG− localF; Fig. 2c).
Overall, we found that with the use of global data (model parameter and meteorological data),

JULES performed worse at most sites, with the exception of the tropical sites. Driving JULES
with global meteorological data introduces biases into single site simulations. At the majority
of sites, these biases are negative, but at tropical sites, the global meteorological data improves10

model performance. We found the meteorological data to have a greater impact on GPP fluxes
than model parameters.

3.3 Global vs. local meteorological data

As well as quantifying the error introduced into model simulations by using global meteoro-
logical data instead of local, we also compare the global meteorological data to local. Only15

the downward shortwave and longwave radiation fluxes, precipitation and surface air temper-
ature variables have been compared to FLUXNET values, since these variables play the most
influential role of the meteorological forcings in canopy photosynthesis and light propagation
in JULES (Alton et al., 2007). In order to compare the meteorological datasets, the data was
normalised against the annual mean for each site before computing the RMSE and bias.20

Of the two global meteorological datasets used in this study, the WFDEI dataset compares
best to FLUXNET (lower RMSEs and biases than PRINCETON) at the majority of sites
(Fig. 4). Surface air temperatures compare best to local meteorological measurements with
average RMSEs of 0.4 % and 0.7 % (7 day filtered RMSE expressed as percentages of the an-
nual mean value) (1.5 K and 2.4 K) across all sites for the WFDEI and PRINCETON datasets,25

respectively (Fig. 4d), followed by the downward shortwave radiation fluxes with average RM-
SEs of 13 % and 17 % (27.0 W m−2 and 33.2 W m−2) for WFDEI and PRINCETON, respec-
tively (Fig. 4a), and downward longwave radiation fluxes with average RMSEs of 4 % and
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5 % (18.9 W m−2 and 25.0 W m−2) for WFDEI and PRINCETON, respectively (Fig. 4b). Pre-
cipitation data from global datasets differ most from local values with RMSEs of 112–178 %
(2.7–4.4 mm day−1) for WFDEI-GPCC, WFDEI-CRU and PRINCETON, respectively, which
may be due to how the precipitation products of each global dataset is corrected(Weedon et al.,
2011; Sheffield et al., 2006).5

In addition to comparing the global meteorological variables to their local values, we also
examine the two precipitation products, WFDEI-GPCC (GPCC-corrected) and WFDEI-CRU
(CRU-corrected), within the WFDEI dataset. We found WFDEI-GPCC and WFDEI-CRU
compare equally well at the 12 FLUXNET sites (Fig. 4c) with average of RMSEs of 2.7
and 2.8 mm day−1, respectively. Differences between GPCC- and CRU-corrected precipita-10

tion RMSEs are small (0.0–1.4 g C m−2 day−1) at individual flux tower sites. When forcing
JULES with WFDEI, there is little difference when either WFDEI-GPCC or WFDEI-CRU is
used as the precipitation product, with average RMSEs of 2.9 and 2.8 g C m−2 day−1, respec-
tively, across all sites, although differences in the datasets may be more important when JULES
is run globally.15

Even though WFDEI compares better to the local meteorological data than PRINCETON,
we found that when JULES is forced with the PRINCETON dataset, improvements in GPP
predictions were observed at Santarem Km67 and Santarem Km83 (Fig. 1). We observed that at
the tropical sites, the meteorological forcings were the primary driver of productivity for model
simulations using global data and that biases associated with the global meteorological data20

compensated for incorrect parameter values.
By swapping local meteorological data with global meteorological data (PRINCETON)

for model simulations using local data (local-F), it was found that the positive bias asso-
ciated with global surface air temperature (PRINCETON) at Santarem Km83 is the pri-
mary cause of improved model performance (39 % reduction in RMSE) when using global25

data and by forcing JULES with the PRINCETON dataset and using the lower global Vcmax
value (Table 5), the model was able to reproduce the seasonal cycle very well (RMSE of
1.26 g C m−2 day−1). At Santarem Km67, we found the downward longwave radiation to be
the main reason for the improved seasonal cycle (35 % reduction in RMSE) and by using
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the PRINCETON dataset and global Vcmax value (Table 5), model performance was improved
(RMSE of 2.12 g C m−2 day−1).

Compensation between meteorological data and model parameters also occurs at Hyytiala,
where the model performs very well with global meteorological and parameter datasets (Fig. 1).
The global downward shortwave radiation is larger than its locally measured value and this5

offsets the low global Vcmax value at this site (Table 5, Fig. 6b).
Overall, we found the WFDEI dataset compares better than PRINCETON to FLUXNET and

of the four meteorological variables examined, the radiation fluxes (downward shortwave and
longwave) and surface air temperatures compare quite well to local values. Within the WFDEI
dataset, the two precipitation products (WFDEI-GPCC and WFDEI-CRU) compare equally10

well to FLUXNET precipitation. Improvements were observed at the tropical sites when JULES
is forced with PRINCETON and this is due to biases associated with the meteorological data.

3.4 Forcing JULES with daily satellite phenology

The performance of LSMs depend on how well the seasonal variation of LAI is represented
since GPP is strongly influenced by the timing of budburst and leaf senescence (Liu et al.,15

2008). In JULES, LAI is essential for the calculation of plant canopy photosynthesis and is
updated daily in response to temperature. We test the JULES phenology model by comparing
model predictions of GPP when JULES uses its default phenology model with those in which
JULES uses local data with the annual maximum LAI set to be the MODIS annual maximum
LAI (local-FNM) and with those in which the model uses local data and is forced with daily20

MODIS LAI (local-FM).
Forcing JULES with daily satellite LAI (local-FM) results in either small improvements

(average reduction in RMSE by 0.2 g C m−2 day−1) or none at all at the 12 flux tower sites
(Fig. 5c). An average RMSE of 2.2 g C m−2 day−1 across all sites is observed when the model
is forced with daily MODIS LAI (local-FM), which is less than that for model simulations us-25

ing no MODIS information (local-F; average RMSE of 2.4 g C m−2 day−1) and those which
use the annual maximum MODIS LAI as the annual maximum LAI at each site (local-FNM;
average RMSE of 2.39 g C m−2 day−1).
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By using MODIS data, there is only a small reduction (8 % and 0.04 % for local-FM and
local-FNM, respectively) in average RMSE when simulating GPP compared to model runs
which do not use it. Of the 12 sites, only seven (Harvard Forest, Vaira Ranch, Hyytiala, Tha-
randt, Tumbarumba, Kaamanen and Santarem Km67) show improved model performance when
either being forced with daily MODIS LAI (Fig. 5c) or using the annual maximum MODIS LAI5

as the model annual maximum LAI (Fig. 5b). At these 7 sites, simulated yearly GPP increases
in total by 21 %. At the remaining sites, JULES performs better using the default phenology
module (Fig. 5a).

Of the 7 sites where JULES’ performance improved using MODIS data, forcing JULES with
daily satellite phenology (local-FM) only resulted in improved model performance at Santarem10

Km67 (Fig. 5c) and at the remaining six sites, using the default phenology with the annual maxi-
mum MODIS LAI set to be the annual maximum LAI (Fig. 5b), JULES’ performance improved.
Even with the addition of MODIS data, the model still performed poorly at Bondville, with only
a slight improvement in predicted GPP (1% and 15% reduction of RMSE for local-FM and
local-FNM, respectively) compared to using only local data (RMSE of 3.66 g C m−2 day−1).15

The sites which display the largest improvements in simulated GPP, when forced with
MODIS LAI, are those which have low LAI values (54 % and 24 % reduction in RMSE at
Vaira Ranch and Fort Peck, respectively) (Fig. 5c). Small improvements were also observed at
the tropical sites (13 % and 14 % reduction in RMSE at Santarem Km67 and Santarem Km83,
respectively). At some sites, using MODIS data had no effect on model results (El Saler) and in20

some cases, the model performed worse (Tumbarumba).
The total annual simulated GPP for model runs using MODIS data (15 334 and

15 227 g C m−2 year−1, for local-MF and local-NMF, respectively) is slightly lower than when
using only local data (15 469 g C m−2 year−1), but better than when using global data (global-
WEIG; 14 193 g C m−2 year−1). This is a result of the annual maximum MODIS LAI being25

closer to local values than global (Fig. 5a). The increased LAI of the global data does not result
in increased GPP predictions since the meteorological data and vegetation parameters, such as
Vcmax, may have a greater impact on predicted GPP than LAI.
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Overall, when JULES is forced with daily MODIS LAI small improvements (8 % reduc-
tion in average RMSE; local-FM) in predicted GPP are observed at a number of sites, though
there exists a negative bias associated with using MODIS data. By setting the annual maximum
MODIS LAI to be the annual maximum LAI at each site, the model performs equally well
(0.04 % reduction in average RMSE; local-FNM) to local model simulations. We also observed5

improvements in simulated GPP at sites with low LAI values, such as grasslands, when JULES
is forced with daily LAI.

4 Discussion

4.1 How well does JULES perform when using the best available local
meteorological and parameter datasets compared to those using global data?10

At more than half of the sites, JULES performs very well when using local meteorological and
parameter datasets with a negative bias observed for the remaining sites (Fig. 2a). At the 6 sites
where multi-year model simulations were performed, interannual variability is well captured by
the model using local data with the exception of Santarem Km67 and Tumbarumba. This trend
is also observed with the single-year runs.15

The use of global parameter and meteorological datasets introduces a negative bias into GPP
simulations at all sites with the exception of the mediterranean site, El Saler, and the tropical
sites (Fig. 2b). Using local parameter and global meteorological data to drive JULES (local-
WEIG) increases the negative bias of local model simulations (local-F) (Fig. 2f). We observed
decreases in model performance at the majority of sites, with the exceptions being the tropical20

sites (Santarem Km67/Km83). At some sites, such as Hyytiala and Kaamanen, using global
meteorological data produced similar results (Fig. 2a, f) to using FLUXNET data.

Our results compare well with the evaluation of JULES by Blyth et al. (2011), where param-
eters were obtained as though the model was embedded in a GCM. Differences between the
two studies include different model versions and global meteorological datasets used. Compar-25

ing our results with Figure 3 of Blyth et al. (2011), we also found simulated photosynthesis
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to be underestimated for the temperate forests (Harvard Forest, Tharandt and Morgan Monroe),
grasslands (Fort Peck), mediterranean sites (El Saler) and the tropical forests (Santarem Km67),
and overestimated for the wetlands (Kaamanen). We observed that the use of local observations
of site characteristics, such as PFT fractions and vegetation properties, lead to improvements
in model performance at more than half of the sites (Fig. 2a), though errors still exist with5

percentage differences ranging from 2 - 12%.
Differences between global and local data include PFT fractions (Table 4), soil texture frac-

tions, vegetation parameters (Table 5) and meteorological data. At some sites, such as Bondville
and Santarem Km67/Km83, the global and local values for LAI and Vcmax were markedly dif-
ferent (Fig. 6), though for the majority of sites, global and local LAI values are quite close10

(Fig. 6a), whereas global Vcmax values were underestimated compared to local values (below
dashed line in Fig. 6b). Overall, the MODIS LAI values were closer to the local values and in
general, lower than global values (Fig. 6a).

In general, we found the meteorological data to play a more important role than model param-
eters in determining GPP fluxes at sites, such as Santarem Km67 and Santarem Km83. At these15

sites, the meteorological forcing data was the primary driver of productivity and biases associ-
ated with the global meteorological data compensated for incorrect parameter values. However,
at Tumbarumba, incorrectly predicted GPP was due to model error rather than meteorological
data or model parameters. We performed a temperature sensitivity study at Tumbarumba using
local meteorological and parameter datasets (local-F; Table 3). The winter and spring surface20

air temperatures (May-October) of the FLUXNET data were increased by increments of 1◦C
and the model was re-ran each time. Improvements in simulated seasonal cycle were observed,
but only at high surface air temperatures (an increase in 7 degree Celsius). Since the model
performed poorly when using both global and local data meteorological data, we can assume
that this is due to the model itself rather than the forcing data. Tumbarumba is classified as a25

sclerophyll forest and JULES does not have this land cover type. We assigned the Needleleaf
(NL) PFT to JULES at this site. The introduction of the correct PFT and associated parameters
may improve the results at this site.

5362



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

4.2 Of the global meteorological datasets used in this study which one compares best to
FLUXNET data?

At the majority of sites, the WFDEI dataset compares better to local meteorological measure-
ments (FLUXNET) than the PRINCETON dataset does (Fig. 4). This is likely due to the WFDEI
dataset being derived from the ECMWF Re-analysis (ERA-Interim) dataset (Dee et al., 2011).5

The ERA-Interim re-analysis is a higher resolution dataset ( 0.75◦× 0.75◦; equivalent to a sur-
face resolution of about 83 km x 83 km at the equator and 83 km x 48 km at 55 degrees north)
than the NCEP-NCAR re-analsysis ( 2.0◦× 2.0◦; equivalent to a surface resolution of about
222 km x 222 km at the equator and 222 km x 128 km at 55 degrees north), from which the
PRINCETON dataset is derived (Kistler et al., 2001). The ERA-Interim re-analysis also uses a10

more advanced data assimilation system than the NCEP-NCAR re-analysis (Kistler et al., 2001;
Weedon et al., 2014).

At the sites considered, differences between global and local values for downward shortwave
and longwave radiation fluxes and surface air temperatures are quite small (Fig. 4a, b and d),
with average percentage RMSEs ranging from 0.4–17 % (expressed as percentages of the an-15

nual mean value), while larger differences are observed for precipitation (Fig. 4c), with average
percentage RMSEs ranging from 112–178 %. At the majority of sites, there is a negative bias
associated with precipitation (Fig. 4c), but this will have little effect on GPP fluxes since JULES
is relatively insensitive to precipitation (Galbraith et al., 2010). For the remaining meteorolog-
ical variables, there is a positive surface air temperature bias, but no dominant bias associated20

with the radiation fluxes. However, at individual sites, such as the tropical sites, Santarem Km67
and Santarem Km83, biases in the meteorological data can affect model results.

4.3 Are improvements in simulated GPP observed when forcing JULES with daily satel-
lite phenology compared to using the default phenology module?

In general, we found that using MODIS data resulted in only small decreases in RMSE at a25

limited number of sites compared to using locally observed LAI. At sites where model per-
formance improved, improvements were a result of setting the annual maximum LAI to be
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the annual maximum MODIS LAI rather than forcing the model with daily MODIS LAI. The
largest improvements in simulated GPP occur at sites with low annual LAI, such as the grass-
land (Vaira Ranch, Fort Peck, Kaamanen) and cropland (Bondville) sites and the tropical sites
(Santarem Km67 and Santarem Km83). At the boreal sites, Tharandt and Hyytiala, the MODIS
LAI tended to be quite noisy and this led to underestimated GPP (Fig. 5c).5

We found that at sites where the MODIS LAI timeseries was noisy (large day-to-day vari-
ations), this resulted in decreased model performance. At some of the flux tower sites, the
MODIS data failed to capture aspects of the seasonal cycle of leaf phenology, such as the mag-
nitude of the seasonal cycle (Tharandt, El Saler) and the beginning and end of the growing
season (Bondville). For example, at Tumbarumba, the MODIS instrument estimated the annual10

maximum LAI to be 6.08 m−2 m−2 and the daily LAI to be quite noisy whereas the ground
level observations show it to be 2.5 m2 m−2 (Table 5) and LAI to be constant for much of the
year.

The MODIS instrument provides a valuable source of information that can be used by land
surface models. However, in this study, the quality of the LAI data can affect model perfor-15

mance. At the tropical sites, MODIS was unable to capture the magnitude of seasonal variation
in LAI with MODIS overestimating the locally observed annual maximum LAI at Santarem
Km67 and Santarem Km83 by 28 % and 10 %, respectively (Table 5). It was also unable to
correctly capture LAI during the Amazonian rainy season, which runs from December to June,
as a result of increased cloud cover. The MODIS LAI is very noisy in these regions, but should20

be constant throughout the year.
Overall, we found the model’s phenology module performed quite well at the temperate sites

with poor performance observed at the tropical and cropland sites. The ability of the phenology
model to simulate GPP fluxes reasonably well at temperate sites, with slight underestimation of
the summer carbon uptake and phase shift (leaf onset and senescence), may be due to its design;25

temperature-dependent for the BL/NL PFT classes, with model parameters tuned for temper-
ate regions. Forcing the model with MODIS LAI only slightly improved model performance.
However, setting the annual maximum LAI for each PFT to be the annual maximum MODIS
LAI resulted in improved model performance, without the computational overhead of forcing
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JULES with daily satellite data. More accurate GPP predictions could be possible with the in-
clusion of tropical PFTs, such as tropical evergreen broadleaf and tropical deciduous broadleaf,
with associated model parameters and a phenology model modified to take these tropical PFTs
into account.

5 Conclusions5

We performed a multi-site evaluation of the JULES LSM using local, global and satellite data.
In general, we found that when using local meteorological and parameter datasets, JULES per-
formed quite well at temperate sites with a negative bias observed at the tropical and crop-
land sites. At a limited number of sites, the model was able to simulate interannual variability
correctly using local data, with the exception of the tropical site, Santarem Km67, and Tum-10

barumba.
The use of global data worsens model performance by introducing negative biases into model

simulations of GPP at the majority of sites with the exception of the tropical sites. The im-
provement in model simulated GPP when using local values of vegetation properties implies
that global values may be incorrect. At sites where model performance improved using global15

data, this was due to biases associated with the meteorological data. We observed that the me-
teorological data had a greater impact on modelled GPP fluxes than model parameters.

The use of meteorological data extracted from global meteorological datasets was used to
drive JULES. We found that global meteorological data increased the negative biases of lo-
cal model simulations at all sites with the exception of the tropical sites, where GPP predictions20

were improved. Of the two global meteorological datasets used in this study, the WFDEI dataset
more closely captures the local meteorological conditions, though we found that the PRINCE-
TON dataset results in improved performance at some of the sites due to positive biases associ-
ated with the downward radiation fluxes and surface air temperature. This implies that there are
compensating errors within the model which need to be identified and addressed.25

LAI is an important parameter used in the calculation of canopy photosynthesis. Model simu-
lations using local and MODIS data displayed improvements in modelled GPP compared to us-
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ing only local data. Improvements in modelled GPP were observed at the beginning and ending
of the growing season. Using MODIS data for the annual maximum LAI allows for improved
model performance without the complication of assimilating daily satellite data into the model.
We found the default phenology module allowed JULES to perform reasonably well at temper-
ate sites, but not at the tropical sites. More realistic simulation of the seasonal cycle of GPP was5

observed at sites with low LAI values, such as grasslands. Even though we have described the
MODIS data as being noisy at a number of sites, it provides a valuable source of information
as it is a high spatial and temporal resolution dataset. It allows a better understanding of plant
response to climate and is a useful aid to modellers.

Although only a limited number of model parameters were modified at the 12 flux tower10

sites, due to limited data availability at FLUXNET sites, we showed that with more accurate
information regarding flux tower sites, improved predictions of GPP are possible. However,
negative biases still exist in this situation due to model error and incorrect modelling of tropical
processes. We suggest that improved model performance with regards to the terrestrial carbon
cycle could be achieved with the introduction of more PFT classes, such as tropical evergreen15

broadleaf and tropical deciduous evergreen broadleaf, and their associated model parameters
and a phenology model which can properly simulate carbon fluxes in both temperate and tropi-
cal regions.
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Appendix A:

Deriving global model parameters used by the global operational version of JULES.

In the Global Land Cover Characterization (version 2) database (GLCC), land cover is classified
into 17 categories using the International Geosphere–Biosphere Programme (IGBP) scheme.5

Each flux tower has a land cover category assigned to it in the GLCC database (IGBP code in
Table 4). These IGBP codes are then used to derive the annual maximum LAI (Table 7) and
canopy height factor (Table 8) for each PFT. The canopy height (metres) is calculated from the
canopy height factor (metres) and annual maximum LAI by using Eq. A1.

Canopy height = Canopy height factor × LAI
2
3 (A1)10
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Table 1. Model parameters and meteorological variables which are altered between global and local
model simulations.

Dataset Variable name Units

PFT fractions Dimensionless
Model Annual Maximum LAI m2 m−2

parameters Canopy Height metres
Vcmax (maximum rate of Rubisco carboxylase activity) µmol CO2 m−2 s−1

Rooting depth metres
Soil texture fractionsa % of sand, silt and clay

Downward shortwave radiation W m−2

Downward longwave radiation W m−2

Meteorological Precipitation rateb kg m−2 s−1

data Surface air temperature K
Wind speed m s−1

Surface air pressure Pa
Specific humidity kg kg−1

a The soil texture fractions (%) are used to compute the soil hydraulic and thermal characteristics.
b At some of the flux tower sites, the precipitation variable was separated into a rainfall rate (kgm−2 s−1) and snowfall rate
(kgm−2 s−1).

5377



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Table 2. Flux towers used in this study. The following biome types were used: Deciduous Broadleaf
Forest (DBF), Evergreen Needleleaf Forest (ENF), Cropland (CRO), Grassland (GRA), Tundra (TUN),
Evergreen Broadleaf Forest (EBF).

Location

Number Site Lat [◦N] Lon [◦E] Altitude (m) Biome Type Year Climate Zone

1 Harvard Forest 42.54 −72.17 303 DBF 2008 Temperate
2 Tharandt 50.96 13.57 380 ENF 2003 Temperate
3 Bondville 40.01 −88.29 219 CRO 2000 Temperate
4 Fort Peck 48.31 −105.10 634 GRA 2004 Temperate
5 Morgan Monroe 39.32 −86.41 275 DBF 2007 Temperate
6 Tumbarumba −35.66 148.15 1200 EBF 2008 Temperate
7 Kaamanen 69.14 27.29 155 TUN 2002 Boreal
8 Hyytiala 61.85 24.29 181 ENF 2003 Boreal
9 Santarem KM67 −2.86 −54.96 130 EBF 2003 Tropical

10 Santarem KM83 −3.02 −54.98 130 EBF 2001 Tropical
11 El Saler 39.35 −0.32 10 ENF 2003 Mediterranean
12 Vaira Ranch 38.41 −120.95 129 GRA 2005 Mediterranean
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Table 3. Types of model simulations performed in this study.

Model Parameter Meteorological LAIb Phenologyc

simulationsa sets forcing

local-F local FLUXNET local Default
local local-WEIG local WFDEI-GPCC local Default
vs. global global-WEIG global WFDEI-GPCC global Default
data global-WEIC global WFDEI-CRU global Default

global-P global PRINCETON global Default

Satellite local-FNM local FLUXNET Site max. MODIS LAI Default
phenology local-FM local FLUXNET Site max. MODIS LAI Daily forcing

a For model simulation names, local and global refer to the parameter set and F, WEIG, WEIC and P refer to the meteorological
forcing dataset used.
b For LAI, local refers to the observed annual maximum LAI at each site and global refers to that obtained from the look-up
tables used by the global operational version of the model.
c Default refers to the default phenology model used by JULES and daily forcing means that the default phenology has been
switched off and the model forced with daily MODIS LAI.
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Table 4. Vegetation (PFT) and non-vegetation land cover type (BL: broadleaf tree, NL: needleleaf tree,
C3g: C3 grass, C4g: C4 grass, sh: shrubs, bs: bare soil) fractions at the 12 FLUXNET sites. For each
site, the first row refers to global data and the second refers to local.

Plant Functional Types

Site IGBP code IGBP class BL NL C3g C4g sh bs References

Harvard Forest 4 DB forest 0.60 0.05 0.10 0.05 0.20
DB forest 0.95 0.05 Urbanski et al. (2007)

Vaira Ranch 8 Woody savannah 0.50 0.15 0.25 0.10
Grassland 0.95 0.05 Ryu et al. (2008)

Morgan Monroe 4 DB forest 0.60 0.05 0.10 0.05 0.20
DB forest 0.90 0.10 Schmid et al. (2000)

Hyytiala 1 EN forest 0.70 0.20 0.10
EN forest 0.95 0.05 Suni et al. (2003)

Tharandt 5 Mixed forest 0.35 0.35 0.20 0.10
EN forest 0.95 0.05 Grünwald and Bernhofer (2007)

Tumbarumba 2 EB forest 0.85 0.10 0.05
EN forest 0.90 0.10 Leuning et al. (2005)

El Saler 7 Open shrub 0.05 0.10 0.35 0.50
EN forest 0.90 0.10 Stöckli et al. (2008)

Fort Peck 10 Grassland 0.70 0.15 0.05 0.10
Grassland 0.90 0.10 Gilmanov et al. (2005)

Kaamanen 1 EN forest 0.70 0.20 0.10
Grassland 0.90 0.10 Laurila et al. (2001)

Santarem KM67 2 EB forest 0.85 0.10 0.05
EB forest 0.98 0.02 Hutyra et al. (2007)

Santarem KM83 2 EB forest 0.85 0.10 0.05
EB forest 0.98 0.02 Goulden et al. (2004)

Bondville 12 Cropland 0.75 0.05 0.20
Grassland 0.90 0.10 Meyers and Hollinger (2004)
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Table 5. Local and global biophysical parameters (site annual maximum LAI, canopy height and Vcmax)
at the 12 FLUXNET sites. For each site, the first row refers to global data, the second refers to local and
the third refers to satellite. Online data was accessed in April 2013.

LAI Canopy height Vcmax
Site (m2 m−2) (m) (µmol CO2 m−2 s−1) References

Harvard Forest
5.00 19.01 32.00 aHarvard Forest Data Archive/Exchange
5.00a 24.00a 35.20a

6.03 – –

Vaira Ranch
4.00 1.26 48.00 b Ameriflux Biological Data
2.74b 0.67b 42.25c c Beerling and Quick (1995)
3.46 – –

Morgan Monroe
5.00 19.01 32.00
5.23b 27.00b 34.80c

6.81 – –

Hyytiala
6.00 21.46 24.00 d P. Kolari, personal communication, 2013
3.00d 14.00e 60.00d e Suni et al. (2003)
4.56 – –

Tharandt
6.00 21.46 24.00 f T. Grünwald, personal communication, 2013
7.10f 26.50g 62.50h g Grünwald and Bernhofer (2007)
3.82 – – h Kattge et al. (2009)

Tumbarumba
4.00 16.38 24.00 i E. van Gorsel, personal communication, 2013
2.50i 40.00j 74.33k j Cleugh et al. (2007)
6.08 – – k Haverd et al. (2009)

El Saler
4.00 16.38 24.00 l Blyth et al. (2010)
4.00l 12.00m 62.5h m Obtained from http://www.bgc-jena.mpg.de
1.04 – –

Fort Peck
3.00 1.04 48.00 n Obtained from http://ameriflux.ornl.gov/
2.00l 0.40n 42.25s

1.41 – –

Kaamanen
2.00 0.79 48.00 o Laurila et al. (2001)
0.70o 1.00p 42.25c p Aurela et al. (1998)
1.33 – –

Santarem Km67
9.00 28.12 32.00 q Oak Ridge National Laboratory DAAC
5.25q 45.00r 81.00s r Hutyra et al. (2007)
6.73 – – s Domingues et al. (2007)

Santarem Km83
9.00 28.12 32.00 t Doughty and Goulden (2008)
6.00t 40.00u 81.00v u Bruno et al. (2006)
6.63 – – v Domingues et al. (2007)

Bondville
5.00 1.46 48.00 w Meyers and Hollinger (2004)
6.74b 0.90w 117.35c

3.37 – –
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Table 6. Absolute and percentage differences between model simulated and observed (FLUXNET) total
annual GPP (gC m−2 year−1) at the 12 flux tower sites.

∑
GPPobs is the observed total annual GPP,

∆GPP is the absolute difference (Eq. 3) between the model and observed total annual GPP, and ∆% is
the percentage difference (Eq. 4) between the model and observed total annual GPP. Values highlighted
in red mean that the difference is negative (i.e.

∑
GPPobs <

∑
GPPmodel). The total value for each of the

model simulations was computed using the differences and not the absolute differences.

FLUXNET local-F local-WEIG global-WEIG global-WEIC global-P

Site
∑

GPPobs ∆GPP ∆% ∆GPP ∆% ∆GPP ∆% ∆GPP ∆% ∆GPP ∆%

Harvard Forest 1621 40 2 567 35 716 44 711 44 486 30
Vaira Ranch 1047 71 7 592 57 235 22 259 25 369 35
Morgan Monroe 1385 94 7 639 46 616 44 661 48 256 18
Hyytiala 997 68 7 73 7 135 14 120 12 144 14
Tharandt 1754 211 12 306 17 687 39 819 47 590 34
Tumbarumba 2806 197 7 1710 61 1951 70 1984 71 1690 60
El Saler 1512 760 50 499 33 1073 71 1276 84 1234 82
Fort Peck 367 194 53 229 62 213 58 200 54 105 29
Kaamanen 368 249 68 273 74 8 2 5 1 124 34
Santarem Km67 3171 1340 42 451 14 1245 39 1075 34 392 12
Santarem Km83 2724 583 21 202 7 1033 38 644 24 40 1
Bondville 766 240 31 200 26 131 17 406 53 177 23

Total 18,518 3049 4325 8043 7348 4717
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Table 7. Annual Maximum Leaf Area Index (LAI) of JULES vegetation land cover types (PFTs) (BL:
broadleaf tree, NL: needleleaf tree, C3g: C3 grass, C4g: C4 grass, sh: shrubs) for each of the 17 IGBP
categories. Note that for the Snow and ice, Barren and Water bodies categories, there are no LAI values
available.

Leaf Area Index of JULES PFTs

IGBP code IGBP class BL NL C3g C4g sh

1 EN forest 6.0 2.0
2 EB forest 9.0 2.0 4.0
3 DN forest 4.0 2.0
4 DB forest 5.0 2.0 4.0 3.0
5 Mixed forest 5.0 6.0 2.0
6 Closed shrub 2.0 3.0
7 Open shrub 5.0 2.0 4.0 2.0
8 Woody savannah 9.0 4.0 2.0
9 Savannah 9.0 4.0

10 Grassland 3.0 4.0 3.0
11 Permanent wetland 9.0 3.0 3.0
12 Cropland 5.0 5.0 4.0 3.0
13 Urban
14 Crop/natural mosaic 5.0 6.0 4.0 4.0 3.0
15 Snow and ice
16 Barren
17 Water bodies
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Table 8. Canopy height factor (metres) of JULES vegetation land cover types (PFTs) (BL: broadleaf
tree, NL: needleleaf tree, C3g: C3 grass, C4g: C4 grass, sh: shrubs).

BL NL C3g C4g sh

Canopy Height Factor 6.5 6.5 0.5 0.5 1.0
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Figure 1. Seasonal cycle of model-predicted (local-F, global-WEIG, global-WEIC and global-P in Ta-
ble 3) and observed GPP fluxes, smoothed with a 7 day moving average window, at the 12 FLUXNET
sites (HF: Harvard Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala, TH: Tharandt, TUM:
Tumbarumba, ES: El Saler, FP: Fort Peck, KA: Kaamanen, S67: Santarem Km67, S83: Santarem Km83,
BO: Bondville). Model simulation years are given in Table 2. The thick lines refer to FLUXNET ob-
servations (blue) and simulated GPP from local-F model simulations (red). Annual averages for model
simulations and observations are plotted as thick dots on right of each plot in the same colours.
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Figure 2. Comparison of modelled and observed GPP using bias and RMSE at the 12 FLUXNET sites
(HF: Harvard Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala, TH: Tharandt, TUM: Tum-
barumba, ES: El Saler, FP: Fort Peck, KA: Kaamanen, S67: Santarem Km67, S83: Santarem Km83,
BO: Bondville) for three sets of model simulations; (a) local-F, (b) global-WEIG and (f) local-WEIG
(Table 3). (c) displays the differences between bias and RMSE for global-WEIG and local-F model sim-
ulations, (d) differences between local-WEIG and local-F model simulations and (e) differences between
global-WEIG and local-WEIG model simulations. Marked on (c), (d) and (e) next to the figure letter are
how the sets of model simulations differ. The site labels are coloured according to their climate zone
(Table 2).
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Figure 3. Multi-year comparison of modelled and observed GPP using bias and RMSE at 6 FLUXNET
sites (HF: Harvard Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala, TUM: Tumbarumba,
S67: Santarem Km67) for model simulations using local parameter and meteorological data (local-F).
The site labels are coloured according to their climate zone (Table 2) and represent data from model
simulations performed for the year specified in Table 2, with results from other years plotted using the
model simulation year and labels coloured the same as the original site label.
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Figure 4. Bias and RMSE, expressed as percentages of daily average, when comparing global (WFDEI-
GPCC (circles), WFDEI-CRU (squares) and PRINCETON (triangles)) to local meteorological data for
four meteorological variables; (a) downward shortwave radiation (SW), (b) downward longwave radi-
ation (LW), (c) precipitation and (d) surface air temperature, at the 12 FLUXNET sites (HF: Harvard
Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala, TH: Tharandt, TUM: Tumbarumba, ES:
El Saler, FP: Fort Peck, KA: Kaamanen, S67: Santarem Km67, S83: Santarem Km83, BO: Bondville).
The site labels are coloured according to their climate zone (Table 2). Note that before computing bias
and RMSE, the meteorological data was normalised against the annual mean for each site.
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Figure 5. Comparison of modelled and observed GPP using bias and RMSE (computed using anomalies)
at the 12 FLUXNET sites (HF: Harvard Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala,
TH: Tharandt, TUM: Tumbarumba, ES: El Saler, FP: Fort Peck, KA: Kaamanen, S67: Santarem Km67,
S83: Santarem Km83, BO: Bondville) for three sets of model simulations; (a) default phenology model
with locally observed annual maximum LAI (data values used same as in Fig. 2a (local-F)), (b) default
phenology model with annual maximum MODIS LAI (model simulations local-FNM) and (c) daily
MODIS forced model simulations with annual maximum MODIS LAI (model simulations local-FM).
The site labels are coloured according to their climate zone (Table 2).
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Figure 6. Comparison of (a) global, MODIS (site annual maximum) and local Leaf Area Index (LAI)
and (b) global and local maximum rate of Rubisco carboxylase activity (Vcmax) at the 12 FLUXNET sites
(HF: Harvard Forest, VA: Vaira Ranch, MM: Morgan Monroe, HY: Hyytiala, TH: Tharandt, TUM: Tum-
barumba, ES: El Saler, FP: Fort Peck, KA: Kaamanen, S67: Santarem Km67, S83: Santarem Km83, BO:
Bondville). The LAI data displayed for each study site refer to the annual maximum LAI of the dominant
PFT. The site labels are coloured according to their climate zone (Table 2) and in (a), the lighter shades
are the MODIS data. The dashed grey lines represent LAI and Vcmax, where global, MODIS and local
values match, with overestimated global and MODIS values above the dashed line and underestimated
values below it.
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