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Abstract. The weighted least squares estimator for model
parameters was presented together with its asymptotic prop-
erties. A popular approach to optimize experimental designs
called local optimal experimental designs was described to-
gether with a lesser known approach which takes into ac-
count a potential nonlinearity of the model parameters. These
two approaches were combined with two different methods
to solve their underlying discrete optimization problem.

All presented methods were implemented in an open
source MATLAB toolbox called the Optimal Experimental
Design Toolbox whose structure and handling was described.

In numerical experiments, the model parameters and ex-
perimental design were optimized using this toolbox. Two
models for sediment concentration in seawater of different
complexity served as application example. The advantages
and disadvantages of the different approaches were com-
pared, and an evaluation of the approaches was performed.

1 Introduction

Mathematical models are a fundamental concept in science.
Often, they contain only roughly known model parameters.
A common way to make such models more realistic is to
optimize these parameters so that the model output is more
consistent with measurement results.

The measurements required for this purpose are often
time-consuming or costly. For this reason, it is desirable that
the information content of the obtained measurement results
is maximal.

Several conditions under which measurements are carried
out are controllable. These conditions are also known as ex-
perimental setup or experimental design. This can be, e.g.,
the point in time, the location or the method of the measure-
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ments. These experimental designs can be optimized so that
the information content is maximized. Thus, the number of
measurements necessary for a certain accuracy of the model
parameters and accordingly of the model itself can be con-
siderably reduced.

The main problem in optimizing experimental design is to
quantify the information content. In general, this can only be
done approximatively. There are several approaches to quan-
tify the information content and hence to optimize experi-
mental designs. See, e.g.,[Pronzato and Pazman|(2013) for an
overview. Usually, these approaches are a tradeoff between
accuracy and computational effort. In general, it is difficult
to say whether a higher computational effort is justified by a
higher accuracy.

In this paper, two models for sediment concentration in
seawater served as application examples. Their model param-
eters had to be adapted to the local environmental conditions.
The measurements required for this purpose are very time-
consuming. For this reason, it should be evaluated which ap-
proach is most suitable to optimize their experimental de-
signs.

After this introduction, four different approaches to opti-
mize experimental designs together with the weighted least
squares estimator for model parameters are presented in Sec-
tion [2] One approach is based on the linearization of the
model with respect to the parameters and is the most com-
mon used approach called local optimal experimental design.
The second more robust approach takes into account a poten-
tial nonlinearity of the model parameters. Both approaches
are combined with two different approaches of solving the
underlying discrete optimization problem.

The presented methods to optimize experimental designs
and model parameters were implemented in an open source
MATLAB toolbox called the Optimal Experimental Design
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Toolbox. The structure and handling of this toolbox is de-
scribed in Section[3l

The numerical experiments carried out with the models for "

sediment concentration and their results are shown in Section

ol

2 Optimization of model parameters and experimental
designs

120

The first step to the optimization of model parameters is the
choice of the estimator. This maps the measurement results
onto optimal-estimated model parameters. These optimal
estimated parameters are often defined so that they minimize
a so-called misfit function. The misfit function quantifies the
distance between the measurement results and the model out-
put.

The < 1 S ASS 1A S Mr
should be_derived from_the statistical properties of the
measurement errors, e.g. a maximum likelihood estimator.
Often, the measurement errors are assumed to be normally
distributed. This leads to the least squares estimators. They
are the most widely used class of estimators since their intro-
duction by Gauss and Legendre (see, e.g., Stigler| (1981)).

Their simplest form is the ordinary least squares estimator.
Its misfit function is the sum of the squares of the differences
between each measurement result and the corresponding
model output. A generalization is the weighted least squares
estimator which has advantages in case of heteroscedastic
measurement errors. This estimator and its asymptotic prop-
erties are presented in the following subsection. The general-
ized least squares estimator is a further generalization which
takes into account a stochastic dependence of the measure-
ment errors.

2.1 The weighted least squares estimator

In the following, the weighted least squares estimator is pre-
sented. For this purpose, some notations and assumptions are
introduced.

The model function is denoted by

FiQxQ, >R

Here, 2, CRR"= is the set of feasible experimental designs
and €2, C R"» the set of feasible model parameters from
which the unknown exact parameter vector p € €, is to be
determined. Often, these sets are defined by lower and upper

bounds. 180

The measurement result for every design = € {2, is consid-
ered as a realization of a random variable 7,.. Each random
variable 7, is assumed to be normally distributed with expec-
tation f(x,p) and standard deviation o, > Ori—e—-

155

Ne ~ N (f(x,p),02) for every x € Q.

125

140

145

Ala) n, ~ N(f(x.p).07) forevery z € Q.

Furthermore, these random variables are assumed to be pair-
wise stochastically independent;+—e—-

7, and 7, stochastically independent for every z,2’ € €2,,.

Alb) and 7, are stochastically independent for ever

If we consider m>mn, measurement results
y=(y1,.--,yn)T €R™ with corresponding experimen-
tal designs x1,...,z, €€),, the weighted least squares

estimation p,, and the corresponding estimator P, is defined
as

Dn = Pp(y) := argmin, (y,p) (1)
PEQ,

where the misfit function 1),, is defined as
n 2
b RO R () 3 (ML)
i=1 Tas
wayWith the following assumptions, the existence of a min-
imum is ensured.

A2) f(x, ) is continous for every x € Q...

A3) 3, is compact.
If 9, (y, - ) is also-assumed-to-be-injectiveconvex, the mini-

mum is also unique.

The eptimal-parameters-parameter estimation p,, in (I) can
be calculated with an optimization method for continuous op-
timization problems. A possible method is the SQP algorithm
which is, e.g., described in (Nocedal and Wrightl |1999, chap-
ter 18).

2.2 Asymptotic properties

Provided certain regularity conditions are met, the least
squares estimators are consistent, asymptotically nermal
normally distributed and asymptotically efficient.

This asymptotic properties were first proved by [Jennrich
(1969) for the ordinary least squares estimator and also dis-
cussed inMalinvaud! (1970) and |Wul(1981)). In|White|(1980)),
these properties were proved for the weighted least squares
estimator and for the generalized least squares estimator in
White and Domowitz (1984). A good summary for all three
can be found in|Amemiyal (1983).

Consistency means that the estimated parameters converge
in probability to the unknown exact parameters as the number
of measurements goes to infinity. That is

Pnﬂnﬁas n— 00
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Reimer et al.: Optimization of experimental designs and model parameters 3

for the weighted least squares estimator P,, with the un-
known exact model parameters p.

For consistency, the following assumptions are sufficient
in addition to the previous assumptions Al to A3.

2.3 Optimal experimental designs

The accuracy of the weighted least square estimator P,, can
be described by its covariance matrix. Due to the asymp-

totic distribution (2), this can be approximated by the in-
verse of the information matrix M, (p,, ), provided the matrix
M,,(py,) is nonsingular, i.e.,

cov(Py,) =~ M, (p,) " . 3

Therefore, the unknown model parameters can be deter-
mined more accurately the smaller the (approximated) co-
Varlance matrix of the estimator is.

2 Criteria R XNe s Rbg R X — RY | {oo},
such as the trace or determinant, are used in order to
compare these matrices. (See, e.g., [EI-Monsef et al.| (2009)

215 for an overview of various criteria.) If the approximation
(@) is used and M,,(p,,) is singular, the value of ¢ is set to
infinity.

In the context of optimizing experimental designs, we as-
sume 7 > 0 measurements have been carried out and designs

(Seber and Wild, 2003, page 565 205

A43)WM\EQ/Q‘CCJWWMM
B, :Q, xQ, >R .

Adb) D(p,p)=0=p=1p for all
c with D:= lim n~'D and *°
L — OO
. . o)) 2

n

D is well definied by assumption Ada.)

An estimator is asymptotically efficient if its variance con-
verges to the Cramér-Rao bound as the number of measure-
ments goes to infinity. The Cramér-Rao bound (seeCramér
(1946) and (1945)) is a lower bound for the variance of
any unbiased estimator.

For the—assumed—meastrement—distribution—22—and
22)—swith—n—measurements,—this—bound—asymptotic = for additional measurements should be selected from m de-

efficiency, the following assumptions are sufficient signs 27, ,xjn. € €2, The choice for eth Flesign a; is ex-
in_ addition to the previous assumptions Al to A4, pressed by a weight w; € {0,1} where 1 indicates the selec-
(Seber and Wild, 2003, page 571 tion and 0 the contrary.

Hence, the resulting information matrix, depending on the

AS5) $ is an interior point of . Let ), C Q. be an openzs choice w € {0,1}" and the parameter vector p,, € €,,, is de-

neighborhood of p. fined as
N m ! ! T
A6) f(z;, -) is twice continuously differentiable in £2,,. M, (w,pp) == My, (pn) + Zwi fo(mwpn)pr(mmpn)
oz,
i—=1 x)

A7) n ! ]W converges uniforml with

NT 5—2 If the covariance matrix is approximated by the inverse

“of the information matrix, optimal (additional) designs, with
20 respect to a criterion ¢, are expressed by a solution of

(My(w,pn) ™).

“4)

These optimal designs are called local optimal designs be-
cause these designs are only optimal regarding the previously
optimized-model-parameters-model parameter estimation pr,
and not the unknown exact model parameters p.

Potential constraints on the choice of the designs can be

5) is invertible with M :=

A9) M lim n~'M,

In this case, the Cramér-Rao bound of the weighted least 23
squares estimator P, is the inverse of the Fisher information

matrix realized by constraints on the weight w. For example, the
n number or the costs of the measurements can be limited by
Vpf (i,0)Vypf(@i,p)" i i i ~
M, (p) = Z pJ\Tis pJ AT linear constraints on w. These constraints have to be consid-
n(p)

a 20 ered in the above optimization problem (@).

The formulation @) is useful if additional experimental
designs _should be chosen from a finite number of
experimental designs. Otherwise, the optimization problem
can be reformulated so_that the additional optimal design
variables have to be optimized directly.

i=1

In-this-easeUnder these assumptions, the asymptotic be-
havior of the weighted least squares estimator can be sum- 4
marized by its convergence in distribution as follows

2.4 Calculation of optimal experimental designs
.\ d -
V(P —p) SN (0, M, ()" )

See, e.g., (Seber and Wildl2003] chapter 12) and
chapter 3)

n) as n— oo. . L
A straight-forward way to solve the optimization problem (@)

is to test all possible values of w. This direct approach is only
practical for small m.
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For bigger m, The optimization problem (@) is solved ap-

proximately. For this purpose, it is solved in the continu- sw

ous rather than the discrete setting, i.e., the constraint w €
{0,1}™ is relaxed to w € [0,1]™. Accordingly, the problem

argmin qb(Mn(w,pn)_l) 5)
we(0,1]™

305

is solved.

A possible algorithm to solve this continuous optimization
problem is the SQP algorithm which is, e.g., described in
(Nocedal and Wright, |1999| chapter 18).

After the continuous problem @ is solved, the solution is
projected onto the integers with heuristics. An easy way is’
to round the continuous solution. Another is to sum up all
continuous weights and then to choose as many designs with
the highest continuous weights. Potential constraints on w
still have to be considered by solving the continuous problem
and the following projection onto an integer solution. The

. . . 315
second heuristic ,e.g., preserves constraints on the number of

designs to choose.

Our numerical experiments with the application examples
in Section 4] have shown that the solutions of the continuous
problem (B)) are already close to integer values. This behavior
was also observed, for example, in|Korkel| (2002) and Korkel
et al.| (2004).

2.5 Robust optimal experimental designs

320

The information matrix M,, depends on the estimated param-
eters p,, if the parameters occur nonlinear-nonlinearly in the
model. This may lead to suboptimal designs if V,f(-,pn)
differs strongly from V,, f(-,p).

For this reason, we now consider a method which takes
into account a possible nonlinearity of the parameters. This

robust method was presented in [Korkel| (2002) and Korkel -

et al.| (2004).

The main idea of the method is not to optimize the quality
of the covariance matrix for a single parameter vector p,, as
in (@), but to optimize the worst case quality within a whole
domain which contains the unknown exact parameter vector
p with high probability.

For this purpose, a confidence region which contains p s

with probability a € (0,1) is approximated by
Gu(a) :=={p €R™ | [Ip=pullis, (poy-1 < V(@)}- (©)

Here, (a) is the a-quantile of the y?2-distribution and
[lv]la := VvT Av denotes the energy norm of the vector v €
R"™» with respect to the positive definite matrix A € R"»*"»,
The approximation of the confidence region arises from lin-
earization of the model function f in point p,, and the as-
sumption P, ~ N (p, M, (pn)il)'

If the worst case quality in the entire region G,,(«) shall
be optimized, the optimization problem (@) becomes

argmin  max  ¢(M,(w,p)”t).
we{0,1}™ peCG,, ()

335

(7) 340

This min-max optimization problem can by-be solved only
with considerable more computational effort compared to the
optimization problem (@). In order to reduce this effort, the
function ¢(M,, (w, -)~1) is linearized in point p,, in the fol-
lowing way.

(M, (w,p) ™) ~
(M (w,pn) ™) + Vi (d(My(w,p) )" (p— pn)

The resulting inner maximization problem can be solved
analytically. It is

perg%)¢>(Mn(w,pn)’l)Jer(cﬁ(Mn(w,p)’l))T(pfpn) =
O( My (w,9) ™) +7(@)2 [V (M (w0,92) ™)), ()

as can be seen, e.g., in|Korkel| (2002). With this approach the
optimization problem (7)) is replaced by

argmin ¢(My (w,p) ™) +9(0) 2 |V (&( My (w,p0) ™)), on)-

we{0,1}m

®)

This optimization problem again can be solved approxi-
matively by solving the corresponding continuous problem
and projecting this solution onto an integer solution as de-
scribed in the previous subsection.

It should be noted that in this approach (8), the first and
second derivatives of the model is used. In contrast, only the
first derivative is used for local optimal designs (@).

2.6 Efficiency of experimental designs

A common way to describe the benefit of an experimental
design is its efficiency. The efficiency of an experimental de-
sign w € {0,1}™ regarding a criterion ¢ and with n previous
measurements is defined as follows.

S(Mi (,p) ")
w,p)~)
It should be noted that the searched parameter vector p is
used here. If this is not known, thus the efficiency can not be
calculated.
The efficiency is always between 0 and 1 and is larger the
better the experimental design is.

E4(w):= min

9
we{0,1}3m ¢( My ( ©)

3 The Optimal Experimental Design Toolbox

We implemented the methods presented in the previous sec-
tion for optimization of model parameters and experimental
designs as a MATLAB toolbox named the Optimal Experi-
mental Design Toolbox.

MATLAB (see [MathWorks| (2011])) was chosen because
it supports vector and matrix operations and provides many
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numerical algorithms, especially for optimization. Moreover,
MATLAB supports object oriented programming and there-
fore permits a simple structuring, modification and extension
of the implementation. Another advantage of MATLAB is s
that it can easily interact with C and Fortran.

The toolbox is available at the Git repository {see

General Public License (see [Foundation| (2007)). It includes
extensive commented source code and a detailed help inte-
grated in MATLAB. 390

3.1 Provision of the model function

For the methods described in Section [2, the model function
and its first and second derivative with respect to the model
parameters is required. a5

Actually, the model function is required for the parame-
ter optimization and, depending on the optimization method,
also the-its first derivative. The-Its first derivative is also re-
quired for the experimental design optimization. If the robust
method is used also the-its second derivative is required.

The first step for using the Optimal Experimental Design
Toolbox is to provide these functions. The model interface
prescribes how this should be done. The functions need not
be written in MATLAB itself, since MATLAB can call func-
tions in C, C++ or Fortran. 400

The toolbox has several possibilities to provide the deriva-
tives automatically. The model_fd class, e.g., provides the
derivatives by approximation with finite differences. If the
model function is given as an explicit symbolic function, the
model_explicit class can provide the derivatives by symbolic
differentiation with the Symbolic Math Toolbox. Listing [I]
shows, for example, how a model_explicit object is created.

Figure 1. Create a model with a symbolic model function

model_object = model_explicit('pxt"2', 'p', 't')

% 1. input: the model function as symbolic formula

% 2. input: the parameter variable(s)

% 3. input: the experimental design variable(s)

% return: a model object which implements the model interface

For the case the model function is given as a solution of
an initial value problem, the Optimal Experimental Design **®
Toolbox contains the model_ivp class. This class solves the
parameter dependent initial value problem and calculates the
necessary derivatives. Listing [2] shows how a model_ivp ob-
ject is created.

Figure 2. Create a model with a model function given as solution
of an initial value problem

model_object = model_ivp('—y+(t+1)xb', '[a,b]', 'y', 'a', 't', [1,10])

% 1. input: the right hand side of the differential equation

% 2. input: the model parameter variable (s)

% 3. input: the model function variable

% 4. input: the initial value of the model function

% 5. input: the dependent variable in the model function

% 6. input: the interval of integration

% return: a model object which implements the model interface 410

The class takes advantage of the fact that the integration
and differentiation of the differential equation can be inter-
changed if the model function is sufficiently often continu-

ously differentiable. Required derivatives of the differential
equation and initial value are calculated again by symbolic
differentiation with the Symbolic Math Toolbox. The result-
ing initial value problems are solved with MATLABs ode23s
function which can also solve stiff problems. Because the
arising initial value problems for the derivatives are mutually
independent, the solution of the initial value problems can be
calculated in parallel using the Parallel Computing Toolbox.

3.2 Setup of the solver

Another important class in the Optimal Experimental De-
sign Toolbox is the solver class. This class provides the
methods for the optimization of parameterestimations-model
parameters and experimental designs. To perform one of
these optimizations, the solver class has to be instantiated
(see Listing [3) and the necessary informations have to be
passed to the solver object.

Figure 3. Create a solver object

solver_object = solver ()
% return: a solver object

First of all, the model represented by an object which im-
plements the model interface has to be set by the set_model
method (see Listing ).

Figure 4. Set the model

solver_object.set_model (model_object)
% input: an object that implements the model interface

In addition, an initial estimation-guess of the model param-
eters have to be set by the set_initial_parameter_estimation
method (see Listing[5).

Figure 5. Set the initial parameter estimation

solver_object.set_initial_parameter_estimation ([1, 2])
% input: the initial estimation of the model parameters

Potential accomplished measurements can be set via the
set_accomplished_measurements method. These measure-
ments consist of the corresponding experimental designs to-
gether with their variances of the measurement errors. Also
the measurement results themselves have to be passed for a
parameter estimation (see Listing|[6).

Figure 6. Set accomplished measurements

solver_object.set_accomplished_measurements ((1:5) ',
exp ((1:5) "))

0.01%ones (5,1), —«

% 1.
% 2.
% 3.

input :
input :
input :

the experimental designs of accomplished measurements
the variances of the associated measurement errors
the associated measurement results

Finally, if an optimization of experimental designs shall be
performed, the selectable measurements have to be set by the
set_selectable_measurements method (see Listing . These
measurements consist of the experimental designs and the
variances of the measurement errors again.
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Figure 7. Set selectable measurements

solver_object.set_selectable_measurements ((6:10) ',
% 1. input: the selectable experimental designs
% 2. input: the variances of the associated measurement errors

0.01xones (5, 1))
455

3.3 Optimization of experimental designs and model
parameters

Once the solver object is configured as described in the
previous subsection, experimental designs or model param-
eters can be optimized via the get_optimal_measurements
(see Listing 8] respectively the ger_optimal_parameters (see
Listing [9) method. Constraints on the experimental designs
or model parameters can be passed to the corresponding e
method.

The get_optimal_measurements method can solve the op-
timization problem directly by trying all possible combina-
tions or by solving the corresponding continuous problem
and projecting onto an integer solution.

For solving the continuous problem, the implementation of
the SQP algorithm (see (Nocedal and Wright, |1999, Chap-
ter 18)) provided by the finincon function of the Optimiza-

tion Toolbox is used. Its solution is projected onto an integer

solution by the second heuristic described in[2.41
The first derivative of the objective function is provided in

analytical form. This saves much of the computing time com-
pared to derivatives calculated by finite differences. The Hes-
sian matrix is approximated by the BFGS-update (seeBroy-
den| (1970), [Fletcher (1970), |Goldfarb| (1970) and |Shanno
(1970)).

Matlab’s SQP algorithm can recover from infinity. If an
infinite function value is reached during the optimization,
optimization is started with a regular design, singular designs
do not make any trouble.

470

Figure 8. Optimize experimental designs

optimal_measurements = solver_object.get_optimal_measurements (3)

% input: the maximum number of measurements allowed

% return: the optimal subset of the selectable measurements with a <«
number of measurements less or equal to the restriction

485
The get_optimal_parameters method uses the Trust-

Region-Reflective (seei{Coleman and Li|(1994) and |Coleman
and Li (1996)) or the Levenberg-Marquard algorithm (see
Levenberg (1944), Marquardt| (1963) and |Moré| (1977)) pro-
vided by the Isgnonlin function of the Optimization Toolbox
to solve the least squares problem resulting from the param- g,
eter estimation. The first derivative of the objective function

is also provided analytically.

Figure 9. Optimize model parameters

optimal_parameters = solver_object.get_optimal_parameters ([0,0],[9,9])

% 1. input: the lower bound of the model parameters

% 2. input: the upper bound of the model parameters

% return: a parameter estimation resulting from the accomplished < 495
measurements which takes into account the passed constraints

Furthermore, the expected quality of the resulting param-
eter estimation for any selection of experimental designs can

be calculated using the get_guality method of the solver ob-
ject. Thus, for example, the increase in quality by adding or
removing experimental designs can be determined.

In the methods of the Optimal Experimental Design Tool-
box, often reusable (intermediate) results occur. The toolbox
takes advantage of this by internally saving and reusing ap-
propriate results. Thus, the execution time is significantly
reduced. Multiple occurring matrix multiplications within a
calculation are an example. Also, reusable results are cached
between different method calls. An example scenario is a re-
optimization of designs with other constraints, such as an-
other maximum number of allowed measurements. Here, the
derivatives of the model function calculated in the previous
optimization is reused.

3.4 Changeable options

Many settings for the optimization of experimental designs
or model parameters are changeable. These can be altered by
the set_option method of the solver object (see Listing [T0).
The desired options can be set using property-value pairs, as
already known from MATLAB. This means, the name of the
option has to be passed to the method as first argument and
the new value as second argument.

Figure 10. Change an option

solver_object.set_option('option-name', option_value)
% 1. input: the name of the option which should be changed
% 2. input: the new value of the option

Estimation method: For example, the estimation method
for the quality of experimental designs can be selected
by the estimation_method option. The standard point
estimation method and the robust region estimation
method, both presented in Section[2] are supported. The
region estimation method is the default setting.

Confidence level: Moreover, the level of confidence for the
confidence region at the region estimation method, rep-
resented by « in Section [2.5] can be set by the alpha
option. The default value is 0.95.

Prior parameter estimation: Furthermore, it can be cho-
sen whether a parameter optimization should be
performed before optimizing experimental designs.
This would improve the estimations of the qual-
ity of experimental designs. This can be set by the
parameter_estimation option and the values yes or no.
To save computational time no previous parameter opti-
mization is performed by default.

Quality criterion: The quality criterion, which is applied to
the covariance matrix and represented in Section [2.1] as
¢, can also be chosen. Therefore, an object of a class
which implements the criferion interface have to be
passed with the criterion option. The criterion interface
prescribes the syntax of the criterion function and its
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necessary derivatives. The trace of the covariance is the
default criterion and implemented by the criterion_A
class. 550

Parameter scaling: Furthermore, it can be chosen
whether the covariance matrix should be scaled
before applying the quality criterion or not by the
scale_covariance_matrix option and the values yes and
no. Scaling the covariance matrix allows to optimize the
quality of each parameter uniformly and is enabled by
default. The model parameters are scaled by default for
the parameter optimization, too. This can be changed
by the po_scale_parameter option and the values yes
and no.

555

Optimization algorithm for experimental design:

Finally, the optimization algorithm for the experimental
design problem can be configured. The direct-and-the 4,
described in [2.4] can be chosen as solution algorithm.
The corresponding option is ed_algorithm and the
values are direct respectively local_sqp. For time
reasons by default the experimental design problem is g
solved by the relaxed-methedapproximative approach.
Furthermore, the number of function evaluations and
iterations by the SQP algorithm can be constrained by
the options ed_max_fun_evals and ed_max_iter.

Optimization algorithm for parameter estimation: o7

Similarly, the optimization algorithm for the pa-
rameter estimation problem can be configured. The
Trust-Region-Reflective (see-{Coleman and Li| (1994)
and |Coleman and Li (1996)) and the Levenberg-
Marquard algorithm (see—Levenberg| (1944), Mar-’
quardt (1963) and Moré| (1977)) can be chosen as
solution algorithm with the option po_algorithm
and the values trust-region-reflective respectively
levenberg-marquardt. The Trust-Region-Reflective
algorithm is the default algorithm. By default the model
parameters are scaled for the optimization. This can be
influenced by the po_scale_parameter option and the ss
values yes and no. Furthermore, the number of function
evaluations and iterations can be limited through the
options po_max_fun_evals and po_max_iter.

75

3.5 Help and documentation o5

The Optimal Experimental Design Toolbox also provides
an extensive integrated help. It can be viewed in the com-
mand window by the MATLAB command /elp or in the help
browser of MATLAB by its doc command (see Listing[TT)).

Figure 11. Get the documentation

doc optimal_experimental_design_toolbox

‘ 590

The layout of the help of the Optimal Experimental Design
Toolbox is based on the design of the help also used by MAT-

LAB and other toolboxes. Thus the user does not have to
get used to a new layout. The help includes, besides system
requirements and version informations, a user’s guide with
a step by step instruction how to optimize experimental de-
signs and model parameters. Demos show how to work with
the toolbox in practice. In addition, a detailed description for
every class and method is available.

4 Application examples

In this section, numerical experiments together with their
results regarding the optimization of model parameters and
experimental designs are presented for two models from
geophysics, namely for sediment concentration in seawater
which floods coastal salt marshes.

Coastal salt marshes have an important ecological function
with their diverse flora and as a nursery for migratory birds.
Furthermore they have the ability of dissipating current and
wave energy and therefore reducing erosional forces at dikes
and coastal areas.

With these models, the vertical accretion of coastal salt
marshes can be predicted. If sea level rise is considered too,
the future ability of coastal salt marshes to grow faster as sea
increases and thus to survive can be estimated. Depending on
this, measures to protect these salt marshes can be taken.

This application example arose in cooperation with the
Geographical Institute of the Christian-Albrechts University
of Kiel. There, the parameters of these two models should
be determined. Carrying out the required measurements of
the sediment concentrations is time consuming and labori-
ous. For this reason, it is advantageous to know under which
conditions and how many measurements should be carried
out.

4.1 The models

Both models are zero-dimensional point models, which de-
scribe the sediment concentration in seawater that floods
coastal salt marshes within a tidal cycle. The first model has
two model parameters, was described in [Temmerman et al.
(2003)) and adapted for the local salt marshes in [Schuerch
et al.[(2013). The second model has three model parameters,
is an extension of the first model and subject of current re-
search.

4.1.1 The Cy-model

The first model is called the Cy-model. Here, the sediment
concentration is modeled by the function C': [tg,tg) — R
and has the unit %. Furthermore, tg is the start time of the
inundation of the salt marsh and tg the end time. The con-
centration C' is given implicit as solution of the initial value
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problem

if B (t) >0

else

h(t)—FE
—w;C(t)
h(t)—F

forallt € (ts,tg) and C(tg) = Co.

—w.C(D)+(Co—C ()N (1)
C'(t) =

(10) e30

Here, Cy > 0 is the initial sediment concentration at the
flooding seawater and wg > 0 the settling velocity of the sed-

iment in the unit 2. Moreover, the function
S

635

h:R—=R,t— +hew — hyew

a
)

r ()
describes the time-dependent water surface elevation and F
the elevation of the marsh both relative to a fixed datum.
Here, a, b and x( are constants describing the change in the
water level, hpsw the mean high water level and hgyy the
high water level of a certain tidal inundation. The start and
end time tg and t g of the inundation are the points where the
height & equals the elevation of the marsh F.

The concentration C' thus decreases continuously within
a tidal cycle depending on the settling velocity wg which is
described by the term

wsC(t)
h(t)—F

640

645

in (T0). During the flood phase, the reduced concentration
is partially compensated by new inflowing sea water. This is
described by the term

(Co—C@H)N(?)
h(t)—FE o0
in the first case of (10).
The values used in the water surface elevation function h,
for the local salt marsh, are shown in Table [Tfsee-. (See also

Schuerch et al.|(2013).) The high water level A gy of the cur- ess
rent tidal inundation is measured or taken from predictions.

Table 1. Values used for the water surface elevation function A

| a b zo hygw  E

are substituted by

C() = k(hHW — E)
ws =1r(Co)° =1k’ (hgw — E)°.

Where k£ > 0, r > 0 and s > 0 are unknown model parame-
ters.

On the one hand, a linear relationship between the initial
sediment concentration and the high water level is assumed,
where during heavy flooding a higher sediment concentra-
tion is assumed. On the other hand, a relationship between
the initial sediment concentration and the settling velocity is
assumed. This is an empirical approximation of the so-called
flocculation effect.

Initial estimations for the parameters in this model can be
found in Table[3

Table 3. Estimated parameter values for the C3-model

‘ k T s
estimated value | 0.25 107> 0.5

4.2 Numerical experiments

We performed several numerical experiments to compare the
benefit of optimized with unoptimized measurement condi-
tions. Also, the benefit of different approaches to optimiza-
tion measurement conditions was compared. Using these re-
sults, an appropriate approach for the optimization of condi-
tions for real measurements was selected.

The approaches introduced in Section [2]and implemented
by the Optimal Experimental Design Toolbox described in
Section E] were used for the numerical experiments. For that,
we used the model_ivp class which allows to calculate the
solution of an initial value problem and its first and sec-
ond derivatives with respect to the model parameters. The
Cs-model was implemented by the model_C2 class and the
Cs-model by the model_C3 class which is a subclass of the
model_C2 class.

For our numerical experiments, we used the model output
with the model parameters in Tables [2] and [3| plus an additive
normalnormally distributed measurement error with zero ex-

local value ‘ 3.7506 19447.1 —1301.0 3.75m

The initial sediment concentration C and the settling ve-
locity wg are only roughly known and therefore model pa-

rameters. Initial estimations can be found in Table[2}
665

Table 2. Estimated parameter values for the C2-model
| Co
estimated value ‘ 0.1 %

ws
107°

S

4.1.2 The Cz-model

The second model is an extension of the Co-model and is
called the C3-model. Here the model parameters Cyy and wg

1.8&em pectation as artificial measurement results. As standard devi-

ation of the measurement error, we once chose 10~2 and once
1075

In our numerical experiments, we alternately selected a
fixed number of experimental designs and estimated the
model parameters with corresponding measurement results.
We carried out each experiment ten times and averaged the
results to minimize the influence of randomness.

For the initial parameter estimation, we used the values
presented in Table 4]

Table 4. Initial parameter values

| Co
initial value | 5

wWg ‘ k r s
2x1077 [ 125 2x1077 3
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Moreover the bounds for the model parameters shown in 7s
Table [5| were used for the parameter estimations.

Table 5. Parameter bounds

| Co ws | k r s
lowerbound | 10 1078 [ 107* 1078 107!
upper bound | 10* 1 10t 1 5

The experimental designs for these models consist of the
time point of the measurement and the high water level of the
tidal inundation. A set of thirty selectable experimental de-
signs was specified. They were obtained by combining three
different high water levels of the tidal inundation (1.5m, 2.0m
and 2,5m) with ten time points equidistantly spread over the
inundation period.

For choosing the experimental designs, we compared the
standard and the robust approach presented in Section [3]
with the trace as quality criterion together with uniformly
distributed experimental designs. In the robust approach, a
confidence level of 95% was used. The optimization prob- "
lems for the experimental designs were once solved exaet
in-the-diserete—vartant-exactly and once approximativelyin
the-relaxed-variant—, (See Section [2.4]) To evaluate all these
methods, we compared the resulting parameter estimations
with the correct model parameters in Tables 2] and [3] e

We further investigated whether the number of measure-
ments after which new experimental designs are optimized
had an impact on the accuracy of the parameter estimation.
For this purpose, different numerical experiments were per-
formed where the parameters and experimental designs have ™
been optimized after each one, three resp. five measurements.
Altogether fifty measurements were simulated at each exper-
iment with the Cy-model. For the C3-model, hundred and
fifty measurements were simulated at each experiment since
the model is more complex and therefore a sufficiently accu- "
rate estimation of its parameters might be more difficult.

4.3 Accuracy of the parameter estimations 730

In this subsection, we compare the accuracy of the parameter
estimations resulting from the previously described numer- 7ss
ical experiments. Some results are illustrated in Figures [12]

and[I3]

4.3.1 Results for the C-model

Uniformly distributed measurements
Optimized measurements with standard approach in relaxed variant
Optimized measurements with standard approach in discrete variant

Optimized measurements with robust approach in relaxed variant
—sf— Optimized measurements with robust approach in discrete variant

Error in parameter estimation
i

I
0 5 10 15 20 25 30 35 40 45 50
Number of measurements

Figure 12. Averaged error in the parameter estimation from ten op-
timization runs with the C2-model and three measurement per iter-
ation with standard deviation 102 of the measurement error.

The accuracy of the parameter estimations for the Co-model
only improved marginally after four to twelve measurements
independently of the choice of the experimental designs. The
maximal-aceuracy—was—achieved-accuracy improved faster
the more frequently the experimental designs and parameters
were optimized. However, the maximal-best achieved accu-
racy was independent of the frequency.

With uniformly distributed experimental designs the
maximum-best achieved accuracy was slightly worst-worse
than with optimized experimental designs. Additional four to
six more measurements were needed compared to optimized
experimental designs in order to achieve their accuracy.

Although the parameters nonlinearty—eeeur—occur
nonlinearly in this model, it made close to no differ-
ence whether the standard or the robust approach for the
optimization of the experimental designs was used.

The approximatively solving of the discrete optimization
problem has resulted in a slightly worse accuracy at the
ﬁrst 1terat10nstHhed1sefefeLep&mﬂaﬂeﬂ4pfeb}efﬂwva&se¥ved

Thereafter, the difference was very small. The solutions of
the relaxed continuous optimization problems were almost

at-always nearly integer.

The different standard deviations of the measurement er-
rors only influenced the maximal-aceuracy—achieved-best
achieved accuracy which was of course higher—worse at
a higher standard deviation. This can be explained by the
fact that different constant standard deviations only mean a
different scaling of the objective of the experimental design

optimization problem. Thus, different constant standard
deviations do not affect its solution.
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4.3.2 Results for the C3-model

Uniformly distributed measurements
Optimized measurements with standard approach in relaxed variant
Optimized measurements with standard approach in discrete variant

Optimized measurements with robust approach in relaxed variant
—fe— Optimized measurements with robust approach in discrete variant

3
=)

I

Error in parameter estimation

Number of measurements

Figure 13. Averaged error in the parameter estimation from ten op-
timization runs with the C3-model and three measurement per iter-
ation with standard deviation 102 of the measurement error.

After ten to twenty-five measurements, the accuracy of
the parameter estimations for the C3-model with optimized
experimental designs only improved slightly. Again, the
maximal-aceuracy—was-achieved-accuracy improved faster,
the fewer measurements were performed per iteration and
the maximat-best achieved accuracy was independent of the
number of measurements per iteration.

With uniformly distributed experimental designs, the
maximum-best accuracy was achieved after twenty-four to
sixty measurements. Furthermore, the maximal-best achieved
accuracy was worse by about a factor of ten compared to the
best accuracy achieved by (standard) optimized experimental
designs.

775

780

790

795

The standard approach for optimizing experimental de- 800

signs resulted in a slightly better accuracy compared to

the robust approach. Again;—if-the-underlying-optimization
problem—was—solved—in—the—diserete—rather—in—the—relaxed
it} . I : |
For both approaches, the difference between the accurac
achieved with the exact solution of the discrete optimization
roblem and the accuracy achieved with the approximate
solution was small but recognizable and almost constant over

the iterations. Also in these experiments, the solutions of the
relaxed continuous optimization problems were almost all
nearly integer.

Again, the different standard deviations of the measure-
ment errors only influenced the maximal-aceuracy-achieved
best achieved accuracy.

4.3.3 Conclusions regarding the approach for optimiz-
ing experimental designs

Optimized experimental designs provided a much more accu-
rate parameter estimation than uniformly distributed experi-
mental designs independent of the chosen optimization ap-
proach. Furthermore, only about half as many measurements
were needed to archive the same accuracy with optimized ex-
perimental designs as with uniformly distributed experimen-

Reimer et al.: Optimization of experimental designs and model parameters

tal designs. In the more complex model, the difference was
even greaterbigger.

The robust approach achieved no higher accuracy com-
pared to the standard approach. In the complex model, the
robust approach was even slightly less accurate. This may

indicate that the additional-approximations—in—the—robust
approach-offset-the-inerease-in-aceuracy——which-should-be
achieved-gain in accuracy by taking into account the nonlin-
earity is offset by the additional approximations in the robust
approach. Since a considerably higher computational effort
is associated with the robust approach, the standard approach
should be preferred, at least for these models.

The direct—selution—exact solving of the discrete op-
timization problems compared to the selution—of—the
continwous-—relaxed-optimization—problems—a W

solving only resulted in a small increase in accuracy. The
fact that the selutions—of-therelaxed-optimization—problems
approximative solutions were almost all nearly integer was
another indication that the difference between both solu-
tions was small. This fact was also observed, for example,
in [Korkel| (2002) and [Korkel et al.| (2004). For these rea-
sons and because the direet—exact solving requires much
more computational effort, the relaxed-problem—should-be

solvedapproximative solving should be preferred, at least for
these models.

4.4 Efficiency for the experimental designs

We also calculated the efficiencies of the used experimental
designs. Some results are illustrated in Figures [I4]and [I3]

Uniformly distributed measurements
Optimized measurements with standard approach in relaxed variant
Optimized measurements with standard approach in discrete variant

o1f Optimized measurements with robust approach in relaxed variant
4 + Optimised measurements with robust approach in discrete variant
0
[}

5 10 1 5 20 25 30 35 40 45 50

Number of measurements

Figure 14. Averaged efficiency for the experimental designs from
ten optimization runs with the C2-model and three measurement per
iteration with standard deviation 102 of the measurement error.
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l Optimi ents with robust approach

T T

50 100 1;0
Number of measurements
Figure 15. Averaged efficiency for the experimental designs from
ten optimization runs with the C3-model and three measurement per
iteration with standard deviation 10~2 of the measurement error.

The results emphasized the already seen importance of the
optimization of the experimental designs. In particular, the
advantage in the case of few measurements carried out so
far was highlighted. Again, the slight advantage of the stan-
dard approach over the robust approach was visible. With
increasing number of accomplished measurements, the se-
lection strategy of new measurements became less important
as the amount and thus the influence of the new measure-
ments compared to those of the accomplished measurements
decreased.

4.5 Distribution of optimal measuring points

830

835

In this subsection, we compare the distribution of the mea- s

suring points optimized in the previously described numeri-
cal experiments. Graphical representation of the distribution
of the measuring points from some numerical experiments
are shown in Figure [I6and

4.5.1 Distribution for the C5-model

I Uniformly distributed [ Standard relaxed BB Standard discrete [ Robust relaxed [ Robust discrete |

2.0m high water level

1.5m high water level 2.5m high water level

05

1 0.5 1 0 0.5 1
e during flooding interval

i flooding interval Time during flooding interval

Ho

Frequency of measurements
o 5 3 &
o @ 5 &
OE

Figure 16. Averaged frequency of measurements from ten opti-
mization runs with the C2-model and three measurement per iter-
ation with standard deviation 102 of the measurement error.

The optimized measuring points were almost exclusively lo-
cated at the start and end of the inundation periods. At the
start of the inundation period, both approaches in the diserete
exact variant favored lower high water levels unlike both ap-
proaches in relaxed-approximatively variant which favored
higher high water levels. At the end of the inundation pe-
riod, the standard approach in both variants favored lower

845

15 850
10 ‘|

5

0

855

860

high water levels unlike the robust approach in both variants sss

which favored higher high water levels.

11

4.5.2 Distribution for the C3-model

BN Uniformly distributed [N Standard relaxed [l Standard discrete ] Robust relaxed [N Robust discrete

1.5m high water level 2.0m high water level
50 50

2.5m high water level

40 40 40

Now
8 8
Now
s 8
N @
s 8

Frequency of measurem
3
=
3

o
o
o

0 05 1 0 05 1
Time during flooding interval Time during flooding interval

0.5 1
Time during flooding interval

Figure 17. Averaged frequency of measurements from ten opti-
mization runs with the C3-model and three measurement per iter-
ation with standard deviation 10~ 2 of the measurement error.

For the C3-model the optimized measuring points accumu-
lated at the end of the inundation periods. All approaches
favored lower high water levels. With an increasing number
of measurements per iteration the robust approach in both
variants also prefered measurements in the middle of the in-
undation periods with the highest high water level.

4.5.3 Conclusions regarding the distribution of optimal
measuring points

The numerical experiments showed that measurements at the
start and end of the inundation periods should be preferred
for the Co-model.

Measurements at the start of the inundations can be justi-
fied by the fact that one parameter of the model is the concen-
tration at the start of the inundation. The fact that the settling
velocity as second model parameter most affects the concen-
tration at the end of the inundations justifies measurements
here. This can be confirmed by an examination of the ordi-
nary differential equation of the model derived with respect
to the settling velocity. The derivative of the model with re-
spect to the settling velocity is zero at the start of the inun-
dation and is getting smaller the further the inundation pro-
gresses. Its absolute greatest value it thus reached at the end
of the inundation.

The experiments with the C3-model showed that here mea-
surements at end of the inundation periods should be pre-
ferred. In this model, the concentration at the start is no pa-
rameter but is affected by a parameter that also influences
the settling velocity. For this reason, measurements are not
suggested at the start.

For both models the high water level seemed to play a mi-
nor role for the choice of measuring points.

As a rule of thumb one can say that measurements should
be carried out at the end of an inundation period and also
some at the start if the Co-model is used.

5 Conclusions

In this paper we presented two different approaches for op-
timizing experimental design for parameter estimations. One
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method was based on the linearization of the model with re-
spect to its parameters, the other takes into account a possi-
ble nonlinearity of the model parameters. Both methods were 925
implemented in our presented Optimal Experimental Design
Toolbox for MATLAB.

Using application examples, we showed that model pa-
rameters can be determined much more accurately if the cor- o
responding measurement conditions were optimized. Espe-
cially for time-consuming or costly measurements, it is there-
fore useful to optimize the measurement conditions with the
Optimal Experimental Design Toolbox.
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