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Abstract

A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is
developed for assimilating atmospheric CO2 abundance data into an ecosystem model
to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribu-
tion. This assimilation approach is based on the ensemble Kalman filter (EnKF), but5

with several new developments, including using analysis states to iteratively estimate
ensemble forecast errors, and a maximum likelihood estimation of the inflation factors
of the forecast and observation errors. The proposed assimilation approach is tested
in observing system simulation experiments and then used to estimate the terrestrial
ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The10

results showed that this assimilation approach can e�ectively reduce the biases and
uncertainties of the carbon fluxes simulated by the ecosystem model.

1 Introduction

The carbon dioxide concentration in the atmosphere plays an essential role in the study
of global change for its potential to warm up the atmosphere and the surface. A better15

estimation of carbon fluxes over global ecosystems would help better understand each
nation’s contribution to the global warming and improve the global warming science.

In the past decade, many e�orts have been made to estimate the surface CO2
fluxes using both atmosphere-based top-down and land-based bottom-up methods.
CarbonTracker (Peters et al., 2005, 2007) may be one of the most advanced among20

these e�orts. It uses an ensemble square root filter to assimilate atmospheric CO2
mole fractions into an ecosystem model coupled with an atmospheric transport model.
The model state vectors in CarbonTracker are carbon fluxes within 5 weeks. However,
Miyazaki et al. (2011) and Kang et al. (2011) argued that the state vectors should
also include atmospheric CO2 concentration, because the observed CO2 consists of25

both existing atmosphere CO2 and recently released carbon fluxes, so including CO2

6520

This title is a bit awkward as it contains the word assimilation twice, also the acronym EnKF is not known to all readers. Carbon Assimilation for many persons refers to the process of carbon fixation by photosynthesis. I suggest the authors make a better title.

I am not sure I agree with this reasoning that including the CO₂ concentrations in the statevector should improve carbon flux estimations. How would that help?

In principle, the CO₂ concentrations are fully determined by the surface fluxes, so putting them both in the statevector is not so intuitive to me.

Of course, the reason they did go this direction is because the relationship between surface fluxes and atmospheric CO₂ is given by a transport model with uncertainties and putting CO₂ in the statevector allows you to correct for biases in transport, and also reduces the need to explicitly simulate the CO₂-flux relationship over long time periods. 
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concentration in the state vectors should improve the estimation of carbon fluxes. How-
ever, their e�orts mainly focus on studying the performance of the assimilation method-
ology and observation settings by using idealized models only, not on assimilating real
observations.

It is well known that correct estimation of the forecast error statistics is crucial for5

the accuracy of any data assimilation algorithm. In all existing EnKF assimilations for
estimating carbon fluxes, the ensemble forecast errors are estimated by perturbed
forecasts minus their ensemble mean. However, the definition of the perturbed fore-
cast errors is the perturbed forecast states minus the true state. Motivated by the fact
that the analysis state is a better estimate of the true state than the forecast state,10

Wu et al. (2013) proposed a new estimator for the perturbed forecast errors using the
perturbed forecast states minus the analysis state. Moreover, they used a simulation
study to demonstrate that the new estimator can lead to better assimilations for models
with large errors. Since the model errors of ecosystem models are generally large, the
new estimation of the perturbed forecast errors is potentially useful to improve EnKF15

assimilation for estimating carbon fluxes.
Besides forecast errors, the observation errors need also be accurately estimated.

In the majority schemes for estimating carbon fluxes, including CarbonTracker, the ob-
servation error variances are not estimated but empirically assigned. The quality of
the estimation of observation error variances critically depends on whether the fore-20

cast error covariance matrix is appropriately estimated or not (Desroziers et al., 2005).
However, appropriate estimation of the forecast error covariance matrix is a challenge
in real applications.

In this paper we propose several modifications to the conventional EnKF for as-
similating atmospheric CO2 observations into ecosystem models. Firstly, the model25

state is set as a combination of the surface carbon fluxes and atmospheric CO2 con-
centration as suggested by Miyazaki et al. (2011) and Kang et al. (2011). Secondly,
the analysis state is used to adaptively estimate forecast errors as suggested by Wu
et al. (2013) and Zheng et al. (2013). Thirdly, both forecast and observation errors are
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inflated as suggested by Liang et al. (2012). This modified EnKF is used to assimilate
real CO2 concentration data into the Boreal Ecosystem Productivity Simulator (BEPS,
Chen et al., 1999; Liu et al., 1999; Mo et al., 2008) for estimating real world terrestrial
carbon fluxes with 3 hourly and 1� �1� resolution from 2002 to 2008.

This paper consists of 7 sections. The models and data used in this study are intro-5

duced in Sect. 2, while the methodology is in Sect. 3. Section 4 presents the observing
system simulation experiment results. A real data application of the proposed method-
ology is presented in Sect. 5. Conclusions and discussions are given in Sects. 6 and 7
respectively.

2 Models and data10

2.1 Surface carbon flux models

The surface carbon fluxes mainly arise from fossil fuel combustion, vegetation fire,
oceanic uptake and biosphere. In this study, only the surface carbon fluxes from bio-
sphere are simulated using BEPS, the rests are taken from datasets of CarbonTracker.

BEPS is a process-based ecosystem model mainly developed to simulate forest15

ecosystem carbon budget (Chen et al., 1999; Ju et al., 2006; Liu et al., 1999). For
many reasons, such as the complexity of ecosystem processes, spatial–temporal vari-
abilities, representative errors, parameters in process-based models often do not rep-
resent their true values when these models are used to calculate carbon budget over
large areas and for long time periods (Mo et al., 2008). Errors in these parameters lead20

to biases of model results. In this study, we try to reduce biases of BEPS simulated car-
bon fluxes by incorporating atmospheric CO2 concentration measurements with data
assimilation methods. The prior carbon fluxes simulated by BEPS are at a spatial res-
olution of 1� �1� and for every 3 h. On each model grid, BEPS calculates carbon fluxes
of 6 di�erent ecosystem types and outputs the sum of them through weighting the areal25

6522

Can you add a reference (URL or paper) to this source, as well as some form of acknowledgement for using this product?

And note that NOAA/ESRL is often not the owner of these datasets themselves and true references should be made to the original data providers such as CDIAC, GFED, etc… 



Please also mention the lack of knowledge on historical land-use change and land management, as this likely exceeds parameter uncertainties.

In Kang et al (2011, 2012) and Liu et al (2012,2013) CO₂ concentrations are added to the statevector because they have strong correlations with weather variables that are simultaneously assimilated. This is much different from this study and the one by Miyazaki where only fluxes and CO₂ are added. This difference should be noted explicitly in the text.
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fractions of the ecosystem types. Figure 1 shows the ecosystem types with the largest
weight on each grid.

2.2 Atmospheric transport model

The global chemical transport Model for OZone And Related chemical Tracers
(MOZART, Emmons et al., 2010) is used as the atmospheric transport model. In this5

study, MOZART is run at a horizontal resolution of approximately 2.8��2.8� with 28 ver-
tical levels. The forcing meteorology is from NCAR reanalysis of the National Centers
for Environmental Prediction (NCEP) forecasts (Kalnay et al., 1996; Kistler et al., 2001).
Since CO2 is chemically inert in atmosphere, we turn o� all the chemistry processes
and leave only transport of CO2 by atmospheric motions. Given the atmospheric CO210

concentration in the previous week and the surface carbon fluxes in the current week,
MOZART is used to forecast gridded atmospheric CO2 concentration within the current
week.

2.3 Observation

The atmospheric CO2 concentration measurements collected and preprocessed by15

CarbonTracker are used in this study. It reflects the variability of the total surface
carbon fluxes (i.e. fossil fuel combustion, vegetation fire, oceanic uptake and bio-
sphere) as well as inter-exchange among the CO2 existing in the atmosphere. The
CO2 dataset released on CarbonTracker’s website (http://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/) includes observations of two main types: the measurements of20

air samples at surface sites and in situ quasi-continuous CO2 time series from towers.
On average there are about 140 observations in every week during 2000 and 2010.

The observation error variance dataset is also released on CarbonTracker’s website.
They were subjectively chosen and manually tuned to fit into their models and observa-
tions (Peters et al., 2005, 2007). The observation sites were divided into six categories,25

each with their own assigned observation errors (see the document of CarbonTracker
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for details). These observation error variances are used as prior values in our system
and are adaptively adjusted with the proposed assimilation scheme.

3 Methodology

Within tth week, let ct be a set of gridded atmospheric CO2 concentrations every 3 h,
f t be the set of prior carbon fluxes every 3 h, and �t be a set of factors defined as5

constants on areas and within a week for adjusting f t. Then, the model state is defined
as xt = (cT

t ,�Tt )T .

3.1 EnKF with error inflations

Using the notations of Ide et al. (1997), the first EnKF algorithm used in this study
consists of the following three main steps:10

1. Forecast step

The perturbed forecast states are estimated as

�f
t,i =

2
3
+

1
3
�a
t�1,i + �t,i (1)

cf
t,i = G

�
ca
t�1,i ,�

f
t,i

�
(2)

15

where i represents an ensemble member, �t,i are vectors sampled from a distri-
bution with mean 0 and a given covariance matrix (taken from prior covariance
structure in CarbonTracker, see the document of CarbonTracker and Peters et al.,
2005, 2007), and G is the atmospheric transport operator which maps ct�1 and
the �t-adjusted f t onto gridded CO2 concentration. Then the forecast state is es-20

timated as

xf
t =

1
m

m�

i=1

xf
t,i , (3)
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where m is the ensemble size.

2. Error step

The ensemble forecast errors and the observation error covariance matrix are
estimated as

�
�tX

f
t and µtRt respectively, where

Xf
t =

�
xf
t,1 �xf

t xf
t,2 �xf

t · · · xf
t,m �xf

t

�
, (4)5

and Rt is the observation error variance matrix for CarbonTracker. �t and µt are
the inflation factors (of the forecast error and the observation error respectively)
which are estimated by minimizing the following objective function (Liang et al.,
2012; Zheng, 2009):10

�2Lt (�,µ) = ln
�

det
�

�
m�1

Ht

�
Xf
t

�
Ht

�
Xf
t

�T
+µRt

��

+
�
yo
t �Ht

�
xf
t

��T � �
m�1

Ht

�
Xf
t

��
Ht

�
Xf
t

��T
+µRt

��1�
yo
t �Ht

�
xf
t

��
(5)

where yo
t is the vector of atmospheric CO2 concentration measurements, Ht is

a linear observation operator, which interpolates gridded CO2 concentrations at15

observation times and locations.

3. Analysis step

The perturbed analysis states are estimated as

xa
t,i =xf

t,i +
�
�tX

f
t

�
(m�1) I+Ht

��
�tX

f
t

�T

(µtRt)
�1Ht

��
�tX

f
t

���1

·
�
Ht

��
�tX

f
t

��T

(µtRt)
�1

�
yt �Ht

�
xf
t,i

�
+�t,i

�
(6)20
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where �t,i is a normal random variable with mean zero and covariance matrix
µtRt (Burgers et al., 1998). The analysis state xa

t is estimated as

xa
t =

1
m

m�

i=1

xa
t,i (7)

Finally, set t = t+1 and return to step (1) for the assimilation at next time step.5

The assimilated surface carbon fluxes are from all sources because the observed CO2
concentrations are arising from all sources. Then the surface carbon fluxes from bio-
sphere are estimated by the assimilated total carbon fluxes minus carbon fluxes from
other sources supplied by the forcing data.

3.2 Constructing error statistics using analysis10

Let xt
t be the true state. The ensemble forecast error should be defined as xf

t,i �xt
t.

However, xt
t is estimated by xf

t in Eq. (4). Since xa
t is derived by assimilating observa-

tions into the model, it should be a better estimate of xt
t than xf

t, especially when the
model error is large (Wu et al., 2013). Therefore after the analysis step (3) in Sect. 3.1,
it is suggested to return to the error step (2), and substitute xf

t in Eq. (4) by xa
t . This15

procedure is repeated until the corresponding objective function (Eq. 5) converges (Wu
et al., 2013; Zheng et al., 2013). In this study, if the di�erence between the minima
of �2Lt (�,µ) at nth and n+1th iterations is less one 1, then the iteration is stopped.
A flowchart of the proposed assimilation scheme in this study is shown in Fig. 2.
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3.3 Validation statistic

In ideal experiments where the “truth” is known, we can calculate the root-mean-square
error (RMSE) of the model states. RMSE of carbon fluxes is defined as

� (k) =

����1
T

T�

t=1

�
ft (k)� f t

t (k)
�2

(8)
5

where T stands for the total period of the assimilation, ft(k) is an average of fluxes
in the kth TransCom region (Gurney et al., 2004) and tth 3 h-period, while f t

t is the
corresponding “truth”. The spread is defined as,
����� 1

T (m�1)

T�

t=1

m�

j=1

�
ft,j (k)� 1

m

m�

i=1

ft,i (k)

�2

(9)

10

where ft,j (k) is the j th member of ensemble fluxes in the kth TransCom region. If all the
members of ensemble analysis states have the same distribution as the “truth”, then
estimated RMSE and spread should be close.

The RMSE of CO2 concentrations at tth time is defined as
����1

L

L�

l=1

�
yt (l )� y t

t (l )
�2

(10)15

where yt(l ) is the CO2 concentration value at l th location and y t
t(l ) is the corresponding

“truth”.
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4 Simulation study

4.1 Experimental design

In this section, the e�ectiveness of data assimilation methods introduced in Sect. 3 is
examined with simulation experiments.

No ecosystem model is perfect. Therefore it is desirable to introduce ecosystem5

model error. In order to mimic this model error, we set the “true” carbon fluxes to be
80 % of the BEPS simulated values plus 20 % of the CarbonTracker assimilated values.
The “true” gridded CO2 concentration is calculated starting from a CO2 concentration
field taken from CarbonTracker document, and is forced by the “true” carbon fluxes.
The synthetic observations are formed by adding noise to the interpolated “true” CO210

concentrations at the observation locations and times. All the observation errors are
assumed to be statistically independent and normally distributed with standard devia-
tion 0.2 ppmv. The experiments are carried out for 2002 with BEPS and MOZART. The
ensemble size is 150 unless otherwise noted.

4.2 Inflation on observation error variance15

In this section, we test the method of inflation on observation error covariance matrices
described in Sect. 3.1. Three experiments with inflated forecast error are compared. In
Experiment 1, the observation error variance is incorrectly specified (with variance of
0.5 ppmv), and the inflation procedure is not carried out (refer to as Wrong R). In Exper-
iment 2, the observation error variance is also specified as 0.5 ppmv, but the inflation20

procedure is carried out (refer to as Wrong R + Inf). In Experiment 3, the observa-
tion error variance is correctly specified as 0.2 ppmv (refer to as True R). The regional
RMSEs of the assimilated carbon fluxes and the monthly RMSEs of atmospheric con-
centrations at the observation sites in these three experiments are shown in Figs. 3
and 4, respectively.25
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Figure 3 shows that the RMSEs of the estimated carbon fluxes (Eq. 8) in all exper-
iments are reduced on all 11 regions compared with the RMSEs of the prior carbon
fluxes. Similarly, Fig. 4 shows that the RMSEs of the estimated in situ atmospheric
CO2 concentrations (Eq. 10) in all experiments are also reduced in all months com-
pared with the RMSEs of the prior CO2 concentrations. These facts indicate that the5

data assimilation schemes studied in this paper are useful. Moreover, the RMSEs from
Experiment 3 (True R) is smaller than that from Experiment 1 (Wrong R). This suggests
that correct specification of the observation error variances is important in improving
the assimilation results.

The mean value of the estimated standard observation errors in Experiment 210

(Wrong R + Inf) is 0.262 ppmv. Although it is larger than the true value 0.2 ppmv, but is
much smaller than the incorrectly specified value 0.5 ppmv. Nevertheless, the RMSEs
from Experiment 2 (Wrong R + Inf) and Experiment 3 (True R) are comparable (see
Figs. 3 and 4).

4.3 Constructing forecast error statistics using the analysis states15

In this section, we test the methodology of using the analysis state to construct forecast
error statistics described in Sect. 3.2. The corresponding Experiment 4 is referred to
as “Wrong R + Inf + Anl”.

Figure 3 shows that the RMSEs of the carbon fluxes assimilated in Experiment 4
(Wrong R + Inf + Anl) are the smallest for all regions and in all experiments. Similarly,20

Fig. 4 shows that the RMSEs of the in situ atmospheric CO2 concentrations assimi-
lated in Experiment 4 are the smallest for all months except September. These results
indicate that the methodology of using the analysis state to construct forecast error
statistics described in Sect. 3.2 can improve the assimilation results. The mean value
of the estimated standard observation errors in Experiment 4 (Wrong R + Inf + Anl) is25

0.268 ppmv, which is virtually identical to that in Experiment 2 (Wrong R + Inf).
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4.4 Validation

For investigating the sensitivity of the inflation factors toward the choice of ensemble
size, the time series of inflation factors are calculated with the ensemble size 200, and
are plotted against the estimated inflation factors with the the ensemble size 150 (not
shown here). In fact they are very close, suggesting that the ensemble size 150 used5

in both CarbonTracker and this study is reasonable.
The analysis spread and RMSE are also calculated for each region using Eq. (9) and

they are very close (not shown here). This indicates that the member of analysis states
may have the same distribution as the true states.

By including CO2 concentration in the state vectors, the initial value of gridded CO210

concentration at every week is the analysis states of CO2 concentration at previous
week. However, when excluding CO2 concentration from the state vectors, the initial
value of gridded CO2 concentration can also be estimated by using atmospheric trans-
port model forced by the assimilated surface carbon fluxes at previous week. Sensitivity
experiments were carried out to compare these two approaches. The RMSEs of anal-15

ysis in the experiment without including CO2 concentration in state vectors are close to
those in Wrong R + Inf + Anl, which suggests that including CO2 concentration in state
vectors may not significantly improve the assimilation results. However, in Wrong R
+ Inf + Anl the initial states of gridded atmospheric CO2 concentration need not be
re-estimated, thus the computational cost of atmospheric transport model is about half20

of that in experiment without including CO2 concentration, which is one advantage of
including CO2 concentration.

5 Application and results

In this section we use the data assimilation methods described in Sect. 3 to estimate
the land surface carbon fluxes from 2002 to 2008. The fossil fuel, forest fire and ocean25

surface carbon flux forcing fields of the atmospheric transport model MOZART are all
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taken from CarbonTracker website. The initial atmospheric CO2 concentration field is
also from CarbonTracker products. The prior land surface carbon fluxes are simulated
by the ecosystem model BEPS. In this study, only land surface carbon fluxes need to
be adjusted. The partition of the adjustment factors (i.e. �t in Sect. 3) is based on 11
TransCom regions (Gurney et al., 2004) and 19 Olson ecosystem types, as in Car-5

bonTracker. Prior observation error covariance matrix is adopted from CarbonTracker.
We refer to this data assimilation scheme as Global Carbon Assimilation System using
Ensemble Kalman filter (GCAS-EK).

5.1 Adjustment to total carbon budget of BEPS

We first carry out a control run starting from 1 January 2002 with no adjustment of prior10

fluxes. The simulated CO2 concentrations are interpolated at measurement times and
locations, and compared with real observations in the year 2005. The result is shown
in Fig. 5a. It shows that the simulated concentrations have a bias of 2.945 ppmv and a
RMSE of 4.525 ppmv, which implies an underestimation of carbon sinks by BEPS. With
the ecosystem fluxes estimated by GCAS-EK, we carry out another control run and15

comparisons. The bias and RMSE are reduced to 0.967 and 3.675 ppmv, respectively
(Fig. 5b).

We have to point out that the underestimation of carbon sinks by BEPS is condi-
tioned on the estimated carbon fluxes released by fossil fuel and fire, even if the ocean
fluxes used in our assimilation system are accurate. As described in Sect. 2, the ob-20

served variability of CO2 concentration is due to the variability of carbon fluxes from
all sources, including fossil fuel combustion, vegetation fire, oceanic uptake and bio-
sphere. If carbon sources not from biosphere are underestimated, the carbon sinks
from biosphere simulated by BEPS would also be underestimated. Nevertheless, our
adjustment to carbon sinks simulated by BEPS appears reasonable.25
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5.2 Multiyear average of the global carbon flux distribution

The distribution of the average global carbon budget from 2002 to 2008 is shown in
Fig. 6. The two spatial patterns of carbon fluxes related to BEPS (Fig. 6a and b) are
similar. However, they are quite di�erent from that of CarbonTracker products (Fig. 6c).

In the North American region, CarbonTracker exhibits a nearly west-east strip of5

the carbon sink (Fig. 6c), while the carbon sinks assimilated or simulated by BEPS
are mainly distributed in the east of 95� W (Fig. 6a and b). In the central Africa near
the southern edge of Sahara desert, CarbonTracker simulates a strong carbon sink
(Fig. 6c), but BEPS simulates a weak sink (Fig. 6a), while the assimilated result
shows a weak source (Fig. 6b). In Indonesia, CarbonTracker simulates a moderate10

carbon source (Fig. 6c), while carbon sinks are simulated and assimilated by BEPS
(Fig. 6a and b). In Australian Northern Territory, CarbonTracker simulates a carbon
sink (Fig. 6c), while the other two produce carbon sources (Fig. 6a and b). In North
American Temperate and Eurasia Boreal, the assimilated carbon sink is clearly larger
than that simulated.15

Carbon budgets are calculated based on the BEPS ecosystem types and the 11
TransCom regions (Fig. 7). Similar to the global distribution maps (Fig. 6), the assimi-
lated BEPS carbon budgets (Fig. 7) have almost the same property in sources or sinks
with that simulated by BEPS. However for the C4 and the shrub in Australia, BEPS
simulates carbon sources while CarbonTracker shows carbon sinks. Moreover in North20

America, there is a large carbon sink increase of the assimilated over the BEPS sim-
ulated. Further diagnostic (not shown here) reveals that, between October and April,
the carbon sinks estimated by CarbonTracker are much larger than that estimated by
GCAS-EK. But between May and September, the carbon sinks estimated by Carbon-
Tracker and GCAS-EK are very close.25
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5.3 Interannual and seasonal variations

The interannual variations of the global total carbon budgets are shown in
Fig. 8. It shows that CarbonTracker predicts the largest multiyear average car-
bon sink (�3.89 Pg C year�1), compared with the smallest one simulated by BEPS
(�2.23 Pg C year�1). The assimilated mean carbon sink (�3.87 Pg C year�1) is virtu-5

ally identical to that estimated by CarbonTracker. The carbon sinks simulated by BEPS
and predicted by CarbonTracker obviously have more interannual oscillation than that
assimilated by GCAS-EK.

The monthly changes of the multiyear-averaged carbon budgets before and after
the assimilation of BEPS results are compared with that by CarbonTracker in Fig. 9.10

Clearly, the seasonal variability of the carbon budgets by CarbonTracker is the largest.
The assimilated fluxes based on BEPS have larger sinks in the summer and smaller
sources in the winter than those before the assimilation.

6 Discussion

6.1 Comparison with CarbonTracker15

Including CO2 concentration in the state vector implies that an atmospheric transport
model is part of the forecast operator, not part of the observation operator (such as
in CarbonTracker). In this framework, the forecast operator comprises an atmospheric
transport model and forecast of adjusted factors (Eqs. 1 and 2). The observation oper-
ator is the linear operator which interpolates gridded atmospheric CO2 concentration20

onto the observation points. Moreover for remotely sensed CO2 cylinder concentra-
tion data, the observation operator can be chosen as a weighted average of gridded
atmosphere CO2 concentrations.

Since atmospheric CO2 concentration is not model variable in CarbonTracker,
the observation operator in this study is di�erent from that in CarbonTracker. In25
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CarbonTracker, the observation operator is atmospheric transport model coupled with
a linear spatial interpolation operator which maps surface CO2 fluxes to atmospheric
CO2 concentration observation network. Then its observation error comprises the fol-
lowing three components: (1) measurement error covariance, (2) representation error
covariance; and (3) model transport error covariance. In this study, the observation op-5

erator is only the linear spatial interpolation operator. So the observation error in our
experiment only comprises components (1) and (2).

The mean value of the estimated µt for inflating the prior observation error variances
is 0.74. This indicates that the estimated observation error variances are smaller than
that used in CarbonTracker. This may be due to that model transport errors are not10

included in our observation errors, but are included in the observation errors for Car-
bonTracker.

6.2 Forecast of adjusted factors

From the extensive experiments conducted in this study, we find that the spatial pattern
of assimilated fluxes is highly correlated with the spatial pattern of prior fluxes. This is15

due to the fact that the unconditional expectation of the analysis E
�
�a
t,i

�
is 1, which

could be attributed to the setting of forecast of adjusted factors (Eq. 1). Then the prob-
ability of shifting between carbon sources and sinks is small. It means that GCAS-EK
generally trusts the spatial pattern simulated by the ecosystem model.

To avoid this problem, more flexible adjustment of f t with more adjusted factors may20

be considered. However, the increased number of the adjusted factors results in in-
creased degrees of freedom of adjustment model. To fit such kind of model more
abundance of observations may be required. For surface flask observations with a total
number of about 100 every week over the entire globe, the number of adjusted factors
has to be carefully controlled. Therefore, under the current density of ground-based25

observation network, improving the accuracy of the ecosystem model producing the
prior fluxes may be more feasible strategy to improve the surface flux estimation.
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6.3 Length of the assimilation time window

Di�erent lengths of the assimilation time window are used in various systems (5 weeks
in CarbonTracker, 3 and 7 days in Miyazaki et al., 2011, and 6 h in Kang et al., 2012).
We choose one week as the length in our methodology for the following two reasons.
Firstly, since most surface stations only have weekly observations, we need at least5

one week data to cover the globe. Secondly, beyond one week the model errors of
MOZART and BEPS may be significant, but they are very di�cult to quantify.

7 Conclusions

We propose a methodology to assimilate atmospheric CO2 concentration into surface
carbon fluxes simulated by an ecosystem model. In our framework CO2 concentra-10

tion is included in the state vector, both forecast and observation errors are inflated
and forecast error statistics are estimated in an adaptive procedure using the analysis
states. Generally speaking, these adaptive estimations improve the accuracy of assim-
ilated error statistics in EnKF, which leads to further improvement in the accuracy of
analysis states. Importantly, pre-assigned values of the observation error variance are15

improved if these adaptive procedures are applied.
Four simulation experiments were carried out to show the e�ectiveness of the pro-

posed methodology. In the first two experiments, we assumed the observation error
variances were incorrectly specified and compared assimilation results with and with-
out using inflations on the observation error statistics. The third experiment, in which20

the observation error variances were supposed to be known, served as a benchmark
of how the observation error variances were estimated using our methodology. The
fourth experiment showed the e�ectiveness of using analysis states to further improve
the estimation of forecast error. The results from all experiments met our expectation
and increased our confidence in applying the improved EnKF to assimilate real obser-25

vations. The application of the methodology to real data shows that the assimilated
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carbon fluxes by GCAS-EK are comparable to those reported by CarbonTracker. How-
ever, there are significant regional di�erences between carbon flux distributions as-
similated by GCAS-EK and CarbonTracker, which may be attributed to the di�erences
between the ecosystem models and the assimilation methodologies.

In our future study, we will investigate the sensitivity of assimilation results to the5

accuracy of ecological models and transport models. Also, more observation datasets,
such as remote sensing data, will be introduced into the GCAS-EK.
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Figure 1. Global distribution of ecosystem types in BEPS.
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Figure 2. Flowchart of the proposed adaptive procedure.
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Figure 3. RMSEs (g C m�2 year�1) of carbon fluxes in four experiments: (1) the “standard” EnKF
with incorrectly specified observation errors (Wrong R); (2) the “standard” EnKF with correctly
specified observation errors (True R); (3) EnKF with inflation on both forecast and observation
errors (Wrong R + Inf); (4) using analysis to further improve the estimation of forecast error
statistics (Wrong R + Inf + Anl).
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Figure 4. Posterior RMSEs (ppmv) of concentrations on observation sites in four experiments.
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Figure 5. Comparisons between real observations and simulated concentrations by control
runs: (a) control run forcing by prior carbon fluxes; (b) control run forcing by assimilated carbon
fluxes by GCAS-EK. Both simulations start from 1 January 2002 and all simulated concentra-
tions at observation locations and times in 2005 are compared here.
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Figure 6. Global carbon budget (g C m�2) distributions on multiyear average from 2002 to 2008:
(a) prior carbon fluxes simulated by BEPS; (b) assimilated carbon fluxes by GCAS-EK; (c) Car-
bonTracker estimated carbon fluxes.
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Figure 7. Average carbon budgets (Pg C year�1) on areas of BEPS ecosystem types and
TransCom regions from 2002 to 2008.
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Figure 8. Comparison of the interannual change of global total carbon budget from 2002 to
2008.
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Figure 9. Comparison of multiyear average monthly change from 2002 to 2008.

6547


