
D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls.
Date: 4 November 2014

MeteoIO 2.4.2: a preprocessing library for
meteorological data
M. Bavay1 and T. Egger2

1WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11,
7260 Davos Dorf, Switzerland
2Egger Consulting, Postgasse 2, 1010 Vienna, Austria

Correspondence to: M. Bavay (bavay@slf.ch)

1

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Abstract

Using numerical models which require large meteorological data sets is sometimes difficult
and problems can often be traced back to the Input/Output functionality. Complex models
are usually developed by the environmental sciences community with a focus on the core
modelling issues. As a consequence, the I/O routines that are costly to properly implement
are often error-prone, lacking flexibility and robustness. With the increasing use of such
models in operational applications, this situation ceases to be simply uncomfortable and
becomes a major issue.

The MeteoIO library has been designed for the specific needs of numerical models that
require meteorological data. The whole task of data preprocessing has been delegated
to this library, namely retrieving, filtering and resampling the data if necessary as well as
providing spatial interpolations and parametrizations. The focus has been to design an Ap-
plication Programming Interface (API) that (i) provides a uniform interface to meteorological
data in the models; (ii) hides the complexity of the processing taking place; and (iii) guar-
antees a robust behaviour in case of format errors, erroneous or missing data. Moreover,
in an operational context, this error handling should avoid unnecessary interruptions in the
simulation process.

A strong emphasis has been put on simplicity and modularity in order to make it extremely
easy to support new data formats or protocols and to allow contributors with diverse back-
grounds to participate. This library can also be used in the context of High Performance
Computing in a parallel environment

:
is

:::::
also

:::::::::
regularly

:::::::::::
evaluated

:::
for

:::::::::::
computing

::::::::::::::
performance

::::
and

:::::::
further

::::::::::
optimized

:::::::
where

:::::::::::
necessary. Finally, it is released under an Open Source license

and is available at http://models.slf.ch/p/meteoio.
This paper gives an overview of the MeteoIO library from the point of view of conceptual

design, architecture, features and computational performance. A scientific evaluation of the
produced results is not given here since the scientific algorithms that are used have already
been published elsewhere.

2

http://models.slf.ch/p/meteoio

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

1 Introduction

1.1 Background

Users of numerical models for environmental sciences must handle the meteorological forc-
ing data with care, since they have a very direct impact on the simulation’s results. The
forcing data come from a wide variety of sources, such as files following a specific format,
databases hosting data from meteorological networks or web services distributing data sets.
A significant time investment is necessary to retrieve the data, look for potentially invalid
data points and filter them out, sometimes correcting the data for various effects and finally
converting them to a format and units that the numerical model supports. These steps are
both time intensive and error prone and usually cumbersome for new users (similarly to
what has been observed for Machine Learning, Kotsiantis et al., 2006).

From the point of view of the model developer, handling input data is usually a necessary
but unpleasant side of model development that distracts from working on the core features
of the model. As a consequence developers tend to spend minimal effort on these aspects.
Throughout the history of the model, more pre-processing routines will usually be added to
the code in order to handle data-related problems as they arise. Moreover, supporting new
data formats and/or protocols for specific projects, requires modifying the code by either
adding conditional compilation directives or tweaking the current routines. This means that
the data reading and preprocessing routines will often be of low quality, lacking robustness
and efficiency as well as flexibility, exacerbating the troubles met by the users in preparing
their data for the model.

::
A

:::::
few

:::::::::
libraries

:::
or

::::::::::
software

:::::::::
already

:::::::
tackle

:::::::
these

::::::::
issues,

::::
for

::::::::::
example

::::
the

:::::::::::
SAFRAN

:::::::::::::
preprocessor

:::
of

:::
the

:::::::::::
CROCUS

:::::
snow

:::::::
model

:
(Durand et al., 1993)

:
,
:::
the

::::::::::
PREVAH

::::::::::::::
preprocessor

::
of

::::
the

:::::::::
PREVAH

:::::::::::::
hydrological

:::::::
model

:
(Viviroli et al., 2009)

::
or

::::
the

::::::::::
MicroMet

:::::::
model (Liston and

Elder, 2006)
:
.
:::::::::
However

:::::::
these

::::::::
projects

::::
are

::::::
often

:::::
very

::::::
tightly

:::::::
linked

::::
with

::
a
::::::::
specific

:::::::
model

:::::
and

:::::::::::::
infrastructure

:::::
and

::::
are

::::::::
typically

::::
not

:::::
able

:::
to

::::::::
operate

::::::::
outside

::::
this

:::::::::
specific

::::::::
context.

::::::
They

::::::
often

::::
lack

:::::::::
flexibility

:::
for

:::::::::
example

::::::::::
requiring

:::::
their

::::::
users

:::
to

::::::::
convert

:::::
their

:::::
data

::
to

::
a
::::::::
specific

::::
file

::::::::
format,

::
by

::::::
hard

:::::::
coding

::::
the

::::::::::::
processing

::::::
steps

:::
for

::::::
each

:::::::::::::::
meteorological

::::::::::::
parameter

::
or

:::
by

::::::::::
requiring

:::
to

3

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

:::
be

:::
run

:::::::::
through

:
a
:::::::::
specific

::::::::::
interactive

::::::::::
interface.

::::::
They

::::
also

::::::
often

::::
rely

:::
on

::
a
::::::::
specific

::::::
input

:::::::
and/or

::::::
output

::::::::::
sampling

:::::
rate

::::
and

:::::
can

:::
not

:::::
deal

:::::
with

:::::
fully

:::::::::
arbitrary

::::::::::
sampling

::::::
rates.

::::::::::
MeteoIO

:::::
aims

:::
to

::::::::::
overcome

::::::
these

:::::::::::
limitations

::::
and

:::
to

:::
be

::
a

::::::::
general

:::::::::
purpose

::::::::::::::
preprocessor

::::
that

:::::::::
different

::::::::
models

::::
can

::::::
easily

::::::::::
integrate.

:

1.2 Data quality

A most important aspect of data preprocessing is the filtering of data based on their per-
ceived quality. The aim of filtering data is to remove the mismatch between the view of the
real-world system that can be inferred from the data and the view that can be obtained by
directly observing the real-world system (Wand and Wang, 1996). We focus on two data
quality dimensions: accuracy and consistency.

We define accuracy as “the recorded value is in conformity with the actual value” (Ballou
and Pazer, 1985). Inaccuracies occur because of a sensor failure (the sensor itself fails to
operate properly), because of the conditions of the immediate surroundings of the sensor
(the sensor conditions do not reflect the local conditions, such as a frozen anemometer) or
because of physical limitations of the sensor (such as precipitation undercatch).

We define consistency in a physical sense, that a data set should obey the physical laws
of nature. Practically, the time evolution of a physical parameter as well as the interactions
between different physical parameters must obey the laws of nature.

1.3 Design goals

In order to help the users of numerical models consuming meteorological data and reduce
their need for support, we developed new meteorological data reading routines and invested
significant efforts in improving the overall usability by working on several dimensions of the
ergonomic criteria (Scapin and Bastien, 1997), adapting them according to the needs of
a data preprocessing library:

– Guidance: providing a clear structure to the user
:
;
:

– Grouping/distinction of items: so the user sees which items are related;
:

4

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

– Consistency: adapt and follow some rules regarding the naming, syntax and han-
dling of input parameters

:
;

– Workload: focusing on the tasks that the user wants to accomplish
:
;
:

– Minimal actions: limit as much as possible the number of steps for each tasks
:
;
:

– Explicit control: let the user explicitly define the tasks that have to be performed
:
;

– Error management: helping the user detect and recover from errors
:
;
:

– Error protection: handle all possible user input errors;
:

– Quality of error messages: provide clear and relevant error messages.
:

We also identified two distinct usage scenarios:
Research usage. The end user runs the model multiple times on the same data, with

some highly tuned parameters in order to produce a simulation for a paper or project. The
emphasis is put on flexibility and configurability (Scapin and Bastien, 1997).

Operational usage. The model is run fully or partially unattended for producing regular
outputs. Once configured, the simulations’ setup remains the same for an extended period
of time. The emphasis is put on robustness and stability.

We decided to tackle both scenarios with the same software package and ended up with
the following goals:

– Isolate the data reading routines from the rest of the model;

– Implement robust data handling with relevant error messages for the end user;

– Allow the data model to be easily expanded (data model scalability);
:

– Make it possible to easily change the data source (format and/or protocol) without any
change in the model code itself;

– Preprocess the data on the fly;
5

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

– Implement a “best effort” approach with reasonable fallback strategies in order to in-
terrupt the simulation process only in the most severe cases;

– Let the end user configure the whole data reading and preprocessing in a configura-
tion file that can be saved for archiving or later use.

2 Architecture

Using the design philosophy guidelines laid out in Sect. 1.3 and in order to be able to reuse
this software package in other models, we decided to implement this software package
as a library named MeteoIO. We chose the C++ language in order to benefit from the
object oriented model as well as good performance and relatively easy interfacing with other
programming languages. We also decided to invest a significant effort in documenting the
software package both for the end users and for developers who would like to integrate it
into their own models. More architectural principles are laid out in the sections below while
the implementation details are given in Sects. 3 and 4.

2.1 Actors

The question of proper role assignment (Yu and Mylopoulos, 1994), or finding out who
should decide, is central to the development of MeteoIO: carefully choosing if the end user,
the model relying on MeteoIO or MeteoIO itself is the appropriate actor to take a specific
decision has been a recurring question in the general design. For example when temporally
resampling data, the method should be chosen by the end user while the sampling rate is
given by the numerical model and the implementation details and error handling belong to
MeteoIO.

2.2 Dependencies

When complex software packages grow, they often require more and more external depen-
dencies (as third party software libraries or third party tools). When new features are added,

6

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

it is natural to try to build on achievements of the community and not “reinvent the wheel”.
However this also has some drawbacks:

– these third party components must be present on the end user’s computer;

– these components need to be properly located when compiling or installing the soft-
ware package;

– these components have their own evolution, release schedule and platform support.

Therefore, as relying more on external components reduces the core development effort,
it significantly increases the integration effort. One must then carefully balance these two
costs and choose the solution that will yield the least long term effort.

Estimating that a complex integration issue represents a few days of work and a non
negligible maintenance effort, core MeteoIO features that were feasible to implement within
a few days were redeveloped instead of integrating existing solutions. For the more periph-
eral features (like output plug-ins) we decided to rely on the most basic libraries at hand,
disregarding convenient wrappers which would introduce yet another dependency, and to
give the user the possibility to decide which features to enable at compile time. Accordingly,
MeteoIO requires no dependencies by default when it would have required more than fifteen
if no such mitigation strategy had been taken. A handful of dependencies can be activated
when enabling all the optional features.

2.3 Manager/worker architecture

Many tasks have been implemented as a manager/worker architecture: a manager offers
a high level interface to the task (filtering, temporal interpolation, . . .) while a worker imple-
ments the low level, MeteoIO-agnostic core processing. The manager class implements the
necessary features to efficiently convert MeteoIO-centric concepts and objects to generic,
low level data ideal for processing. All of the heavily specialized programming concepts (ob-
ject factories, method pointers, etc) and their actual implementations are therefore hidden
from both the high level calls and the low level processing. This architecture balances the

7

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

needs of the casual developer using the library (relying on very simple, high level calls) as
well as the casual developer expanding the library by contributing some core processing
modules (data sources, data filters, etc).

Although this approach might seem inefficient (by adding extra steps in the data pro-
cessing), it has contributed to the performance gains (as shown in Sect. 5.2) by making it
possible to rely on standard, optimized routines.

2.4 Flexibility

Since we don’t not want the user to have to recompile either MeteoIO or
:::::::::::::
Hard-coding

::::
the

::::
data

::::::::::::::::
preprocessing

::
in
:::::

the
:::::::
source

::::::
code

:::
is

:::
an

::::::
easy

:::::::::::
possibility

::::
but

:::::::::
requires

:::::
that

::::
the

::::::
user

:::::::::::
recompiles

:
his model when configuring the data preprocessing, everything has to be done

dynamically. All
:
.
:::
In

::::::
order

::
to

::::::
avoid

::::
this

:::::
and

:::::
thus

:::::
offer

::::::
more

::::::::::
flexibility,

:::
all adjustable param-

eters are configured in a
::::
text

:
file following the more or less standard INI ASCII format.

This makes it possible to manually configure the preprocessing , copy elements
:::::::
simply

::
by

::::::::
editing

::
a
:::::
text

::::
file,

:::::::::
copying

:::::::::::::
configuration

::::::::::
sections

:
between different simulations , keep

the whole configuration description with the simulation results and potentially provide
::::
and

::::::::::
potentially

::::::::::
providing

:
a graphical user interface to help the user configure his simulation

(Bavay and Egger, 2014).
::::::::::
Moreover,

::::::::
instead

:::
of

:::::::
having

:::
to

::::::
keep

::::::::
multiple

:::::
files

::::::::::::::
representing

:::
the

::::::
data

::
at

:::::::::
various

:::::::::::::
intermediate

::::::::::::
processing

::::::
stage

:::::::::::
alongside

::
a
::::::::

textual
::::::::::::
description

:::
of

::::
the

:::::::::::
processing

::::::
steps

::::
that

::::::
have

::::::
been

::::::::
applied,

::
it
::
is

:::::::::
possible

:::
to

:::::
only

:::::::
archive

::::
the

::::
raw

:::::
data

:::::
and

::::
the

:::::::::::::
configuration

::::
file

::::
that

:::::
then

:::::
acts

:::
as

::
a

:::::::::::::::
representation

::
of

::::
the

:::::::::::::::
preprocessing

::::::::::
workflow.

:

For clarity, each step of the data reading, preprocessing and writing is described in its own
section in the configuration file. There is no central repository or validation of the keys to be
found in this file, leaving each processing component free to manage its own configuration
keys. On the other hand there is no global overview of which keys might have been provided
by the user but will not be used by any component.

No assumptions are made about the sampling rate of the data read or the data required
by the caller. It is assumed that the input data can be sampled at any rate, including irregular
sampling and can be resampled to any timestamp, as requested by the caller. Moreover

8

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

any data field can be nodata at any time. This means that a given data set might contain
for example precipitation sampled once a day, temperatures sampled twice an hour and
snow height irregularly sampled. Practically, this prevents us from using standard signal
processing algorithms for resampling data, because these commonly assume a constant
sampling rate and require that all timestamps have a value.

2.5 Modularity

A key to the long term success of a software package is the modularity of its internal com-
ponents. The choice of an object oriented language (C++) has helped tremendously to build
modular elements that are then combined to complete the task. The data storage classes
are built on top of one another (through inheritance or by integrating one class as a mem-
ber of another one) while the data path management is mostly built as a manager that links
all the necessary components. A strong emphasis has been put on encapsulation by an-
swering, for each new class, the following question: How should the caller interact with this
object in an ideal world? Then the necessary implementation has been developed from this
point of view, adding “non-ideal” bindings only when necessary for practical reasons.

2.6 Promoting interdisciplinary contributions

Modularity, by striving to define each data processing in a very generic way and by making
each one independent of the others, presents external contributors with a far less intimi-
dating context to contribute. The manager/worker approach shown in Sect. 2.3 also facil-
itates keeping the modules that are good candidates for third party contributions simple
and generic. Some templates providing a skeleton of what should be implemented are also
provided alongside documentation on how to practically contribute with a short list of points
to follow for each kind of contribution (data plug-in, processing element, temporal or spatial
interpolation).

9

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2.7 Coding standards and methodology

The project started in late 2008 and is currently comprised of more than 52 000 lines, con-
tributed by twelve contributors. 95 % of the code originates from the two main contributors.
The code mostly follows the kernel coding style as well as the recommendations given by
(Rouson et al., 2011), giving the priority to code clarity. Literate programming is used with
the doxygen tool (van Heesch, 2008).

Coding quality is enforced by requesting all committed code to pass the most stringent
compiler warnings (all possible warnings on gcc) including the compliance checks with rec-
ommended best practices for C++ (Meyers, 1992). The code currently compiles on Linux,
Windows, OS X and Android.

The development methodology is mostly based on Extreme Programming (Beck and
Andres, 2004) with short development cycles of limited scope, architectural flexibility and
evolutions, frequent code reviews and daily integration testing. The daily integration testing
has been implemented with ctest (Martin and Hoffman, 2007), validating the core features
of MeteoIO and recording the run time for each test. This shows performance regressions
alongside feature regressions. Regular static analysis is performed using Cppcheck (Mar-
jamäki, 2013) and less regularly with Flawfinder (Wheeler, 2013) to detect potential security
flaws. Regular leak checks and profiling is performed relying on the Valgrind instrumentation
framework (Seward et al., 2013; Nethercote and Seward, 2007).

The code has also been adapted to interact easily with several parallelization
technologies as well as optimized to benefit from single instruction, multiple data (SIMD)
capabilities when feasible . The necessary serialization methods have been implemented
for the POPC extension to C++ as well as for the Message Passing Interface (MPI). For the
latter,

::::
and

:
some kind of a universal serialization has been implemented

::
to

::::::
ease

::::
the

::::
use

:::
of

:::::::::
MeteoIO

:::::::
objects

:::::::
within

::
a

:::::::
parallel

::::::::::::
application: each storage class implements the redirection

operators, serializing and deserializing to/from a standard iostream object. This object is
then passed to MPI

:::
the

:::::::::::::::
parallelization

::::::
toolkit

:::
or

:::::::
library

::::::
(such

:::
as

:::::
MPI,

::::
the

::::::::::
Message

:::::::::
Passing

::::::::::
Interface) as a pure C structure through a very simple wrapper in the calling application.

10

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

3 Data structures

All data classes rely on the Standard Template Library (STL) (Musser et al., 2001) to a large
extent that is available on all C++ compilers and may provide some low level optimizations
while being quite high level. The design of the STL is also consistent and therefore a good
model to follow: the data classes in MeteoIO follow the naming scheme and logic of the
STL whereever possible, making them easier to use and remember by a developer who
has some experience with the STL. They have been designed around the following specific
requirements:

– Offer high level features for handling meteorological data and related data. Using them
should make the calling code simpler.

– Implement a standard and consistent interface. Their interface must be obvious to the
caller.

– Implement them in a robust and efficient way. Using them should make the calling
code more robust and faster.

The range of high level features has been defined according to the needs of models rely-
ing on MeteoIO as well as in terms of completeness. When appropriate and unambiguous
the arithmetic operators and comparison operators have been implemented. Each internal
design decision has been based on careful benchmarking.

Great care has been taken to ensure that the implemented functionality behaves as ex-
pected. Of specific concern is that corner cases (or even plain invalid calls) should never
produce a wrong result but strive to produce the expected result or return an exception.
A silent failure would lead to possibly erroneous results in the user application and must
therefore be avoided at all cost.

3.1 Configuration

In order to automate the process of reading parameters from the end user configuration
file, a specific class has been created to manage configuration parameters. The Config

11

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

class stores the configuration options as a key-value couple of strings in a map. The key is
built by prefixing the actual key with the section it belongs to. When calling a getter to read
a parameter from the Config object, it converts data types on the fly through templates.
It also offers several convenience methods, such as the possibility of requesting all keys
matching a (simple) pattern or all values whose keys match a (simple) pattern.

3.2 Dates

The Date class stores the GMT Julian day (including the time) alongside the timezone
information (because leap seconds are not supported, the reference is defined as being
GMT instead of UTC). The Julian day is stored in double precision which is enough for one
second resolution while keeping dates arithmetic and comparison operators efficient. The
conversion to and from split values is done according to (Fliegel and van Flandern, 1968).
The conversion to and from various other time representations as well as various formatted
time strings and rounding is implemented.

3.3 Geographic coordinates

The geographic coordinates are converted and stored as latitude, longitude and altitude in
WGS84 by the Coords class. This allows an easy conversion to and from various Cartesian
geographic coordinates systems with a moderate loss of precision (on the order of one
meter) that is still compatible with their use for meteorological data. Two different strategies
have been implemented for dealing with the coordinate conversions:

– Relying on a the proj4 third party library (pro, 2013). This enables to support all coor-
dinate systems but brings an external dependency.

– Implementing the conversion to and from latitude/longitude. This does not bring any
external dependency but requires some specific (although usually limited) develop-
ment.

12

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Therefore the coordinate systems that are most commonly used by MeteoIO’s users have
been reimplemented (currently the Swiss CH1903 coordinates, UTM and UPS Hager et al.,
1989) and seldom used coordinate systems are supported by the third party library. It is
also possible to define a local coordinate system that uses a reference point as origin and
computes easting and northing from this point using either the law of cosine or the Vincenty
algorithm (Vincenty, 1977) for distance calculations. These algorithms are also part of the
API and thus available to the developer.

3.4 Meteorological data sets

The meteorological data are centered around the concept of a weather station: one or
more meteorological parameters (in the MeteoData class) measured at one location (this
location can change in time). The station has coordinates (including an elevation) and often
a name or identifier associated with it as well as a slope and azimuth (all belonging to the
StationData class). For each timestamp, a predefined set of meteorological parameters has
been defined and parameters that are not available receive a nodata value. This set can
be extended by defining additional parameters that will then be handled the same way as
the fixed parameters. Some basic merging strategies have been implemented in order to
merge measurements from close stations (for example when a set of instruments belongs to
a given measuring network and another set, installed on the same mast belongs to another
network).

A static map does the mapping between predefined meteorological parameters (defined
as an enum) and an index. A vector of strings stores a similar mapping between the pre-
defined meteorological parameters’ names as strings and the same index (i.e. a vector of
names). Finally a vector of doubles (data vector) stores the actual data for each meteoro-
logical parameter, according to the index defined in the static map or names vector. When
an extra parameter is added, an new entry is created in the names vector as well as a new
entry in the data vector at the same index. The total number of defined meteorological pa-
rameters is updated, making it possible to access a given meteorological field either by
index (looping between zero and the total number of fields), by name (as string) or by pre-

13

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

defined name (as enum). Methods to retrieve an index from a string or a string from an
index (or enum) are also available.

3.5 Grids

Grids have been implemented for one dimensional to four dimensional data as templates
in the Array classes in order to accommodate different data types. They are based on the
standard vector container and define the appropriate access by index (currently as row ma-
jor order) as well as several helper methods (retrieving the minimum, maximum or mean
value of the data contained in the grid, for example) and standard arithmetic operators be-
tween grids and between a grid and a scalar. A geolocalized version has been implemented
in the GridObject classes that brings about added safety in the calling code by making it
possible to check that two grids refer to the same domain before using them.

3.6 Digital elevation model

A special type of two dimensional grid (based on the Grid2DObject class) has been de-
signed to contain digital elevation model (DEM) data. This DEMObject class automatically
computes the slope, azimuth and curvature as well as the surface normal vectors. It lets the
developer choose between different algorithms: maximum downhill slope (Dunn and Hickey,
1998), four neighbours algorithm (Fleming and Hoffer, 1979) or two triangle method (Cor-
ripio, 2003) with an eight-neighbour algorithm for border cells (Horn, 1981). The azimuth
is always computed using (Hodgson, 1998). The two triangle method has been rewritten
in order to be centered on the actual cell instead of node-centered, thus working with a lo-
cal 3× 3 grid centered around the pixel of interest instead of 2× 2. The normals are also
computed as well as the curvatures, using the method of (Liston and Elder, 2006).

The evaluation of the local slope relies on the eight immediate neighbours of the current
cell. Because this offers only a limited number of meaningful combinations for computing
the slope, some more recent slope calculation algorithms that have been explored are ac-
tually exactly equivalent to the previously listed algorithms. In order to transparently handle

14

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

the special cases represented by the borders (including cells bordering holes in the digital
elevation model), a 3×3 grid is filled with the content of the cells surrounding the current cell.
Cells that cannot be accessed (because they don’t exist in the DEM) are replaced by nodata
values. Then each slope algorithm works on this subgrid and implements workarounds if
some required cells are set to nodata in order to be able to provide a value for each pixel
that it received. This makes the handling of special cases very generic and computationally
efficient.

Various useful methods for working with a DEM are also implemented, for example the
possibility to compute the horizon of a grid cell or the terrain following distance between two
points.

4 Components

4.1 Data flow overview

At the core of MeteoIO lies the process of getting for a specific time step either a set of
meteorological data or a set of spatially interpolated meteorological data. The model using
MeteoIO for getting its meteorological time series relies on the very simple call given in
listing 1. This call returns a vector containing all the meteorological data that could be
provided at the requested date, grouped by stations with their metadata. Each parameter
either contains nodata or the preprocessed value following the configuration by the end
user.

A model requiring spatially interpolated values will use the call shown in listing 2. This call
returns a grid filled with the spatially interpolated parameter as specified by meteoparam at
the requested date over the provided DEM. If the grid could not be filled according to the
requirements provided by the user, the grid will be empty and the call will return false.

In the background, within MeteoIO, the process of providing the forcing data to the nu-
merical model according to the constraints specified by the user has been split into several
steps (see Fig. 4):

15

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

1. getting the raw data;

2. filtering and correcting the data;

3. temporally interpolating (or resampling) the data if necessary;

4. generating data from parametrizations if everything else failed;

5. spatially interpolating the data if requested.

Practically, the raw data is read by the IOHandler component through a system of plug-
ins. These plug-ins are low level implementations providing access to specific data sources
and can easily be developed by a casual developer. The data is read in bulk, between two
timestamps as defined by the BufferedIOHandler that implements a raw data buffer in order
to prevent having to read data out of the data source for the next caller’s query. This buffer
is then given for filtering and resampling to the MeteoProcessor. This will first filter (and
correct) the whole buffer (by passing it to the ProcessingStack) since benchmarks have
shown that processing the whole buffer at once is less costly than processing individually
each time steps as they are requested. The MeteoProcessor then temporally interpolates
the data to the requested time step (if necessary) by calling the Meteo1DInterpolator. A last
resort stage is provided by the DataGenerator that attempts to generate the potentially
missing data (if the data could not be temporally interpolated) using parametrizations.

Finally, the data is either returned as such or spatially interpolated using the Me-
teo2DInterpolator. The whole process is transparently managed by the IOManager that
remains the visible side of the library for requesting meteorological data. The IOManager
offers a high level interface as well as some configuration options, allowing for example to
skip some of the processing stages. The caller can nevertheless decide to manually call
some of these components since they expose a developer-friendly, high level API.

4.2 Data reading

All the necessary adaptations for reading data from a specific data source are handled
by a specifically construed plug-in for the respective data source. The interface exposed

16

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

by the plug-ins is very simple and their tasks very focused: they must be able to read
the data for a specific time interval or a specific parameter (for gridded data) and fill the
MeteoIO data structures, converting the units to International System of Units (SI). Similarly,
they must be able to receive some MeteoIO data structures and write them out. Several
helper functions and classes are available to simplify the process. This makes it possible
for a casual developer to readily develop his own plug-in, supporting his own data source,
with very little overhead.

In its current version MeteoIO includes plug-ins for reading and/or writing time series
and/or grids from Oracle and PostgreSQL databases, the Global Sensor Network (GSN)
REST API (Michel et al., 2009), Cosmo XML (cos, 2013), GRIB, NetCDF, ARC ASCII,
ARPS, GRASS, PGM, PNG, GEOtop, Snowpack and Alpine3D native file formats and a few
others.

The proper plug-in for the user-configured data source is instantiated by the IOHandler
that handles raw data reading. Usually, the IOHandler is itself called by the BufferedIOHan-
dler in order to buffer the data for subsequent reads. The BufferedIOHandler is most often
called with a single timestamp argument, computes an appropriate time interval and calls
IOHandler with this time interval, filling its internal buffer.

4.3 Data processing

IOManager utilises the methods exposed by the MeteoProcessor. This is a high level inter-
face that transparently encloses both the data processing and the resampling stages. These
two stages are handled by the ProcessingStack and the Meteo1DInterpolator, respectively.

The ProcessingStack reads the user configured filters and processing elements and
builds a stack of ProcessingBlock objects for each meteorological parameter and in the
order declared by the end user. The time series are then passed to each individual Pro-
cessingBlock, each block being one specific filter or processing implementation. These have
been divided into three categories:

– processing elements;

17

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

– filters;

– filters with windowing.

The last two categories stem purely from implementation considerations: filtering a data
point based on a whole data window yields different requirements than filtering a data point
independently of the data series. Filters represent a form of processing where data points
are either kept or rejected. The processing elements on the other hand alter the value of
one or more data points. Filters are used to detect and reject invalid data while processing
elements are used to correct the data (for instance, correcting a precipitation input for un-
dercatch or a temperature sensor for a lack of ventilation). These processing elements can
also be used for sensitivity studies, by adding an offset or multiplying by a given factor.

As shown in Fig. 6, each meteorological parameter is associated with a ProcessingStack
object that contains a vector of ProcessingElement objects (generated through an object
factory). Each ProcessingElement object implements a specific data processing algorithm.
The meteorological parameters mapping to their ProcessingStack is done in a standard
map object.

4.3.1 Filters

Filters are used to detect and reject invalid data and therefore either keep or reject data
points but don’t modify their value. Often an optional keyword “soft” has been defined that
gives some flexibility to the filter. The following filters have been implemented:

min, max, min_max. These filters reject out of range values or reset them to the closest
bound if “soft” is defined;

rate. This filters out data points if the rate of change is larger than a given value. Both
a positive and a negative rate of change can be defined, for example for a different snow
accumulation and snow ablation rate;

standard deviation. All values outside of ŷ± 3σ are removed;
median absolute deviation. All values outside ŷ± 3σMAD are removed;
Tukey. Spike detection following (Goring and Nikora, 2002);

18

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

unheated rain gauge. This removes precipitation inputs that don’t seem physical. The
criteria that is used is that for precipitation to really occur, the air and surface temperatures
must be at most three degrees apart and relative humidity must be greater than 50 %. This
filter is used to remove invalid measurements from snow melting in an unheated rain gauge
after a snow storm.

4.3.2 Processing elements

Processing elements represent processing that alters the value of one or more data points,
usually to correct the data. The following processing elements have been implemented:

mean, median or wind average. Averages over a user-specified period. The period is
defined as a minimum duration and a minimum number of points. The window centering
can be specified, either left, center or right. The wind averaging performs the averaging on
the wind vector;

Exponential or Weighted Moving Average. Smooths the data either with an Exponential
or Weighted Moving Average (EMA, WMA respectively) smoothing algorithm;

2 poles, low pass Butterworth. Low pass filter according to (Butterworth, 1930);
add, mult, suppr. This makes it possible to add an offset or multiply by a given factor

:::::::::
(constant

:::
or

:::::::
either

:::::::
hourly,

:::::
daily

:::
or

:::::::::
monthly

::::
and

::::::::::
provided

::
in

::
a
:::::
file), for sensitivity studies or

:::::::
climate

::::::::
change

:::::::::::
scenarios

::
or

:
totally delete a given meteorological parameter;

unventillated temperature sensor correction. Corrects a temperature measurement for
the radiative heating on an unventilated sensor, according to (Nakamura and Mahrt, 2005)
or (Huwald et al., 2009);

undercatch. Several corrections are offered for precipitation undercatch, either following
(Hamon, 1972; Førland and Institutt, 1996) or following the WMO corrections (Goodison
et al., 1997). Overall, the correction coefficients for fifteen different rain gauges have been
implemented. Since the WMO corrections were not available for shielded Hellmann rain
gauges, a fit has been computed based on published data (Wagner, 2009; Daqing et al.,
1999). The correction for the Japanese RT-3 rain gauges has been implemented following

19

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Yokoyama et al. (2003). It is also possible to specify fixed correction coefficients for snow
and mixed precipitation;

precipitation distribution. The precipitation sum can be distributed over preceding
timesteps. This is useful for example when daily sums of precipitation are written at the
end of the day in an otherwise hourly data set.

The data window can also be configured by the end user: by default the data is centered
around the requested data point. But it is also possible to force the data window to be left
or right centered. An extra option “soft” allows the data window to be centered as specified
by the end user if applicable or to shift the window according to a “best effort” strategy if the
data don’t permit the requested centering.

4.4 Resampling

If the timestamp requested by the caller is not present in the data (either it has been filtered
out or it was not present from the beginning), temporal interpolations will be performed. The
Meteo1DInterpolator is responsible for calling a temporal interpolation method for each me-
teorological parameter as configured by the end user. The end user chooses between the
following methods of temporal interpolation for each meteorological parameter separately:

no interpolation. If data exists for the requested timestamp it will be returned or remain
nodata otherwise;

nearest neighbour. The closest data point in the raw data that is not nodata is returned;
linear. The value is linearly interpolated between the two closest data points;
accumulation. The raw data is accumulated over the period provided as argument;
daily solar sum. The potential solar radiation is generated as to match the daily sum as

provided in the input data.
These methods must be able to both downsample and upsample according to the needs

(except the daily solar sum). These methods take a time series as argument and a times-
tamp and return the interpolated value for a given meteorological parameter. The ability to
support an arbitrary and variable sampling rate for both the input and output data prevents
the utilisation of well known signal analysis algorithms. Moreover some meteorological pa-

20

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

rameters require a specific processing, such as precipitation that must be accumulated over
a given period. The following approach has therefore been implemented (see in Fig. 7): for
each requested data point, if the exact timestamp cannot be found or in case of reaccumula-
tion, the index where the new point should be inserted will be sought first. Then the previous
valid point is sought within a user-configured search distance. The next valid point is then
sought within the user-configured search distance from the first point. Then the resampling
strategy (nearest neighbour, linear or reaccumulation) uses these points to generate the
resampled value. Other resampling algorithms may be implemented by the user that would
use more data points.

When no previous or next point can be found, the resampling extrapolates the requested
value by looking at more valid data points respectively before or after the previously found
valid points. Because of the significantly increased risk of generating a grossly out of bound
value, this behaviour must be explicitly enabled by the end user.

4.5 Data generators

In order to be able to return a value for a given timestamp there must be enough data
available in the original data source. This data has to pass the filters set up by the end user
and may then be used for resampling. In case that data is absent or filtered out there is
still a stage of last resort: the data can be generated by a parametrization relying on other
parameters. The end user configures a list of algorithms for each meteorological parameter.
These algorithms are implemented as classes inheriting from the GeneratorAlgorithms. The
DataGenerator class acts as their high level interface. The algorithms range from very basic,
such as assigning a constant value, to quite elaborate. For instance the measured incoming
solar radiation is compared to the potential solar radiation resulting in a solar index. The
solar index is used in a parametrization to compute a cloud cover that is given to another
parametrization to compute a long wave radiation.

The GeneratorAlgorithms receive a set of meteorological parameters for one point and
one timestamp. The DataGenerator walks through the user configured list of generators,
in the order of their declaration by the end user, until a valid value can be returned. The

21

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

returned value is inserted into the data set and either returned to the caller or used for
spatial interpolations.

The following generators have been implemented:
standard pressure. Generates a standard pressure that only depends on the elevation;
constant. Generates a constant value as provided by the user;
sinusoidal. Generates a value with sinusoidal variation, either on a daily or a yearly pe-

riod. The minimum and maximum values are given as arguments as well as the position of
the first minimum;

clearsky
:::::::
relative

::::::::::
humidity.

:::::::::::
Generates

::
a
:::::::::

relative
:::::::::
humidity

:::::::
value

::::::
from

::::::
either

::::::
dew

::::::
point

::::::::::::
temperature

:::
or

::::::::
specific

::::::::::
humidity;

:::::::::::::
clearsky_lw. Generates a clear sky incoming long wave radiation, choosing between sev-

eral parametrizations (Brutsaert, 1975; Dilley and O’brien, 1998; Prata, 1996; Clark and
Allen, 1978; Tang et al., 2004; Idso, 1981);

allsky

::::::::::::::::
SUBSCRIPTNB

:
l
:
w. Generates an incoming long wave radiation based on cloudiness. If

there is no cloudiness available, it will be parametrized from the solar index (the ratio be-
tween measured incoming short wave radiation and potential radiation, Iqbal, 1983) ac-
cording to Kasten and Czeplak (1980). If no incoming short wave radiation is available but
a reflected short wave radiation is available, a snow albedo of 0.85 will be assumed for
measured snow heights greater than 10 cm and a grass albedo of 0.23 otherwise. If no
measured snow height is available, a constant 0.5 albedo will be assumed. It is possible
to chose between several parametrizations (Unsworth and Monteith, 1975; Omstedt, 1990;
Crawford and Duchon, 1999; Konzelmann et al., 1994);

potential radiation. Generate an incoming short wave radiation (or reflected short wave
radiation) from a measured long wave radiation using a reciprocal Unsworth generator.

4.6 Spatial interpolations

If the caller requests spatial grids filled with a specific parameter, two cases may arise:
either the data plug-in reads the data as grids and can directly return the proper grid or it

22

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

reads the data as point measurements. In this case, the data must be spatially interpolated.
The end user configures a list of potential algorithms and sets the respective arguments to
use for each meteorological parameter.

The Meteo2DInterpolator reads the user configuration and evaluates for each parame-
ter and at each time step which algorithm should be used for the current time step, using
a simple heuristic provided by the interpolation algorithm itself. Of course, relying on simple
heuristics for determining which algorithm should be used does not guarantee that the best
result will be attained but should nonetheless suffice most of the time. This implies a trade-
off between accuracy (selecting the absolutly best method) and efficiency (not spending
too much time selecting a method that most probably is the one determined by the heuris-
tic). The objective is to ensure robust execution despite the vast diversity of conditions. The
number of available data points often eminently influences the applicability of a given al-
gorithm and without the flexibility to define fall-back algorithms frequent disruptions of the
process in an operational scenario might ensue.

Most spatial interpolations are performed using a trend/residuals approach: the point
measurements are first detrended in elevation, then the residuals are spatially interpolated
and for each pixel of the resulting grid the elevation trend back is applied. Of course, the
user can specify an algorithm that does not include detrending.

The following spatial interpolations have been implemented:

– filling the domain with a constant value (using the average of all stations),
:
;

– filling the domain with a constant value with a lapse rate (assuming the average value
occurs at the average of the elevations), ;

:

– filling the domain with a standard pressure that only depends on the elevation at each
cell, ;

:

– spatially interpolating the dew point temperature before converting it back to a relative
humidity at each cell as in Liston and Elder (2006), ;

:

23

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

– spatially interpolating the atmospheric emissivity before converting it back to an in-
coming long wave radiation at each cell, ;

:

– inverse distance weighting (IDW) with or without a lapse rate, ;
:

–
::::::::
spatially

:::::::::::::
interpolating

::::
the

:::::
wind

:::::::
speed

::::
and

:::::::::::
correcting

::
it

::
at

::::::
each

:::::
point

:::::::::::
depending

:::
on

::::
the

:::::
local

::::::::::
curvature

:::
as

::
in

:
Ryan (1977)

:
;
:

– spatially interpolating the wind speed and correcting it at each point depending on the
local curvature as in Liston and Elder (2006), ;

:

– spatially interpolating the precipitation, then pushing the precipitation down the steep
slopes as in Spence and Bavay (2013),

:
;

– ordinary kriging with or without a lapse rate as in Goovaerts (1997) with variogram
models as in Cressie (1992)and finally the possibility to load ;

:

–
::::::::
spatially

::::::::::::::
interpolating

::::
the

:::::::::::::
precipitation

::::
and

:::::::::::
correcting

::
it
:::
at

::::::
each

:::::
point

::::::::::::
depending

:::
on

:::
the

:::::::::::::
topographic

:::::
wind

::::::::::
exposure

:::
as

::
in

:
Winstral et al. (2002);

:

–
:::::::
loading

:
user-supplied grids. It

:
;
:

–
::::::
finally,

::
it
:
is also possible to activate a “pass-through” method that simply returns a grid

filled with nodata.

Relying on the fall-back mechanism described above it is, for example, possible to con-
figure the spatial interpolations to read user-supplied grids for some specific time steps,
reverting to ordinary kriging with a lapse rate if enough stations can provide data and no
user-supplied grids are available for this time step, reverting to filling the grid with the mea-
surements from a single station with a standardized lapse rate if nothing else can be done.
Everything happens transparently from the point of view of the caller.

24

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

4.6.1 Lapse rates

Due to the fact that for many meteorological parameters the altitudinal lapse rates are
a dominant factor in mountainous areas, properly handling them is of utmost importance
for spatial interpolations. This becomes a real issue for fully automated simulations: it is
possible that some outliers significantly degrade the computed lapse rate or that no real
lapse rate can be found in the data. Therefore the following process is used to determine
the lapse rate:

1. the lapse rate is computed;

2. if the lapse rate’s correlation coefficient is better than a 0.7 threshold, the determined
lapse rate will be used as such;

3. if this is not the case, the point that degrades the correlation coefficient the most will
be sought: for each point, the correlation coefficient is computed without this point.
The point whose exclusion leads to the highest correlation coefficient is suppressed
from the data set for this meteorological parameter and at this time step;

4. if the correlation coefficient after excluding the point determined at 3 is better than the
0.7 threshold, the determined lapse rate will be used as such, otherwise the process
will loop back to point 3.

The process runs until at most 15 % of the original data set points have been suppressed
or when the total number of points falls to four, in order to keep a reasonable number of
points in the data set. This is illustrated in Fig. 8: the initial set of points has a correlation
coefficient that is lower than the threshold, leading to the removal of the three points in the
right hand side panel, resulting in a coefficient above the threshold.

Finally, most of the spatial interpolations algorithms offer their own fall-back for the lapse
rate: it is often possible to manually specify a lapse rate to be used when the data-driven
lapse rate has a correlation coefficient that remains less than the 0.7 threshold.

25

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

4.7 Grid rescaling

Rescaling gridded meteorological data to a different resolution is often necessary for read-
ing a grid (and bringing it in line with the DEM grid) or for writing a grid out (for example,
as a graphical output). Since meteorological parameters at the newly created grid points
mostly depend on their immediate neighbours and in order to keep the computational costs
low, standard image processing techniques have been used: the rescaling can either be
done by applying the nearest neighbour, bi-linear or cubic B-spline algorithms. These algo-
rithms are very efficient and appropriate for rescaling grids to a higher resolution without
any matching DEM since no gradient correction will be performed.

4.8 Miscellaneous utilities

In order to provide common algorithms to the various components, several classes have
been designed that implement well known algorithms. These classes have been imple-
mented in quite a generic way, striving for readability, stability – no surprising behaviour –
and acceptable performance.

A basic set of monodimensional statistical algorithms have been implemented as they
are often required by the filters or the spatial interpolation methods. These are completed
by a least square regression solver that can be used on any statistical model by inheriting
from a base class and implementing the model itself. This required a basic set of arithmetic
matrix operations, also required for kriging. The Matrix class strives to remain as close as
possible to the standard mathematical notation and implements all the basic operations:
addition, subtraction, multiplication, determinant, transposition. The generic inversion is im-
plemented by first performing the LU factorization (using the Doolittle algorithm Duff et al.,
1986) and then backward and forward solving of LU×A−1 = I (Press et al., 1992). This
represents a good balance between complexity and efficiency since more advanced meth-
ods provide benefits only for very large matrices. For the case of tridiagonal matrices, the
Thomas algorithm is offered (Thomas, 1949).

26

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

In order to isolate platform specific code, several classes and functions have been im-
plemented: functions dealing with file and path handling, such as checking if a file name is
valid, if a file exists, the copying of files, extracting a path or an extension and microsecond
resolution timers. The timers are offered for benchmarking purposes with a resolution of up
to 1 ns with very low overhead.

Finally, as required by several filters and data generators, a set of algorithms for comput-
ing atmospheric and solar properties have been implemented. The solar position is com-
puted with the Meeus algorithm (Meeus, 1998) and the potential radiation according to
Iqbal (1983). Reprojection functions (between beam, horizontal and slope) are also offered
alongside.

4.9 Optimizations

In order to optimize the algorithms based on distances, such as inverse distance weighting,
it has been necessary to optimize the computation of expressions such as 1/

√
x. This has

been achieved through a fast inverse square root approximation implementation (Lomont,
2003) that has been shown to give at most 1.7 % relative error and deliver at least a four
times speed up. Similarly, a method for fast computation of cubic roots has been imple-
mented based on a single iteration Halley’s method with a bit hack approximation providing
the seed (Lancaster, 1942) and a fast computation of powers based on bit hacks and ex-
ponentiation by squaring (Montgomery, 1987). These are grouped in a specific namespace
and header file alongside other numerical optimizations (Hastings et al., 1955).

5 Benchmarks

Several numerical models developed by different institutions rely on MeteoIO for their I/O
needs. Several specialized applications (mostly as web services) have also been devel-
oped in different countries based on MeteoIO. It is also used regularly for several warning
systems and research projects around the world.

:::::
Such

:::::::::::::
applications

::::::::
include

::::
the

::::::::::
Common

:::::::::::
Information

:::::::::
Platform

::::
for

::::::::
Natural

:::::::::
Hazards

::::
GIN

:
(gin, 2014),

::::::::::::::
sensorscope (Barrenetxea et al.,

27

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2008),
::::
the

:::::::::
GeoTop

:::::::
model

:
(Endrizzi et al., 2014)

:
,
::::
the

::::::::::
Hydrosys

::::::::
project (Kruijff et al., 2010)

::
or

::::
the

:::::::::::
avalanche

::::::::
warning

:::::::::
services

:::
in

:::::::::::::
Switzerland,

:::::::::
Canada,

:::::
India

:::
or

::::::::
Austria.

:

In order to check the design goals against real world applications, some benchmarks are
presented in this section. These have been conducted on a 2006 laptop

:::::::
recent

::::::::::
octo-core

:::::::::
computer

:
powered by a 32

::
64

:
bits Intel Core Duo mobile processor (T2300) . This processor

runs at 1.66
::
i7

:::::::::::
processor

:::::::::::
(3612QM)

:::::::::::
equipped

:::::
with

::
8
:
GB

::
of

:::::::
RAM.

:::::
The

:::::::::::
processor

::::::
runs

:::::::::
between

::::
1.2

::::
and

::::
3.1GHz with 2 Mb of L2 cache and has access to 2.5 Gb of RAM. For

single thread performance, it
::::
and reaches a CPU Mark of 519 when modern Intel i7 achieve

between 2000 and 2300
:::::
6834

:
(http://www.cpubenchmark.net/). The benchmarks have been

compiled by the GNU Compiler Collection (GCC) version 4.7.2 both for C++, C and Fortran.
This hardware should represent the lower end of what can be found at the workplace but
with up-to-date software.

5.1 Ease of extension

In order to check if it is really easy for third parties to contribute to MeteoIO, a test was
set up asking participants to develop a basic filter. The filter that had to be developed is
a simple filter on the incoming long wave radiation, rejecting all data outside εminσT

4 and
εmaxσT

4.
The test was conducted by providing each participant, working alone, with a sheet

with instructions and questions. First, the participants were asked some basic questions
about themselves and their computer science abilities, focusing on issues relevant for
a programming task involving a compiled programming language. Then the participants
were instructed to install the required development components as well as MeteoIO by
referral to the online documentation and optional help if they got stuck. Once their system
was properly configured (and checked by running a simple test), they were

:::
the

:::::::::::::
participants

:::::
were

:::::::::
provided

:::::
with

:::
a

::::::
sheet

:::::
with

::::::::::::
instructions

:::::
and

:::::::::::
questions

:::::
and asked to implement the

required filter following the official documentation
:
,
::::::::
working

:::::::
alone

:
and without assistance.

This task was divided into several subtasks, each timed individually: writing an empty filter;
writing the code; compiling the empty filter; running the empty filter on a test data set;

28

http://www.cpubenchmark.net/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

writing the real filter; writing the code; compiling the filter; running the filter on a test data
set; writing the filter’s documentation; The testhas been performed by

:::
Ten

:::::::::::::
participants

:::::
took

:::
the

:::::
test,

::::::::::
including eight PhD studentswho have some ability to

:
.
::::
The

:::::::::::::
participants use com-

puters for their daily work (mostly using Matlab or R) with only three
::::
four

:
participants having

a previous experience in C or C++. The results of this test are presented in Fig. ??.
::
In

:::::
order

:::
to

::::::
better

:::::::::::::
discriminate

:::::::::
between

::::
the

::::::::::
overhead

:::
(ie

::::::::::::
integrating

::::::
one’s

:::::::::::::
development

:::::::
within

:::::::::
MeteoIO)

:::::
and

::::
the

::::::::
intrinsic

::::::::::::
complexity

::
of

::::
the

:::::::::
required

::::::::::::
processing

:::::
(i.e.

::::
the

:::::
logic

:::
of

::::
the

:::::
filter

::::
that

::::
had

:::
to

:::
be

:::::::::::::::
implemented),

::::
the

:::::::::::::
participants

:::::
were

:::::::
asked

:::
to

::::
first

::::::
write

:::
an

:::::::
empty

:::::
filter

:::::
and

::::
then

:::
to

:::::::::::
implement

::::
the

:::::
logic

:::
of

:::
the

::::::
filter.

:

Based on the response of the test users themselves, the initial programming abilities were
not really a major factor in their achievements but mostly the ability to follow the step by step
instructions

:::
The

::::::::
results

::::::
show

:::::
that

:::
for

:::
an

:::::::::
average

:::::
user

:::::
(the

::::::::
median

:::
of

::::
the

:::::::::
results),

::::::::
writing,

::::::::::
compiling

::::
and

::::::::
testing

:::
an

:::::::
empty

:::::
filter

::::::::::
requires

:::
40

::::
min

::::::
while

::::::::::::::
implementing

:::::
and

::::::::
testing

::::
the

::::
real

:::::
filter

:::::::::
requires

:::
50

::::
min. Since only a limited number of users did participate in this test,

this tends to show a worst case scenario by being overly sensitive to specific issues: one
user spent quite a lot of time trying to make his test work, only to realize that he was not
testing with his latest changes, another one used a wrong test dataset, etc

The first task, that is writing an empty filter, would usually be skipped by programers who
already developed at least one such filter but this was included in order to better discriminate
between the overhead (ie integrating one’s development within MeteoIO) and the intrinsic
complexity of the required processing (i.e. the logic of the filter that had to be implemented).
As is seen in Fig. ??, the overhead for an average casual contributor is around 30–40min
(keeping in mind the majority of the users that have been tested had no previous experience
in C or C++)

::::::
Based

::::
on

:::
the

:::::::::::
response

::
of

::::
the

:::::
test

::::::
users

:::::::::::::
themselves,

::::
the

::::::
initial

::::::::::::::
programming

::::::::
abilities

:::::
were

::::
not

::::::
really

::
a
:::::::
major

::::::
factor

::
in

::::::
their

::::::::::::::
achievements

::::
but

:::::::
mostly

::::
the

:::::::
ability

::
to

:::::::
follow

:::
the

:::::
step

:::
by

:::::
step

::::::::::::
instructions.

29

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

5.2 Meteorological data processing benchmarks

Reading meteorological data stored in an ASCII file bears a significant overhead. The file
needs to be read line by line, each line needs to be split up based on a predefined de-
limiter, the values need to be converted from strings to their respective data types and the
data need to be stored in memory for further processing. A comparative illustration of dif-
ferent programming environments and their performance in completing the aforementioned
task

::
for

::
a
:::::
873 kB

:::
file

:::::::::::
containing

:::::::
hourly

:::::
data

:::
for

::::
one

::::::::
station

::::
and

:::::
one

:::::
year is given in Fig. 9.

The GNU compilers gcc, g++ and gfortran were used to obtain the benchmark executa-
bles. Clearly C++ and MeteoIO, which is programmed in C++ and utilises the GNU STL
and streams implementations, show the same performance. The efficient dynamic memory
management gives C the overall advantage, whereas Fortran95 (static) shows good perfor-
mance for parsing values to doubles with the drawback, that the exact layout and size of the
file need to be known at compile time. Allowing these properties to be dynamic, slows down
the performance. Apart from only reading the data, MeteoIO performs a unit conversion and
finally stores the data in MeteoData objects which are then used for further processing and
exposed

::
to

:
the user.

Figure 10 illustrates the performance gain in the course of 3 years of MeteoIO develop-
ment when resampling hourly data for one station to 20 min. Data is read from a

:::
11Mb

SMET ASCII file that contains hourly measurements of 11 parameters for a period of
12 years for one weather station.

:::::::::
Contrary

:::
to

::::
the

::::::
other

::::::::::::::
benchmarks,

::::
this

::::::::::::
benchmark

:::::
has

:::::
been

:::::::::::
conducted

:::
on

::
a
::::::
2006

:::::::
laptop

:::::::::
powered

:::
by

::
a
::::
32

::::
bits

:::::
Intel

::::::
Core

::::
Duo

:::::::::::
processor

:::::::::
(T2300)

::::
that

:::::::::::
represents

::::
the

::::::
lower

:::::
end

::
of

::::::
what

::::::
could

::::
still

:::
be

:::::::
found

::
at

::::
the

::::::::::::
workplace.

:
The most sig-

nificant performance gain was achieved between versions 2.1.1 and 2.1.2 following the
redesign of the core MeteoData class, representing all measured parameters of one sta-
tion at one moment in time. Since MeteoData objects are copied and instantiated during
all processing steps focusing on the performance of the copy constructor yielded a spec-
tacular performance boost. Decreasing the time spent on the construction of MeteoData
objects was paramount to making the library performant. Further improvements leading up

30

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

to version 2.1.3 are mainly comprised of an efficient use of file pointers regarding I/O and
a redesign of the processing capabilities, namely reducing the amount of copies necessary
when dealing with series of data points during filtering and resampling. Optimizations in all
parts of the code bring about a constant improvement of the MeteoIO performance albeit
a significant increase of features and requirements. The strategy throughout development
is to write correct code following best practice design rules, to then profile it using static and
dynamic analysis tools as layed out in 2.7 and to optimize where significant improvements
can be expected based on the results of the profiling. Some technically well-engineered
features, such as dynamic plug-in loading at runtime, have proven unnecessary and were
either adapted to meet actual user demands or removed.

5.3 Spatial interpolations benchmarks

Unsurprisingly, most of the spatial interpolation algorithms scale as O(n). However, since
there is some overhead (constructing the required spatial interpolator, setting the grid meta-
data, gathering the necessary data) it is interesting to see how the real world scalability is.
To this effect, the “pass-through” interpolation has been used that fills the grid with nodata
by calling the optimized STL methods on the underlying data container. Different spatial
interpolations have been benchmarked for different grid sizes, ranging from one cell to 25
million cells. Two scenarios have been used: one providing seven meteorological stations
as input and one providing fourteen meteorological stations as input,

::::::
each

:::::::
station

::::::::::
providing

::::
two

::::::::
months

::
of

:::::::
hourly

:::::
data

::
in
::
a
:::::
130

:::
kb

:::
file.

The results are shown in Fig. 11. The linear behaviour starts to be visible after around
0.7

:::
0.3ms which would then be the total overhead for spatial interpolations. This overhead

also depends on the chosen algorithm: for example the simple pass-through has a very
low 0.2

:::
0.1ms overhead (there is nothing to prepare before filling the grid) to 1.2

:::
0.4ms for

ordinary kriging with fourteen stations (the necessary matrices have to be computed with
the station data before filling the grid).

One can also witness the effect of STL optimizations: the pass-through interpolation fills
the whole grid with the same constant value, relying on the STL to perform the task. On

31

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

the other hand, the CST interpolation fills the grid with a constant value but only for cells
that have an elevation in their associated DEM, therefore not relying on an STL method for
doing it. This makes it 3.5 times slower. When using the same method but with detrending,
not only one pass

::::::
three

:::::::
passes

:
through the grid but three passes are required (detrending,

filling the grid, retrending) leading to this factor two visible
::
a

::::::
factor

::::
two

:::::::::::
slowdown

:::
as

::::::
seen

in Fig. 11. When using an inverse distance weighting, the distance has to be computed for
each pixel. This depends on the number of stations (thus the difference between IDW for
seven or fourteen stations) but this also significantly slows down the processing (despite
using a fast approximation for calculating the distance). This costs an order of magnitude

::::::::
another

::::::
factor

::::
five

:
compared to a simple constant fill. Finally, the ordinary kriging requires

to fill and invert a matrix of dimension Nstations×Nstations and then to perform a matrix
multiplication for each pixel. This leads to a larger overhead (visible for small grids that
exhibit a non-linear behaviour depending on the number of stations) and another twenty
times slowed down

:::
ten

::::::
times

::::::::::
slowdown

:
compared to IDW_LAPSE.

5.4
:::::::
Usage

:::::::::::
scenarios

::::::::::::::
benchmarks

:::::::::
Although

::::
the

::::::::::
MeteoIO

:::::::
library

::::::
offers

::::::::
various

:::::::::::::
components

:::
of

::::::::
interest

:::
to

:::::::::::
numerical

:::::::::
models,

::
its

:::::::::
primary

::::::
usage

:::
is

::
to

::::::
read,

::::::::::::
preprocess

::::
and

:::::::::::
potentially

:::::::::
spatially

:::::::::::
interpolate

::::::::::::::::
meteorological

:::::
data.

:::::::::::
Therefore,

::
a
::::::::::::
benchmark

::::
has

::::::
been

::::
set

:::
up

:::::
with

::::::::
various

:::::::::::
scenarios,

:::
all

:::::::
based

:::
on

:::::::
fifteen

::::::::
stations

::::::::::
providing

::::::
hourly

:::::
data

:::
for

:::::::::
fourteen

::::::
years

::::::::::::::
(representing

:::
14

::::
Mb

:::
on

::::::::::
average).

:::::
The

:::::
data

::
is

:::::
read

:::::
from

:::::
files,

:::
all

::::::::::::
parameters

::::
are

:::::::::
checked

::::
for

:::::::::
min/max,

::::
the

:::::::::::::
precipitation

::
is
::::::::::
corrected

::::
for

::::::::::::
undercatch,

::::
the

:::::
snow

:::::::
height

::
is
::::::::
filtered

:::
for

:::
its

::::
rate

:::
of

::::::::
change,

:::::
then

:::
all

::::::::::::
parameters

::::
are

::::::::
linearly

::::::::::::
interpolated

::
if

:::::::::::
necessary

:::::
while

::::
the

:::::::::::::
precipitation

::
is

::::::::::::::::
reaccumulated.

::::
The

::::::::
spatial

::::::::::::::
interpolations

::::
rely

:::
on

:::::
IDW

:::
for

::::::
some

:::::::::::::
parameters,

::::::::::::
WINSTRAL

:::
for

::::
the

:::::::::::::
precipitation

::::
and

:::::::::
LISTON

:::
for

:::
the

::::::
wind

:::::::::
direction.

:::::
The

::::::::::
following

::::::::::
scenarios

::::::
have

::::::
been

:::::::::
defined:

::::::::
reading

::::
the

:::::::
hourly

:::::
data

::::::::::::
necessary

::
to

:::::::::
simulate

:::::
one

::::::::
season

::::::
either

:::
at

::::
the

::::::::::
beginning

:::
of

::::
the

:::
file

:::
or

:::
at

:::
the

::::::
end,

::::::::
reading

::::
the

:::::::
hourly

::::
data

::::::::::
required

:::
to

:::::::::
simulate

::::
the

::::
full

:::::::
period

:::::::::::
contained

:::
in

::::
the

:::::
files

::::
and

:::::::::
reading

:::::
and

:::::::::
spatially

::::::::::::
interpolating

:::::::
hourly

:::::
data

::::::
once

::::
per

:::::
hour

:::
for

::
a
::::
day

:::::
over

::
a
::::::
6500

:::::
cells

::::::
DEM.

:

32

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

:::::::
These

::::::::::
scenarios

::::::
have

::::::
been

::::::::
further

::::
split

:::
in

:::::
two:

:::::
only

:::::
one

:::::::
station

::::::::::
providing

::::
the

::::::
data

:::
or

::::::
fifteen

:::::::::
stations

:::::::::
providing

::::
the

::::::
data.

::::
For

:::
the

:::::::
spatial

:::::::::::::::
interpolations,

::::::
since

::
it

::::::
made

:::::
little

::::::
sense

:::
to

:::::::::::
benchmark

:::::
very

::::::::
specific

::::::::::::
algorithms

:::::
able

::
to

::::::::
handle

::::
only

:::::
one

::::::::
station,

:::::
then

::::::
seven

:::::
and

:::::::
fifteen

::::::::
stations

:::::
have

::::::
been

::::::
used.

:

::::
The

::::::::
results

::::
are

:::::::::::
presented

:::
in

::::
Fig.

::::
12.

::::::
First,

:::::
this

:::::::
shows

::::
that

:::::::
when

::::
the

:::::
data

:::
is

::::::::::
extracted

::
as

:::::
time

::::::::
series,

::::
the

:::::::::::::::
preprocessing

:::::
time

::
is

::::::::::
negligible

:::::::::::
compared

:::
to

:::::
what

:::::::
would

:::
be

::
a
:::::::::
realistic

::::::
model

::::
run

::::::
time.

:::::::::
Working

:::
on

::::
raw

::::::
data

::::
and

:::::::::::::::
preprocessing

::::
the

:::::
data

:::
on

::::
the

:::
fly

:::::
thus

::::::
does

::::
not

:::::::::
introduce

:::::
any

:::::::::::::
performance

::::::::
penalty.

::::::
Then

::::
the

::::
run

:::::
time

:::::::
scales

::::::::
linearly

:::::
both

:::::
with

:::
the

:::::::::
number

::
of

::::::::
stations

:::::
and

:::::
with

::::
the

:::::
total

:::::::::
duration,

::::::::::
although

:::
the

::::::::::::
placement

::
of

::::
the

:::::
data

:::
in

::::
the

:::
file

:::::
has

::
a

::::::
direct

:::::::
impact

:::
on

::::
the

:::::::::::::::
performances.

::::
For

::::
the

:::::
case

:::
of

::::
the

:::::::
spatial

:::::::::::::::
interpolations,

::::
the

:::::::
scaling

:::
is

:::
still

::::::
linear

:::::
with

::::
the

::::::::
number

:::
of

::::::::
stations

::::
but

::::
the

:::::::::::::
performance

::::::::
impact

::
is

::::::
much

::::::::
higher;

:::::::::
however

::::
this

:::::::
should

::::
still

:::::::
remain

:::::::
much

::::::
lower

:::::
than

:::::
most

::::::::
models

:::::::::
timestep

::::::::::
duration.

6 Code availability

The MeteoIO library is available under the GNU Lesser General Public License v3.0 (LGPL
v3) on http://models.slf.ch/p/meteoio/ both as source code (from the source version control
system or as packages) or as precompiled binaries for various platforms. Stable releases
are announced on https://freecode.com/projects/meteoio.

The documentation must be generated from the source code or is available as html in the
precompiled packages. The documentation for the last stable release is available online at
http://models.slf.ch/docserver/meteoio/html/index.html. Detailed installation instructions are
available at http://models.slf.ch/p/meteoio/page/Getting-started/.

7 Conclusions

In order to split the data preprocessing and data consumption tasks in numerical models,
the MeteoIO library has been developed. This has allowed the numerical models to focus on
their core features and to remove a lot of data preprocessing code as well as to peek into the

33

http://models.slf.ch/p/meteoio/
https://freecode.com/projects/meteoio
http://models.slf.ch/docserver/meteoio/html/index.html
http://models.slf.ch/p/meteoio/page/Getting-started/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

data that is sent to the core numerical routines. This has also lead to fruitful developments
in the preprocessing stage much beyond what was originally performed on the numerical
models. A careful design made it possible for casual users to easily contribute to data
filters or parametrizations. This ease of contribution to MeteoIO make it a great test bed
for new preprocessing methods with a direct link to actual numerical models. A contributor
with little or no previous C++ experience can contribute simple algorithms with a relatively
minor time investment. In terms of performance, continuous benchmarking and profiling
have lead to major improvements and keep the preprocessing computational costs well
balanced compared to the data acquisition costs.

Today, the MeteoIO library offers great flexibility, reliability and performance and has been
adopted by several models for their I/O needs. These models have all benefited from the
shared developments in MeteoIO and as such offer an increased range of application and
an increased robustness in regard to their forcing data.

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2014-supplement.

Acknowledgements. This work has been partly supported by several agencies including the Swiss
National Science Foundation, the European Community (AWARE), and the ETH Competence Cen-
ter for Environment and Sustainability (CCES). It has also been supported by several projects, in-
cluding HYDROSYS, an EC funded Seventh Framework program STREP project (grant 224416,
DG INFSO) on spatial analysis tools for on-site environmental monitoring and management and the
Swiss National Science Foundation and AAA/SWITCH funded Swiss Multi Science Computing Grid
project (http://www.smscg.ch).

The authors would like to thank M. Lehning and C. Fierz for their support as well as N. Wever, L.
Winkler, M. Mbengue, C. Perot, D. Zanella, M. Diebold, C. Groot, T. Schumann and R. Spence for
their contribution to MeteoIO. The authors would also like to thank all the colleagues who contributed
their time for performing the extension test!

::::
The

:::::::
authors

:::
are

:::::
also

:::::::
grateful

::
to

:::
the

::::::::::::
anonymous

:::::::::
reviewers

::::
who

:::::::::::
contributed

::
to

::::::::
improve

:::
the

:::::::
quality

::
of

::::
this

::::::
paper.

:

34

http://dx.doi.org/10.5194/gmdd-0-1-2014-supplement
http://www.smscg.ch

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

References

Ballou, D. P. and Pazer, H. L.: Modeling data and process quality in multi-input, multi-output informa-
tion systems, Manage. Sci., 31, 150–162, 1985.

:::::::::::
Barrenetxea,

::::
G.,

:::::::::
Ingelrest,

::
F.,

:::::::::
Schaefer,

::::
G.,

:::::::
Vetterli,

:::
M.,

:::::::::
Couach,

:::
O.,

::::
and

:::::::::
Parlange,

:::
M.:

:::::::::::::
Sensorscope:

:::::::::::::
Out-of-the-box

::::::::::::::
environmental

:::::::::::
monitoring,

:::
In

:::::::::::
Information

:::::::::::
Processing

::
in

:::::::
Sensor

::::::::::
Networks,

::::::
2008.

::::::::
IPSN’08.

::::::::::::
International

:::::::::::
Conference

::::
on,

:::
pp.

:::::::::
332-343.

::::::
IEEE,

::::::
2008.

Bavay, M. and Egger, T.: Inishell, a flexible configuration interface for numerical models, Geosci.
Model Dev. Discuss., in preparation, 2014.

Beck, K. and Andres, C.: Extreme Programming Explained: Embrace Change, Addison-Wesley Pro-
fessional, 2nd Edn., 2004.

Brutsaert, W.: On a derivable formula for long-wave radiation from clear skies, Water Resour. Res.,
11, 742–744, 1975.

Butterworth, S.: On the theory of filters amplifiers, Experimental Wireless & the Wireless Engineer,
7, 536–541, 1930.

:::::
Clark,

:::
G.,

::::::
Allen,

:::
C.:

::::
The

::::::::::
estimation

:::
of

::::::::::::
atmospheric

::::::::
radiation

:::
for

:::::
clear

::::
and

:::::::
cloudy

::::::
skies,

::
In

:::::
Proc.

::::
2nd

::::::::
National

:::::::
Passive

::::::
Solar

:::::::::::
Conference

:::::::::::
(AS/ISES),

:::::::::
675–678,

::::::
1978.

Corripio, J. G.: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar
radiation modelling in mountainous terrain, Int. J. Geogr. Inf. Sci., 17, 1–23, 2003.

Consortium for Small-scale Modeling: available at: http://www.cosmo-model.org/ (last access:
30 May 2014), 2013.

Crawford, T. M. and Duchon, C. E.: An improved parameterization for estimating effective atmo-
spheric emissivity for use in calculating daytime downwelling longwave radiation, J. Appl. Meteo-
rol., 38, 474–480, 1999.

Cressie, N.: Statistics for spatial data, Terra Nova, 4, 613–617, 1992.
Daqing, Y., Esko, E., Asko, T., Ari, A., Barry, G., Thilo, G., Boris, S., Henning, M., and Janja, M.:

Wind-induced precipitation undercatch of the Hellmann gauges, Nord. Hydrol., 30, 57–80, 1999.
Dilley, A. and O’brien, D.: Estimating downward clear sky long-wave irradiance at the surface from

screen temperature and precipitable water, Q. J. Roy. Meteor. Soc., 124, 1391–1401, 1998.
Duff, I. S., Erisman, A. M., and Reid, J. K.: Direct Methods for Sparse Matrices, Clarendon Press,

Oxford, 1986.
Dunn, M. and Hickey, R.: The effect of slope algorithms on slope estimates within a GIS, Cartogra-

phy, 27, 9–15, 1998.

35

http://www.cosmo-model.org/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

:::::::
Durand,

:::
Y.,

::::::
Brun,

::::
E.,

::::::::::
Merindol,

:::
L.,

:::::::::::::
Guyomarc’h,

::::
G.,

:::::::::
Lesaffre,

:::
B.,

::::::::
Martin,

:::
E.:

:::
A

::::::::::::::
meteorological

:::::::::
estimation

:::
of

::::::::
relevant

:::::::::::
parameters

:::
for

:::::
snow

::::::::
models,

:::::::
Annals

::
of

:::::::::::
Glaciology,

:::
18,

:::::::
65–71,

::::::
1993.

::::::::
Endrizzi,

:::
S.,

:::::::
Gruber,

:::
S.,

:::::::::::
Dall’Amico,

:::
M.,

:::::::
Rigon,

:::
R.:

::::::::
GEOtop

::::
2.0:

::::::::::
simulating

:::
the

::::::::::
combined

::::::
energy

::::
and

:::::
water

::::::::
balance

::
at

::::
and

::::::
below

::::
the

::::
land

::::::::
surface

::::::::::
accounting

:::
for

::::
soil

:::::::::
freezing,

:::::
snow

::::::
cover

::::
and

::::::
terrain

:::::::
effects,

::::::::::::
Geoscientific

:::::::
Model

:::::::::::::
Development

::::::::::::
Discussions,

:::
6,

::
4,
::::::::::::

6279–6341,
:

doi:10.5194/gmdd-6-
6279-2013,

::::::
2013

Fleming, M. D. and Hoffer, R. M.: Machine processing of landsat MSS data and DMA topographic
data for forest cover type mapping, Tech. Rep. LARS Technical Report 062879, Laboratory for
Applications of Remote Sensing, Purdue University, 1979.

Fliegel, H. F. and van Flandern, T. C.: Letters to the editor: a machine algorithm for processing
calendar dates, Commun. ACM, 11, 657, doi:10.1145/364096.364097, 1968.

Førland, E.: Manual for operational correction of Nordic precipitation data, Tech. rep., Norwegian
Meteorological Institute, 1996.

::::::::
Common

:::::::::::
Information

::::::::
Platform

::::
for

:::::::
Natural

:::::::::
Hazards,

:::::::::
available

:::
at: http://www.gin-info.admin.ch/

::::
(last

:::::::
access:

:::
20

::::
Oct

::::::
2014),

::::::
2014.

:

Goodison, B., Louie, P., and Yang, D.: The WMO solid precipitation measurement intercomparison,
World Meteorological Organization-Publications-WMO TD, 65–70, 1997.

Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford University Press, 1997.
Goring, D. G. and Nikora, V. I.: Despiking acoustic Doppler velocimeter data, J. Hydraul. Eng., 128,

117–126, 2002.
Hager, J. W., Behensky, J. F., and Drew, B. W.: The Universal Grids: Universal Transverse Mercator

(UTM) and Universal Polar Stereographic (UPS), Edition 1, Tech. rep., Defense Mapping Agency,
1989.

Hamon, W. R.: Computing actual precipitation, in: Distribution of precipitation in mountaineous ar-
eas, Geilo symposium 1, 159–174, World Meteorological Organization, 1972.

Hastings, C., Hayward, J. T., and Wong, J. P.: Approximations for digital computers, vol. 170, Prince-
ton University Press, Princeton, NJ, 1955.

Hodgson, M. E.: Comparison of angles from surface slope/aspect algorithms, Cartogr. Geogr. In-
form., 25, 173–185, 1998.

Horn, B. K.: Hill shading and the reflectance map, Proc. IEEE, 69, 14–47, 1981.
Huwald, H., Higgins, C. W., Boldi, M.-O., Bou-Zeid, E., Lehning, M., and Parlange, M. B.: Albedo

effect on radiative errors in air temperature measurements, Water Resour. Res., 45, W08431,
doi:10.1029/2008WR007600, 2009.

36

http://dx.doi.org/10.5194/gmdd-6-6279-2013
http://dx.doi.org/10.5194/gmdd-6-6279-2013
http://dx.doi.org/10.1145/364096.364097
http://www.gin-info.admin.ch/
http://dx.doi.org/10.1029/2008WR007600

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

::::
Idso,

:::
S.:

::
A
:::
set

:::
of

:::::::::
equations

:::
for

::::
full

:::::::::
spectrum

::::
and

::::
8-to

:::::::
14-µm

::::
and

:::::::
10.5-to

::::::::
12.5-µm

::::::::
thermal

::::::::
radiation

::::
from

:::::::::
cloudless

::::::
skies,

::::::
Water

::::::::::
resources

:::::::::
research,

::::::
17(2),

:::::::::
295–304,

::::::
1981.

:

Iqbal, M.: An Introduction to Solar Radiation, Academic Press, 1983.
Kasten, F. and Czeplak, G.: Solar and terrestrial radiation dependent on the amount and type of

cloud, Sol. Energy, 24, 177–189, 1980.
Konzelmann, T., van de Wal, R. S., Greuell, W., Bintanja, R., Henneken, E. A., and Abe-Ouchi, A.:

Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet, Global
Planet. Change, 9, 143–164, 1994.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P.: Data preprocessing for supervised leaning, Int. J.
Comput. Sci., 1, 2006.
Kuonen, P., Bavay, M., and Lehning, M.: Advanced ICTs for Disaster Management and Threat
Detection: Collaborative and Distributed Frameworks, chap.POP-C++ and Alpine3D: Petition for
a New HPC Approach, IGI Global

:::::
Kruijff,

::::
E.,

::::::::
Mendez,

::::
E.,

:::::
Veas,

:::
E,

:::::::::::
Grünewald,

:::
T.,

::::::::
Simoni,

:::
S.,

::::::
Luyet,

:::
V.,

::::::::::
Salminen,

::::
O.,

::::::::::
Nurminen,

:::
A.,

:::::::::
Lehtinen,

::
V.:

:::::::::::::
HYDROSYS:

:::::::
on-site

::::::::::
monitoring

::::
and

::::::::::::
management

:::
of

:::::::::::::
environmental

::::::::::
processes

:::::
using

:::::::::
handheld

::::::::
devices.,

:::
in:

:::::::::::::::::::::
GeoHydroinformatics:

::::::::::
Integrating

::::
GIS

::::
and

::::::
Water

::::::::::::
Engineering, 2010.

Lancaster, O. E.: Machine method for the extraction of cube root, J. Am. Stat. Assoc., 37, 112–115,
1942.

Liston, G. E. and Elder, K.: A meteorological distribution system for high-resolution terrestrial mod-
eling (MicroMet), J. Hydrometeorol., 7, 217–234, 2006.

Lomont, C.: Fast inverse square root, Tech. rep., Purdue University, 2003.
Marjamäki, D.: Cppcheck: a tool for static C/C++ code analysis, available at: http://cppcheck.

sourceforge.net/ (last access: 30 May 2014), 2013.
Martin, K. and Hoffman, B.: An open source approach to developing software in a small organization,

software, IEEE, 24, 46–53, 2007.
Meeus, J. H.: Astronomical Algorithms, 2nd Edn., Willmann-Bell, Incorporated, 1998.
Meyers, S.: Effective C++: 50 Specific Ways to Improve Your Programs and Designs, 2 edn.,

Addison-Wesley Publishing Company, 1992.
Michel, S., Salehi, A., Luo, L., Dawes, N., Aberer, K., Barrenetxea, G., Bavay, M., Kansal, A., Ku-

mar, K. A., Nath, S., Parlange, M., Tansley, S., van Ingen, C., Zhao, F., and Zhou, Y. L.: Environ-
mental Monitoring 2.0, in: Data Engineering, 2009, ICDE’09. IEEE 25th International Conference
on, 1507–1510, IEEE, 2009.

37

http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Montgomery, P. L.: Speeding the Pollard and elliptic curve methods of factorization, Math. Comput.,
48, 243–264, 1987.

Musser, D. R., Derge, G. J., and Saini, A.: STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library, Addison-Wesley, 2nd Edn., 2001.

Nakamura, R. and Mahrt, L.: Air temperature measurement errors in naturally ventilated radiation
shields, J. Atmos. Ocean. Tech., 22, 1046–1058, 2005.

Nethercote, N. and Seward, J.: How to Shadow Every Byte of Memory Used by a Program, in:
Proceedings of the Third International ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments (VEE 2007), 2007.

Omstedt, A.: A coupled one-dimensional sea ice–ocean model applied to a semi-enclosed basin,
Tellus A, 42, 568–582, 1990.

Prata, A.: A new long-wave formula for estimating downward clear-sky radiation at the surface, Q. J.
Roy. Meteor. Soc., 122, 1127–1151, 1996.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: LU decomposition and its
applications, in: Numerical Recipes in FORTRAN: The Art of Scientific Computing, Cambridge
University Press, 2nd Edn., 34–42, 1992.

PROJ.4: Cartographic Projections Library, available at: https://trac.osgeo.org/proj/ (last access:
30 May 2014), 2013.

Rouson, D., Xia, J., and Xu, X.: Scientific software design: the object-oriented way, Cambridge Uni-
versity Press, 2011.

:::::
Ryan,

:::
B.:

::
A

:::::::::::::
mathematical

::::::
model

::
for

::::::::::
diagnosis

::::
and

:::::::::
prediction

::
of

:::::::
surface

::::::
winds

::
in

::::::::::::
mountainous

:::::::
terrain,

:::::::
Journal

::
of

::::::::
Applied

::::::::::::
Meteorology,

::::::
16(6),

:::::::::
571–584,

::::::
1977.

:

Scapin, D. L. and Bastien, J. C.: Ergonomic criteria for evaluating the ergonomic quality of interactive
systems, Behav. Inform. Technol., 16, 220–231, 1997.

Seward, J., Nethercote, N., and Hughes, T.: valgrind, available at: http://valgrind.org/ (last access:
30 May 2014), 2013.

Spence, R. and Bavay, M.: Precipitation Redistribution for Snow Models, in: 11th Swiss Geoscience
Meeting, Lausanne, 2013.

:::::
Tang,

:::
R.,

:::::::
Etzion,

:::
Y.,

:::::
Meir,

::
I.:
::::::::::
Estimates

:::
of

:::::
clear

:::::
night

::::
sky

:::::::::
emissivity

:::
in

:::
the

:::::::
Negev

::::::::::
Highlands,

::::::
Israel,

:::::::
Energy

:::::::::::
Conversion

::::
and

:::::::::::::
Management,

:::::::
45(11),

::::::::::::
1831–1843,

:::::
2004.

:

Thomas, L. H.: Elliptic Problems in Linear Differential Equations over a Network, Tech. rep., Watson
Sci. Comput. Lab, Columbia University, 1949.

38

https://trac.osgeo.org/proj/
http://valgrind.org/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Unsworth, M. H. and Monteith, J.: Long-wave radiation at the ground I. Angular distribution of incom-
ing radiation, Q. J. Roy. Meteor. Soc., 101, 13–24, 1975.

van Heesch, D.: Doxygen: Source code documentation generator tool, available at: http://www.
doxygen.org/ (last access: 30 May 2014), 2008.

Vincenty, T.: Closed formulas for the direct and reverse geodetic problems, J. Geodesy., 51, 241–
242, 1977.

::::::
Viviroli,

::::
D.,

:::::::
Zappa,

::::
M.,

:::::::
Gurtz,

:::
J.,

::::::::::::
Weingartner,

::::
R.:

:::
An

::::::::::::
introduction

:::
to

::::
the

::::::::::::
hydrological

:::::::::
modelling

:::::::
system

::::::::
PREVAH

::::
and

:::
its

::::::::
pre-and

:::::::::::::::::::::
post-processing-tools,

:::::::::::::
Environmental

::::::::::
Modelling &

:::::::::
Software,

:::
24,

:::
10,

:::::::::::
1209–1222,

::::::
2009.

:

Wagner, A.: Literature study on the correction of precipitation measurements, Bavarian State Insti-
tute of Forestry, FutMin C1-Met-29 (BY), 2009.

Wand, Y. and Wang, R. Y.: Anchoring data quality dimensions in ontological foundations, Commun.
ACM, 39, 86–95, 1996.

Wheeler, D. A.: Flawfinder, available at: http://www.dwheeler.com/flawfinder/ (last access:
30 May 2014), 2013.

::::::::
Winstral,

::::
A.,

::::::
Elder,

::::
K.,

:::::::
Davis,

::::
R.:

::::::::
Spatial

::::::
snow

::::::::::
modeling

:::
of

::::::::::::::::::
wind-redistributed

::::::
snow

::::::
using

::::::::::::
terrain-based

::::::::::::
parameters,

:::::::
Journal

:::
of

:::::::::::::::::
Hydrometeorology,

:::::
3(5),

:::::::::
524–538,

::::::
2002.

:

Yokoyama, K., Ohno, H., Kominami, Y., Inoue, S., and Kawakata, T.: Performance of Japanese pre-
cipitation gauges in winter, Seppyo, 65, 303–316, 2003.

Yu, E. S. and Mylopoulos, J.: Understanding “why” in software process modelling, analysis, and
design, in: Proceedings of the 16th international conference on Software engineering, 159–168,
IEEE Computer Society Press, 1994.

39

http://www.doxygen.org/
http://www.doxygen.org/
http://www.dwheeler.com/flawfinder/

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

size_t getMeteoData(
const Date& i_date,
std::vector<MeteoData>& vecMeteo

);

Listing 1. MeteoIO call used by models to request all available meteorological time series for a given
time step.

40

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

bool getMeteoData(
const Date& date,
const DEMObject& dem,
const MeteoData::Parameters& meteoparam,
Grid2DObject& result

);

Listing 2. MeteoIO call used by models to request spatially interpolated parameters for a given time
step.

41

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Numerical
Model

preprocessing

Data

configuration

User

Figure 1. Isolation of the data reading and preprocessing routines from the numerical model.

42

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

between high and low level
Complex, bridges the gap

Easy to expand, low level

Easy to use, high level

expands...

calls API...

User

Interface class

Worker class

Manager class

A
P
I

E
X
P

Figure 2. Manager/worker architecture; very often the interface and the manager are implemented
in the same class, the interface being the public interface and the manager being the private imple-
mentation.

43

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

extra
parameters

Names DataMap

in
d

ex

en
u

m

getName()
from index

getData()

from enum
getName()

from index,

from name,

from enum

Figure 3. Meteorological data set internal structure.

44

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

6692d179032205

b4116a96425a7f

ecc2ef51af1740

959d3b6d07bce4

fa9f2af29814d9

82592e77a204a8

raw data
Caller

Read Data

Filter Data

Resample Data

Generate Data

Spatialize Data

Figure 4. Simplified view of the MeteoIO dataflow.

45

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

12

E
X
P

A
P
I

A
P
I

A
P
I

A
P
I

E
X
P

A
P
I

E
X
P

E
X
P

E
X
P

read data;

(from io.ini)

fill MeteoData

and StationData

convert units;

read station list;

re
tu

rn
 d

a
ta

 f
o
r

6692d179032205

b4116a96425a7f

ecc2ef51af1740

959d3b6d07bce4

fa9f2af29814d9

82592e77a204a8

re
q

u
es

t
5

0
0
0
 d

a
ta

 p
o
in

ts

>
=

 2
0
1

0
−

0
7
−

1
0
T

0
8

:3
2

:0
0

re
q

u
es

t
5

0
0
0
 d

a
ta

 p
o
in

ts

>
=

 2
0
1

0
−

0
7
−

1
0
T

0
8

:3
2

:0
0

re
tu

rn
 v

ec
to

r
o
f

ti
m

es
ta

m
p
 p

er
 s

ta
ti

o
n

in
 a

 v
ec

to
r

o
f

st
a
ti

o
n
s

get data chunk

IOHandler

BufferedIOHandler

return data from buffer

BufferedIOHandler

IOHandler

check if data in buffer

load plugin if necessary

plugin

IOManager

IOManager

is data in buffer?

return data from buffer

fill filtered & interpolated buffers

MeteoProcessorDataGenerator

re
q

u
es

t
d

a
ta

 f
o

r

2
0
1

0
−

0
7

−
1

1
T

0
8

:3
2
:0

0
2
0
1
0
−

0
7
−

1
1
T

0
8
:3

2

Caller raw data

Meteo1DInterpolator

interpolate at timestamp
or reaccumulate data buffer

ProcessingStack

ProcessingBlock

filter data buffer

designed to be called by the user

designed to be expanded by the user

end user configurable

ResamplingAlgorithms

GeneratorAlgorithms

Figure 5. Meteorological data reading and processing workflow. The classes marked API are de-
signed to be called by the user and the classes marked EXP are designed to be expanded by the
user.

46

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Pointer to

VectorMap
st

ri
n

g
p

a
ra

m
et

er

ProcessingElement
call process() method

Pointer to
ProcessingStack

Figure 6. Internal structure of the ProcessingStack.

47

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

1

2

3

4

Add fraction of accumulation −>

<− linearly interpolate

sum all samples until (insertion_index−1) −>

<− within a search window distance

Look for end point:

assuming a linear accumulation rate

Calculate fraction of accumulation −>

before the accumulation period −>
<− within the search window

Locate the requested timestamp, find start point:

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������

������
������
������
������

search window

search window

search window
requested timestamp requested timestamp

accumulation period

accumulation period

accumulation period

accumulation period

Figure 7. Resampling and reaccumulation operations.

48

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

500 1000 1500 2000 2500 3000

Elevation (m)

-5

0

5

10

15

20

25

T
em

p
er

at
u
re

 (
°C

)

R = 0.52

1

2

3

500 1000 1500 2000 2500 3000

-5

0

5

10

15

20

25

T
em

p
er

at
u
re

 (
°C

)

R = 0.72

Figure 8. Removing outliers for computing lapse rates.

49

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Time required by each participant to write an empty filter and the filter required by the assignment.
The plain lines represent the median.

D
ur

at
io

n
(m

ill
ise

co
nd

s)

0

20

40

60

80

Programming Environment
MeteoIO (STL) F95 (dynamic) C++ (STL) F95 (static) C (malloc)

I/O, line split, parsing, storage
Unit conversion
copying to MeteoData, post processing

Figure 9. Performance when reading a SMET ASCII file with 1 year of hourly data into memory.

50

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

D
ur

at
io

n
(s

ec
on

ds
)

0

20

40

60

300

400

500

600

MeteoIO Version
2.0.1 2.1.1 2.1.2 2.1.3 2.3.0 2.3.1 2.4.0 2.4.1 2.4.2

File I/O
Filtering
Resampling
Other

Mar '11

Nov '12
May '12

Dec '13 Feb '14

Sep '11

Oct '11

Mar '13
Jul '14

Figure 10. Performance increase in MeteoIO (March 2011 until February 2014).

51

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

1 10 100 1 k 10 k 100 k 1 M 10 M
Number of cells

0.0001

0.001

0.01

0.1

1

10

100

1000

T
im

e
(s

)

1*1 10*10 100*100 1k*1k
grid size

None
Cst
Cst_lapse
Idw
Idw_lapse
ODKrig_lapse

Figure 11. Benchmarks of some spatial interpolation algorithms for various grid sizes for seven input
stations (plain lines) and fourteen input stations (dotted lines).

52

D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

 One year,
start of file

One year,
end of file

Fourteen years 24 spatial
interpolations

0.1

1

10

tim
e

(s
)

15 stations
One station
7 stations

Figure 12.
::::::::::::
Benchmarks

::
of

:::::::::
different

::::::
usage

:::::::::::
scenarios:

:::::::
reading

:::::
one

:::::
year

::
of

:::::::
hourly

:::::
data

:::::
from

::::
the

:::::::::
beginning

::
of

::
a
:::::
large

::::
file,

::::::::
reading

::::
one

::::
year

:::
of

::::::
hourly

:::::
data

::
at

::::
the

::::
end

::
of

::
a
:::::
large

::::
file,

:::::::
reading

:::::::::
fourteen

:::::
years

::
of
:::::::

hourly
:::::
data,

::::::::
spatially

::::::::::::
interpolating

:::::::
seven

::::::::::::::
meteorological

:::::::::::
parameters

::::::
every

::::
hour

:::
for

::
a
:::::
day.

::::::
These

:::::::::
scenarios

::::
are

:::::::::
repeated

:::
for

::::
one

::::::
station

::::
and

:::::::
fifteen

:::::::
stations

:::::::::::::
(respectively,

:::::
files).

53

