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Abstract 10 

 Rice paddy is a major anthropogenic source of the atmospheric methane. But 11 

because of the high spatial heterogeneity, making accurate estimation of the methane 12 

emission from rice paddies is still a big challenge, even with complicated models. 13 

Data scarcity is a substantial cause of the uncertainties in estimating the methane 14 

emissions on regional scales. In the present study, we discussed how data scarcity 15 

affected the uncertainties in model estimations of rice paddy methane emissions, from 16 

site scale up to regional/national scale. The uncertainties in methane emissions from 17 

rice paddies of China was calculated with a local-scale model and the Monte Carlo 18 

simulation. The data scarcities in five of the most sensitive model variables, field 19 

irrigation, organic matter application, soil properties, rice variety and production were 20 

included in the analysis. The result showed that in each individual county, the within-21 

cell standard deviation of methane flux, as calculated via Monte Carlo methods, was 22 
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13.5%–89.3% of the statistical mean. After spatial aggregation, the national total 23 

methane emissions were estimated 6.44–7.32 Tg, depending on the base scale of the 24 

modeling and the reliability of the input data. And with the given data availability, the 25 

overall aggregated standard deviation was 16.3% of the total emissions, ranging from 26 

18.3%－28.0% for early, late and middle rice ecosystems. The 95% confidence 27 

interval of the estimation was 4.5–8.7 Tg by assuming a Gamma distribution. 28 

Improving the data availability of the model input variables is expected to reduce the 29 

uncertainties significantly, especially of those factors with high model sensitivities. 30 

Keywords: model, upscaling, uncertainty aggregation, data scarcity, methane 31 

emissions, rice paddy 32 
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1 Introduction 38 

Methane is not only an important greenhouse gas in the atmosphere, but also an 39 

active reactor in many atmospheric chemistry processes. Rice cultivation has been 40 

recognized the major anthropogenic activity that accounted for the rapid increase of 41 

the atmospheric methane concentration. But because of the high spatial heterogeneity 42 

in methane emissions from rice paddies, huge uncertainty has long been the big 43 

problem in making reliable estimations, even after complicated models were 44 

developed and applied (Li, et al., 2002; Zhang et al., 2011; Harvey, 2000). The models 45 

used in regional or global studies differ widely in terms of their spatial scales. Many 46 

of these models are site-specific, describing processes at local scales Extrapolating a 47 

site-specific model to a regional or global scale is usually referred to as ―model 48 

upscaling‖ (King, 1991; van Bodegom et al., 2000). A common framework for this 49 

upscaling involves partitioning a large region into smaller, individual areas and 50 

running the model for each area (Matthews et al., 2000; Li et al., 2004; Yu et al., 51 

2012). 52 

In model upscaling, the first problem modelers face is how to make the spatial 53 

divisions (each division was call a cell, hereafter). It is preferable to partition the 54 

region so that the model inputs in the cells are as statistically independent of each 55 

other as possible (King, 1991; Ogle et al., 2003, 2010). When data are scarce, 56 

however, the criterion of inter-cell independence may result in the partition of large 57 

cells, leading to a reduced level of spatial details. An additional challenge is the great 58 

variability in the availability of data for the model inputs, which complicates the 59 
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selection of an appropriate cell size. A properly partitioned subject region should 60 

balance the differences in spatial data abundance among model inputs. If the cell size 61 

is too large, substantial spatial variation in the model input variables will be lost after 62 

within-cell averaging (van Bodgegom et al., 2002; Verburg et al., 2006). Scientists 63 

tend to use the finest spatial resolution possible to express details in spatial variation 64 

in their modeling results. However, a finer spatial resolution requires sufficient model 65 

input data; otherwise, data must be shared among cells for at least some, if not all, the 66 

model inputs. This type of inter-cell non-independence among the cells (resulting 67 

from data scarcity and requiring data sharing) complicates the uncertainty analysis 68 

(Ogle et al., 2003) when finer spatial resolutions are adopted. 69 

To estimate regional/national methane emissions from rice paddies, it is critical to 70 

obtain detailed information on organic matter amendments, soil properties, rice 71 

varieties and field irrigation in rice cultivation (Khalil et al., 2008; Peng et al., 2007; 72 

van Bodegom et al., 2000; Wassmann et al., 1996). Such data, however, are seldom 73 

available at a regional scale (Zhang et al., 2011).  74 

To analyze the uncertainty due to errors in model inputs in each cell, the Monte 75 

Carlo simulation has been recognized as an effective method (IPCC, 2000), and it has 76 

been applied in many studies (Ogle et al., 2003, 2010; Yu et al., 2012). Based on the 77 

probability distribution functions (PDFs) derived from measurements and/or a priori 78 

knowledge of the model inputs, the Monte Carlo method involves randomly and 79 

repeatedly drawing values from the PDFs to drive the model and produce varying 80 

model estimates. After the Monte Carlo simulation is performed for a within-cell 81 
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uncertainty analysis in each division, we face the problem of uncertainty upscaling. In 82 

the case of ―independent‖ partitioning of the entire subject region, an independent 83 

random variable is assigned to depict variations in the model estimate for each 84 

division (IPCC, 2000; Ogle et al., 2010), the uncertainty upscaling can be quite simple, 85 

as explained by the statistical ―Law of Large Numbers‖. As previously noted, however, 86 

a paucity of data for some of the model variables and a small cell size may result in 87 

data sharing among divisions, which is problematic for the model variables that lack 88 

sufficient data to support fine-resolution partitioning. Upscaling the uncertainties in 89 

the model outputs must deal appropriately with this type of ―dependency‖. 90 

The objective of the present study is to evaluate the impacts of data scarcity on the 91 

uncertainty in regional estimations of rice paddy methane emissions, and discuss how 92 

different spatial resolutions affect the regional estimation uncertainties, given the 93 

same data availability for different spatial division schema.  94 

2 Methods 95 

2.1 Uncertainty assessment in model upscaling 96 

Fig. 1 presents a flowchart of model upscaling in the case study. The solid arrows 97 

in Fig. 1 represent procedures for estimating national methane emissions, and the 98 

hollow arrows describe the uncertainty assessments accompanying the model 99 

upscaling. Although many studies have demonstrated how to upscale a model to make 100 

regional estimations from various baseline scenarios (Matthews et al., 2000; Li et al., 101 

2004; Ogle et al., 2010), the primary focus of the present study is the aggregation of 102 
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the uncertainties in model estimations due to data scarcity. 103 

2.1.1 Within-cell variation in model estimates  104 

When partitioning the large region under consideration into spatially adjacent 105 

divisions, the within-cell variation must be accounted for first (King 1991; van 106 

Bodegom et al., 2000; Ogle et al., 2003, 2010). The baseline model estimate is usually 107 

established by running the model once in a cell. Each model input variable will have 108 

one datum or one time series of data, e.g., daily weather observations. If there are 109 

multiple data available for a model input variable in a cell, they are averaged before 110 

modeling. The within-cell heterogeneity of the model estimate will therefore be lost 111 

after averaging, which will cause errors in the model‘s estimation. This type of error is 112 

referred to as the ―fallacy of average‖ (Verburg et al., 2006). In contrast, the within-113 

cell PDF of the variation in the model variable can also be established by statistical 114 

analysis of the data and/or expert estimation (Ogle et al., 2010; IPCC, 2000). Monte 115 

Carlo simulation is considered an effective approach to evaluate within-cell variation 116 

or uncertainty in model estimates due to errors in model input variables and their 117 

interactions, and it is thus used in the present study (Fig. 1).  118 

2.1.2 Spatial uncertainty aggregation in the case of data scarcity 119 

In each cell, the model estimation via Monte Carlo iteration produces a numeric 120 

depiction of a random variable Vi(mi, σi), where mi and σi are the statistical mean and 121 

standard deviation, respectively, of the random variable Vi. Thereafter, the model 122 

upscaling involves the summation of the random variables V0=V1+V2+...+VN. The 123 

aggregation of uncertainty, represented by the statistical variance or standard 124 
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deviation, is generalized as 
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where 2

0  is the aggregated variance of the regional estimation and σi and σj are 129 

the standard deviations of the within-cell variations in cells i and j, respectively. The 130 

matrix C is comprised of coefficients Cij, which stand for ―correlations‖ between 131 

individual cells. Here, the ―correlation‖ is a measure of how the model outputs in two 132 

cells vary coincidently because they share common data and modeled processes for 133 

the model inputs. If the estimation in cell i is over-/under-estimated, the estimation in 134 

cell j will most likely be over-/under-estimated as well because they share common 135 

data, and vice versa. The aggregation of the model outputs can be quite simple if the 136 

model estimate is made with independent data in each cell. In this case, the matrix C 137 

will be an identity matrix in which the diagonal elements will be 1 and all the off-138 

diagonal elements will be 0. The aggregation in equation (1) will thereafter indicate 139 

the arithmetic sum of the within-cell variances, as addressed by the Law of Large 140 

Numbers. However, when there are not sufficient data to support independent 141 

calculation among cells, the off-diagonal elements, Cij, of the matrix C will no longer 142 

be zero.  143 

In the present study, Cij was empirically calculated via numerical experiments. 144 

For different levels of data sharing between two cells (Table 1), the model estimations 145 
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for the two cells were iteratively calculated with CH4MOD. The model inputs were 146 

randomly selected from the ranges of the variables (Table B1). When there was data 147 

sharing between the two cells for a variable in Table 1, the value of the variable was 148 

selected once for both cells. And for variables with no data sharing, the value of the 149 

variable was selected separately for the two cells. The correlation coefficients (Cij) of 150 

the model estimations in the two cells was statistically calculated with a large number, 151 

1000 iterations in the present study, of paired model estimations for the two cells. 152 

2.1.3 Indicators of data scarcity in model estimation 153 

A common problem in making a model estimation for a large region is that the 154 

available data for the model input variables differ greatly. To evaluate the overall data 155 

scarcity of the model input variables, two indicators are defined: 156 
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where Cij is the element of the DS (data sharing) matrix defined in equation (1) and 159 

n is the total number of off-diagonal, non-zero elements of the DS matrix. In equation 160 

(3), N is the total number of cells (divisions) that partition the entire region under 161 

consideration and Nk is the number of data points for the model variable k. When the 162 

off-diagonal elements of the sharing matrix are all 0, indicating abundant data (no 163 

sharing) among the cells for all the model input variables, Ids=0 and IR=1. The other 164 

extreme, when the off-diagonal elements of the DS matrix are all 1, indicates a severe 165 
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data scarcity and complete data sharing among the cells for every model input 166 

variable, Ids=1 and IR=N.  167 

Data scarcity refers to the abundance of data relative to the spatial resolution, i.e., 168 

spatial details we intend to depict via the model simulation. With all the model input 169 

data on hand, we may expect more data scarcity, and a larger Ids, when we choose a 170 

smaller cell size and vice versa. An Ids of 0 indicates a "perfect" data abundance for 171 

the chosen spatial resolution. However, this "perfection" may, conversely, imply that 172 

we have chosen too large of a cell size and that some spatially varying details in the 173 

model inputs were lost, a severe ―fallacy of average.‖ The regional partitioning should, 174 

in this case, adopt a finer spatial resolution to show more heterogeneous details in the 175 

model estimation. 176 

2.2 Uncertainty assessment of estimated methane emissions from rice paddies in 177 

China 178 

2.2.1 CH4MOD and input variables 179 

In this case study, we used the model CH4MOD to estimate methane emissions 180 

from rice paddies in China. CH4MOD is a semi-empirical model that simulates 181 

methane production and emissions from rice paddies under various environmental 182 

conditions and agricultural practices (Huang et al., 1998a, 2004; Xie et al., 2010).  183 

The CH4MOD model runs with a daily step and is driven by air temperature. The 184 

main input variables include the soil sand percentage (SAND), organic matter 185 

amendments (OM), rice grain yield (GY), water management pattern (Wptn) and rice 186 

cultivar index (VI). Appendix A describes CH4MOD and the compilation of the model 187 
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inputs. More detailed information regarding the model development, validation and 188 

application has been provided elsewhere by the authors (Huang et al., 2004, 2006; 189 

Zhang et al., 2011).  190 

2.2.2 PDFs of the model input variables 191 

Many studies (Khalil and Butenhoff, 2008; Li et al., 2004; Matthews et al, 2000; 192 

Van Bodegom et al, 2002) have suggested that a significant proportion of the 193 

uncertainty in regional rice paddy methane emissions arises from data scarcity, 194 

especially with regard to the soil sand content (SAND), organic matter amendments 195 

(OM), rice grain yield (GY), water management (Wptn) and rice cultivar index (VI). 196 

The CH4MOD sensitivity analysis similarly indicates the importance of these five 197 

factors in methane emissions (Table B1 in Appendix B). Fig. 2 illustrates the data 198 

abundance of the five model variables. The data for soil sand content is a 10 km by 10 199 

km raster dataset constructed from soil profiles via spatial interpolation (Oberthür et 200 

al., 1999; Shi et al., 2004, 2006). Although a certain proportion of the immense spatial 201 

variation in soil properties may be lost after spatial interpolation (Goovaerts, 2001; 202 

van Bodegom et al., 2002), the gridded soil data are still the most detailed of the five 203 

model inputs. In descending order of data abundance, the other four factors are GY, 204 

OM, Wptn and VI. Assuming a normal distribution, the PDFs of four factors (all except 205 

Wptn) were parameterized by statistical analysis of their data. 206 

With a specific spatial resolution, e.g., using administrative counties as divisions, 207 

the PDF of SAND in a division was calculated with the grid data within the division. 208 

Because every county has only one datum for GY, no PDF was assumed for GY when 209 
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counties were adopted as divisions. Although the yield of rice grain is not the same at 210 

every location throughout a county, we have no more detailed data on grain yield that 211 

would allow us to make PDFs of the GY variable.  212 

The data on the other two variables, OM and Wptn, were collected and statistically 213 

analyzed to produce PDFs (Table 2 and Table 3) at provincial and grand region scales 214 

(Fig. 2b). Rice paddy methane emissions vary notably with rice variety (Singh et al., 215 

1997). The variety index (VI), which accounts for the methane emission differences 216 

between rice varieties (Huang et al., 1998a, 2004), ranges from 0.5 to 1.5, and it 217 

typically has a value close to 1.0 for most rice varieties (Huang et al., 1997, 2004). We 218 

assumed that the 95% confidence interval (CI) for VI was 0.5 to 1.5 and that it 219 

exhibited a normal distribution. In the case of partitioning the entire nation into 220 

counties, the counties included within a province and/or grand region must share data 221 

and PDFs for the variables OM, Wptn and VI.  222 

The PDFs in the case study of rice paddy methane emissions did not encompass all 223 

sources of uncertainties for the five variables. Careful planning in building PDFs of 224 

the model variables will improve the reliability of the uncertainty assessment. At 225 

present, we are focused on uncertainty aggregation in model upscaling when facing 226 

data scarcity. 227 

2.2.3 Uncertainty calculation and aggregation 228 

To evaluate how the adoption of cell sizes influences the uncertainty of regional 229 

estimations, we used three partitioning schema—S1, S2 and S3—to estimate the 230 

methane emissions in China with the same previously described datasets. The 231 
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counties, provinces and grand regions of China were used as the spatial divisions in 232 

the three scenarios, respectively. In S2 and S3, PDFs of the rice grain yield were 233 

calculated based on a statistical analysis of census data. The Monte Carlo iteration 234 

was performed 500 times in each cell to calculate the within-cell uncertainty. 235 

For each of the three scenarios, the elements of the DS matrix were valued by 236 

referencing the correlation coefficients (Cij) in Table 1 based on the state of data 237 

sharing illustrated in Fig. 2b. With the within-cell variations in methane emissions 238 

calculated via the Monte Carlo approach, the aggregation of the model estimates was 239 

then performed via equation (1) for early, late and middle rice. When combining the 240 

estimation results for the three rice ecosystems, equation (1) was again utilized for the 241 

OM and VI data shared by the three rice ecosystems. 242 

After aggregation, the confidence interval, e.g., 95% CI of the national methane 243 

emission, was derived via the parameterized PDF of the aggregated estimate. 244 

Assuming a Gamma distribution (Fig. B1 in Appendix B), the two parameters of the 245 

PDF, shape (α) and scale (β), were calculated by the momentum method, where 246 

β=variance/average and α=average/β (Ross 2006). 247 

3. Results and Discussion 248 

3.1 Methane emissions from rice paddies in China and their uncertainties 249 

In 2010, the total rice harvest area of China was 29.9 M ha. The national total 250 

methane emissions were 6.44–7.32 Tg depending on the spatial resolution used for 251 

modeling (Table 4). In each individual county, the within-cell standard deviation of 252 
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methane flux, seasonal methane emissions per unit area, as calculated via Monte 253 

Carlo methods, was 13.5%–89.3% of the statistical mean. Because no errors were 254 

considered in the area from which rice was harvested, the relative uncertainty for 255 

methane emissions was the same as in the methane flux estimation. In the case of 256 

errors being present in the rice harvest area, the uncertainty of methane emissions in 257 

each cell can be calculated with Rule B of IPCC (2000) before aggregation.  258 

When data sharing between counties was not accounted for, the falsely aggregated 259 

standard deviation was approximately 1.7% － 2.2% of the national emissions 260 

according to the Law of Large Numbers. However, when the correlation of the model 261 

estimations for cells was considered (Table 1), the overall aggregated standard 262 

deviation was 16.3% of the total emissions, ranging from 18.3%－28.0% for early, 263 

late and middle rice ecosystems (Table 4). This finding implies that intensifying data 264 

quantities significantly reduces uncertainties in regional estimations by reducing data 265 

sharing and the correlations in the DS matrix. Assuming a Gamma distribution (Fig. 266 

B1 in Appendix B), the 95% confidence interval (CI) of the national total methane 267 

emissions, calculated via the moment-matching approach with m0 and σ0, was 4.5–8.7 268 

Tg at the S1 spatial resolution (Table 4).  269 

The national methane emissions from rice paddies in China have been estimated in 270 

many previous studies. Table 5 lists those studies that included uncertainty 271 

assessments. With the exception of the results from Huang et al. (1998), in which 272 

higher emissions were produced because of the continuous flooding used for rice 273 

cultivation in the study, the uncertainties in all other studies largely overlapped with 274 
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those of the present study, although significance levels for the uncertainties were not 275 

explicitly provided. The results of other studies (not listed in Table 5), e.g., Ren et al. 276 

(2010), Li et al. (2002) and Yao et al. (1996), also fell within the ranges listed in Table 277 

4. Most of these previous studies focused on organic matter application and water 278 

regimes in their estimations of uncertainty (Table 5) because of data scarcity in these 279 

two factors. Taking into consideration the tremendous spatial heterogeneity of soil 280 

characteristics, Li et al. (2004) believed that these were the most sensitive factors 281 

accounting for uncertainties, and the uncertainty was between 2.3−10.5 Tg yr
−1

 282 

(1.7−7.9 Tg yr
−1

 C) for mid-season drainage irrigation and 8.5−16.0 Tg yr
−1

 (6.4−12.0 283 

Tg yr
−1

 C) when continuous flooding was applied. 284 

Uncertainties of regional estimations come from many sources, including the 285 

model imperfection due to inaccuracy of parameters and structural fallacy of the 286 

model (e.g., Kennedy and O‘Hagan, 2001), as well as the data errors and poor 287 

availability of the model inputs. A comprehensive uncertainty analysis should 288 

synthetically include all major uncertainty sources (IPCC, 2000; van Bodegom et al., 289 

2002). In the present study, the within-cell variances of the five most sensitive factors, 290 

i.e., SAND, GR, OM, Wptn and VI, were parameterized and included in the Monte 291 

Carlo simulations, but there are also other factors that may contribute to uncertainties 292 

(van Bodegom et al., 2002). Moreover, there may be covariance between the input 293 

parameters. For example, the rice variety (VI) and/or soil texture (SAND) may have 294 

impacts on the irrigation applied (Wptn). With sufficient data, we may quantify the 295 

correlations between the input parameters and then build a joint/Bayesian PDF of the 296 
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input parameters (Kennedy and O‘Hagan, 2001). Incorporation of correlations 297 

between the input parameters will improve the estimation of the within-cell variances. 298 

However, facing the difficulty of data scarcity, it is necessary to parameterize the 299 

within-cell variance of each input parameter separately at present. Apart from data 300 

scarcity, model imperfections due to a poor understanding of the complexity of the 301 

ecosystem are also a primary source of estimation bias. A model comprises functions 302 

and equations that describe the physical processes of interest, but it cannot include 303 

every detail. Model inaccuracies may bias the estimation away from the true value, 304 

which is usually evaluated by model validation (Huang et al., 2004). In the present 305 

study, however, we did not incorporate the error of model inaccuracy in the 306 

uncertainty assessment.  307 

3.2 Data scarcity, spatial resolution and the uncertainties in regional estimation 308 

The uncertainty in regional methane emissions in Table 4 is primarily caused by 309 

errors and a scarcity of model input data (Fig. 2). Even if the data abundance of the 310 

model variables differ significantly (Fig. 2), modeling at a finer spatial resolution does 311 

help to reduce the estimation uncertainty (Table 4). We made the model estimations at 312 

three scales (S1, S2 and S3 in Table 4). At each scale, S1 for instance, the finer input 313 

(data of SAND, 10km×10km raster dataset) was aggregated to create input of SAND at 314 

the scale of S1. But to run the model at a specific scale, the data of the other model 315 

variables, i.e., OM, Wptn and VI, must be shared between neighboring grid cells 316 

because they are coarser than the specific grid size of S1. Table 4 shows the scale 317 

effects of the model estimations, the impacts of decreased variability of input on the 318 
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model output. At each of the specific scales (S1, S2 or S3), the direct model output is 319 

of the variation in each of the grid cells (in a county at S1, a province at S2 or a GR at 320 

S3). In Table 4, the 95% CI was 3.4－12.3 Tg when modeling was performed at a 321 

coarser resolution (S3). At the provincial scale (Scenario S2), however, the 95% CI 322 

narrowed to 4.8－10.4 Tg, and the aggregated standard deviation was 19.5% of the 323 

national total emissions. However, without sufficient data support (Fig. 2), upscaling a 324 

model at an over-fine resolution makes no substantial difference, as in Table 4 for S1. 325 

Although the uncertainty was reduced further when the spatial resolution was at the 326 

county level, this approach is not cost-effective, and the indicator IR rises rapidly from 327 

up to 3 at the provincial scale to more than 27 at the county scale (Table 4). The IR 328 

indicates the redundant cost; a higher IR indicates more redundant processing.  329 

In Table 1, sharing data for the higher-sensitivity variable, e.g., SAND vs. Yield in 330 

Table B1, may result in a larger correlation coefficient Cij. Although Cij in Table 1 is 331 

computation intensive, needing a large number of modeling iterations, a rough 332 

estimation (Eqn. 4) of Cij may be meaningful in finding the proper spatial resolution 333 

before the model upscaling is conducted: 334 
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where sk is the sensitivity index of the model parameter k (e.g., Table B1 in the 336 

Appendix) and m is the number of model input variables under consideration. Iij,k is a 337 

binary variable taking a value of 1 or 0. If cells i and j share data for the model input 338 

variable k, Iij,k is assigned a value of 1; otherwise, it is 0. The sensitivity index sk 339 
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reflects the difference in the importance of the model input variables to the model 340 

output. Fig. 3 presents the comparison of the correlation coefficients calculated in two 341 

ways. Though the rough estimation of Cij via Eqn. 4 differs to some extent from those 342 

in Table 1, the values exhibit the same trend in reflecting the impacts of data sharing 343 

on correlations of the model outputs between cells. 344 

4 Conclusions 345 

Data scarcity is a significant challenge in making regional estimates of greenhouse 346 

gas emissions. We developed a data sharing matrix to estimate the aggregated 347 

uncertainties in China‘s rice paddy methane emission introduced by data scarcity. 348 

Based on the data sharing matrix, we estimated that data scarcity in the five most 349 

sensitive factors introduced an aggregated uncertainty to the estimates ranging from 350 

4.5 to 8.7 Tg with a 95% confidence interval. Aggregated uncertainty may vary with 351 

the spatial resolution for a given dataset, and the indicator Ids is useful for identifying 352 

an appropriate spatial resolution. An appropriate spatial resolution corresponds to a 353 

value between 0 and 1 for the Ids, which represents a compromise between the data 354 

scarcity of different model variables. Improving the data abundance of model inputs is 355 

expected to reduce the uncertainties in estimating terrestrial greenhouse gas emission, 356 

in which the sensitivity of the model inputs also plays a key role. 357 
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 515 

 516 

Appendix A: Description of CH4MOD and the compilation of model inputs 517 

CH4MOD is an semi-empirical model that simulates methane production and 518 

emissions from rice paddies under various environmental conditions and agricultural 519 

practices (Huang et al., 1998a, 2004; Xie et al., 2010). This model calculates the 520 

production of methanogenic substrates from rice plant root exudates and added 521 

organic matter (OM) decomposition. Both OM decomposition and rice-plant-induced 522 

substrate production are significantly influenced by environmental factors, including 523 

soil texture and temperature. Soil moisture controls the fraction of the substrates 524 

transformed into methane. There are two major paths by which the methane produced 525 

in rice paddy soils is emitted into the atmosphere. One path is the aerenchyma system 526 

of the rice plants, and the other is methane bubbles. Both pathways of methane 527 

emissions are formulated in the model.  528 

CH4MOD runs on a daily time step, and it is driven by daily air temperature. Its 529 

input parameters include soil sand percentage (SAND), organic matter amendment 530 

(OM), rice grain yield (GY), water management pattern (Wptn) and rice cultivar index 531 

(VI). 532 

A1 Rice harvest area and grain production 533 

Data on rice production and the harvest area of each province in 2010 were 534 

extracted for early, late and middle rice from the nation's statistical yearbook (EBCAY, 535 

2011). The county-level rice production census was obtained from the Chinese 536 

Academy of Agricultural Sciences. Although the county-level data do not record 537 

fractions of early, late or single rice cultivation, the rotation type in each county was 538 

represented using the approach of Frolking et al. (2002) by referring to the climatic 539 

zonification of the cropping system in China (Han et al., 1987). 540 

Many studies have indicated that methane emissions differ notably among rice 541 

varieties (Singh et al., 1997; Wang et al., 1997). In CH4MOD, the impact of rice 542 

variety on methane emissions was parameterized as the variety index (VI) (Huang et 543 

al., 1998a, 2004). The VI ranges from 0.5 to 1.5 and typically has a value of 544 

approximately 1.0 for most rice varieties (Huang et al., 1997, 2004).  545 

A2 Climate data and rice phenology 546 

Daily mean air temperature is the only meteorological data required to drive the 547 

CH4MOD model. Observations of air temperature at 678 Chinese meteorological 548 

stations in 2010 were acquired from the National Meteorological Information Center 549 

(NMIC), China Meteorological Administration (CMA) (http://cdc.cma.gov.cn/). For 550 

counties without a meteorological station, the air temperatures at the nearest 551 

neighboring station was used.  552 

The rice phenology, including transplanting and harvesting dates, controls the start 553 

and end of CH4MOD's run in simulating methane emissions. The available data 554 

regarding rice phenology were originally iso-line maps, edited by Zhang et al.
 
(1987), 555 

in the Atlas of Agricultural Climate in China. The transplanting and harvesting dates 556 

for each grid were spatially interpolated from the iso-lines via the TIN (Triangular 557 
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Irregular Network) technique (Aumann et al., 1991) and assigned to each county. 558 

A3 Soil properties 559 

The spatial database of soil sand content (SAND) is one of the databases developed 560 

by the Institute of Soil Sciences, Chinese Academy of Sciences, from the samples of 561 

soil profiles obtained during the Program of the Second Soil Survey of China and 562 

subsequent surveys. The database comprises 10 km×10 km raster datasets of soil 563 

properties at 10 cm depth intervals from the surface down. The spatial resolution of 564 

the soil data is the finest among the CH4MOD input parameters (Fig. 2). 565 

A4 Organic matter amendment in rice paddies 566 

The organic matter amended into rice fields includes various types of farm manure 567 

(green manure, animal manure etc.) and crop straw as well as dead roots and stubble 568 

from previous crops. Roots remaining in the soil can be accounted for using the 569 

root/shoot ratio (Huang et al., 2007). Stubble was assumed to represent one-tenth of 570 

the aboveground straw biomass. The fraction of straw incorporation and farm manure 571 

application, however, is not well known, and limited data are available. In the First 572 

National Census of Pollution Sources conducted by the Ministry of Environmental 573 

Protection of China (EPFNCPS, 2011), straw application in croplands was 574 

summarized at a provincial level with the census data (Table 2). The straw application 575 

in Table 2 is not rice-specific but, rather, incorporates all the crops in each province. 576 

The bias may not be significant in provinces where rice dominates crop cultivation. In 577 

addition to crop straw, the incorporated crop residues include dead crop roots and 578 

stubble. According to Zhao and Li (2001), stubble accounts for approximately 13% of 579 

the total straw in dry weight. 580 

Until now, no regular statistical data or comprehensive census data have been 581 

available concerning the application of manure in rice cultivation. In this study, the 582 

investigation of how much OM amended into rice cultivation was made during the 583 

compilation of the national inventory of methane emission from rice cultivation of 584 

China. We delivered investigation papers to farmers in all the typical rice cultivation 585 

regions of China and summarized the returned data. The details of the data collection 586 

and the quality control can be found in the Supporting Information to a previously 587 

published paper (Zhang et al., 2011). The amount of farmyard manure application in 588 

each province (Table 2) was part of the investigation results. 589 

 590 

Appendix B: Sensitivity analysis of CH4MOD 591 

Data on an environmental factor are usually expressed as M±e, where M 592 

represents the measurement and e represents the error. When used as model inputs, 593 

imprecise data can result in uncertainties in the model outputs with diverse 594 

magnitudes depending not only on the data imprecision but also on the model 595 

sensitivity. Model sensitivity represents the variability of the model output in response 596 

to variations in model inputs. Usually, an individual variable sensitivity analysis is 597 

performed by "varying one variable at a time". In contrast to the individual variable 598 

sensitivity analysis, a regional sensitivity analysis is performed in the present study, 599 

and simultaneous variations of the model inputs account for interactions of the 600 
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variables in the model. The Monte Carlo method is commonly applied to 601 

simultaneously produce variations of model inputs. 602 

To scale the model input variation, the e/M is adopted for each of the variables to 603 

make them comparable to each other, and all the CH4MOD input parameters have 604 

positive values. In differential form, the expression e/M can be expressed generally as 605 

x

dx
 or d(lnx). The purpose of the model sensitivity analysis in the present study is to 606 

explore the modeled methane flux variability to variations of the model input 607 

parameters as in formula (b 1): 608 

k

k
k

x

dx
s

y

dy
     or   )(ln)(ln kk xdsyd      (b 1) 609 

where k is used to identify each model parameter and y represents the seasonal 610 

methane emissions flux (g CH4 m
-2

) calculated by CH4MOD with xk as input. Sk is 611 

the sensitivity index of the model variable k, and it is defined as the linear coefficient 612 

for the relationship between methane flux and the model input variables in terms of 613 

fractal variation.  614 

The Monte Carlo approach was adopted as the first step to randomly select values 615 

of the model input parameters from their value domains (Table B1), at which point the 616 

methane flux was calculated with CH4MOD. This picking-and-calculating procedure 617 

iterates for 20,000 cycles. After logarithmic transformation of the model inputs and 618 

outputs, a simple variable linear regression was performed, and the sensitivity index 619 

was defined as the slope coefficient of the regression equation.  620 

Water management in rice cultivation is a key factor that impacts methane 621 

emissions from rice paddies. In CH4MOD, the diverse water management strategies 622 

in Chinese rice cultivation are grouped into five irrigation patterns and include 623 

flooding, drainage and intermittent irrigation (Huang et al, 2004). In the case of this 624 

nominal variable, the sensitivity index was calculated as follows: 625 
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      (b 2) 626 

where W = (1, 2, 3, 4, 5) in the formula (b 2) is the code set of the irrigation water 627 

patterns (Table B1). N is the total number of (j, k) pairs, and ly , ky  and oy628 

represent the mean methane flux for irrigation water pattern l, k and all water patterns, 629 

respectively. 630 

To run the CH4MOD simulation, daily air temperatures must be available for the 631 

duration of rice growth from the dates of transplanting to the harvest. In the model 632 

sensitivity analysis, the temperature data are virtually created by the following 633 

equations: 634 
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Smax＝R(Ss，Se)           (b 5) 637 

maxT =R(25.0，35.0)          (b 6) 638 

minT =R(10.0，20.0)          (b 7) 639 

where the function R(v1,v2) returns a random number between v1 and v2. Ss and Se 640 

represent the transplanting and harvesting dates, respectively, and Smax is the day on 641 

which the air temperature reaches its maximum for the rice season. The time variable t 642 

(Ss≤t≤Se) represents days after transplanting. 643 

The results indicated that methane emissions are most sensitive to field irrigation, 644 

with a sensitivity index of 0.67 (Table B1). The soil texture, rice variety and organic 645 

matter application rank lower, with sensitivity indices of 0.63, 0.51 and 0.47, 646 

respectively. 647 
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