
Response to D.J. McNeall 
 

We are grateful to Dr. D.J. McNeall for the valuable comments and suggestions. We have 

made a concerted effort to address the concerns raised in the report. Please find below our 

detailed responses to the comments.  

 

Major Comments: 

 

1. A slightly more comprehensive summary of the emulator technique in the main text would 

be welcome: 

We have added the following description for a more comprehensive summary of our 

emulation technique:  

 

Because the principal components are uncorrelated, we can emulate each principal 

component separately. Our emulator consists of all these independent Gaussian processes. 

Although our emulator operates in the principal component space, we can reconstruct the ice 

thickness profile that corresponds to the emulated principal components (see the Supporting 

Information for details). Note that our likelihood formulation automatically penalizes the 

components with lower explained variation. 

 

2. I would suggest acceptance of the paper, conditional on a test set of ensemble members of 

a sizeable fraction of the ensemble - perhaps at least a third, chosen at random. If 

computational effort is not a consideration, I would recommend a leave-one-out or leave-n-

out test across the entire ensemble. 

 

We agree that cross-validation using a sizeable fraction of the ensemble provides a better test 

for the performance of our approach. We have conducted leave-one-out cross-validation 

across the entire ensemble members and added discussion on the results in the Supporting 

Information as follows: 

 

To investigate (i) whether the perfect model experiment results shown in the main text are 

sensitive to the values of input parameters assumed as the synthetic truth, and (ii) whether the 

prediction intervals for ice volume projections generated from our method have the right 

coverage, we have conducted leave-one-out cross-validation across all input parameter 

settings in the ensemble. In other words, we have repeated the same perfect model experiment 

described in the previous sections for all 100 possible different synthetic truths. We 

summarize the cross-validation results for emulation and calibrated projections in Figure S4 

and Figure S5, respectively … The plots in Figure S5 show that the prediction intervals 

generated from our approach achieve the nominal coverage level only when the modern ice 

volume generated by the synthetic truth is close enough to the observed volume (i.e. within 10% 

of the observed value). The width of the prediction interval also varies considerably across 

the different assumed truths. Therefore, consistent with the findings in McNeal et al., 2013, 

selection of the assumed truth affects the calibration performance. 

 

Figure S4 and S5 are included at the end of this letter as well. Since our design points in the 

parameter space are quite sparse, leave-one-out cross-validation is rigorous enough to test the 



performance of our calibration approach. 

 

Minor Comments: 

 

1. There appears little justification of the use of 10 PCs in the emulator. What procedure was 

used to choose the 10 PCs, and why was 10 chosen as “good enough”? 

 

We choose the 10 PCs to have explained variation of 90%. Although it was not originally 

explained in the manuscript, we have already confirmed that our results are robust against 

choice of number of principal components, by looking at the results based on more than 10 

PCs. We have added the following short note on this at the end of Section 3 in the Supporting 

Information: 

 

Using 10 principal components captures more than 90% of the variation in the model output, 

and we have confirmed that using more than 10 principal components does not significantly 

improve the emulation accuracy in cross-validation. 

 

2. The “future work” section describes the aims of the authors to extend the methodology to 

the full two-dimensional thickness map of the ice sheet, rather than the one-dimensional 

thickness profile. Given the apparent availability of model data (as compared to observations), 

why did this work use only thickness profiles? 

 

We apologize for not explicitly explaining the challenges related to emulation and calibration 

using 2-dimensional thickness maps. The main challenge involves modeling high-

dimensional spatial data containing many zeros. To our knowledge this is an open problem in 

both computer model calibration and spatial modeling. One possible solution is using 

truncated Gaussian processes, which however requires dealing with a large number of latent 

variables, as many as the number of zeroes in the model output. For the SICPOLIS ensemble 

that we use here, we need to deal with about 600,000 latent variables and to our knowledge 

no current approaches can handle this properly. We have updated our description of 

computational challenges for calibration using the full two-dimensional ice thickness grid as 

follows: 

 

Direct emulation of the full two-dimensional ice thickness grid is prohibitively expensive, due 

to (i) the cost of performing operations on large covariance matrices (see the Supporting 

Information and Chang et al., 2013, for details) and (ii) the need to model spatial processes 

that contain many zeros, which poses non-trivial computational and inferential challenges. 

 

3-1. Clearly, leaving a discrepancy term out when discrepancy was added to the synthetic 

data, will result in a mis-specified probability distribution for the input parameters (and 

subsequent predictions of the ice sheet). The authors have missed a trick here – It would be 

very useful to show, comprehensively across the ensemble, how much error a mis-specified 

discrepancy term adds to predictions. 

 

We have diagnosed the effect of including the discrepancy term on ice volume change 

projections and included the following discussion on the results in Section 6 of the 

Supporting Information: 



 

Another important observation is that including the discrepancy term reduces the 

overconfidence that occurs when the synthetic truths are outside of the 90-110% range. The 

prediction intervals are overconfident when the synthetic truth is outside of this range 

because the coverage is consistently less than 95%. Including the discrepancy term reduces 

this issue in some degree since it makes the actual coverage closer to the nominal coverage 

when the synthetic truth yields the modern ice volume that is within at most 70% of the 

observed volume. However, this correction effect is not sufficient to make the prediction 

intervals achieve the nominal coverage. 

 

3-2 It might also be worth demonstrating how much uncertainty a well-specified-but-

uncertain discrepancy term adds to the predictions, and to the identifiability of the input 

parameters. 

 

Our discrepancy term, constructed based on kernel convolution, is a well-specified-but-

uncertain discrepancy term that is designed to capture a large scale model-observation 

discrepancy. Note that using an overly flexible discrepancy process leads to a serious 

identifability issues between the discrepancy process and the input parameters, and our 

discrepancy term using kernel basis with pre-specified range and smoothness parameters is 

one way to mitigate this issue while maintaining enough flexibility of the discrepancy process 

(Chang et al. 2014). We have added the following short note on this in the Supporting 

Information: 

 

Fixing the range parameter not only reduces the computational cost for likelihood 

computation but also improves the identifiability between the input parameters and the 

discrepancy process.  

 

4. Figure 1. could show the entire ensemble (perhaps greyed out), and highlight the subset of 

ensemble members. 

 

We have incorporated your suggestions in Figure 1. Please see the revised figure below.  

 

5. The accuracy of the emulator as demonstrated in figure 2. is impressive. Again, it would be 

useful to show how this varies across the entire ensemble. There are ideas for doing this using 

similar PC emulation techniques for one dimensional data in Challenor et al (2010), and 

McNeall (2008). 

 

We have added Figure S3 below to the Supporting Information that shows the leave-one-out 

cross-validation results across the entire ensemble. We have also included the following 

discussion in Section 6 of the Supporting Information.  

 

The results in Fig. S3 show that our emulator can predict the model output reasonably well 

across all input parameter settings. The predicted ice volume thickness profiles are 

concentrated around the diagonal line that connects the lower left and the upper right 

corners of the plot, and hence the emulator can predict the model output reasonably well for 

most input parameter settings. Note that leave-one-out cross-validation is already rigorous 

enough in our case due to the sparsity of the design points (100 points in 5-dimensional space) 



for the input parameters in our ensemble. We have also conducted leave-10-out cross-

validation for emulation and the results are essentially the same (not shown). 

 

 

6. If the authors are to extend the testing of the probabilistic methodology across the 

ensemble, a graphical representation of the strength of interactions between parameters - 

summarised across the entire ensemble- would be most welcome. The pairs plots as used 

show this nicely for a single ensemble member, but are not appropriate for large ensembles. 

 

We have added the discussion below and Fig. S5 in the Supporting Information that 

summarize the interactions between the input parameters across the entire ensemble using the 

distributions of the rank (Spearman) correlations. 

 

The cross-validation results allow us to examine the interaction between input parameters 

across all possible choices of the synthetic truth. We have computed the rank correlations 

between the input parameters across all 100 ensemble members and summarized their 

distributions in Figure S6. From the shapes of the densities we can identify five pairs of 

parameters that tend to be more negatively correlated: (i) the flow factor and the snow PDD 

factor, (ii) the flow factor and the geothermal heat flux, (iii) the basal sliding factor and the 

ice PDD factor, (iv) the geothermal heat flux and the ice PDD factor, and (v) the ice PDD 

factor and the snow PDD factor. 

 

Figure S6 is also included at the end of this letter. 
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Fig. 1.  Profiles of zonal mean ice thicknesses from four different evaluations of the ice sheet 

model SICOPOLIS (Greve, 1997; Greve et al., 2011).  The solid black curve represents 

model run #67 from Applegate et al. (2012), which we take to be the synthetic truth for our 

perfect model experiments.  The other curves represent examples of model runs used to 

construct the emulator: one run produces a zonal mean ice thickness curve similar to the 

synthetic observations (dashed red curve), another is generally too thick (dotted green curve), 

and a third is generally too thin (dot-dashed blue curve).  As expected, our probability model 

assigns a greater posterior probability to the model run represented by the red curve than to 

the model runs represented by the blue and green curves.  All the other model runs that are 

not highlighted above are represented as grey curves. 

  



 
Fig. S4. Leave-one-out cross-validation results for the emulation performance. Each grey 

curve shows the comparison of zonal mean ice thickness transects from the model output and 

that from the emulator output for each parameter setting. Each boxplot shows the distribution 

of emulator output for each of the evenly spaced bins that span the range of true model output. 

In spite of the fact that our design points for parameter settings are quite sparse (100 runs in 

5-dimensional space) most of the curves are concentrated around 1:1 line connecting the 

lower left and upper right corners of the plot, indicating that our emulator can reconstruct the 

original model output reasonably well across the input parameter settings.  

 

 

  



 

 
Fig. S5. Leave-one-out cross-validation results for ice volume change projections across all 

100 input parameter settings as the synthetic truth. The left penal shows 95% prediction 

intervals for ice volume change projections across all 100 perfect model experiments 

conducted for cross-validation. If the interval covers the 1:1 line connecting the lower left 

and upper right corners of the plot, the 95% prediction interval includes the ice volume 

projection given by the synthetic truth. The right penal shows the coverage of those 

prediction intervals as a function of allowed range for the ice volume in 2005 AD relative to 

the observed ice volume. “”The numbers above the solid black line show how many synthetic 

truths fall into the given ice volume range. The plot shows that (i) the credible intervals 

achieve the nominal coverage level only for the “realistic” synthetic truths with modern ice 

volume within 10% of the observed ice volume, and (ii) the discrepancy term reduces 

overconfidence issues for the synthetic truths that are not within the 10% range. 

  



 

 
Fig. S6. Summary of interactions between input parameters computed from leave-one-out 

cross-validation. Each panel shows the distribution of the rank correlation between two input 

parameters across all synthetic truths in our leave-one-out cross-validation. Five pairs of 

input parameters, (i) the flow factor and the snow PDD factor, (ii) the flow factor and the 

geothermal heat flux, (iii) the basal sliding factor and the ice PDD factor, (iv) the geothermal 

heat flux and the ice PDD, and (v) the ice PDD factor and the snow PDD factor are tend to be  

more negatively correlated comparing to the other pairs of parameters. 


