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Abstract

This test extends the evaluation of transport schemes from prescribed advection of in-
ert scalars to reactive species. The test consists of transporting two interacting chemical
species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these
two species are given by a simple, but non-linear, “toy” chemistry which represents com-5

bination (X + X→ X2) and dissociation (X2→ X + X). This chemistry mimics photolysis-
driven conditions near the solar terminator, where strong gradients in the spatial distri-
bution of the species develop near its edge. Despite the large spatial variations in each
species the weighted sum XT = X + 2X2 should always be preserved at spatial scales
at which molecular diffusion is excluded. The terminator test demonstrates how well the10

advection/transport scheme preserves linear correlations. Chemistry-transport (physics-
dynamics) coupling can also be studied with this test. Examples of the consequences of
this test are shown for illustration.

1 Introduction

Tracer transport is a basic component of any atmospheric dynamical core. Typically, trans-15

port accuracy is evaluated in ideal tests before being developed further or implemented
in full models. Several tests for 2-D passive and inert transport exist in the literature
(Williamson et al., 1992; Nair and Machenhauer, 2002; Nair and Jablonowski, 2008; Nair
and Lauritzen, 2010). To facilitate the intercomparison of transport operators under chal-
lenging flow conditions, Lauritzen et al. (2012) proposed a standard suite of tests that was20

exercised by a number of state-of-the-art schemes in Lauritzen et al. (2014). These tests
evaluate each advection scheme’s ability to transport an inert tracer with respect to a wide
range of diagnostics as well as the ability of each transport scheme to maintain non-linear
tracer correlations between pairs of tracers (Lauritzen and Thuburn, 2012). While such
evaluations provide useful information about the ability of each transport operator to advect25
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inert scalars, these idealized tests do not shed light on how transport methods perform
under forced conditions, e.g., how the method interacts with sub-grid scale processes.

Idealized chemical processes have readily available analytic expressions for the forcing
terms. The implementation of these processes as sub-grid scale forcing involves “only” solv-
ing forced continuity equations rather than the full Navier Stokes, primitive or shallow water5

equations that add extra levels of complexity. Indeed several simplified systems, where
two species interact non-linearly, have been developed and studied quite extensively in
the literature. For example, the Lotka and Voltera equations (also known as predator-prey
equations) that are a pair of first-order, differential equations describing the dynamics of
biological systems in which two species interact, one as a predator and the other as prey.10

For a dynamical systems analysis of the Lotka and Voltera equations, e.g., see Chapter 4
in Prigogine (1981). The equations are the same for simple chemistry systems where each
chemical species is transformed to the others. A more complicated system, but also con-
sisting of just two independent variables (and two variables held constant), is the Brussela-
tor system (Prigogine and Lefever, 1968) that allows for a rich set of solutions (Prigogine,15

1981). The real Belousov-Zhabotinsky reaction has similar transient complex oscillations
as found in the Brusselator system. Pudykiewicz (2006) coupled the Brusselator reactions
to the advection–diffusion equations in a shallow water flow. The linearized system has an-
alytic solutions (Turing, 1952) that can be used to assess the accuracy of the numerical
solution to the differential equations. Pudykiewicz (2006, 2011) solved the full non-linear20

system, which is basically a forced advection–diffusion equation with flow prescribed from
the shallow water solution, and examined the solutions qualitatively since the analytic so-
lution is not known. Similar idealized systems for reactive species have been developed in
the context of convective boundary layers (e.g., Kristensen et al., 2010).

The test we develop in this paper extends the Nair and Lauritzen (2010) test to two re-25

active species, adding one extra level of complexity while retaining the simplicity of analytic
prescribed flow and known analytic solution. The inspiration for the idealized chemical re-
actions is photolysis-driven chemistry in which sunlight strongly influences the production
and loss processes, creating very steep gradients in the individual tracer distributions near
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the terminator boundary (as observed for chlorine species and bromine in the stratosphere;
see, e.g., Anderson et al., 1991; Salawitch et al., 2009; Brasseur and Solomon, 2005).
Hence these reaction coefficients lead to strong gradients coinciding with a “terminator-like”
line (Lander and Hoskins, 1997). Another inspiration for this test is that the atomic concen-
tration is conserved for each air parcel, while the molecular species react non-linearly with5

each other, e.g., total organic and inorganic chlorine in the stratosphere up to the scales
where molecular diffusion matter (Edouard et al., 1996; Strahan et al., 2011; Prather and
Jaffe, 1990). So by choosing the initial condition for two tracers so that the total amount (i.e.
the total weighted mass of a chemical constituent X) is a constant throughout the domain
then the atomic concentration should remain constant in space and time (as long as the10

chemistry exactly conserved the total of the constituents). This concept is used in this test
case so that an analytic solution for the atomic concentration is readily available irrespective
of the complexity of the flow and non-linearity of the chemical reactions.

The paper is organized as follows. In Sect. 2 the idealized chemistry, referred to as “toy
chemistry”, is defined. An analysis in terms of steady-state solutions is presented. The15

transport operator is discussed in the context of linear tracer correlations in Sect. 3. The
combination of the “toy” chemistry forcing with advection prescribed by the Nair and Lau-
ritzen (2010) wind field (see Appendix A) defines the terminator test. The discrete ter-
minator test is defined in Sect. 4. Section 5 shows example solutions from the Community
Atmosphere Model (CAM) Finite-Volume dynamical core (CAM-FV; Lin, 2004) and the CAM20

Spectral Elements dynamical core (CAM-SE; Dennis et al., 2012). In particular, we show
that the terminator test exacerbates errors associated with the preservation of linear rela-
tions and limiters as well as highlights differences in chemistry-transport (physics-dynamics)
coupling approaches. The summary and conclusions are in Sect. 6.

2 Toy chemistry25

In this section, we use the nomenclature X to describe the number density (number of
molecules of compound X divided by the number of molecules of dry air, see Andrews

4



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

et al., 1987). A molecule composed of two atoms X is written as X2. The number density
associated with the total number of atoms X (in X and X2) is denoted XT.

The non-linear “toy” chemistry equations for X2 and X are

X2
k1→ 2X, (1)

X + X
k2→ X2, (2)5

where k1 and k2 are the reaction rates of the production pathways for X and X2, respectively.
The reactions are designed to conserve the total number of X atoms

XT = X + 2X2. (3)
10

The kinetic equations corresponding to the above system (Eqs. 2 and 1) are given by

dX

dt
= 2k1X2− 2k2XX, (4)

dX2

dt
=−k1X2 + k2XX, (5)

where d/dt is the material (or total) derivative d/dt= ∂/∂t+v ·∇ and v is the wind vector.15

It is easily verified that the weighted sum of X and X2 is conserved along characteristics of
the flow

dXT

dt
=

d

dt
[X + 2X2] = 0. (6)

If the initial condition for XT is constant (as we assume here), XT is not a function of time20

and is therefore equal to its initial value.

XT = X(t) + 2X2(t),

= X(0) + 2X2(0), (7)
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and hence,

X2(t) =
1

2
(XT−X(t)) . (8)

The reaction coefficient, k1, represents the photolytic breaking of molecule X2 and can be
represented as the cosine of the solar zenith angle for when the sun’s zenith is at (λc,θc)5

(see Fig. 1). The reaction coefficient, k2, represents the recombination and is assumed
constant over the globe.

k1(λ,θ) = max[0,sinθ sinθc + cosθ cosθc cos(λ−λc)] , (9)

k2(λ,θ) = 1, (10)
10

where λ and θ are longitude and latitude, respectively, and (λc,θc) are chosen as (20◦N,
300◦ E) to align with the flow field. The terminator is the continuous boundary between day
and night regions. These reaction rates produce very steep gradients in the X species near
the terminator. This setup is of direct application to the real atmosphere as the total chlo-
rine in the stratosphere is conserved (except for molecular diffusion), while photolysis and15

chemical reactions partition the various components and lead to narrow gradients across
the terminator.

An analytic steady-state solution of the chemical concentrations for the condition of no
flow is derived in Appendix B. The initial condition is specified as being the steady-state
solution under no flow. Reaction rates are quite rapid compared to the model time-steps as20

shown in Appendix C.

3 Transport operator and correlations

Let T be the discrete transport operator that advances, in time, the numerical solution to
the passive and inert continuity equation for species X and X2

Dφ

Dt
= 0, φ= X̃, X̃2, (11)25

6
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at grid point or grid cell i. In this equation, X̃ refers to the volume mixing ratio of X (Andrews
et al., 1987), which is related to the number density of X through scaling by the fixed ratio
of the atomic weight of X to the molecular weight of dry air.

φn+1
i = φni + ∆ttracerT (φnj ), j ∈H, φ= X̃, X̃2 (12)

5

where n is the time-level index, ∆ttracer time-step for the transport operator, andH is the set
of indices defining the stencil required by T to update φni . Note that the transport operator
may not solve the prognostic equation for φ in advective form as used in Eqs. (4) and (5).
For example, it is common practice for finite-volume schemes to base the discretization on
a flux-form formulation of the continuity equation (here written without forcing terms)10

∂(ρφ)

∂t
=−∇ · (vρφ) , (13)

where ρ is air density. To deduce the mixing ratio from Eq. (13) one needs to solve the
continuity equation for air. For a non-divergent wind field and an initial condition of ρ that
is constant, the exact solution for ρ is that it remains constant in time and space. For the15

terminator test, in which we use a non-divergent flow field and constant initial condition for ρ
(if applicable), it has been found crucial to solve for ρ rather than prescribing the analytic so-
lution for ρ. Usually a transport scheme using ρφ as a prognostic variable will not preserve
a ρφ= constant initial condition whereas it will preserve a constant mixing ratio. So if ρ is
analytically prescribed φ will not be preserved in areas where it would otherwise be con-20

stant. Such errors can be exacerbated by the terminator chemistry. For a fuller discussion
of tracer-air coupling see, e.g., Lauritzen et al. (2011) and Nair and Lauritzen (2010).

For the theoretical discussion it is convenient to define the property semi-linear : A trans-
port operator T is semi-linear if it satisfies

T (aφi + b) = aT (φi) + bT (1) = aT (φi) + b, (14)25

for any constants a and b (Lin and Rood, 1996; Thuburn and McIntyre, 1997). A semi-
linear transport operator preserves linear correlation between two trace species. Note that
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the semi-linear property subsumes that the transport operator preserves a constant mixing
ratio

T (b) = b. (15)

Since XT is simply the weighted sum of just two species, XT will be conserved in the nu-5

merical model if T is semi-linear. The semi-linear property, however, does not imply that
a weighted (linear) sum of more than 2 species is conserved (Lauritzen and Thuburn, 2012).
The chemical reactions (Equations 1 and 2), even in discrete form, will preserve the sum
of species. Consequently, a semi-linear transport operator combined with the terminator
chemistry will produce no error in XT.10

Several transport operators T in the literature are semi-linear when limiter/filters are not
applied. For example, Lin and Rood (1996) show that their scheme, based on the widely
used Piecewise-Parabolic Method (PPM; Colella and Woodward, 1984) for reconstructing
sub-grid scale tracer fields, preserves linear correlations. The CSLAM scheme (Lauritzen
et al., 2010), also based on polynomials, preserves linear correlations (see proof in Ap-15

pendix A of Harris et al., 2010). An example of a scheme that is not semi-linear is the
transport operator based on rational functions described in Xiao et al. (2002) due to the
non-linearity of the reconstruction function.

Typically, transport operators are not applied in their unlimited versions in full
models. Shape-preserving filters are applied to ensure physically realizable solu-20

tions such as the prevention of negative mixing ratios or unphysical oscillations
in the numerical solutions (e.g. Durran, 2010). The filter method/algorithm de-
pends on the advection scheme formulation and discretization. Finite-volume dis-
cretizations that are based on cell-average prognostic variables (ρφ) usually make
use of either sub-grid-cell reconstruction function filters, e.g. van Leer type25

1-D limiters (Lin et al., 1994), or flux-limiting methods such as flux-corrected transport (Za-
lesak, 1979). The reconstruction filter can be applied for schemes that are based on La-
grangian or Eulerian finite-volume discretizations, where the integration is based on swept
areas (in either dimensionally split 1D operators such as Lin and Rood, 1996, or fully

8
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2D) that span the domain without gaps or overlaps. Examples of reconstruction function
filters are Colella and Woodward (1984) and Lin and Rood (1996). Limiting through flux-
correction, where low-order shape-preserving fluxes are optimally blended with higher-
order fluxes, can only be applied in flux-form schemes. For discretizations based on a
non-conservative form (advective form), where the prognostic variables are mixing ratio5

φ rather than ρφ, tracer mass conservation is not inherent and is usually restored a pos-
teriori with ad hoc methods (e.g., Priestley, 1993; Gravel and Staniforth, 1994). Since the
mass-restoration algorithm may alter φ, the mass-fixer and shape-preservation algorithms
are intrinsically related. Usually this problem is solved using optimization/variational meth-
ods (e.g., White and Dongarra, 2011). For methods where the prognostic variables are10

represented with series-expansions (e.g., Galerkin methods), shape-preservation can also
be enforced with optimization methods (e.g., Guba et al., 2014).

Shape-preserving filters may render an otherwise semi-linear transport operator non-
semi-linear. Some limiters, however, are semi-linear. For example, van Leer type
1-D limiters (Lin et al., 1994) preserve linear correlations (Lin and Rood, 1996). Flux-15

corrected transport limiters with and without selective limiting preserves linear correlations
(Blossey and Durran, 2008; Harris et al., 2010). The limiter by Barth and Jespersen (1989),
that scales the reconstruction functions so that it is within the range of the surrounding cell
average values, preserves linear correlations (Harris et al., 2010). Positive definite limiters
that insure positivity-preservation and “clipping” algorithms that simply remove negative20

values (see, e.g., Skamarock and Weisman, 2009, for applications in a weather forecast
model), are certain to violate linear correlations as the filter only affects the species that
is about to become negative and not the other species. Note that “clipping” may occur in
the physical parameterization package. A posteriori filters (e.g., optimization-based shape-
preserving filters) may or may not be semi-linear and the details of the implementation can25

effect the semi-linearity (e.g., iteration thresholds, logic in the code).
We note that instead of advecting each species separately by solving the advection equa-

tions in (11) or (13) with φ= X,X2, one may also choose to advect the sum XT and one of
the species, e.g. X, and then diagnose the remaining species, X2, from (8). If the transport
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operator conserves a constant, which many transport operators do, then the constant sum
XT is trivially conserved if chosen as a prognostic variable. This approach is commonly
used in chemistry transport models for some families of species. E.g., Douglass et al. (e.g.,
2004) advected the sum of total inorganic chlorine and bromine to avoid spurious max-
ima and minima in their distributions in the stratosphere. Idealized tests to evaluate how5

well families of species that add up to a constant are preserved see, e.g., Lauritzen and
Thuburn (2012).

4 Discrete terminator test

Coupling the chemistry parameterization with advection can be done in multiple ways.
A common approach in weather/climate modeling is to update the species evolution in10

time incrementally by first updating the mixing ratios with respect to sub-grid-scale forcings
(chemistry) and then apply the transport operator based on the chemistry-updated state
(or in reverse order). Since the computation of the sub-grid-scale tendencies in full models
is computationally costly, the dynamical core (in this case the transport scheme) is usually
subcycled with respect to chemistry. For fast chemistry this may be reversed.15

A model will operate with a chemistry (physics) time-step ∆tchem, a tracer time-step
∆ttracer and a chemistry-transport (physics-dynamics) coupling time-step ∆tcpl. For ex-
ample, in the default CAM-SE setup ∆ttracer = 300s, ∆tchem = 1800s and ∆tcpl = 600s.
Hence the chemistry tendencies, FX and FX2 , are computed every 30 minutes, and the
species are updated every 600s with the chemistry tendencies. A detailed description of the20

CAM-SE implementation of physics-dynamics coupling in terms of its namelist variables is
given in Appendix E.

It is, of course, up to the model developer to choose which coupling method and time-step
to use. To facilitate comparison the model developer is encouraged to use the analytically
computed forcing terms FX and FX2 given in Appendix F, and to use a chemistry (physics)25

time-step of ∆tchem = 1800s. The initial conditions are given by the steady state asymptotic
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solutions Eqs. (B14) and (B15) with a mixing ratio of XT = 4× 10−6 (Fortran code for the
initial conditions is given in Appendix G and in the Supplement).

For simplicity the velocity field for the transport operator T is prescribed. We use the
deformational flow of Nair and Lauritzen (Case-2; 2010) that was also used in the standard
test case suite of Lauritzen et al. (2012, 2014). For completeness the components of the5

non-divergent velocity vector V (λ,θ, t) and the stream function are repeated in Appendix
A. The test is run for 12 days (or 5 non-dimensional time-units) exactly as prescribed in Nair
and Lauritzen (2010). Note that the test case methodology can be applied in any velocity
field including a full 3-D dynamical core.

5 Results10

It is the purpose of this section to show exploratory terminator test results. An in-depth
analysis of why the limiters do not preserve linear relations (and the derivation of possible
remedies) is up to the scheme developers.

5.1 Model setup

Terminator test results are shown for two dynamical cores (transport schemes) available15

in the CAM: CAM-FV (Lin, 2004) and CAM-SE (Dennis et al., 2012) that are documented
within the framework of CAM in Neale et al. (2010). The transport scheme in CAM-FV is
the widely used finite-volume scheme of Lin and Rood (1996). CAM-SE performs tracer
transport using the spectral element method based on degree three polynomials. Further
details on CAM-SE are given in Appendix H.20

As discussed in detail in Nair and Lauritzen (2010) and briefly in Sect. 3, care must
be taken in the handling of tracer mixing ratio and tracer mass coupling for schemes that
prognose tracer mass. In general the transport scheme will not preserve a constant tracer
density field (ρφ= constant) since the discrete divergence operator is non-zero despite
the analytical wind field being non-divergent (zero divergence). However, the scheme will25

11
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preserve a constant mixing ratio if q is recovered from ρφ by dividing the tracer density with
the prognosed air density ρ. If one does not prognose ρ and simply specifies the analytic
solution (ρ= constant), a constant mixing ratio will not be preserved.

For all simulations the chemistry (physics) time-step is ∆tchem = 1800s. The horizontal
resolution is approximately 1◦: For CAM-FV that is the 0.9×1.25 configuration (192 latitudes5

and 288 longitudes) and for CAM-SE it is the NE30NP4 configuration in which there are
30× 30 elements on each cubed-sphere panel and 4× 4 Gauss–Lobatto–Legendre (GLL)
quadrature points in each element. The tracer time step ∆ttracer is 900 s for CAM-FV and
300 s for CAM-SE. During the tracer transport scheme time-step the analytic winds of Nair
and Lauritzen (2010) are held constant following the CAM-Chem setup (Lamarque et al.,10

2012). Unless explicitly stated otherwise, the coupling time-step for CAM-SE is ∆tcpl =
600 and ∆tcpl = 1800 for CAM-FV. For details on CAM chemistry-transport coupling see
Appendix E.

The sample results shown next are divided into four sections. First of all, baseline re-
sults for CAM-FV and CAM-SE using their default configurations. Next, results from experi-15

ments varying the limiter in CAM-SE are presented. Then the consequences of using differ-
ent chemistry-transport (physics-dynamics) coupling methods (in CAM-SE) are discussed.
Lastly, the results are quantified.

5.2 Default CAM-FV and default CAM-SE results

Figure 3 shows the distributions XT after 1 and 6 simulated days for CAM-FV and CAM-20

SE. Ideally XT should be conserved. Both CAM-FV and CAM-SE show deviations from
constancy in XT (note that the color-scale on the Figures is not linear). The errors in XT

are produced at the terminator when the limiter is most challenged. After the errors are
introduced they propagate away from the terminator following Lagrangian trajectories of the
prescribed flow. This is most visible for CAM-SE at day 6 (see Fig. 3 and/or animations in25

Supplement).
CAM-FV transport is based on the dimensionally split Lin and Rood (1996) scheme. The

scheme produces errors in XT since the limiter used in CAM-FV (described in Appendix B of

12
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Lin, 2004) does not strictly conserve linear relations. The errors appear to be largest when
the flow is aligned with the terminator at a 45◦ angle (see animation in Supplement). In that
situation the dimensionally split approach is most challenged; the shape-preserving limiter
is not strictly shape-preserving in the cross direction since the one-dimensional limiters are
only applied in the coordinate directions (Lauritzen, 2007).5

CAM-SE does not preserve linear relations either and the errors in XT are about an order
of magnitude larger than CAM-FV. The CAM-SE limiter is optimization-based (using Least-
squares) and guarantees no under- or over-shoots at the element level while maintaining
mass-conservation at the element level (Guba et al., 2014). While the optimization-based
limiter preserves linear relations with exact arithmetic, its present implementation in CAM-10

SE does not lead to such preservation (most likely due to iteration thresholds, if-statements,
etc. that can be non-linear).

To further understand this behavior we have performed some tests (not shown) turning
the chemistry off and advecting linearly correlated Cosine hills and linearly correlated step-
functions. The Cosine hills are C0 continuous (the function is continuous but its derivatives15

are not) and the limiter exactly preserves the linear relationship. For the step-functions,
which are discontinuous distributions, the correlation preservation is only maintained up to
O(10−8) due to anO(10−8) overshoot in one of the tracers. So the advection operator intro-
duces an O(10−8) error. The terminator chemistry constantly enforces a discontinuity in the
distributions and in combination with the CAM-SE limiter, strong error growth is produced.20

It is beyond the scope of this paper to trace down exactly where in the implementation this
error is introduced and to find a remedy. The terminator test is designed to enable scheme
developers to test their scheme in setups that are directly relevant to some of the issues
seen in chemistry application. In this particular case, the terminator test clearly exacerbates
small errors in correlation preservation that may be easily overlooked in inert transport test-25

ing (such as the tests in Lauritzen et al., 2012).

13
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5.3 CAM-SE: limiter experiments

In addition to the quasi-monotone mass-conservative limiter used by default in CAM-SE,
the model has options for performing tracer advection without any limiter and with a positive
definite limiter. Results for terminator test runs using those configurations are shown on
Fig. 4. As expected the unlimited version of the CAM-SE transport exactly preserves linear5

relations i.e. XT is conserved to machine precision. By looking at cross sections of the
individual distributions of X and X2 on Fig. 5, it is immediately apparent (and expected)
that Gibbs phenomena manifests itself near the terminator when no limiter is used. The
stability analysis discussed in Appendix D and illustrated in Figs. B1 and B2 indicates that
the terminator chemistry will drive a negative mixing ratio even more negative. From the10

experiments, however, the amplitude of the spurious oscillations near the terminator remain
nearly constant in time. In other words, the instability associated with negative mixing ratios
in the terminator chemistry is weak in our present setup.

When using a positive definite limiter, Gibbs phenomena is eliminated near the base
of the terminator but not near the maximum. This obviously violates linear relations and15

produces large errors in XT. Similar results are expected from mass-filling algorithms in
which negative values are simply set to zero. This emphasizes the importance of using
carefully designed limiters in transport schemes for applications in which preservation of
linear pre-existing relations is important, e.g., chemistry applications (for a fuller discussion
see, e.g., Lauritzen and Thuburn, 2012).20

5.4 CAM-SE: Chemistry-tracer (physics-dynamics) coupling experiments

As explained in Sect. 4 the tracer transport (dynamics) and chemistry (physics) can be
coupled in various ways. Here we discuss results based on different coupling time-steps,
∆tcpl, in CAM-SE.

14
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On Fig. 6 XT is shown using ∆tcpl = 1800s, ∆tcpl = 600s, and ∆tcpl = 300s, respec-
tively1. In all experiments the tracer time-step nd chemistry time-step are held fixed:
∆ttracer = 300s and ∆tchem = 1800s, respectively. The experiments evaluate the sensi-
tivity to coupling time-step size, in other words, how often the species are adjusted with
chemistry tendencies.5

Near the western edge of the terminator (located at approximately 130◦W on Fig. 5)
where the gradients are steepest, the errors in XT are largest for ∆tcpl = 1800s. The chem-
istry adjustments that steepen the gradients are largest at the western edge and conse-
quently produces states that challenges the limiters more. When the chemistry tendency
is added gradually throughout the tracer transport the errors are reduced as ∆tcpl is de-10

creased.
At the eastern edge of the terminator (located at approximately 30◦ E on Fig. 5) the gradi-

ents are less steep compared to the western edge. In fact, the location of the gradient near
the eastern edge propagates (see animation in Supplement) whereas the gradients at the
western edge of the terminator are static in space. The chemistry tendencies in this area15

are not stationary in space and are weaker so the transport signal is larger. This means
that for any given point in the eastern area, the state used for computing the chemistry
tendencies changes during the tracer subcycling. As a result the gradients will have prop-
agated during the transport step but the chemistry tendencies will steepen gradients in the
“old” location. This “inconsistency” is present with ∆tcpl 6= ∆tchem. For ∆tcpl = 1800s the20

chemistry update is based on the “correct” in time state. The temporal inconsistency in the
state used for computing chemistry tendencies for ∆tcpl = 600s and ∆tcpl = 300s produce
an increase in errors near the eastern edge of the terminator compared to ∆tcpl = 1800s.

Physical parameterization packages may contain code that sets negative mixing ratios to
zero. Or similarly there may be code that prevent tendencies to be added to the state if it is25

zero or negative. The terminator test may be a useful tool to diagnose such alternations in
large complicated codes.

1in terms of CAM-SE namelist these configurations correspond to (a) ftype=1, nsplit=1, rsplit=6,
(b) ftype=0, nsplit=2, rsplit=3, and (c) ftype=0, nsplit=6, rsplit=1
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5.5 Quantification of XT errors

To quantify the errors introduced in the terminator test, we suggest to compute standard
error norms for XT. The global normalized error norms used are `2(t) and `∞(t) (e.g.,
Williamson et al., 1992):

`2(t) =

√
I[(XT(t)−XT(0))2]

I[(XT(0))2]
, (16)5

`∞ =
max∀λ,θ |XT(t)−XT(0)|

max∀λ,θ |XT(0)| , (17)

where XT(0) = 4× 10−6 is the globally-uniform initial condition and the global integral I is
defined as follows,

I(φ) =
1

4π

2π∫

0

π/2∫

−π/2

φ(λ,θ, t) cosθdλdθ. (18)10

As a reference we show the time-evolution of `2(t) and `∞(t) for CAM-FV and CAM-SE on
Fig. 7.

6 Conclusions

A simple idealized “toy” chemistry test case is defined. It consists of advecting two reactive15

species (X and X2) in the Nair and Lauritzen (2010) flow field. The simplified non-linear
chemistry creates strong gradients in the species similar to what is observed for photolysis-
driven species in the stratosphere. The forcing terms for the continuity equations for X
and X2 are computed analytically over one time-step (assuming no advection) and Fortran
codes for computing the forcing terms are provided as Supplement. Hence, model devel-20

opers who have already setup the standard test case suite of Lauritzen et al. (2012) can,
16
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with modest effort, setup the terminator test by adding the forcing terms to their codes. As
in the test case of Nair and Lauritzen (2010) this forced advection problem has an analytic
solution.

The “toy” chemistry, by design, does not disrupt pre-existing linear relations between the
species. So the only source of error is from the transport scheme and/or the chemistry-5

transport (physics-dynamics) coupling. The terminator test is setup so that XT is a con-
stant so any deviation from constancy is an error in the preservation of linear correlations.
Many transport schemes preserve linear relations when no shape-preserving limiter/filter
is applied and are therefore not challenged with respect to conserving XT. However, many
shape-preserving limiters/filters render the transport scheme non-conserving with respect10

to XT. While preservation of linear correlations can indeed be verified in inert advection
setup, the terminator chemistry exacerbates the non-conservation problem through the
constant forcing that creates very steep gradients. It is demonstrated in this paper that
the terminator test is useful for challenging the limiters with strong grid-scale forcing. In par-
ticular, it is shown that positive definite limiters severely disrupt linear correlations near the15

terminator.
In addition, the terminator test assesses the accuracy of chemistry-tracer (physics-

dynamics) coupling methods in an idealized setup. Different coupling methods (such as
those available in CAM-SE) lead to different distributions of XT. Also, chemistry-transport
(physics-dynamics) coupling layer or the physical parameterization package may contain20

code that sets negative mixing ratios to zero and/or contain if-statements that prevent ten-
dencies to be added to the state if it is zero or negative. The terminator test may be a useful
tool to diagnose such alternations in large complicated codes.

The terminator test is easily accessible to advection scheme developers from an imple-
mentation perspective since the software engineering associated with extensive parame-25

terization packages is avoided. The test forces the model developer to consider how their
scheme is coupled to sub-grid scale parameterizations and, if solving the continuity equa-
tion in flux-form, forces the developer to consider tracer-air mass coupling. Also, the ide-
alized forcing proposed here has an analytic formulation and the continuous set of forced

17
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transport equations have, contrary to the Brusselator forcing, an analytic solution for the
weighted sum of the correlated species irrespective of the flow field.

We encourage dynamical core developers to implement the toy chemistry in their test
suite as it has the potential to identify tracer transport issues that standard tests (with unre-
active/inert tracers) would not generate.5

Appendix A: Idealized flow field

In the terminator test we use the deformational flow of Nair and Lauritzen (Case-2; 2010).
The components of the non-divergent velocity vector V(λ,θ, t) and the stream function

u=−∂ψ
∂θ
, (A1)

v =
1

cosθ

∂ψ

∂λ
, (A2)10

are given by

u(λ,θ, t) =
10R

T
sin2(λ′)sin(2θ) cos

(
πt

T

)

+
2πR

T
cos(θ) (A3)

v(λ,θ, t) =
10R

T
sin(2λ′)cos(θ) cos

(
πt

T

)
, (A4)15

ψ(λ,θ, t) =
10R

T
sin2(λ′)cos2(θ)cos

(
πt

T

)

− 2πR

T
sin(θ), (A5)

respectively, where λ is longitude, θ is latitude, t is time and the underlying solid-body rota-
tion is added through the translation λ′ = λ− 2πt/T . The period of the flow is T = 12 days20
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and R = 6.3172× 106 m (in non-dimensional units T = 5 and R = 1). Schemes based on
characteristics, e.g. Lagrangian and semi-Lagrangian schemes, may use the semi-analytic
trajectory formulas given in (Nair and Lauritzen, 2010). Note that it is not necessary to use
an analytic flow field for this test case setup. In fact, one may use winds from a weather or
climate model simulation.5

Appendix B: Analytic solution for no flow

To gain more insight into the toy chemistry (and to formulate “spun-up” initial conditions), it
is useful to consider the special case of no flow. For v = 0 the prognostic equations for X
and X2 (Eqs. 4 and 5, respectively) can be solved analytically. Assume the reaction rates
are positive (and non-zero for k2),10

k1 ≥ 0, (B1)

k2 > 0 (B2)

and the mixing ratios are non-negative,

X(0)≥ 0, (B3)15

X2(0)≥ 0. (B4)

From the kinetic Eqs. (4) and (5) above, as well as the conservation Eq. (3) we can write

dX

dt
= k1(XT−X)− 2k2XX (B5)

20

For (algebraic) convenience, define the quantities,

r =
k1

4k2
, (B6)

D =
√
r2 + 2rXT, (B7)

E(t) = e−4k2Dt. (B8)
25
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Completing the square on the right-hand side leads to the expression

dX

dt
=−2k2[(X + r)2−D2]. (B9)

The right-hand side can be factored, and the following partial fraction expansion can be
constructed:5

dX

(X + r)−D −
dX

(X + r) +D
=−4Dk2dt (B10)

Integration of each of these terms from time t= 0 to t, yields the expression

ln

(
(X(t) + r−D)(X(0) + r+D)

(X(t) + r+D)(X(0) + r−D)

)
=−4Dk2t, (B11)

10

leading to the solutions Eq. (B12). The analytic solution for X(t) is

X(t) =




D
(

(X(0)+r)(1+E(t))+D(1−E(t))
(X(0)+r)(1−E(t))+D(1+E(t))

)
− r if r > 0,

X(0)
1+2k2tX(0) if r = 0.

(B12)

X2(t) =
1

2
(XT−X(t)) (B13)

For long times, X(t) and X2(t) converge to the steady state solutions,15

lim
t→∞

X(t) =D− r, (B14)

lim
t→∞

X2(t) =
1

2
(XT−D+ r) , (B15)

and are shown on Fig. 2. The steady state solutions are specified as initial conditions for the
terminator test case. For a stability analysis of the terminator “toy” chemistry see Appendix20

D.
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Appendix C: Local Linear Convergence

If the flow is slow compared the the rate at which the chemistry returns to equilibrium, then
the concentrations will stay near the steady-state solution derived in Appendix B. Under
these conditions, the rate of convergence to the steady-state solution can be computed. For
convenience, define Xs as the right-hand side of Eq (B14). From Eq. (B5), a perturbation5

from steady state, ε(t) = X(t)−Xs, can be seen to solve the equation,

dε(t)

dt
=−k1ε(t)− 4k2Xsε(t)− 2k2ε

2(t) (C1)

which implies a locally-linearized convergence rate for ε(t) of

− k1− 4k2Xs (C2)10

Since the maximum of X is 4x10−6 and k2 = 1, this convergence rate is dominated by
k1 ∈ [0,1]. It is clear that the reaction convergence is very rapid in regions of sunlight and
much slower in dark regions. Peak rates in this computation are 1/second.

Appendix D: Stability of chemical kinetics15

Relation Eq. (B9) is plotted in Figs. B1 and B2. As can be seen in Fig. B1, for k1 > 0, X con-
verges to D− r. For k1 = 0 Fig. B2 shows that X converges to zero for values greater than
zero, but diverges for X< 0. While X should never be negative, numerical errors can lead
to negative values. This divergence is slow, in the sense that the divergence is algebraic as
can be seen in Eq. (B12). The divergence is also slow in the sense that the time required20

to double a negative X concentration is

t2 =− 1

4k2X
. (D1)

Thus, for very small (negative) X, the time will have to be particularly large. However, for
time of 2 · t2, the solution is singular, reaching a value of −∞.25
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Appendix E: CAM-SE chemistry-tracer (physics-dynamics) coupling

Algorithm 1 Pseudo-code explaining the different levels of subcycling and chemistry-
transport (physics-dynamics) coupling used in CAM-SE.

Outer loop advances solution ∆tchem in time:
for t= 1,2, . . . do

Compute chemistry tendencies Fi, i= X,X2

for ns= 1,2, . . . ,nsplit do
Update state with chemistry/physics tendencies:
Ci = Ci + ∆tchem

nsplit Fi, i= X,X2

for rs= 1,2, . . . , rsplit do
subcycling of tracer advection:
Ci = Ci + ∆tchem

nsplit×rsplit T (Ci), i= X,X2

end for
end for

end for

The different levels of subcycling used in CAM-SE are explained via pseudo-code in algo-
rithm 1 using CAM-SE namelist conventions: nsplit and rsplit. The outer time-stepping loop
starts with a call to chemistry that computes the chemistry tendencies over the entire chem-
istry time-step ∆tchem. The full chemistry tendencies are divided into nsplit adjustments of5

equal size and in each iteration of the nsplit loop the adjustments are added to the state.
The tracer transport scheme may not be stable on the chemistry time-step (∆tchem) or the
coupling/adjustment time-step (∆tcpl = ∆tchem/nsplit) so it must be subcycled with respect
to the chemistry adjustments. The number of iterations of the tracer transport subcycling
loop is rsplit. Note that since the nsplit and rsplit loops are nested the tracer time-step is10

∆ttracer = ∆tchem/(nsplit× rsplit).
We distinguish between the nsplit = 1 and nsplit> 1 configurations and refer to them

as ftype = 1 and ftype = 0, respectively, based on CAM-SE namelist terminology (ftype
22
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refers to forcing type)2. In the CAM code, if ftype = 1 the state is updated with chemistry
(physics) tendencies in the physics code whereas for ftype = 0 the adjustments take place in
the dynamical core. CAM-FV uses a ftype = 1 configuration (with the caveat the chemistry
tendencies are added after the transport is complete) and CAM-SE supports both ftype = 0
and ftype = 1. The current default CAM-SE uses ftype = 0 where the tendencies are split5

into nsplit equal-sized adjustments.
In full model runs, if the physics time-step is large the ftype = 1 coupling method may

produce large physics tendencies that drive the state much out of balance. When the dy-
namical core is given the physics updated state that is strongly (and locally) out of balance,
the dynamical core may produce excessive gravity waves. To alleviate this one may chose10

to update the state with respect to physics tendencies throughout the tracer subcycling.
This approach of adding the physics tendencies as several equal-sized adjustments is the
ftype = 0 configuration that was explained above.

For the 1◦ setup (NE30NP4) we use the standard/recommended configuration with
rsplit = 3 and nsplit = 2 (see pseudo-code in algorithm 1) so that for every third tracer time-15

step half of the chemistry tendencies are added to the state. In terms of tracer, chemistry
and coupling time-steps this configuration corresponds to ∆ttracer = 300s, ∆tchem = 1800s
and ∆tcpl = 600s. CAM-FV uses ftype = 1 configuration where the chemistry tendencies
are added once3. For CAM-FV ∆ttracer = 900s, ∆tchem = 1800s and ∆tcpl = 1800s.

2when running the 3-D CAM-SE dynamical core nsplit defines the vertical remapping time-step;
if ftype = 0 then nsplit also defines the adjustment time-step whereas if ftype = 1 then nsplit only
defines the remapping time-step as the full adjustments are added at the beginning of dynamics
only.

3Note, however, that in CAM-FV the tendencies are added after tracer transport and not before
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Appendix F: Analytic chemical forcing term

The analytic solution of the equations leads to an explicit solution for the change in concen-
trations during a time step with no flow.

FnX =−L∆tchem

(Xn−D+ r)(Xn +D+ r)

1 +E(∆tchem) + ∆tchemL∆tchem(Xn + r)
. (F1)

5

where Xn is the value of X at the beginning of the n’th time step,

L∆tchem =





1−e−4k2D∆tchem

D∆tchem
if D > 0

4k2 if D = 0.
(F2)

and by conservation,

FnX2
=−1

2
FnX . (F3)10

In implementation, L∆tchem needs some care. As 4k2D∆t approaches machine precision,
it is useful to simply use the formula for D = 0 rather than the expression for D > 0.

Appendix G: Fortran code

In terms of Fortran code the analytical forcing is given by:15

! dt is size of chemistry/physics time step
XT = X + 2.0*X2

r = k1/(4.0*k2)
d = sqrt(r*r + 2.0*r*XT)20

e = exp(-4.0*k2*d*dt)

24



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

if(abs(d*k2*dt).gt. 1e-16)
el = (1.0-e)/(d*dt)

else
el = 4.0*k25

endif

f_X = -el * (X-d+r) * (X+d+r)/(1.0 + e + dt*el*(X+r))
f_X2 = -f_X/2.0

The reaction rates are defined by10

! k1 and k2 are reaction rates
k1_lat_center = 20.0 ! degrees
k1_lon_center = 300.0 ! degrees
k1 = max(0.d0,

sin(lat)*sin(k1_lat_center)15

+ cos(lat)*cos(k1_lat_center)

*cos(lon-k1_lon_center))
k2 = 1.0

The initial condition is defined by

XT = 4.0e-620

r = k1/(4.0*k2)
d = sqrt(r*r + 2.0*XT*r)

X = d-r25

X2 = XT/2.0 - (d-r)/2.0

These specifications are implemented in Fortran code in the Supplement.
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Appendix H: CAM-SE time-stepping

The tracer algorithm and dynamical core use the same time step which is controlled by
the maximum anticipated wind speed, but the dynamics uses more stages of a second-
order accurate N-stage Runge–Kutta (RK) method in order to maintain stability. CAM-SE’s
tracer advection algorithm is based on a 3-stage RK strong-stability-preserving (SSP) time-5

stepping method (Spiteri and Ruuth, 2002). The SSP method ensures that the time step
will preserve any monotonicity properties preserved by the underlying spatial discretiza-
tion. CAM-SE uses monotone limiter in its advection scheme coupled with a monotone
hyper-viscosity operator (Guba et al., 2014). This option renders the advection scheme
second-order. The time-stepping scheme in the dynamical core uses a third-order accurate10

5-stage RK method (modified version of Kinnmark and Gray, 1984a, b; P. A. Ullrich, per-
sonal communication, 2013) The extra stages are chosen to maximize the stable time step
size. We also note that the hyper-diffusion in the dynamical core requires three subcycled
iterations for each dynamics time step (in the NE30NP4 configuration).

The Supplement related to this article is available online at15

doi:10.5194/gmdd-0-1-2015-supplement.
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Lauritzen et al.: Terminator test 3

Figure 1. Contour plot of the terminator-‘like’ reaction coefficient
k1(λ,θ) where λ and θ are longitude and latitude, respectively.

and the mixing ratios are non-negative,

Cl(0)≥ 0, (13)165

Cl2(0)≥ 0. (14)

From the kinetic equations (4) and (5) above, as well as the
conservation equation (3) we can write

dCl

dt
= k1(Cly −Cl)− 2k2ClCl. (15)170

Completing the square on the right-hand side leads to the
expression

dCl

dt
=−2k2

[
(Cl + r)2−D2

]
, (16)

The right-hand side can be factored, and the following partial
fraction expansion can be constructed:175

dCl

(Cl + r)−D −
dCl

(Cl + r) +D
=−4Dk2dt (17)

Integration of each of these terms from time t= 0 to t, yields
the expression

ln

(
(Cl(t) + r−D)(Cl(0) + r+D)

(Cl(t) + r+D)(Cl(0) + r−D)

)
=−4Dk2t, (18)

leading to the solutions (19). The analytic solution for Cl(t)180

is

Cl(t) =
{
D
(

(Cl(0)+r)(1+E(t))+D(1−E(t))
(Cl(0)+r)(1−E(t))+D(1+E(t))

)
− r if r > 0,

Cl(0)
1+2k2tCl(0) if r = 0.

(19)

185

Cl2(t) =
1

2
(Cly −Cl(t)) , (20)

where

r =
k1

4k2
, (21)

D =
√
r2 + 2rCly, (22)

E(t) = e−4k2Dt. (23)190

For long times, Cl(t) and Cl2(t) converge to the steady state
solutions,

lim
t→∞

Cl(t) =D− r, (24)

lim
t→∞

Cl2(t) =
1

2
(Cly −D+ r) , (25)195

and are shown on Figure 2. The steady state solutions are
specified as initial conditions for the terminator test case. For
a stability analysis of the terminator ‘toy’ chemistry see Ap-
pendix B.200

3 Transport operator and correlations

Let T be the discrete transport operator that advances, in
time, the numerical solution to the passive and inert conti-
nuity equation for species Cl and Cl2

Dφ

Dt
= 0, φ= Cl,Cl2, (26)205

at grid point or grid cell k:

φn+1
k = φnk + ∆ttracer T (φnj ), j ∈H, φ= Cl,Cl2 (27)

where n is the time-level index, ∆ttracer time-step for the
transport operator, and H is the set of indices defining the
stencil required by T to update φnk . Note that the trans-210

port operator may not solve the prognostic equation for φ
in advective form as used in (4) and (5). For example, it is
common practice for finite-volume schemes to base the dis-
cretization on a flux-form formulation of the continuity equa-
tion (here written without forcing terms)215

∂(ρφ)

∂t
=−∇ · (vρφ) , (28)

Figure 1. Contour plot of the terminator-“like” reaction coefficient k1(λ,θ) where λ and θ are longi-
tude and latitude, respectively.
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Figure 2. Contour plots of the steady-state solutions, assuming no flow, for X (left) and X2 (right),
respectively, computed from initial conditions X = 4.0× 10−6 and X2 = 0.
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Figure 3. Contour plots of XT for (left column) CAM-FV and for (right column) CAM-SE in ftype = 0
configuration at day 1 (upper row) and day 6 (lower row), respectively. Solid black line is the location
of the terminator line. Note that the contour levels are not linear.
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Lauritzen et al.: Terminator test 7

Figure 3. Contour plots of Cly for (left column) CAM-FV and for (right column) CAM-SE in ftype= 0 configuration at day 1 (upper row)
and day 6 (lower row), respectively. Solid black line is the location of the terminator line. Note that the contour levels are not linear.

Figure 4. Contour plot of Cly at day 1 using CAM-SE in ftype= 1
configuration where (upper) no limiter, (middle) positive definite
limiter, and the default CAM-SE limiter is applied, respectively. The
solid black line depicts the location of the terminator line. Note that
the contour levels are not linear.

5.4 CAM-SE: Physics-dynamics coupling experiments

As explained in section 4 the dynamics (tracer transport)470

and physical parameterizations (terminator chemistry) can be
coupled in various ways. Here we discuss results based on
two coupling methods available in CAM-SE referred to as
ftype= 1 and ftype= 0. In ftype= 1 the tendencies from
physics are added to the atmospheric state at the beginning of475

dynamics. For ftype= 0 the tendencies are split into nsplit
equal-sized adjustments. On Figure 6 the total Chlorine Cly
is shown using the ftype= 1 configuration, ftype= 0 using
nsplit= 2 and nsplit= 6, respectively. In all experiments
the tracer time-step is held fixed so in the latter two configu-480

rations rsplit= 3 and rsplit= 1, respectively.
Near the western edge of the terminator (located at approx-

imately 130◦W on Figure 5) where the gradients are steep-
est, the errors in Cly are largest for ftype= 1 . The physics
adjustments that steepen the gradients are largest at the west-485

ern edge and consequently produces states that challenges
the limiters more. When the physics tendency is added grad-
ually throughout the tracer transport the errors are reduced as
nsplit is increased.

At the eastern edge of the terminator (located at approxi-490

mately 30◦E on Figure 5) the gradients are less steep com-
pared to the western edge. In fact, the location of the gradient
near the eastern edge propagates (see animation in supple-
mental material) whereas the gradients at the western edge
of the terminator are static in space. The physics tendencies495

in this area are not stationary in space and are weaker so the
transport signal is larger. This means that for any given point
in the eastern area, the state used for computing the physics
tendencies changes during the tracer subcycling. As a result
the gradients will have propagated during the transport step500

but the physics tendencies will steepen gradients in the ‘old’
location. This ‘inconsistency’ is present with ftype= 0. For
ftype= 1 the physics update is based on the ‘correct’ in
time state. The temporal inconsistency in the state used for
computing physics tendencies for ftype= 0 produces an in-505

crease in errors near the eastern edge of the terminator com-
pared to ftype= 1.

Physical parameterization packages may contain code that
sets negative mixing ratios to zero. Or similarly there may be
code that prevent tendencies to be added to the state if it is510

zero or negative. The terminator test may be a useful tool to
diagnose such alternations in large complicated codes.

Figure 4. Contour plot of XT at day 1 using CAM-SE in ftype = 1 configuration where (upper) no
limiter, (middle) positive definite limiter, and the default CAM-SE limiter is applied, respectively. The
solid black line depicts the location of the terminator line. Note that the contour levels are not linear.
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Figure 5. Cross sections of day 1 (left column) X, (middle column) 2×X2, and (right column) XT at
45◦ S based on CAM-SE with (top row) no limiter, (middle row) positive definite limiter, (lower row)
and default limiter, respectively. Results are normalized by 4× 10−6 (the initial value of XT).
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Figure 6. Contour plots of XT at day 1 using CAM-SE based on (upper) ∆tcpl = 1800s, (middle)
∆tcpl = 900s, and (lower) ∆tcpl = 300s, respectively. In all simulations the tracer and chemistry
time-step is constant ∆ttracer = 300s and ∆tchem = 1800s, respectively.
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Figure 7. Time-evolution of standard error norms `2 and `∞ for XT using CAM-FV and CAM-SE
dynamical cores. Note that the y axis is logarithmic.
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Figure B1. When k1 > 0, or equivilently r > 0, there is a single stable limit point. X will converge to
D− r as long as X>−D− r.
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Figure B2. When k1 = 0, or equivilently r = 0, X converges to zero, but if, for some numerical rea-
son, X is driven negative, the kinetic equations will drive the concentrations even more negative.
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