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Abstract

In this study, we examined the structure of an ensemble-based coupled atmosphere–
chemistry forecast error covariance. The Weather Research and Forecasting (WRF)
model coupled with Chemistry (WRF-Chem), a coupled atmosphere–chemistry model,
was used to create an ensemble error covariance. The control variable includes both5

the dynamical and chemistry model variables. A synthetic single observation experi-
ment was designed in order to evaluate the cross-variable components of a coupled
error covariance. The results indicate that the coupled error covariance has important
cross-variable components that allow a physically meaningful adjustment of all con-
trol variables. The additional benefit of the coupled error covariance is that a cross-10

component impact is allowed, e.g., atmospheric observations can exert impact on
chemistry analysis, and vice versa. Given the realistic structure of ensemble forecast
error covariance produced by the WRF-Chem, we anticipate the ensemble-based cou-
pled atmosphere–chemistry data assimilation will respond similarly to assimilation of
real observations.15

1 Introduction

The regional air quality is affected by synoptic weather situations or air masses with
special chemical properties (Grell et al., 2000). In prediction of air quality, the cou-
pled physical and chemical processes are essential, which include transport, deposi-
tion, emission, chemical transformation, aerosol interactions, photolysis, and radiation20

(Grell et al., 2005). Optimized initial conditions for a numerical model, including such
coupled processes, can be obtained by data assimilation (DA; e.g., Houtekamer and
Mitchell, 1998; Eibern and Schmidt, 1999; Wang et al., 2001; Evensen, 2003; Park
and Zupanski, 2003; Navon, 2009; Zupanski, 2009). Therefore, DA for an air quality
prediction system could be approached as a coupled atmosphere–chemistry DA, with25

interaction between atmospheric and chemistry components. In typical data assimila-
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tion methodologies, such as variational and ensemble, the interaction between different
variables is achieved by forecast error covariance, in particular its cross-variable com-
ponents. Therefore, it is of fundamental interest for the development of atmosphere–
chemistry DA to investigate the coupled forecast error covariance. Here, we investigate
the structure of the atmosphere–chemistry forecast error covariance using ensemble5

forecasting, which corresponds to the prediction step of an ensemble data assimilation
algorithm (e.g., Zupanski, 2005, 2009).

2 Methodology and synoptic case

In this research, we use the Weather Research and Forecasting (WRF) model coupled
with Chemistry (WRF-Chem) as a prediction model (Grell et al., 2005). It simulates the10

emission, transport, mixing and chemical transformation of trace gases and aerosols
simultaneously with meteorology and investigates the regional scale air quality using
the Carbon Bond Mechanism version Z (CBMZ) chemistry option.

We chose a synoptic case on 3 September 2005 related to Typhoon Nabi (2005),
characterized by an increased impact on the Korean Peninsula. The experiment begins15

at 00:00 UTC and ends at 06:00 UTC on 3 September 2005. The WRF-Chem is set up
with a horizontal resolution of 30 km and 28 vertical levels. Model domain is centered
over the Korean Peninsula, covering an area of approximately 3900km×4400km with
132×147 horizontal grid points.

The ensemble forecast includes 32 ensemble members with a 6 h assimilation win-20

dow. The lateral boundary conditions are provided by the National Center for Envi-
ronmental Prediction (NCEP) Global Forecasting System (GFS). The control variables
defined in DA (i.e., variables adjusted during DA) are the WRF-Chem prognostic vari-
ables that include dynamical variables such as winds, perturbation potential tempera-
ture, perturbation geopotential, water vapor mixing ratio and perturbation dry air mass25

in column, and the chemical variables such as ozone (O3), nitrates (NO, NO2, NO3)
and sulfur dioxide (SO2) as well.
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3 Experimental design

A common approach to investigating forecast error covariance in data assimilation is to
conduct a single observation experiment (Thepaut et al., 1996; Whitaker et al., 2009;
Buehner et al., 2010), in which only one observation is assimilated using the full DA
system. The analysis increments (i.e., analysis minus guess) from such an experiment5

show how the observation information is distributed spatially and among different anal-
ysis variables (e.g., Buehner, 2005). However, in order to investigate the structure of
a coupled forecast error covariance before real observations are available and even
before the full DA algorithm is developed, one can consider the assimilation of a single
synthetic observation located at a chosen model grid point. In particular, we define the10

synthetic observation as

ysynth = xf +σo (1)

where x
f is the forecast and σo is the observation error standard deviation (SD). Fol-

lowing Thepaut et al. (1996, Eq. 3), with some modifications and using Eq. (1), the
analysis increment in a single synthetic observation experiment is15

xa −xf = Pf

(
σo

σ2
f +σ

2
o

)
i jk

(2)

where x
a is the analysis, σf is the forecast error SD, and the subscript i jk defines

the grid location of the pseudo-observation point. Equation (2) indicates that analysis
increment represents the ijkth column of the forecast error covariance scaled by SDs of
observation error and forecast error. In our experiments the forecast error covariance20

is ensemble-based, as defined in Zupanski (2005) as:

Pf = P1/2
f

(
P1/2

f

)T
, P1/2

f =
(
pf

1 · · · pf
N

)
, pf

n =m
(
xn0
)
−m(x0) (3)
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where the superscript T denotes the transpose, the index n refers to ensemble member,
N is the total number of ensemble forecasts, m represents the nonlinear WRF-Chem
model, and the subscript 0 denotes the initial time of the forecast with corresponding
initial conditions x0 and ensemble initial conditions x

n
0. In this experiment, the control

initial conditions are obtained by interpolation from the NCEP GFS model, while the5

initial ensemble perturbations are created using the lagged forecast outputs.
Since we are interested in the coupled atmosphere–chemistry forecast error covari-

ance, we design two experiments with: (i) synthetic temperature observation at 250 hPa
located at a grid point near (132◦ E, 23◦ N), on the northwest side of the typhoon, and
(ii) synthetic ozone observation at 250 hPa located at a grid point near the eye of the10

typhoon (134◦ E, 21◦ N).

4 Results

We show the impact of single synthetic temperature (T ) and ozone (O3) observations in
terms of the analysis increments x

a −x
f impacting all control variables. As mentioned

earlier, our main interest is to examine the cross-variable covariance structure between15

atmospheric and chemistry variables, since the cross-variable analysis impact is pos-
sible only because of the multivariate structure of the coupled ensemble forecast error
covariance.

In Fig. 1 we show the impact of synthetic T observation at 250 hPa on the analysis
increments of T , O3, nitrogen-dioxide (NO2), and sulfur dioxide (SO2). The analysis20

increment of T at 250 hPa (e.g., at the same level of synthetic T observation) shows
a typical response with nearly circular isolines with the maximum of 0.4 K at the ob-
servation location (Fig. 1a). The analysis increments of O3, NO2, and SO2 are also
shown in vertical cross-sections. One can see that O3 (Fig. 1b) and NO2 (Fig. 1c)
analyses have the largest change at the level of single T observation, while the SO225

analysis (Fig. 1d) is mostly impacted near 700 hPa (approximately σ-level 13). This is
likely a consequence of the vertical structure of O3 and NO2 with the largest values in
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the upper troposphere and the stratosphere, while SO2 has typically the largest values
in the lower troposphere (e.g., Meena et al., 2006). The strongest impact of T observa-
tion is on O3, with the magnitude up to 0.001 ppmv, while the magnitude is somewhat
smaller for NO2 and SO2. One can also infer that an increase of T will imply a decrease
of O3, NO2, and SO2. Probably the most important implication of these results is that5

observations of an atmospheric variable (e.g., temperature) can change the analysis
of chemical variables in a physically meaningful way. This means that even with no
chemistry observations in the local area, the analysis of chemical variables can still be
adjusted in agreement with standard dynamical variables of the model. On the other
hand, if there are chemistry observations in the area, the chemistry analysis change10

introduced by atmospheric observations will act as an additional dynamical constraint
to the final analysis.

In Fig. 2 the impact of O3 single observation at 250 hPa on itself and the other
variables is shown. As before, we focus on the vertical cross-section of the analysis
response. The impact of O3 observation on its own analysis shows the anticipated re-15

sponse with the largest magnitude at observation location, approximately 0.02 ppmv
(Fig. 2a). Although smaller in magnitude, the analysis increments of NO2 (Fig. 2b) and
SO2 (Fig. 2c) show the vertical structure with maxima in the upper and lower tropo-
sphere, respectively. It is also notable that an increase of O3 brings about an increase
of NO2 and SO2, confirming the direct relationship between these variables as noticed20

in Fig. 1. The T analysis increment indicates that there is a cooling at the level of O3
observation, while there is a warming above and below (Fig. 2d).

The results shown in Fig. 2 indirectly confirm that the improved stratospheric ozone
distribution by DA can make a better representation of stratospheric, temperature and
other constituents (e.g., Lahoz et al., 2007).25

8762

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/8757/2014/gmdd-7-8757-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/8757/2014/gmdd-7-8757-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 8757–8767, 2014

Forecast error
covariance in

coupled atmosphere–
chemistry data

assimilation

S. K. Park et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

5 Conclusions

The structure of an ensemble-based coupled atmosphere–chemistry forecast error co-
variance was examined in the context of the WRF-Chem model. A synthetic single
observation experiment was designed in order to evaluate the cross-variable com-
ponents of the coupled error covariance. Our results indicate that the coupled error5

covariance has important cross-variable components that allow a physically meaning-
ful adjustment of all control variables, and a much wider impact of observations (e.g.,
atmospheric observation on chemistry analysis, and vice versa). The analysis incre-
ments created in response to synthetic temperature and ozone observations illustrate
the complexity of atmosphere–chemistry cross-correlations and the forecast error co-10

variance structure. Given the realistic structure of ensemble forecast error covariance
produced by the WRF-Chem, we anticipate the ensemble-based coupled atmosphere–
chemistry data assimilation will respond similarly to assimilation of real observations.
Therefore, our next step is to apply the WRF-Chem with an ensemble-based data as-
similation algorithm (e.g., the maximum likelihood ensemble filter (MLEF); Zupanski,15

2005) to assimilation of real chemical and atmospheric observations.
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Figure 1. The analysis increments (xa−xf ) in response to a single T observation at 250 hPa (near σ-level 24):

(a) horizontal response of T at 250 hPa, and vertical responses of (b) O3, (c) NO2 and (d) SO2. In (b)-(d), the

vertical axis represents the vertical σ-levels. Units are ppmv for chemical variables and K for temperature.

7

Figure 1. The analysis increments (xa −x
f) in response to a single T observation at 250 hPa

(near σ-level 24): (a) horizontal response of T at 250 hPa, and vertical responses of (b) O3, (c)
NO2 and (d) SO2. In (b–d), the vertical axis represents the vertical σ-levels. Units are ppmv for
chemical variables and K for temperature.
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Figure 2. Same as in Fig. 1 but for vertical cross-section of the analysis increments (xa −x
f) in

response to a single O3 observation at 250 hPa for (a) O3, (b) NO2, (c) SO2 and (d) T .
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