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Supplementary material

Notes

e Numbering of equations: the three ’key’ equations (and variations as a result
of substitution) are labelled a), b) and c) on the left hand side throughout the
document. The assumptions are labelled in Roman numerals on the left hand
side. All equations are numbered conventionally on the right hand side for ease of
reference.

e Potential enthalpy: the present ORCHIDEE uses the term 'surface static energy’
as the potential for calculating sensible heat flux. This is defined in the model (for
the surface layer) as:

PSsurf = @p,aTsurf

where pseury s the surface static energy, ©p o is the mass specific heat capacity of air and
Toury the surface temperature.

Now the enthalpy of a system (H) is defined H = U + pV, but over the height of
a surface model (< 30m approx), change in p and V is negliable, so:

SH = 6U+psV +Vép
= (6Q+ W + dW') 4+ pdV + Viép

now 0W = —pdV, so we can say:

6H = 6Q+ W' +Vép
g
= Q+W’+/ Vip~Q
Po
Op.oT

Q

So here we can also assume a proportional relationship between enthalpy and
temperature over the vertical range of the model.

e Sign convention: For latent and sensible heat fluxes, an upward flux is positive
(so a positive flux from the ground is cooling the ground)



S1 Parameters

S1.1 Derivation of the leaf layer resistances (R; and R))

The variables R; and R; represent the leaf layer resistance to the sensible and latent heat
flux, respectively. R; is calculated based upon the leaf boundary layer resistance, and is
described at present according to the following expression from Baldocchi (1988):

l

’o(2) = e Dash

(S1.1)

where Ry, denotes the boundary layer resistance (=R;), l is the characteristic length of leaves, Dy
is the molecular diffusivity of the entity in question and Sh is the Sherwood number.

R} is the stomatal resistance of the leaf that may be calculated using the model of (Ball
et al., 1987) as in ORCHIDEE at present, or potentially the refinement of Medlyn et al.
(2011).

S1.2 Derivation of the eddy-diffusivity coefficient (k;)

The transport term k; is calculated using the 1D second-order closure model of Massman
& Weil (1999) which makes use of the LAI profile of the stand.

ZE;; _(1-53) (S1.2)

’LL/;L;/(Z) _ e—2n(1—§((f3) (51.3)

‘G=, [ Po(?) ]d .
h

" 2UZC(U()h)2 (S1.5)

uwzh) — o — epetsth) (S1.6)

from Massman (1997), where u(z) is the horizontal wind speed, ww'(z) is the turbulent shear
stress, ((z) is the cumulative leaf drag area per unit ’planform’ (projected) area, z is the height
above the soil surface, h is the canopy height, u, is the friction velocity above the canopy (as-
suming a constant sheer layer above the canopy i.e. u? = - w'w’, Cy is the drag coefficient of the

foliage elements, a(z) is the foliage area density as a function of height and P,, is the momentum
shelter factor.



The constants ¢1=0.320, c5=0.246 and c3=15.1 are model constants that are related to
the bulk surface drag coefficient:

Csurf = u(h)2 (817)

¢(h) is a generalisation of the more commonly used CyLAI, where LAI is the one-sided
leaf area index:

h
C(h)—/o a(2")d? (S1.8)

Thus the canopy structure is accounted for by:

Cy(z)a(z)
() (S51.9)

and the foliage area density is described by:

C(h) or C4(LAI)

w2, w2, and w2 are each assumed proportional to w?, and following Mellor (1973) and

Wilson & Shaw (1977), the constants p; are chosen consistent with constant stress layer
and a logarithmic wind profile above the stress layer.

This gives the following relations for v,:

vi=(F+%+73) " (S1.10)

vs= (7} +5 +13)7? (S1.11)
DR (S1.12)
2 6 2V1 '

from general comparisons with ensembles of data: v = 2.40, 72 = 1.90 and 3 = 1.25
(Raupach et al., 1991)



solved analytically:

. . : 1/3
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U

where:

e (i) (S1.14)
2a11 (% — 3(2;;%)

solving for w; in terms of w, yields:

wiz) _,we?) (S1.15)

Ux Ux

S1.3 Relationship between LAI and 6; at each level

The heat capacity of each vegetation layer (6;) is assumed equal to that of water. The
vegetation density is sourced from the Leaf Mass Area (LMA) (g/m?) in the TRY
database and the leaf area density profile.



S2 The numerical solution

S2.1 Introduction

The structure of the derivation here outlined is based on that of the LMDz transport
scheme (Dufresne & Ghattas, 2009), but extended to include interactions with the veg-
etation layer at each level.

S2.2 Leaf vapour pressure assumption

The air within leaf level cavities is assumed completely saturated. This means that the
vapour pressure of the leaf can be calculated as the saturated vapour pressure at that leaf
temperature. Therefore the change in pressure within the leaf is assumed proportional to
the difference in temperature between the present timestep and next timestep, multiplied
by the rate of change in saturated pressure against temperature.

t+1 Tf,i 0Gsat aan 991
0=4r; = Ysat T 5T |T£’i( ri — T (52.1)
5q t i+l dGsat
= — |T ( Lt )+ Gsar’ = TLi—com |Tt (52.2)
6T
= Oész;l + B (S2.3)
where o; and B; are regarded as constants for each particular level and timestep so a;; = qs‘” |T
7L 84sa
and f§; = (ant T}:z th|TLi>
. . . T} i 0gsa
But to find a solution we still need to find an expression for the terms g ;" and %8t |T£ .

in «; and (; above.

Using the empirical approximation of Tetens (e.g. as in Monteith & Unsworth (2.1),
2008) and the specific humidity vapour pressure relationship we can describe the satu-
ration vapour pressure to within 1 Pa up to a temperature of about 35°C.

esat(T) = esat(T")eap[A(T — T*) /(T — T")] (S2.4)

where A = 17.27, T* = 273K, e;u(T*) = 0.611 kPa, T' = 36K

Now, specific humidity is related to vapour pressure by the relationship: (e.g. Monteith
& Unsworth (2.1), 2008):



(52) e

(p—e)—l—(%—‘j\’)e

q= (S2.5)

where q¢ = specific humidity (kg/kg), e = vapour pressure (kPa), (Mw /Ma) = (ratio of molecular
weight of water to air) = 0.622, and p = atmospheric pressure (kPa)

T,
So, to find q,", we substitute esq¢(77) derived from (52.4) for e in (S2.5):

(5 ) esan(T2)

(b~ eoar(T1)) + (552 ) esar(T2)

TL _
qsat -

(52.6)

To calculate %%‘”\Ti , we use the expression for the saturated humidity curve against
temperature (as derived using the method of Monteith & Unsworth, 2008):

Tii _  _AMw/RT §2.7
sqt = 4d0€ ( . )

The derivative of this expression is:

0qsat _ AMyy Gsat (T)

— W HsarAT / 2.
oT " = T R(,) (528

So 5%“\7% ~can be determined by substitution of the expression for gsq:(77) from (S2.6)

’

into (S2.8), as below:

Mw esat(TL)
0Gsat _ AMwy (MA> (52.9)

— Tt
0T L R(Ti,z’)Q (p — esat(TL)) + (%) ¢sat(TL)

S2.3 Physical and biophysical parameters:

We here concentrate on the formulation of an implicit solution that assumes a parameter-
isation for R; (the resistance to sensible heat flux at each level), R} (resistance to latent
heat flux at each level) and k; (transport coefficients at each level). The derivation
of these coefficients, based on literature study, will be described in a seperate docu-
ment.



S2.4 The leaf energy balance equation for each layer

Now at the leaf level, we assume the energy balance for each layer. It is assumed that
(for a leaf layer of volume AVj, area AA; and thickness Ah;):

0T,
ot

AVi0;py = (H; + LE; + Rsw; + Rrw,i) AA; (52.10)

Dividing (S2.10) by AV;:

0T, ;
ot

0; Pv E

= (H;+ LE; + Rsw,; + RLW,i) ( 1 > (S2.11)
The source sensible heat flux from the leaf at level 's’ is the difference between the leaf
temperature and that above it, divided by R; which is the leaf resistance to sensible heat
flux (a combination of stomatal and boundary layer resistance)). Similarly, the source
latent heat flux from the leaf at level i’ is the difference between the leaf temperature
and that above it, divided by R} which is the leaf resistance to sensible heat flux. So the
terms of (S2.11) are defined (in units W/m?):

(T — Tay)

H; = Gp,apa R,
i

(S2.12)

(9L, — 4a,i)
LE; = )\pa% (52.13)
(2
- Rrw(tor),; 1s the sum total of long wave radiation - that is: downwelling LW
radiation from above the canopy, the LW radiation emitted from vegetation layer s’ and
the LW radiation reflected from the vegetation layers i + 1’ and i — 1'.

- Rgw is the downwelling short radiation. So we express the sensible and latent
heat fluxs between the leaf and the atmosphere respectively as:

0T Tri—Ta
a) | Oipv—57" :<@p’“p . R; : R

()

4L, — Ya,i 1
+ Apa( L ) + Rsw,i + RLW(tot),i> <Ah>

(S2.14)



S2.5 Vertical transport within a column

The transport equation may be stated as:

d(px)

50 + div(pxu) = div(Tgrad(x)) + Sy (S2.15)

div is the operator that calculates the divergence of the wvector field, x is the property under
question, p is the fluid density, u is the horizontal wind speed vector (assumed negligable here),
Sy s the concentration for the property in question and I' is a parameter that will in this case
be the diffusion coefficient k(z) henceforth.

To derive from this the conservation of scalars equation as might be applied to vertical
air columns, we proceed according to the Finite Volume Method as outlined in e.g. Vieno
(2006). Integrate over dV (a unit volume):

/\/5(& )dV—i—/V(pxu)dV:/V(Fgmd(x)dV)—i-/ SydV (52.16)

\%4

Using Gauss’ theorem, integrating over a time At and re-writing in one-dimension we
ultimately obtain the expression below:

time dependent term (PART A)  horizontal advection term (assume zero for now)
/ / xdV / dt + / / (xu)dAdt =
At Ot At at Jareav
gradient te'rm (PART B) source term (PART )

/ / n - (kgrady)dAdt + / /S avdt  (S2.17)
At AreaV At

Now, the diffusion is considered only along the z-axis, and only the top and bottom of
the boxes of volume AV have non-zero flux (n.b. for our set-up, concentration is uniform
within each layer), so we can say:

t+At 5 5 t+At
(X 3 xR AV = / ((ktop X“’”AA) (kbotmm’m”m)) dt+ / S AVt
t t

1) 0z
(S2.18)

where AA is the area of the box in question In the non-differenced form, this equation
becomes:



PART A PART B
—— e e PART C
ox d?>x —T

where F is the vertical flux density, U the mean windspeed, z represents coordinates in the ver-
tical and x coordinates in the streamuwise direction. x may represent the concentration of any
constituent that may include water vapour or heat, but also gas or aerosol phase concentration
of particular species. S represents the source density of that constituent.
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Figure 1: Schematic of the finite volume method for differencing the column, as in (S2.18)

This eddy diffusivity parameter k(z) is used in the formulae outlined above, and through-
out this document. Raupach (1989) develops a model that is a more realistic Lagrangian
description of canopy transport, an approach which is impractical to apply directly to a
linear, non-iterative model such as ORCHIDEE. However, it is hoped to develop a form
of the eddy diffusivity coefficient k(z) that accommodates the counter-gradient fluxes
also observed in canopies (as in the method of Makar et al, 1999).



S2.6 Sensible heat transport between each atmospheric layer

We re-write the scalar conservation equation, as applied to canopies (equation (S2.19))
in terms of the sensible heat flux, temperature and source sensible heat from the vege-
tation at each layer. (so, comparing with (S2.19), x =7, F = H and S = (the source
sensible heat flux at each vegetation layer)).

The sensible heat flux profile is not constant over the height of the canopy. The rate
of change of T, ; (the temperature of the atmosphere surrounding the leaf at level i)
is proportional to the rate of change of sensible heat flux with height and the source
sensible heat flux from the leaf at that level as in (S2.12) above (n.b. overbraces refer
to (S2.19)):

PART A PART B PART C
015 0H, Tr; — Tuy ) aPa
b)  Opapa—tAV; = ——AA; : ’ b AV; S2.20
T 5 +< Ri ><Ahi> (52.20)
now H,; = —(pa(%p’a)ki% (if the flux-gradient relation is assumed) so we can say:
5Ta i 52Ta % TL i Ta % 1
b =AV; = k; =~ AA; : : AV S2.21
) 52 it < Ri > (Ahi) (52.21)

S2.7 Latent heat transport between each atmospheric layer

We re-write the simplified scalar conservation equation, as applied to canopies (equation
(52.19)) in terms of the sensible heat flux, temperature and source sensible heat from
the vegetation at each layer. (so, comparing with (S2.19), x = ¢, F' = E and S = (the
source latent heat flux at each vegetation layer)).

The latent heat flux profile is also not constant over the height of the canopy. The rate
of change of ¢, (the specific humidity of the atmosphere surrounding the leaf at level
i) is proportional to the rate of change of latent heat flux with height and the source
latent heat flux from the leaf as in (S2.13) (n.b. overbraces refer to (5S2.19)):

10



PART A PART B PART C

——N
o apllainy, = OBy (GLi = dei) (A0 £y (S2.22)
ot 0z R! Ah;
 U(LE)e (@Tr;+ Bi) = qai\ { APa
= —TAAZ + ( I N AVS2.23)
now (LE)q; = —(Apa)ki 6%‘;” (again assuming the flux-gradient relation) so...
6Qa,i o 62(](1,1' (QTLJ + Bz) —Ya,i 1
c) 5t AV, = k; 5.2 AA; + ( I AhiAVl (S52.24)

S2.8 The ’zero-leaf’ scenario

Canopy layers that do not contain foliage may be accounted for at a level by assuming
that R; = R = oo for that level (i.e. an open circuit), and that the various coefficients
that relate to the leaf interactions at that level (Rsw, Rrw, Cr,i, Cr,it1, Cqi, Cqit1,
Di; Ei; Fi7 Di+17 Ei+1, Fi+1) are zero.

S2.9 Write equations in implicit format
To maintain the implicit coupling between the atmospheric model (i.e. LMDZ) and the
land surface model (i.e. ORCHIDEE) we need to express the relationships that are out-

lined above in terms of a linear relationship between the 'present’ timestep 't’ and the
‘next’ timestep t+1’.

We therefore re-cast equations a), b) and c¢) in implicit form (i.e. in terms of the 'next’
timestep, which is 't+1’, as below.

S2.9.1 Radiation scheme

The radiation approach is the application of the Longwave Radiation Transfer Matrix
(LRTM) (Gu, 1988; Gu et al. 1999), as applied in Ogée et al. (2003). This approach

11



seperates the calculation of the radiation distribution completely from the implicit ex-
pression. Instead a single source term for the long wave radiation is added at each level.
This means that the distribution of radiation is now completely explicit (i.e. makes use
of information only from the ’present’ and not the 'next’ time step. However, an advan-
tage of the approach is that it accounts for a higher order of reflections from adjacent
levels that the single order that is assumed in the process above.

The components for longwave radiation are abbreviated as:

Rrw, = mREY" + T +n3 (S2.25)

The shortwave radiation component is abbreviated as:

Rsw.i = naR&n (S2.26)

where 11, 12, 73 and 14 are components of the radiation scheme. 7 is the component of
the LW downwelling radiation, 7y the components relating to emission and absorption
of LW radiation from the vegetation at level i, n3 the radiation components relating to
radiation emitted from vegetation at all other levels incident on the vegetation at level
i.

N4 is the component of the SW radiation scheme, where a version of the Beer-Lambert
law is used to calculate the incident radiation at each vegetation level (modified to allow
for the radiation reflected):

= (exp(—Ksw > PAD;)((1 = patbedo)) (52.27)

r=1

S2.9.2 Implicit form of the energy balance equation

We substitute the expressions (52.25) and (52.26) to the energy balance equation (S2.11),
which we rewrite in implicit form:

)

(T T ) ( 1 ><@ , (Tﬁl_T‘fIl)Jr (TP + B —
b,a a .

a)  Bipy A7 =\ an R, Pa B

+mREGE" + e TEE +n3 + ng%m) (52.28)

Rearranging to isolate the state variables terms (temperature and specific humidity) at
the 'next’ timestep:

12



ApaALB; naREYMAL  m RIGUM AL nsAt
(PvAh)R0; — (ppAhi)0; — (puAhi)bi — (puAhi)b;

At Aty YA
thl @ P — )\ u 7
oL ( pap (puAh;) R;0; AP (puAh;)RO; — (pulAhy)b;

At At
_pttlg o (2t ) iy, (2 ) g2.99
ai OPaPe\ B (peihy) )~ Tai 2P\ (o, AR RI; ( :

t+1 t
a) TL,z’ —Tr; =

S2.9.3 Implicit form of the sensible heat flux transport equation

We difference (S2.21) according to the finite volume method (S2.18), and divide by
AV;:

Toi — T (Toits — Tai") (Toi' —Taity)
b) T:ki — A | R

Az; Ah; Az;_1Ah;
1\ (I8 - T
+ <Ahi> R (S2.30)

S2.9.4 Implicit form of the latent heat flux transport equation

We difference (S2.24) according to the finite volume method (S2.18), and divide by
AV;:

t+1 t+1 t+1 t+1 t+1
o) Qai — qztz,i — ks <(qa,i+1 “ly; )> iy <(qa,i - qa,i—1)>

At AZZAhl Azi_lAhi
1 Ty + B — ¢bft
+ (0T + 51~ o) (S2.31)
Ah; R;

S2.10 Solving the leaf energy balance equation by induction
We determine to solve these equations by assuming a solution of a particular form and

finding the coefficients that are introduced in terms of the coefficients of the layer above.
This is 'proof by induction’. Now, for (S2.29) we want to express Téjl in terms of values
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further down the column, to allow the equation to solved by 'moving up’ the column, as
in Richtmyer & Morton (1967) and Dufresne & Gattas (2009)

We assume that:

i) (Tt = Ari Tt + Bra+ Cr 15 + Dradl it (S2.32)
i) ngl = Aq,iqf:;lfl + By + Cq,iTiJ,gl + DQJTé,—"iEl (52.33)

These two expressions are the equivalent of (??) (from Richtmyer, 1967) for
the present system.

We also re-write these expressions in terms of the values of the next level:

i) Té;—‘,l-l = AT,i+1T£I1 + Br,i+1+ CT,1'+1TE§}H + DT,i+1QZ§1 (52.34)
i) gty = Aginidli + Bei1 + Coant TLE L + Dgani Tot! (52.35)

where A7, Bri, C1, D14, Agis Byi, Cqi and Dy ; are constants for that particular level
and timestep but are (as yet) unknown. We thus substitute (52.32) and (S2.33) into
(52.29) to eliminate 77"

AtB; n3At
(vahz)RZQZ (vahi)Qi
MBI AL m RGN AL
(pvAR:)O;  (pvAhi)b;
Tffil <)\pQAtOzi Op.apaAt N ngAt>

a) Tiﬁl - Ti,i = Apa

! (PoAhi) Ri0; 0; R; 0;
O, upa At
- ( W ) (Ari Tyt + Bri+ CrTL + Driggiy)

Apa At
(o ) a4 B+ CoTh) + DT
($2.36)

or, to rearrange again in terms of the unknown state variables (left hand side) and the
know variables (right hand side):
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o 1 (14 AtO,, C ApaiAt At
Ly (pUAhl)RZQZ (pUAhz)Riez (pUAhi)ei
 Opapalt AoaAt )
(poAR)OR;  (puAh) R *) —
Tt 4 t+‘1 . )‘paAtAq,i @p,apaAtDT,i
Lt Rai=1\ " (pyAR))RiO;  (puAhi)Rib;
—|—Tt+.1 _@p@pQAtAT’i _ ApaAth,i 7’]3At
ai=1 (vahl)Rlé?z (vahz)Rzez (PUAhi)Qi
mRIwnAr  mREPIAL 0, ,p.At Apa At - Apa At 5
(vahi)Gi (pUAhz)Qi (vahz)ngz (pUAhz)R;QZ @ (,OvAhl)R;Qz '
(52.37)

So, to abbreviate (where E;, F; and G; are known assumed constants for the level and
timestep in question, (S2.37) can be written as:

i)

(1
(.

(1-

/(1

T = Bt + FT + G (S2.38)
so we define the coeflicients as:
B — (_ A7514q,i)‘pa o AtDT7i@p,apa>/
Atadp, AtOy, 4pa Mo At AtAp, AtOy, 4pa
vahl)Rgé?z B (vahl)Hle B (vahi)Hi (pyAhZ)Riel e (vahi)eiRiCT’Z)
(52.39)
AtAT,;0p apa B AtDg i \pa >/
(poAhi)Ri0;  (poAhi)Ri0;
Atadp, AtOy, pa no At AtAp, AtOy, 4pa
(peDAh) RO (puAh)O:iR;  (pulhi)0;  (puAh) R " (puAhi)0iR; T')
(S2.40)
G, — <T£ L mA mRIGTAL  mRIETAL | Apa At
T (peAhi)0;  (puAhy)b; (poAh;)0;  (puAhi)Ri0;
AtOy, 4pa AtApg
T (peAh)RG; T (polhi) R q’i>
Atadpa  AtOpapa 1AL AtAp, ' AtO, 44 o )
vahl)Régz (vahZ)Gsz (vahl)Gz (vahZ)RQGZ @ (pUAh,)HZRZ T
(52.41)
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S2.11 Solving latent and sensible heat flux equations between layers
by induction
To prove by induction, we must express T;ng and q(t;gl in terms that are

identical to (S2.32) and (S2.33) We first seek to eliminate Téj}rl from b) and ¢) We
first substitute the assumed expressions for temperature and humidity in the layer above
or, that is to say, (equations (S2.34) and (S2.35) here) We substitute for Téjgil in b), to
eliminate that term:

t+1 t+1 t+1 t+1
T, —Tp; L AT, + Briv1 + Crin T + Dritaq,);

p) et
) At ! Az;Ah;
kT kTt kaTitt, Tt Tt

- - — o ($2.42
AZZ‘Ahi Azi_lAhi + Azi_lAhi + AhiRi AhiRi ( )

k; k; ki1 1 BriiikiAt
by THL(1—At(|Ar; — - — — 7t 4 2t
) T T UAZ AR, AzAh; Az Ah; AR, ait Az; Ah;

ki kiDp; A kiCr
TH-_l i—1 At t+1 1T i+1 At Tt+.1 T'Hfl 1T i+1
+ a,i—1 <A2‘11Ahz +qa,z AZZAhZ + Lyi Athl + L+l AZZAhZ
(S2.43)

t+1

wit1 in ), in order to eliminate that term:

Similarly, we substitute for ¢

1t TS| , it ot
Qe ~ Yai i (Agi+14,; + Bgit1+ Coin1 Ty q + Dai1 Ty, ;)

2 At AzAh;
kiqt-ifl ks lqt+'1 k- 1qt-ifl ) OZ‘T£+'1 + ﬁ o qt+.1
. a,t _ 1—1Ha t—14q4— ? J ? a,t 2 44
AZiAhZ' Azi_lAhi Azi_lAhi Ath; (S )

k; k; ki 1
HU(1 = A [ Agit s — ok e =
¢} da < t( SHUAL AR Andh; Az Ah; AR,

BisikiAt  BAG i
¢y (Bairiki e (ki
Tai + ( Andh AhiRg> o (Azi_lAhi At)

kiDgiv1 k; a;
Tt (Azith) At + (T7HL) <AziAhi> Coin1At +T7H! <AhiR'-> At
(52.45)

Now, we substitute expression iii) for the leaf temperature in the layer above (S52.38).

This step is in order to eliminate the term Tﬂlﬂ from both expressions:
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k; k; ki1 1
by THL(1—At(|Ar; U —— : — -
) . < ( T —HAZZ‘Ahi Az; Ah; Az _1AR; Athz)>

Br i1k At ki1 kiDr i1 At
Th 4+ =2 T () At+gi ! (== ) AT
a’z_l_ Az;Ah; + a,i—1 Az;_1Ah; +qa7z Az;Ah; + Lyi Ah;R;

kiCr
T T gy (RO
+ (El-i-l‘Ia,z + FH'lTa,z + Giy1) (AZlAhl > At (52.46)

ki k; ki 1
t—‘r'l 1— A A ) 1 o 1 N i—1 B _
) o < t( SN AR AzAh; Az Ah; AR,

ByisikiAt  BAG i
¢y (Bairiki o1 (ki
Tai F ( Andh; AhiRg> o (Azi_lAhi At)

i+l o
L (AhiRg

kiDgy i k.
Té;l < 7 q7l+1> At + (Ei—i-lq(tl—g‘l +Fi+1Tat:;‘_l +Gi+1) ( 7 >Cq7i+1At
)At (S2.47)

We now abbreviate equation a) as:

b)  Tit'Xy =Xy + XsTott) + Xuglh + XsT7H (S2.48)

3=

and abbreviate equation b) as:

0)  4FYi =Yy + Vst VAT + YT (S2.49)
where:

k; k; ki1 1 kiCr i1
Xi=1-At| Ar; — — - —F; —— | At

' < BUUAZAR T Azdh AziiAh AhiRi> i (AziAhi
(52.50)

Briy1kiAt kiCr i1
Xo =Tt 4 Tt i A 2.51
2 a,l + AZlAhz + G +1 AZZAhz t (S 5 )
ki1
Xs=| o —a7 ) O $2.52
3 <Azz_1Ahl> ( )
([ kiDri1 kiCriv1

A= < Az A, > At By <AziAhi At (52.53)
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X5:< At ) (S2.54)

Ah;R;
ki k; ki1 1 k;
=1- i - - - —F; T i1
=1l (Aq’ i Az;Ah; Az Ah; Az Ahy; Ahﬂ%) +1 <AziAhi> Coit1At
(S2.55)
Bgiv1ki At BiAt k;
_ q,i+1%i [ . v AL 2
Yo=1¢q,;+ < Av AR + Ahﬂ%;) + Gyt (AziAhl) Coit1 (52.56)
ki—1
s=| A A S2.57
3 <Azi_1Ahi t) ( )
! (AziAh)AtJrFH (AziAhiCq’ “) (52.58)
Y= (o | A (S2.59)
°~ \ AR .

t—ifl

" from c) to b), to eliminate that term:

We then cross-substitute for ¢

Y, Y- Y, Y:
b Toi'Xi=Xo+ XsTythy + Xa (3 o+ poanil + 3 Tolt + T8
. . R Y, @ v, b

+ X5T1E (S2.60)

Y, Y5
b Tai <X1 - X4ij> =T Xy + <X2 +X4Yj>

a,i—1

Y Y:
+ Ty <X4Y5 + X5> +qbth <X4Y3> (S2.61)
1 1

similarly, we cross-substitute for T;ng from b) to a), to eliminate that term:

X X X X
O = v (T el L)

+ YT (S2.62)

X X
o) ¢t <Y1 — Y4X‘1*> =gt s+ <y2 + Y4Xj>

X X
+ 15! <Y4X? + Y5> + T <Y4Xi’> (S2.63)
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So this demonstrates the expressions b) and c) can be described in terms
of the respective original substitutions (52.32) and (S2.33).  The respective
coefficients from (52.32) and (S2.33) may be described as:

X
Ar; o Xz (L‘i ) (S2.64)
Xo+ X4 (%)
Br; = X (%‘) (S2.65)
gy = L)+ 5200
SR
a0
Dr; = o 1(Y;‘> (S2.67)
and:
Y.
Agi = Y1—Y43(X‘1‘> (52.68)
B A_Y2+Y4<%> (52.69)
in(y |
oo (v (%) +%) (52.70)
N n ()
Dy i (%) (S2.71)
Ty

Now, all of the coefficients X1, Xo, X3, X4, X5, Y1, Y5, Y3, Yy and Y5 and, in turn, the
coefficients Ar;, Br;, Cri, D14, Aqis Bgi, Cqi and Dg; can be described in terms of
the coefficients from the level above and the potentials (i.e. T and q) at the previous
timestep.

So we have a set of coefficients that may be determined for each time-step, and we have
the means to determine Tg (and ¢g via the saturation assumption). We thus have a
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process to calculate the temperature and humidity profiles for each timestep by system-
atically calculating each of the coefficients from the top of the column (the ’downwards
sweep’) then calculating the ’initial value’ (the surface temperature and humidity) and
finally calculating each T,, g, and Ty, by working up the column (the 'upwards sweep’).

The term TE;}H can also be described in terms of the variables at the level below by
using equation iii) and its terms F;, F; and G;. We can therefore describe the changes
in the canopy between the present timestep 't’ and the next timestep 't+1’ by *working
down’ the column from the interaction with the LMDZ atmospheric model to determine
the coefficients Ap, Bp, Cr etc. and then ’working up’ the column to determine the
potentials T and q.
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Table 1: Input coefficients at the top layer of the model, where A7, Br ... etc are the respective
coefficients at the top of the surface model and At atmos, BT,atmos are the coefficients at the lowest
level of the atmospheric model.

stand-alone model | coupled model
A1y =0 AT n = AT atmos
Bt 5 = Brinput Bt = BT ,atmos
Crn=0 Crn =0

Dr, =0 D7, =0

Agn =0 Agn = Agatmos
Bgn = Bg,input Bgn = Bg,atmos
Cyn =0 Cyn =0
Dyn=0 Dyn=0

S3 The boundary conditions

S3.1 The upper boundary conditions

In stand-alone simulations, the top level variables Ar,,, Cty, Dt and Ay p, Cypny Dgn,
are set to zero and Br, and B, , set to the input temperature and specific humidity
respectively for the relevant time step (as in Best et al., 2004) In coupled simulations,
A7y, Bry and By, Cy, are taken from the respective values at lowest level of the
atmospheric model. Table 1 summarises the boundary conditions for both the coupled
and un-coupled simulations.
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S3.2 The lower boundary condition

We need to solve the lowest level transport equations seperately:

T+l _ Tt _ ot 1 1 Tl _ ot
b) a1 al /ﬁ( a2 a1 )_ OH n (T7h ol ) ($3.1)
At AzlAhl paepﬂ Ahl Ahl Rl
) Gon' —don _, (o —dd) (1N dp_ (1 (aﬂiil+61—Q3f)(832
AtV AzZ AR par) Ahy '\ Ahy R ‘
We substitute to the above to eliminate T;:gl from b) and qfljgl from c):
T4 = Apaén + Bra + CraTrh' + Dradre (S3.3)
and:
QZEI = A 106 + Bg1 + Cqﬂfﬁl + Dg10u (S3.4)

Now for the leaf at level 1, just above the ground level:

a) TH_T: = ApaAt Sy nREWMAL o RIGUM At N3 At
b T (peAR) R (peAh)0r  (puAhi)b  (peAha)0:

At At
T aPa
1y (@py P (poAh1)R} 01 " (PvAh1)91>

At + A
(poAh1)R161 pa

At At
_Tt-i-l aPa o t—f—l)\ . .
o1 Opar <Rlel<vah1>> G M\ G xmre ) S0

and substitute for Tﬂl and q(';‘*'llz

a) i+l _ Ti = Apa AtS; eta4R§‘{}V""At andL‘ﬁ”At n3At
L1 " (puAhy) R0, (poAh1)6; (puAh1) (puAh1)6;

At Ata ne At
+T5 (@ aPa + Apa - >
A PV ) R PR N A A PN

Op.apa At

. —eeremn A B TtJrl D
ngl(vahl)( T’ld)H + 71 + CT71 L1 + T,1¢LE)

B Apa At
Ry01(pyAhy)

(Ag1¢rE + Boi + ConTi' + Dyadu)  (S3.6)
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In a similar approach to the previous section, this should be reduced to the form:

TiH = Evdrp + Fion + Ga (S3.7)

and the expression re-arranged to isolate the factors E7, F; and Gi:

CL) T+l (1 . < ep,apaAt )‘paAta 772At > CT,l(ap,apaAt
L1 (vahl)Rlel (vahl)Rllel (vahl)Gl R191(vah1)
CyiApa At > . < OpapaAt Apa At >
+q,_ =Tt 4 ___ —“palFa—~ . rha="
(poAh1) R} 6, L1+ oLe R161(poAhy) 1 T (puAR)RG, P!
Op apa At Arhog At
___ “pala=" __~"emt D
on ( Ri01(poAhn) " (puAhy) Ry 05 q’1>

N ( AoaAtB; | mREEAL o RigYm At
(ppAh) Ry 01— (puAh1)01  (puAhy)bs
nsAt BTyl@p’apaAt qul)\paAt
(poAh1)01  Ri01(psAh1)  (peAh1)R}60,
1
(S3.8)

Now, substituting for T;ng in expression b):

i —Th
) At -
(ATQT;jl + Bra + CT,2(E2qZJ7r11 + FQT;:‘EI +Ga) + DTQQZJﬁl + T;jl)
Az1Ahq
_ ( 1 ) o1 +T£J,r11_Ti+11
PaOp.a/) Al Ri1ARq

1

(93.9)

a,l

At AuAh Andh | AnAh T AR

Ty, i1 [ k1Cr2bs + k1 Dr 2
+q,4 +
At ’ Az1Ahq

1 k1Brs | kiCr2G2 1 1
t+1 > > — R
TL’l (Ah1R1> + <A21Ah1 + AzlAhl > <pa@p,a) ¢H (Ah1>

(S3.10)

b) T < 1 kiAro  k1CraoFs k1 1 > _

and for q(tl‘gl in expression c):
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¢) qf:rll - qé,l —ky (Aq,2q2,+11 + By + Cq,Z(TEg) + Dq,ﬂfgl - QZT) _
At AzlAhl
1\ ¢rE 1 aTz—ﬁl + 81— Qerll 311
- <pa)\> Al T A R (83.11)
) Gl —Gar _ (Ao2dd + By + Coa(Bady + POTLT +Go) 4 DyoTo = i)
At AzlAhl
L\ oo, 1 TN +h—ah) o
a (pa)\> Ahy " Al R, (83.12)

At Az Ahy Az Ah; | Az Al
t
a1 t+1 Cq,ZF2 Dq,Q t+1 «
T T
N <A21Ah1+AzlAh1 T\ AR,

k1Bg2 Cy2G2 B1 1
+ <A2’1Ah1 + A21Ah1 + Athll (bLE Ahl

C) qa71

41 ( 1 klAqg _ lengQ k1 > _

(S3.13)
We now isolate the terms in (S3.8):
a) T =Ei¢re + Fign + G (S3.14)
so we have:
Oy apa At Apa At
E = | —Zpafae=” p o __ e 4
! < Ri01(poAhy) " (puAh1) R} q’1>/
<1 _< 9p7a,0aAt 4 )\,OaAtOéi + 772At ) CT,lgp,apaAt + qul)\paAt )
(vahl)Rlel (vahl)Rllgl (vahl)Ql ngl(vahl) (vahl)R’lél
(S3.15)
Op,apaAt Apa At
F o= ——Zpalra=" 4., P77 p
' < Ri61(puDh1) "' (pyAh1)R10 q’1> /
<1 B < OpapaAt ApaAtay; oAt > N C1,10p apa At N CyaAp At >
(vahl)Rlel (vahl)R’191 (rhovAhl)Gl R101 (pUAhl) (vahl)R’lﬁl

(S3.16)

24



and:

Apa ALS; M RIWP AL REOUNAL
Gy = (Tt + SW 4 LW
' ( EUT (pu AR RO T (puAh)01 T (pyAhyby)
173At . BT,I@p,apaAt _ Bq71)\paAt >/
v 1)V1 1V1Pv 1 v 1 1
(pyAhy)0 R161(pyAh1)  (pvAhi)R}6
1 Op.apaAt N ApaAta; N oAt n Cr10p,apa At Cy1A\p At
(vahl)Rlel (vahl)Rllel (vahl)gl ngl(PvAhl) (vahl)R’lﬂl
(S3.17)
We now seek to rearrange b) and c) into expressions of the form:
Z) Télel =Xo+ g X3+ qZ:i—llX4 + T£ﬁ1X5 (83.18)
and:
i) gt

Vi =Yo+ ¢reYs+Tii' Yo+ TH'Ys

The same process as in the previous section means that we can assign Ar1, Br1, Cr,

(S3.19)

Dr1, Ag1, By, Cg1, Dy exactly as previously (expressions (S2.64) to (S2.71)), and
define X7 to Y5 as follows:

X1 - KRt e ) (320
Xo =T + At ( AkaTZI + IZZTK%) (S3.21)
Xy = —At <A1h) (p;)p@) (53.22)

Xy = At (leT’Z]ith’leT‘") ($3.23)
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1
X: = At
> (Ah1R1>

k1Ag2 k1Cy2Eo

Y=

AzlAhl B AZlAhl Ath/

k1Bg2 n k1Cy2G2
Az1 ARy Az1Ahq

1 1
Y= oa (m) (m)

k1Cq2F> n k1Dg 2
AzlAhl AZlAhl

Yy = ¢}, + At (

vi—ae

Ys = At (Athg)

* AzlAm)

(S3.24)

(S3.25)

(S3.26)

(S3.27)

(S3.28)

(S3.29)

Now, for the lower boundary condition we consider the interaction between the lowest
atmospheric level (level 1) and the infinitesimal surface layer (level S). Fluxes of the
sensible and latent heat from this layer are given, respectively, by:

Tt-‘yil _ Tg—}—l

. a,

Z) ¢H = _(pa@p,a)ks AZS
t+1 t+1

.. 41 —ds

”) OLE = —(Pa)\)kSaTZS

. aOp,aks
on =322
g a)ks

26

(Ag1ére + Boar + ConTr + Dyrou

(Arpém + Bri + CT,1TF,F11 + Dridre — TEM)

_ qg+1)

(S3.30)

(S3.31)

(S3.32)

(S3.33)



use a substitution:

Tiﬁl = FE1¢re + Fiog + Gy

. o (Pa()na)kS

i) ¢u= T A

.. . (Pa)\)ks

it) L= — A

. 1900k

i) ou(1+ (pAp’)S(AT,l +Cr1F1) = —
25

aM) K

it)  ¢re(l+ (pA ) % (Ag1 + CgEr)) =
zs

. uA) K

it)  ¢re(l+ (pA ) S(Aq,1+C' 1E1)) =
zs

and abbreviate to:
i) Qom = Qo+ QBTE + QoL

i) Qsbre = Qs + QTE + Qson

27

(S3.34)

(Ar10H + Bri + Cri(Erére + Fion + Gh)

+ Dra¢re — TET)  (S3.35)

(Ag10LE + Bg1 + Cyr1(E1oLE + Fiom + Gh)

+ Dy1dn — g5t (S3.36)

0Opa )k
M(Bm + CraGy — THHY)

(¢Le(CriEy + Dry)) (S3.37)

(pa)ks
Azg
(pPa)ks
Azg

(Bgi + Cg1G1 — q5t)

(¢H(Cq71F1 + Dq,l)) (83.38)

wA )k
(pAz)S : (B(Ll +C1G1— (aSTfQH +8s))

(Pa/\)ks
Azg

(¢H(Cq71F1 + Dq,l)) (83.39)

(S3.40)

(S3.41)



where:

WOk
O = (1 + (PAp,)S(AT’l + CT’lFl)) (S3.42)
zs
0Ok
Oy = —(pAp’)S(BTJ + Cr1Gh) (S3.43)
29
_ pa@p,akS
O3 = A (S3.44)
aOp.ak
Oy = —(’)Ap’“")(cmE1 + Dry) (S3.45)
29
WAk
95 = (1 + (pAz)S S (Aq,l + CqJEl)) (8346)
WAk
05 = — (pA ks (By1 + Cy1G1 — Bs) (S3.47)
zs
ANk
Q, — A?S S ag (S3.48)
WAk
s =~ AZ)S > (CgaFi + Dyy) (53.49)
Qp + Q)
fl=—— (S3.50)
Q]_ - 97598
Os + Q47
§o = 9379?;2 (S3.51)
1 — (T5 8
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Q50
Q6+ 7512

f3=— Sh (S3.52)
Q5 — 25l
Q7 + L&?S

= >4 S3.53

4 Q5 _ ngglu ( )

cross substitute:

9)
i) Qom = Q2+ QTEN + Q—z(QG + QTE + QP )

(S3.54)
Qy B Qy 41 Q47
i) Pu (Ql - 9598> = (Qz + Q5Q6> + T | s+ %
(93.55)
and:
Q
i) Qsbre = Qe + QTE + 97?(92 + Q3TE + P p)
(93.56)
Qg B g i1 Q823
ii) Prp (Qg) QlQ4> = <Qﬁ + 0, Qg) + Ty Q7 + O,
(3.57)
rewrite:
i) om =& +&TE (S3.58)
i) drp =&+ 4T (S3.59)
At
T =T§ + %((RLW + Rsw + &1+ &TG + &+ &T™) — Json) (53.60)
At At AN
TEH <1 - 529*0 - 5400> =T + %(RLW + Rsw + &1 + &3 — Jooit) (S3.61)
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and so:

TS + %(RLW + Row + &1+ &3 — Jsoit)

Tg—i—l —
(1— &5t —agh)

(S3.62)

We therefore have an expression for the surface temperature Té“, in terms of the down-
welling radiation that is incident on the surface (Rrw and Rgw ), the heat capacity of
the infinitesimal surface layer (), the vegetation layer directly above the surface (&1,
&9, &3 and &4) and the heat from the soil system (Jg1).

The radiation that is received by the lowermost level is provided by the radiation
scheme.

So to re-write the above equation including the factors 01 g, 72,5, 73,5 and 74 5:

Tl Th+ 3 (m s RIG™ + 13,5 + ma,s REGE™ + &1+ &) — oot
ol
(1 - 5L+ &+ m.s))

(S3.63)
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S4

Notation list

symbol description

Tt Tt Temperature at the 'present’ and 'next’ timestep respectively (K)

qt, ¢t Specific humidity at the 'present’ and 'next’ timestep (kg/kg)

TF Leaf temperature at level 1’ (K)

qF Leaf specific humidity at level i’ (kg/kg)

s Atmospheric temperature at level i’ (K)

qf Atmospheric specific humidity at level 1’ (kg/kg)

AT Interval between 'present’ and 'next’ timestep (s)

Az Difference in height between potential at level i’ and level ’i+1’ (m)

Ah; Thickness of level i’ (m)

€ Emissivity fraction at level i’ (-)

w; Leaf interception coefficient at level i’ (-)

Krw, Ksw Canopy extinction coefficient for longwave and shortwave, respectively (-)
pate Albedo of vegetation layer i’ (-)

A Latent heat of vapourisation (J/kg)

Pvs Pa Vegetation and atmospheric density, respectively (kg/m?)

a Stefan-Boltzmann constant (5.67 x 107% Wm™2K~*)

0; Leaf layer heat capacity at level 'I’(J/ (kg K))

Op.a Specific heat capacity of air (J/(kg K))

R, R, Stomatal resistance at level ’i’ for sensible and latent heat flux, respectively (s/m)
LE;, H; Latent heat and sensible heat flux at level 'i’, respectively (W/m?)
LE:ot, Hiot Total latent heat and sensible heat flux at canopy top, respectively (W/m?)

Rrw,i, Rsw,:

ki

Aty Br,i,Cr,i, D13
Aq,i, Bq,i, Cq,i, Dq’z
0o

Jsoil

OH,dLE

Long-wave and short wave radiation received by level '’ respectively (W/m?)
Diffusivity coefficient for level i’ (m?/s)

Components for substituted equation i)

Components for substituted equation ii)

Components for substituted equation iii)

Heat capacity of the infinitesimal surface layer (J/(Km?))

Heat flux from the sub-soil (W/m?)

Respectively sensible and latent heat flux from the infinitesimal surface layer (W/m?)

31




Supplementary material
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Figure S3 — Fluxnet derived values of downwelling shortwave and longwave radiation that
was used to force the model (shown for the intensive period from 6™ to 12" of November 2006.



