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Supplementary material

Notes

• Numbering of equations: the three ’key’ equations (and variations as a result
of substitution) are labelled a), b) and c) on the left hand side throughout the
document. The assumptions are labelled in Roman numerals on the left hand
side. All equations are numbered conventionally on the right hand side for ease of
reference.

• Potential enthalpy: the present ORCHIDEE uses the term ’surface static energy’
as the potential for calculating sensible heat flux. This is defined in the model (for
the surface layer) as:

pssurf = ⇥p,aTsurf

where ps
surf

is the surface static energy, ⇥
p,a

is the mass specific heat capacity of air and

T
surf

the surface temperature.

Now the enthalpy of a system (H) is defined H = U + pV , but over the height of
a surface model (< 30m approx), change in p and V is negliable, so:

�H = �U + p�V + V �p

= (�Q+ �W + �W 0) + p�V + V �p

now �W = �p�V , so we can say:

�H = �Q+ �W 0 + V �p

= Q+W 0 +

Z p

p0

V �p ⇡ Q

⇡ ⇥p,aT

So here we can also assume a proportional relationship between enthalpy and
temperature over the vertical range of the model.

• Sign convention: For latent and sensible heat fluxes, an upward flux is positive
(so a positive flux from the ground is cooling the ground)
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S1 Parameters

S1.1 Derivation of the leaf layer resistances (Ri and R0
i)

The variables Ri and R0
i represent the leaf layer resistance to the sensible and latent heat

flux, respectively. Ri is calculated based upon the leaf boundary layer resistance, and is
described at present according to the following expression from Baldocchi (1988):

Rb(z) =
l

df(z)DsSh(z)
(S1.1)

where R
b

denotes the boundary layer resistance (=R
i

), l is the characteristic length of leaves, D
s

is the molecular di↵usivity of the entity in question and Sh is the Sherwood number.

R0
i is the stomatal resistance of the leaf that may be calculated using the model of (Ball

et al., 1987) as in ORCHIDEE at present, or potentially the refinement of Medlyn et al.
(2011).

S1.2 Derivation of the eddy-di↵usivity coe�cient (ki)

The transport term ki is calculated using the 1D second-order closure model of Massman
& Weil (1999) which makes use of the LAI profile of the stand.

u(z)

u(h)
= e

�n
⇣
1� ⇣(z)

⇣(h)

⌘

(S1.2)

�u0w0(z)

u2⇤
= e

�2n
⇣
1� ⇣(z)

⇣(h)

⌘

(S1.3)

⇣(z) =

Z z

0


Cd(z0)a(z0)

Pm(z0)

�
dz0 (S1.4)

n =
⇣(h)

2u2⇤/u(h)
2

(S1.5)

u⇤
u(h)

= c1 � c2e
c3⇣(h) (S1.6)

from Massman (1997), where u(z) is the horizontal wind speed, u0w0(z) is the turbulent shear

stress, ⇣(z) is the cumulative leaf drag area per unit ’planform’ (projected) area, z is the height

above the soil surface, h is the canopy height, u⇤ is the friction velocity above the canopy (as-

suming a constant sheer layer above the canopy i.e. u2
⇤ = - u0w0

, C
d

is the drag coe�cient of the

foliage elements, a(z) is the foliage area density as a function of height and P
m

is the momentum

shelter factor.
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The constants c1=0.320, c2=0.246 and c3=15.1 are model constants that are related to
the bulk surface drag coe�cient:

csurf =
2u2⇤
u(h)2

(S1.7)

⇣(h) is a generalisation of the more commonly used CdLAI, where LAI is the one-sided
leaf area index:

⇣(h) =

Z h

0
a(z0)dz0 (S1.8)

Thus the canopy structure is accounted for by:

Cd(z)a(z)

Pm(z)
(S1.9)

and the foliage area density is described by:

⇣(h) or Cd(LAI)

!2
u, !

2
v , and !2

w are each assumed proportional to !2
e , and following Mellor (1973) and

Wilson & Shaw (1977), the constants µi are chosen consistent with constant stress layer
and a logarithmic wind profile above the stress layer.

This gives the following relations for ⌫u:

⌫1 = (�21 + �22 + �23)
�1/2 (S1.10)

⌫3 = (�21 + �22 + �23)
�3/2 (S1.11)

⌫2 =
⌫3
6

� �23
2⌫1

(S1.12)

from general comparisons with ensembles of data: �1 = 2.40, �2 = 1.90 and �3 = 1.25
(Raupach et al., 1991)
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solved analytically:

!e(z)

u⇤
=


⌫3e

⇤⇣(h)
⇣
1� ⇣(z)

⇣(h)

⌘

+B1

✓
e
�3n

⇣
1� ⇣(z)

⇣(h)

⌘

� e
�⇤⇣(h)

⇣
1� ⇣(z)

⇣(h)

⌘◆�1/3
(S1.13)

where:

B1 =
�
⇣

9u⇤
u(h)

⌘

2↵⌫1
⇣
9
4 � ⇤2u4

⇤
u(h)4

⌘ (S1.14)

solving for !i in terms of !e yields:

!i(z)

u⇤
= �i⌫i

!e(z)

u⇤
(S1.15)

S1.3 Relationship between LAI and ✓i at each level

The heat capacity of each vegetation layer (✓i) is assumed equal to that of water. The
vegetation density is sourced from the Leaf Mass Area (LMA) (g/m2) in the TRY
database and the leaf area density profile.
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S2 The numerical solution

S2.1 Introduction

The structure of the derivation here outlined is based on that of the LMDz transport
scheme (Dufresne & Ghattas, 2009), but extended to include interactions with the veg-
etation layer at each level.

S2.2 Leaf vapour pressure assumption

The air within leaf level cavities is assumed completely saturated. This means that the
vapour pressure of the leaf can be calculated as the saturated vapour pressure at that leaf
temperature. Therefore the change in pressure within the leaf is assumed proportional to
the di↵erence in temperature between the present timestep and next timestep, multiplied
by the rate of change in saturated pressure against temperature.

q0 ⌘ qt+1
L,i = q

T t
L,i

sat +
�qsat
�T

|T t
L,i

(T t+1
L,i � T t

L,i) (S2.1)

=
�qsat
�T

|T t
L,i

(T t+1
L,i ) +

✓
q
T t
L,i

sat � T t
L,i

�qsat
�T

|T t
L,i

◆
(S2.2)

= ↵iT
t+1
L,i + �i (S2.3)

where ↵
i

and �
i

are regarded as constants for each particular level and timestep so ↵i =
�qsat
�T |T t

L,i

and �i =

✓
q
T t
L,i

sat � T t
L,i

�qsat
�T |T t

L,i

◆

But to find a solution we still need to find an expression for the terms q
T t
L,i

sat and �qsat
�T |T t

L,i

in ↵i and �i above.

Using the empirical approximation of Tetens (e.g. as in Monteith & Unsworth (2.1),
2008) and the specific humidity vapour pressure relationship we can describe the satu-
ration vapour pressure to within 1 Pa up to a temperature of about 35 �C.

esat(T ) = esat(T
⇤)exp[A(T � T ⇤)/(T � T 0)] (S2.4)

where A = 17.27, T ⇤
= 273K, e

sat

(T ⇤) = 0.611 kPa, T 0
= 36K

Now, specific humidity is related to vapour pressure by the relationship: (e.g. Monteith
& Unsworth (2.1), 2008):
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q =

⇣
MW
MA

⌘
e

(p� e) +
⇣
MW
MA

⌘
e

(S2.5)

where q = specific humidity (kg/kg), e = vapour pressure (kPa), (M
W

/M
A

) = (ratio of molecular

weight of water to air) = 0.622, and p = atmospheric pressure (kPa)

So, to find q
T t
L,i

sat , we substitute esat(TL) derived from (S2.4) for e in (S2.5):

qTL
sat =

⇣
MW
MA

⌘
esat(TL)

(p� esat(TL)) +
⇣
MW
MA

⌘
esat(TL)

(S2.6)

To calculate �qsat
�T |T t

L,i
, we use the expression for the saturated humidity curve against

temperature (as derived using the method of Monteith & Unsworth, 2008):

q
T t
L,i

sat = q0e
��MW /RT (S2.7)

The derivative of this expression is:

�qsat
�T

|T t
L,i

=
�MW qsat(T )

R(T t
L,i)

2
(S2.8)

So �qsat
�T |T t

L,i
can be determined by substitution of the expression for qsat(TL) from (S2.6)

into (S2.8), as below:

�qsat
�T

|T t
L,i

=
�MW

R(T t
L,i)

2

0

@

⇣
MW
MA

⌘
esat(TL)

(p� esat(TL)) +
⇣
MW
MA

⌘
esat(TL)

1

A (S2.9)

S2.3 Physical and biophysical parameters:

We here concentrate on the formulation of an implicit solution that assumes a parameter-
isation for Ri (the resistance to sensible heat flux at each level), R0

i (resistance to latent
heat flux at each level) and ki (transport coe�cients at each level). The derivation
of these coe�cients, based on literature study, will be described in a seperate docu-
ment.
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S2.4 The leaf energy balance equation for each layer

Now at the leaf level, we assume the energy balance for each layer. It is assumed that
(for a leaf layer of volume �Vi, area �Ai and thickness �hi):

�Vi✓i⇢v
�TL,i

�t
= (Hi + LEi +RSW,i +RLW,i)�Ai (S2.10)

Dividing (S2.10) by �Vi:

✓i⇢v
�TL,i

�t
= (Hi + LEi +RSW,i +RLW,i)

✓
1

�hi

◆
(S2.11)

The source sensible heat flux from the leaf at level 0i0 is the di↵erence between the leaf
temperature and that above it, divided by Ri which is the leaf resistance to sensible heat
flux (a combination of stomatal and boundary layer resistance)). Similarly, the source
latent heat flux from the leaf at level 0i0 is the di↵erence between the leaf temperature
and that above it, divided by R0

i which is the leaf resistance to sensible heat flux. So the
terms of (S2.11) are defined (in units W/m2):

Hi = ⇥p,a⇢a
(TL,i � Ta,i)

Ri
(S2.12)

LEi = �⇢a
(qL,i � qa,i)

R0
i

(S2.13)

- RLW (tot),i is the sum total of long wave radiation - that is: downwelling LW
radiation from above the canopy, the LW radiation emitted from vegetation layer 0i0 and
the LW radiation reflected from the vegetation layers 0i+ 10 and 0i� 10.

- RSW is the downwelling short radiation. So we express the sensible and latent
heat fluxs between the leaf and the atmosphere respectively as:

a) ✓i⇢v
�TL,i

�t
=

✓
⇥p,a⇢a

(TL,i � Ta,i)

Ri
+ �⇢a

(qL,i � qa,i)

R0
i

+RSW,i +RLW (tot),i

◆✓
1

�hi

◆

(S2.14)
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S2.5 Vertical transport within a column

The transport equation may be stated as:

�(⇢�)

�t
+ div(⇢�u) = div(�grad(�)) + S� (S2.15)

div is the operator that calculates the divergence of the vector field, � is the property under

question, ⇢ is the fluid density, u is the horizontal wind speed vector (assumed negligable here),

S
�

is the concentration for the property in question and � is a parameter that will in this case

be the di↵usion coe�cient k(z) henceforth.

To derive from this the conservation of scalars equation as might be applied to vertical
air columns, we proceed according to the Finite Volume Method as outlined in e.g. Vieno
(2006). Integrate over dV (a unit volume):

Z

V

�(⇢�)

�t
dV +

Z

V
(⇢�u)dV =

Z

V
(�grad(�)dV ) +

Z

V
S�dV (S2.16)

Using Gauss’ theorem, integrating over a time �t and re-writing in one-dimension we
ultimately obtain the expression below:

time dependent term (PART A)
z }| {Z

�t

�

�t

Z

V
�dV

Z

�t
dt +

horizontal advection term (assume zero for now)
z }| {Z

�t

Z

AreaV
n · (�u)dAdt =

gradient term (PART B)
z }| {Z

�t

Z

AreaV
n · (kgrad�)dAdt+

source term (PART C)
z }| {Z

�t

Z

V
S�dV dt (S2.17)

Now, the di↵usion is considered only along the z-axis, and only the top and bottom of
the boxes of volume �V have non-zero flux (n.b. for our set-up, concentration is uniform
within each layer), so we can say:

(�t+�t
n ��t

n)�V =

Z t+�t

t

✓✓
ktop

��top

�z
�A

◆
�
✓
kbottom

��bottom

�z
�A

◆◆
dt+

Z t+�t

t
S��V dt

(S2.18)

where �A is the area of the box in question In the non-di↵erenced form, this equation
becomes:
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PART Az }| {
��

�t
�V =

PART Bz }| {

k(z)
d2�

dz2
�A+

PART Cz }| {
S(z)�V (S2.19)

where F is the vertical flux density, U the mean windspeed, z represents coordinates in the ver-

tical and x coordinates in the streamwise direction. � may represent the concentration of any

constituent that may include water vapour or heat, but also gas or aerosol phase concentration

of particular species. S represents the source density of that constituent.

Figure 1: Schematic of the finite volume method for di↵erencing the column, as in (S2.18)

This eddy di↵usivity parameter k(z) is used in the formulae outlined above, and through-
out this document. Raupach (1989) develops a model that is a more realistic Lagrangian
description of canopy transport, an approach which is impractical to apply directly to a
linear, non-iterative model such as ORCHIDEE. However, it is hoped to develop a form
of the eddy di↵usivity coe�cient k(z) that accommodates the counter-gradient fluxes
also observed in canopies (as in the method of Makar et al, 1999).
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S2.6 Sensible heat transport between each atmospheric layer

We re-write the scalar conservation equation, as applied to canopies (equation (S2.19))
in terms of the sensible heat flux, temperature and source sensible heat from the vege-
tation at each layer. (so, comparing with (S2.19), � ⌘ T , F ⌘ H and S ⌘ (the source
sensible heat flux at each vegetation layer)).

The sensible heat flux profile is not constant over the height of the canopy. The rate
of change of Ta,i (the temperature of the atmosphere surrounding the leaf at level i)
is proportional to the rate of change of sensible heat flux with height and the source
sensible heat flux from the leaf at that level as in (S2.12) above (n.b. overbraces refer
to (S2.19)):

b)

PART Az }| {
⇥p,a⇢a

�Ta,i

�t
�Vi =

PART Bz }| {
��Ha,i

�z
�Ai+

PART Cz }| {✓
TL,i � Ta,i

Ri

◆✓
⇥p,a⇢a
�hi

◆
�Vi (S2.20)

nowHa,i = �(⇢a⇥p,a)ki
�Ta,i

�z (if the flux-gradient relation is assumed) so we can say:

b)
�Ta,i

�t
�Vi = ki

�2Ta,i

�z2
�Ai +

✓
TL,i � Ta,i

Ri

◆✓
1

�hi

◆
�Vi (S2.21)

S2.7 Latent heat transport between each atmospheric layer

We re-write the simplified scalar conservation equation, as applied to canopies (equation
(S2.19)) in terms of the sensible heat flux, temperature and source sensible heat from
the vegetation at each layer. (so, comparing with (S2.19), � ⌘ q, F ⌘ E and S ⌘ (the
source latent heat flux at each vegetation layer)).

The latent heat flux profile is also not constant over the height of the canopy. The rate
of change of qa,i (the specific humidity of the atmosphere surrounding the leaf at level
i) is proportional to the rate of change of latent heat flux with height and the source
latent heat flux from the leaf as in (S2.13) (n.b. overbraces refer to (S2.19)):
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c)

PART Az }| {
�⇢a

�qa,i
�t

�Vi =

PART Bz }| {
��(LE)a,i

�z
�Ai+

PART Cz }| {✓
qL,i � qa,i

R0
i

◆✓
�⇢a
�hi

◆
�Vi (S2.22)

= ��(LE)a,i
�z

�Ai +

✓
(↵TL,i + �i)� qa,i

R0
i

◆✓
�⇢a
�hi

◆
�Vi(S2.23)

now (LE)a,i = �(�⇢a)ki
�qa,i
�z (again assuming the flux-gradient relation) so...

c)
�qa,i
�t

�Vi = ki
�2qa,i
�z2

�Ai +

✓
(↵TL,i + �i)� qa,i

R0
i

◆✓
1

�hi
�Vi

◆
(S2.24)

S2.8 The ’zero-leaf’ scenario

Canopy layers that do not contain foliage may be accounted for at a level by assuming
that Ri = R0

i = 1 for that level (i.e. an open circuit), and that the various coe�cients
that relate to the leaf interactions at that level (RSW , RLW , CT,i, CT,i+1, Cq,i, Cq,i+1,
Di, Ei, Fi, Di+1, Ei+1, Fi+1) are zero.

S2.9 Write equations in implicit format

To maintain the implicit coupling between the atmospheric model (i.e. LMDZ) and the
land surface model (i.e. ORCHIDEE) we need to express the relationships that are out-
lined above in terms of a linear relationship between the ’present’ timestep ’t’ and the
’next’ timestep ’t+1’.

We therefore re-cast equations a), b) and c) in implicit form (i.e. in terms of the ’next’
timestep, which is ’t+1’, as below.

S2.9.1 Radiation scheme

The radiation approach is the application of the Longwave Radiation Transfer Matrix
(LRTM) (Gu, 1988; Gu et al. 1999), as applied in Ogée et al. (2003). This approach
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seperates the calculation of the radiation distribution completely from the implicit ex-
pression. Instead a single source term for the long wave radiation is added at each level.
This means that the distribution of radiation is now completely explicit (i.e. makes use
of information only from the ’present’ and not the ’next’ time step. However, an advan-
tage of the approach is that it accounts for a higher order of reflections from adjacent
levels that the single order that is assumed in the process above.

The components for longwave radiation are abbreviated as:

RLW,i = ⌘1R
down
LW + ⌘2T

t+1
L,i + ⌘3 (S2.25)

The shortwave radiation component is abbreviated as:

RSW,i = ⌘4R
down
SW (S2.26)

where ⌘1, ⌘2, ⌘3 and ⌘4 are components of the radiation scheme. ⌘1 is the component of
the LW downwelling radiation, ⌘2 the components relating to emission and absorption
of LW radiation from the vegetation at level i, ⌘3 the radiation components relating to
radiation emitted from vegetation at all other levels incident on the vegetation at level
i.

⌘4 is the component of the SW radiation scheme, where a version of the Beer-Lambert
law is used to calculate the incident radiation at each vegetation level (modified to allow
for the radiation reflected):

⌘4 = (exp(�KSW

nX

x=i

PADi)((1� ⇢albedo)) (S2.27)

S2.9.2 Implicit form of the energy balance equation

We substitute the expressions (S2.25) and (S2.26) to the energy balance equation (S2.11),
which we rewrite in implicit form:

a) ✓i⇢v
(T t+1

L,i � T t
L,i)

�t
=

✓
1

�hi

◆ 
⇥p,a⇢a

(T t+1
L,i � T t+1

a,i )

Ri
+ �⇢a

(↵iT
t+1
L,i + �i � qt+1

a,i )

R0
i

+⌘1R
down
LW + ⌘2T

t+1
L,i + ⌘3 + ⌘4R

down
SW

⌘
(S2.28)

Rearranging to isolate the state variables terms (temperature and specific humidity) at
the ’next’ timestep:
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a) T t+1
L,i � T t

L,i =
�⇢a�t�i

(⇢v�hi)R0
i✓i

+
⌘4R

down
SW �t

(⇢v�hi)✓i
+

⌘1R
down
LW �t

(⇢v�hi)✓i
+

⌘3�t

(⇢v�hi)✓i

+ T t+1
L,i

✓
⇥p,a⇢a

�t

(⇢v�hi)Ri✓i
+ �⇢a

�t↵i

(⇢v�hi)R0
i✓i

+
⌘2�t

(⇢v�hi)✓i

◆

� T t+1
a,i ⇥p,a⇢a

✓
�t

Ri✓i(⇢v�hi)

◆
� qt+1

a,i �⇢a

✓
�t

(⇢v�hi)R0
i✓i

◆
(S2.29)

S2.9.3 Implicit form of the sensible heat flux transport equation

We di↵erence (S2.21) according to the finite volume method (S2.18), and divide by
�Vi:

b)
T t+1
a,i � T t

a,i

�t
= ki

 
(T t+1

a,i+1 � T t+1
a,i )

�zi�hi

!
� ki�1

 
(T t+1

a,i � T t+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(T t+1

L,i � T t+1
a,i )

Ri
(S2.30)

S2.9.4 Implicit form of the latent heat flux transport equation

We di↵erence (S2.24) according to the finite volume method (S2.18), and divide by
�Vi:

c)
qt+1
a,i � qta,i

�t
= ki

 
(qt+1

a,i+1 � qt+1
a,i )

�zi�hi

!
� ki�1

 
(qt+1

a,i � qt+1
a,i�1)

�zi�1�hi

!

+

✓
1

�hi

◆
(↵iT

t+1
L,i + �i � qt+1

a,i )

R0
i

(S2.31)

S2.10 Solving the leaf energy balance equation by induction

We determine to solve these equations by assuming a solution of a particular form and
finding the coe�cients that are introduced in terms of the coe�cients of the layer above.
This is ’proof by induction’. Now, for (S2.29) we want to express T t+1

a,i in terms of values
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further down the column, to allow the equation to solved by ’moving up’ the column, as
in Richtmyer & Morton (1967) and Dufresne & Gattas (2009)

We assume that:

i) T t+1
a,i = AT,iT

t+1
a,i�1 +BT,i + CT,iT

t+1
L,i +DT,iq

t+1
a,i�1 (S2.32)

ii) qt+1
a,i = Aq,iq

t+1
a,i�1 +Bq,i + Cq,iT

t+1
L,i +Dq,iT

t+1
a,i�1 (S2.33)

These two expressions are the equivalent of (??) (from Richtmyer, 1967) for

the present system.

We also re-write these expressions in terms of the values of the next level:

i) T t+1
a,i+1 = AT,i+1T

t+1
a,i +BT,i+1 + CT,i+1T

t+1
L,i+1 +DT,i+1q

t+1
a,i (S2.34)

ii) qt+1
a,i+1 = Aq,i+1q

t+1
a,i +Bq,i+1 + Cq,i+1T

t+1
L,i+1 +Dq,i+1T

t+1
a,i (S2.35)

where AT,i, BT,i, CT,i, DT,i, Aq,i, Bq,i, Cq,i and Dq,i are constants for that particular level
and timestep but are (as yet) unknown. We thus substitute (S2.32) and (S2.33) into
(S2.29) to eliminate T t+1

a,i

a) T t+1
L,i � T t

L,i = �⇢a
�t�i

(⇢v�hi)R0
i✓i

+
⌘3�t

(⇢v�hi)✓i

+
⌘4R

down
SW �t

(⇢v�hi)✓i
+

⌘1R
down
LW �t

(⇢v�hi)✓i

+
T t+1
L,i

(⇢v�hi)

✓
�⇢a�t↵i

R0
i✓i

+
⇥p,a⇢a�t

✓iRi
+

⌘2�t

✓i

◆

�
✓

⇥p,a⇢a�t

(⇢v�hi)Ri✓i

◆
(AT,iT

t+1
a,i�1 +BT,i + CT,iT

t+1
L,i +DT,iq

t+1
a,i�1)

�
✓

�⇢a�t

(⇢v�hi)R0
i✓i

◆
(Aq,iq

t+1
a,i�1 +Bq,i + Cq,i(T

t+1
L,i ) +Dq,iT

t+1
a,i�1)

(S2.36)

or, to rearrange again in terms of the unknown state variables (left hand side) and the
know variables (right hand side):
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a) T t+1
L,i

✓
1 +

�t⇥p,a

(⇢v�hi)Ri✓i
CT,i �

�⇢a↵i�t

(⇢v�hi)R0
i✓i

� ⌘2�t

(⇢v�hi)✓i

� ⇥p,a⇢a�t

(⇢v�hi)✓iRi
+

�⇢a�t

(⇢v�hi)R0
i✓i

Cq,i

◆
=

T t
L,i + qt+1

a,i�1

✓
� �⇢a�tAq,i

(⇢v�hi)R0
i✓i

� ⇥p,a⇢a�tDT,i

(⇢v�hi)Ri✓i

◆

+ T t+1
a,i�1

✓
�⇥p,a⇢a�tAT,i

(⇢v�hi)Ri✓i
� �⇢a�tDq,i

(⇢v�hi)Ri✓i

◆
+

⌘3�t

(⇢v�hi)✓i

+
⌘1R

down
LW �t

(⇢v�hi)✓i
+

⌘4R
down
SW,i�t

(⇢v�hi)✓i
� ⇥p,a⇢a�t

(⇢v�hi)Ri✓i
BT,i �

�⇢a�t

(⇢v�hi)R0
i✓i

Bq,i +
�⇢a�t

(⇢v�hi)R0
i✓i

�i

(S2.37)

So, to abbreviate (where Ei, Fi and Gi are known assumed constants for the level and
timestep in question, (S2.37) can be written as:

iii) T t+1
L,i = Eiq

t+1
a,i�1 + FiT

t+1
a,i�1 +Gi (S2.38)

so we define the coe�cients as:

Ei =

✓
� �tAq,i�⇢a
(⇢v�hi)R0

i✓i
� �tDT,i⇥p,a⇢a

(⇢v�hi)Ri✓i

◆
/

✓
1� �t↵�⇢a

(⇢v�hi)R0
i✓i

� �t⇥p,a⇢a
(⇢v�hi)✓iRi

� ⌘2�t

(⇢v�hi)✓i
+

�t�⇢a
(⇢v�hi)R0

i✓i
Cq,i +

�t⇥p,a⇢a
(⇢v�hi)✓iRi

CT,i

◆

(S2.39)

Fi =

✓
��tAT,i⇥p,a⇢a

(⇢v�hi)Ri✓i
� �tDq,i�⇢a

(⇢v�hi)R0
i✓i

◆
/

✓
1� �t↵�⇢a

(⇢v�hi)R0
i✓i

� �t⇥p,a⇢a
(⇢v�hi)✓iRi

� ⌘2�t

(⇢v�hi)✓i
+

�t�⇢a
(⇢v�hi)R0

i✓i
Cq,i +

�t⇥p,a⇢a
(⇢v�hi)✓iRi

CT,i

◆

(S2.40)

Gi =

✓
T t
L,i +

⌘3�t

(⇢v�hi)✓i
+

⌘1R
down
LW �t

(⇢v�hi)✓i
+

⌘4R
down
SW �t

(⇢v�hi)✓i
+

�⇢a�t�i
(⇢v�hi)R0

i✓i

� �t⇥p,a⇢a
(⇢v�hi)Ri✓i

BT,i �
�t�⇢a

(⇢v�hi)R0
i✓i

Bq,i

◆

/

✓
1� �t↵�⇢a

(⇢v�hi)R0
i✓i

� �t⇥p,a⇢a
(⇢v�hi)✓iRi

� ⌘2�t

(⇢v�hi)✓i
+

�t�⇢a
(⇢v�hi)R0

i✓i
Cq,i +

�t⇥p,a⇢a
(⇢v�hi)✓iRi

CT,i

◆

(S2.41)
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S2.11 Solving latent and sensible heat flux equations between layers

by induction

To prove by induction, we must express T t+1
a,i and qt+1

a,i in terms that are

identical to (S2.32) and (S2.33) We first seek to eliminate T t+1
a,i+1 from b) and c) We

first substitute the assumed expressions for temperature and humidity in the layer above
or, that is to say, (equations (S2.34) and (S2.35) here) We substitute for T t+1

a,i+1 in b), to
eliminate that term:

b)
T t+1
a,i � T t

a,i

�t
= ki

AT,i+1T
t+1
a,i +BT,i+1 + CT,i+1T

t+1
L,i+1 +DT,i+1q

t+1
a,i

�zi�hi

�
kiT

t+1
a,i

�zi�hi
�

ki�1T
t+1
a,i

�zi�1�hi
+

ki�1T
t+1
a,i�1

�zi�1�hi
+

T t+1
L,i

�hiRi
�

T t+1
a,i

�hiRi
(S2.42)

b) T t+1
a,i

✓
1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆◆
= T t

a,i+
BT,i+1ki�t

�zi�hi

+T t+1
a,i�1

✓
ki�1

�zi�1�hi

◆
�t+qt+1

a,i

✓
kiDT,i+1

�zi�hi

◆
�t+T t+1

L,i

✓
�t

�hiRi

◆
+T t+1

L,i+1

✓
kiCT,i+1

�zi�hi

◆

(S2.43)

Similarly, we substitute for qt+1
a,i+1 in c), in order to eliminate that term:

c)
qt+1
a,i � qta,i

�t
= ki

(Aq,i+1q
t+1
a,i +Bq,i+1 + Cq,i+1T

t+1
L,i+1 +Dq,i+1T

t+1
a,i )

�zi�hi

�
kiq

t+1
a,i

�zi�hi
�

ki�1q
t+1
a,i

�zi�1�hi
+

ki�1q
t+1
a,i�1

�zi�1�hi
+

↵iT
t+1
L,i + �i � qt+1

a,i

�hiR0
i

(S2.44)

c) qt+1
a,i

✓
1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆◆
=

qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

��t

�hiR0
i

◆
+ qt+1

a,i�1

✓
ki�1

�zi�1�hi
�t

◆

T t+1
a,i

✓
kiDq,i+1

�zi�hi

◆
�t+ (T t+1

L,i+1)

✓
ki

�zi�hi

◆
Cq,i+1�t+ T t+1

L,i

✓
↵i

�hiR0
i

◆
�t

(S2.45)

Now, we substitute expression iii) for the leaf temperature in the layer above (S2.38).
This step is in order to eliminate the term T t+1

L,i+1 from both expressions:
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b) T t+1
a,i

✓
1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆◆
=

T t
a,i+

BT,i+1ki�t

�zi�hi
+T t+1

a,i�1

✓
ki�1

�zi�1�hi

◆
�t+qt+1

a,i

✓
kiDT,i+1

�zi�hi

◆
�t+T t+1

L,i

✓
�t

�hiRi

◆

+ (Ei+1q
t+1
a,i + Fi+1T

t+1
a,i +Gi+1)

✓
kiCT,i+1

�zi�hi

◆
�t (S2.46)

c) qt+1
a,i

✓
1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆◆
=

qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

��t

�hiR0
i

◆
+ qt+1

a,i�1

✓
ki�1

�zi�1�hi
�t

◆

T t+1
a,i

✓
kiDq,i+1

�zi�hi

◆
�t+ (Ei+1q

t+1
a,i + Fi+1T

t+1
a,i +Gi+1)

✓
ki

�zi�hi

◆
Cq,i+1�t

+ T t+1
L,i

✓
↵

�hiR0
i

◆
�t (S2.47)

We now abbreviate equation a) as:

b) T t+1
a,i X1 = X2 +X3T

t+1
a,i�1 +X4q

t+1
a,i +X5T

t+1
L,i (S2.48)

and abbreviate equation b) as:

c) qt+1
a,i Y1 = Y2 + Y3q

t+1
a,i�1 + Y4T

t+1
a,i + Y5T

t+1
L,i (S2.49)

where:

X1 = 1��t

✓
AT,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiRi

◆
�Fi+1

✓
kiCT,i+1

�zi�hi

◆
�t

(S2.50)

X2 = T t
a,i +

BT,i+1ki�t

�zi�hi
+Gi+1

✓
kiCT,i+1

�zi�hi

◆
�t (S2.51)

X3 =

✓
ki�1

�zi�1�hi

◆
�t (S2.52)

X4 =

✓
kiDT,i+1

�zi�hi

◆
�t+ Ei+1

✓
kiCT,i+1

�zi�hi

◆
�t (S2.53)
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X5 =

✓
�t

�hiRi

◆
(S2.54)

Y1 = 1��t

✓
Aq,i+1

ki
�zi�hi

� ki
�zi�hi

� ki�1

�zi�1�hi
� 1

�hiR0
i

◆
�Ei+1

✓
ki

�zi�hi

◆
Cq,i+1�t

(S2.55)

Y2 = qta,i +

✓
Bq,i+1ki�t

�zi�hi
+

�i�t

�hiR0
i

◆
+Gi+1

✓
ki

�zi�hi

◆
Cq,i+1�t (S2.56)

Y3 =

✓
ki�1

�zi�1�hi
�t

◆
(S2.57)

Y4 =

✓
kiDq,i+1

�zi�hi

◆
�t+ Fi+1

✓
ki

�zi�hi
Cq,i+1

◆
�t (S2.58)

Y5 =

✓
↵i

�hiR0
i

◆
�t (S2.59)

We then cross-substitute for qt+1
a,i from c) to b), to eliminate that term:

b) T t+1
a,i X1 = X2 +X3T

t+1
a,i�1 +X4

✓
Y2
Y1

+
Y3
Y1

qt+1
a,i�1 +

Y4
Y1

T t+1
a,i +

Y5
Y1

T t+1
L,i

◆

+ X5T
t+1
L,i (S2.60)

b) T t+1
a,i

✓
X1 �X4

Y4
Y1

◆
= T t+1

a,i�1X3 +

✓
X2 +X4

Y2
Y1

◆

+ T t+1
L,i

✓
X4

Y5
Y1

+X5

◆
+ qt+1

a,i�1

✓
X4

Y3
Y1

◆
(S2.61)

similarly, we cross-substitute for T t+1
a,i from b) to a), to eliminate that term:

c) qt+1
a,i Y1 = Y2 + Y3q

t+1
a,i�1 + Y4

✓
X2

X1
+

X3

X1
T t+1
a,i�1 +

X4

X1
qt+1
a,i +

X5

X1
T t+1
L,i

◆

+ Y5T
t+1
L,i (S2.62)

c) qt+1
a,i

✓
Y1 � Y4

X4

X1

◆
= qt+1

a,i�1Y3 +

✓
Y2 + Y4

X2

X1

◆

+ T t+1
L,i

✓
Y4

X5

X1
+ Y5

◆
+ T t+1

a,i�1

✓
Y4

X3

X1

◆
(S2.63)
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So this demonstrates the expressions b) and c) can be described in terms

of the respective original substitutions (S2.32) and (S2.33). The respective
coe�cients from (S2.32) and (S2.33) may be described as:

AT,i =
X3

X1 �X4

⇣
Y4
Y1

⌘ (S2.64)

BT,i =
X2 +X4

⇣
Y2
Y1

⌘

X1 �X4

⇣
Y4
Y1

⌘ (S2.65)

CT,i =

⇣
X4

⇣
Y5
Y1

⌘
+X5

⌘

X1 �X4

⇣
Y4
Y1

⌘ (S2.66)

DT,i =
X4

⇣
Y3
Y1

⌘

X1 �X4

⇣
Y4
Y1

⌘ (S2.67)

and:

Aq,i =
Y3

Y1 � Y4

⇣
X4
X1

⌘ (S2.68)

Bq,i =
Y2 + Y4

⇣
X2
X1

⌘

Y1 � Y4

⇣
X4
X1

⌘ (S2.69)

Cq,i =

⇣
Y4

⇣
X5
X1

⌘
+ Y5

⌘

Y1 � Y4

⇣
X4
X1

⌘ (S2.70)

Dq,i =
Y4

⇣
X3
X1

⌘

Y1 � Y4

⇣
X4
X1

⌘ (S2.71)

Now, all of the coe�cients X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4 and Y5 and, in turn, the
coe�cients AT,i, BT,i, CT,i, DT,i, Aq,i, Bq,i, Cq,i and Dq,i can be described in terms of
the coe�cients from the level above and the potentials (i.e. T and q) at the previous
timestep.

So we have a set of coe�cients that may be determined for each time-step, and we have
the means to determine TS (and qS via the saturation assumption). We thus have a
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process to calculate the temperature and humidity profiles for each timestep by system-
atically calculating each of the coe�cients from the top of the column (the ’downwards
sweep’) then calculating the ’initial value’ (the surface temperature and humidity) and
finally calculating each Ta, qa and TL by working up the column (the ’upwards sweep’).

The term T t+1
L,i+1 can also be described in terms of the variables at the level below by

using equation iii) and its terms Ei, Fi and Gi. We can therefore describe the changes
in the canopy between the present timestep ’t’ and the next timestep ’t+1’ by ’working
down’ the column from the interaction with the LMDZ atmospheric model to determine
the coe�cients AT , BT , CT etc. and then ’working up’ the column to determine the
potentials T and q.
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Table 1: Input coe�cients at the top layer of the model, where A
T,n

, B
T,n

... etc are the respective

coe�cients at the top of the surface model and A
T,atmos

, B
T,atmos

are the coe�cients at the lowest

level of the atmospheric model.

stand-alone model coupled model

AT,n = 0 AT,n = AT,atmos

BT,n = BT,input BT,n = BT,atmos

CT,n = 0 CT,n = 0

DT,n = 0 DT,n = 0

Aq,n = 0 Aq,n = Aq,atmos

Bq,n = Bq,input Bq,n = Bq,atmos

Cq,n = 0 Cq,n = 0

Dq,n = 0 Dq,n = 0

S3 The boundary conditions

S3.1 The upper boundary conditions

In stand-alone simulations, the top level variables AT,n, CT,n, DT,n and Aq,n, Cq,n, Dq,n,
are set to zero and BT,n and Bq,n set to the input temperature and specific humidity
respectively for the relevant time step (as in Best et al., 2004) In coupled simulations,
AT,n, BT,n and Bq,n, Cq,n are taken from the respective values at lowest level of the
atmospheric model. Table 1 summarises the boundary conditions for both the coupled
and un-coupled simulations.
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S3.2 The lower boundary condition

We need to solve the lowest level transport equations seperately:

b)
T t+1
a,1 � T t

a,1

�t
= k1

(T t+1
a,2 � T t+1

a,1 )

�z1�h1
�
✓

1

⇢a⇥p,a

◆
�H

�h1
+

✓
1

�h1

◆
(T t+1

L,1 � T t+1
a,1 )

R1
(S3.1)

c)
qt+1
a,1 � qta,1

�t
= k1

(qt+1
a,2 � qt+1

a,1 )

�z1�h1
�
✓

1

⇢a�

◆
�LE

�h1
+

✓
1

�h1

◆
(↵iT

t+1
L,1 + �1 � qt+1

a,1 )

R0
1

(S3.2)

We substitute to the above to eliminate T t+1
a,2 from b) and qt+1

a,2 from c):

T t+1
a,1 = AT,1�H +BT,1 + CT,1T

t+1
L,1 +DT,1�LE (S3.3)

and:

qt+1
a,1 = Aq,1�LE +Bq,1 + Cq,1T

t+1
L,1 +Dq,1�H (S3.4)

Now for the leaf at level 1, just above the ground level:

a) T t+1
L,1 � T t

L,1 =
�⇢a�t�1

(⇢v�h1)R0
1✓1

+
⌘4R

down
SW �t

(⇢v�h1)✓1
+

⌘1R
down
LW �t

(⇢v�h1)✓1
+

⌘3�t

(⇢v�h1)✓1

+ T t+1
L,1

✓
⇥p,a⇢a

�t

(⇢v�h1)R1✓1
+ �⇢a

�t↵

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

◆

� T t+1
a,1 ⇥p,a⇢a

✓
�t

R1✓1(⇢v�h1)

◆
� qt+1

a,1 �⇢a

✓
�t

(⇢v�h1)R0
1✓1

◆
(S3.5)

and substitute for T t+1
a,1 and qt+1

a,1 :

a) T t+1
L,1 � T t

L,1 =
�⇢a�t�i

(⇢v�h1)R0
1✓1

+
eta4R

down
SW �t

(⇢v�h1)✓1
+

⌘1R
down
LW �t

(⇢v�h1)
+

⌘3�t

(⇢v�h1)✓1

+ T t+1
L,1

✓
⇥p,a⇢a

�t

(⇢v�h1)R1✓1
+ �⇢a

�t↵

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

◆

� ⇥p,a⇢a�t

R1✓1(⇢v�h1)
(AT,1�H +BT,1 + CT,1T

t+1
L,1 +DT,1�LE)

� �⇢a�t

R0
1✓1(⇢v�h1)

(Aq,1�LE +Bq,1 + Cq,1T
t+1
L,1 +Dq,1�H) (S3.6)
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In a similar approach to the previous section, this should be reduced to the form:

T t+1
L,1 = E1�LE + F1�H +G1 (S3.7)

and the expression re-arranged to isolate the factors E1, F1 and G1:

a) T t+1
L,1

✓
1�

✓
⇥p,a⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

◆
+

CT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)

+
Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆
= T t

L,1 + �LE

✓
� ⇥p,a⇢a�t

R1✓1(⇢v�h1)
DT,1 �

�⇢a�t

(⇢v�h1)R0
1✓1

Aq,1

◆

+ �H

✓
� ⇥p,a⇢a�t

R1✓1(⇢v�h1)
AT,1 �

�rhoa�t

(⇢v�h1)R0
1✓1

Dq,1

◆

+

✓
�⇢a�t�i

(⇢v�h1)R0
1✓1

+
⌘4R

down
SW �t

(⇢v�h1)✓1
+

⌘1R
down
LW �t

(⇢v�h1)✓1

+
⌘3�t

(⇢v�h1)✓1
� BT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)
� Bq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆

(S3.8)

Now, substituting for T t+1
a,2 in expression b):

b)
T t+1
a,1 � T t

a,1

�t
=

k1
(AT,2T

t+1
a,1 +BT,2 + CT,2(E2q

t+1
a,1 + F2T

t+1
a,1 +G2) +DT,2q

t+1
a,1 + T t+1

a,1 )

�z1�h1

�
✓

1

⇢a⇥p,a

◆
�H

�h1
+

T t+1
L,1 � T t+1

a,1

R1�h1
(S3.9)

b) T t+1
a,1

✓
1

�t
� k1AT,2

�z1�h1
� k1CT,2F2

�z1�h1
+

k1
�z1�h1

+
1

�h1R1

◆
=

T t
a,1

�t
+ qt+1

a,1

✓
k1CT,2E2 + k1DT,2

�z1�h1

◆
+

T t+1
L,1

✓
1

�h1R1

◆
+

✓
k1BT,2

�z1�h1
+

k1CT,2G2

�z1�h1

◆
�
✓

1

⇢a⇥p,a

◆
�H

✓
1

�h1

◆

(S3.10)

and for qt+1
a,2 in expression c):

23



c)
qt+1
a,1 � qta,1

�t
= k1

(Aq,2q
t+1
a,1 +Bq,2 + Cq,2(T

t+1
L,2 ) +Dq,2T

t+1
a,1 � qt+1

a,1 )

�z1�h1
=

�
✓

1

⇢a�

◆
�LE

�h1
+

1

�h1

↵T t+1
L,1 + �1 � qt+1

a,1

R0
1

(S3.11)

c)
qt+1
a,1 � qta,1

�t
= k1

(Aq,2q
t+1
a,1 +Bq,2 + Cq,2(E2q

t+1
a,1 + F2T

t+1
a,1 +G2) +Dq,2T

t+1
a,1 � qt+1

a,1 )

�z1�h1

�
✓

1

⇢a�

◆
�LE

�h1
+

1

�h1

(↵T t+1
L,1 + �1 � qt+1

a,1 )

R0
1

(S3.12)

c) qt+1
a,1

✓
1

�t
� k1Aq,2

�z1�h1
� k1Cq,2E2

�z1�h1
+

k1
�z1�h1

◆
=

qta,1
�t

+ T t+1
a,1

✓
Cq,2F2

�z1�h1
+

Dq,2

�z1�h1

◆
+ T t+1

L,1

✓
↵

�h1R0
1

◆

+

✓
k1Bq,2

�z1�h1
+

Cq,2G2

�z1�h1
+

�1
�h1R0

1

◆
� �LE

✓
1

�h1

◆

(S3.13)

We now isolate the terms in (S3.8):

a) T t+1
L,1 = E1�LE + F1�H +G1 (S3.14)

so we have:

E1 =

✓
� ⇥p,a⇢a�t

R1✓1(⇢v�h1)
DT,1 �

�⇢a�t

(⇢v�h1)R0
1✓1

Aq,1

◆
/

✓
1�

✓
⇥p,a⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

◆
+

CT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆

(S3.15)

F1 =

✓
� ⇥p,a⇢a�t

R1✓1(⇢v�h1)
AT,1 �

�⇢a�t

(⇢v�h1)R0
1✓

Dq,1

◆
/

✓
1�

✓
⇥p,a⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘2�t

(rhov�h1)✓1

◆
+

CT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆

(S3.16)
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and:

G1 =

✓
T t
L,1 +

�⇢a�t�i
(⇢v�h1)R0

1✓1
+

⌘4R
down
SW �t

(⇢v�h1)✓1
+

⌘1R
down
LW �t

(⇢v�h1✓1)

+
⌘3�t

(⇢v�h1)✓1
� BT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)
� Bq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆
/

✓
1�

✓
⇥p,a⇢a�t

(⇢v�h1)R1✓1
+

�⇢a�t↵i

(⇢v�h1)R0
1✓1

+
⌘2�t

(⇢v�h1)✓1

◆
+

CT,1⇥p,a⇢a�t

R1✓1(⇢v�h1)
+

Cq,1�⇢a�t

(⇢v�h1)R0
1✓1

◆

(S3.17)

We now seek to rearrange b) and c) into expressions of the form:

i) T t+1
a,1 X1 = X2 + �HX3 + qt+1

a,1 X4 + T t+1
L,1 X5 (S3.18)

and:

ii) qt+1
a,1 Y1 = Y2 + �LEY3 + T t+1

a,1 Y4 + T t+1
L,1 Y5 (S3.19)

The same process as in the previous section means that we can assign AT,1, BT,1, CT,1,
DT,1, Aq,1, Bq,1, Cq,1, Dq,1 exactly as previously (expressions (S2.64) to (S2.71)), and
define X1 to Y5 as follows:

X1 = 1��t

✓
k1AT,2

�z1�h1
� k1CT,2F2

�z1�h1
+

k1
�z1�h1

+
1

�h1R1

◆
(S3.20)

X2 = T t
a,1 +�t

✓
k1BT,2

�z1�h1
+

k1CT,2G2

�z1�h1

◆
(S3.21)

X3 = ��t

✓
1

�h

◆✓
1

⇢a⇥p,a

◆
(S3.22)

X4 = �t

✓
k1CT,2E2 + k1DT,2

�z1�h1

◆
(S3.23)
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X5 = �t

✓
1

�h1R1

◆
(S3.24)

Y1 = 1��t

✓
k1Aq,2

�z1�h1
� k1Cq,2E2

�z1�h1
+

1

�h1R0 +
k1

�z1�h1

◆
(S3.25)

Y2 = qta,1 +�t

✓
k1Bq,2

�z1�h1
+

k1Cq,2G2

�z1�h1
+

�1
�h1R0

1

◆
(S3.26)

Y3 = ��t

✓
1

�h1

◆✓
1

⇢a�

◆
(S3.27)

Y4 = �t

✓
k1Cq,2F2

�z1�h1
+

k1Dq,2

�z1�h1

◆
(S3.28)

Y5 = �t

✓
↵1

�h1R0
1

◆
(S3.29)

Now, for the lower boundary condition we consider the interaction between the lowest
atmospheric level (level 1) and the infinitesimal surface layer (level S). Fluxes of the
sensible and latent heat from this layer are given, respectively, by:

i) �H = �(⇢a⇥p,a)kS
T t+1
a,1 � T t+1

S

�zS
(S3.30)

ii) �LE = �(⇢a�)kS
qt+1
a,1 � qt+1

S

�zS
(S3.31)

i)�H =
⇢a⇥p,aks

�zs
(AT,1�H +BT,1 + CT,1T

t+1
L,1 +DT,1�LE � T t+1

S ) (S3.32)

ii)�LE =
(⇢a�)ks
�zs

(Aq,1�LE +Bq,1 + Cq,1T
t+1
L,1 +Dq,1�H � qt+1

S ) (S3.33)
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use a substitution:

T t+1
L,1 = E1�LE + F1�H +G1 (S3.34)

i) �H = �(⇢a⇥p,a)kS
�zS

(AT,1�H +BT,1 + CT,1(E1�LE + F1�H +G1)

+ DT,1�LE � T t+1
S ) (S3.35)

ii) �LE = �(⇢a�)kS
�zS

(Aq,1�LE +Bq,1 + Cq,1(E1�LE + F1�H +G1)

+ Dq,1�H � qt+1
S ) (S3.36)

i) �H(1 +
(⇢a⇥p,a)kS

�zS
(AT,1 + CT,1F1) = �(⇢a⇥p,a)kS

�zS
(BT,1 + CT,1G1 � T t+1

S )

� (⇢a⇥p,a)kS
�zS

(�LE(CT,1E1 +DT,1)) (S3.37)

ii) �LE(1 +
(⇢a�)kS
�zS

(Aq,1 + Cq,1E1)) = �(⇢a�)kS
�zS

(Bq,1 + Cq,1G1 � qt+1
S )

� (⇢a�)kS
�zS

(�H(Cq,1F1 +Dq,1)) (S3.38)

ii) �LE(1+
(⇢a�)kS
�zS

(Aq,1+Cq,1E1)) = �(⇢a�)kS
�zS

(Bq,1+Cq,1G1�(↵ST
t+1
S +�S))

� (⇢a�)kS
�zS

(�H(Cq,1F1 +Dq,1)) (S3.39)

and abbreviate to:

i) ⌦1�H = ⌦2 + ⌦3T
t+1
S + ⌦4�LE (S3.40)

ii) ⌦5�LE = ⌦6 + ⌦7T
t+1
S + ⌦8�H (S3.41)
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where:

⌦1 =

✓
1 +

(⇢a⇥p,a)kS
�zS

(AT,1 + CT,1F1)

◆
(S3.42)

⌦2 = �(⇢a⇥p,a)kS
�zS

(BT,1 + CT,1G1) (S3.43)

⌦3 =
⇢a⇥p,akS

�zS
(S3.44)

⌦4 = �(⇢a⇥p,akS)

�zS
(CT,1E1 +DT,1) (S3.45)

⌦5 =

✓
1 +

(⇢a�)kS
�zS

(Aq,1 + Cq,1E1)

◆
(S3.46)

⌦6 = �(⇢a�)kS
�zS

(Bq,1 + Cq,1G1 � �S) (S3.47)

⌦7 =
(⇢a�)kS
�zS

↵S (S3.48)

⌦8 = �(⇢a�)kS
�zS

(Cq,1F1 +Dq,1) (S3.49)

⇠1 =
⌦2 +

⌦4
⌦5

⌦6

⌦1 � ⌦4
⌦5

⌦8
(S3.50)

⇠2 =
⌦3 +

⌦4⌦7
⌦5

⌦1 � ⌦4
⌦5

⌦8
(S3.51)
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⇠3 =
⌦6 +

⌦8⌦2
⌦1

⌦5 � ⌦8⌦4
⌦1

(S3.52)

⇠4 =
⌦7 +

⌦8⌦3
⌦1

⌦5 � ⌦8⌦4
⌦1

(S3.53)

cross substitute:

i) ⌦1�H = ⌦2 + ⌦3T
t+1
S +

⌦4

⌦5
(⌦6 + ⌦7T

t+1
S + ⌦8�H)

(S3.54)

i) �H

✓
⌦1 �

⌦4

⌦5
⌦8

◆
=

✓
⌦2 +

⌦4

⌦5
⌦6

◆
+ T t+1

S

✓
⌦3 +

⌦4⌦7

⌦5

◆

(S3.55)

and:

ii) ⌦5�LE = ⌦6 + ⌦7T
t+1
S +

⌦8

⌦1
(⌦2 + ⌦3T

t+1
S + ⌦4�LE)

(S3.56)

ii) �LE

✓
⌦5 �

⌦8

⌦1
⌦4

◆
=

✓
⌦6 +

⌦8

⌦1
⌦2

◆
+ T t+1

S

✓
⌦7 +

⌦8⌦3

⌦1

◆

(S3.57)

rewrite:

i) �H = ⇠1 + ⇠2T
t+1
S (S3.58)

ii) �LE = ⇠3 + ⇠4T
t+1
S (S3.59)

T t+1
S = T t

S +
�t

✓0
((RLW +RSW + ⇠1 + ⇠2T

t+1
S + ⇠3 + ⇠4T

t+1
S )� Jsoil) (S3.60)

T t+1
S

✓
1� ⇠2

�t

✓0
� ⇠4

�t

✓0

◆
= T t

S +
�t

✓0
(RLW +RSW + ⇠1 + ⇠3 � Jsoil) (S3.61)
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and so:

T t+1
S =

T t
S + �t

✓0
(RLW +RSW + ⇠1 + ⇠3 � Jsoil)

(1� ⇠2
�t
✓0

� ⇠4
�t
✓0
)

(S3.62)

We therefore have an expression for the surface temperature T t+1
S , in terms of the down-

welling radiation that is incident on the surface (RLW and RSW ), the heat capacity of
the infinitesimal surface layer (✓0), the vegetation layer directly above the surface (⇠1,
⇠2, ⇠3 and ⇠4) and the heat from the soil system (Jsoil).

The radiation that is received by the lowermost level is provided by the radiation
scheme.

So to re-write the above equation including the factors ⌘1,S , ⌘2,S , ⌘3,S and ⌘4,S :

T t+1
S =

T t
S + �t

✓0
(⌘1,SRdown

LW + ⌘3,S + ⌘4,SR
down
SW + ⇠1 + ⇠3)� Jsoil

(1� �t
✓0
(⇠2 + ⇠4 + ⌘2,S))

(S3.63)
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S4 Notation list

symbol description

T t, T t+1 Temperature at the ’present’ and ’next’ timestep respectively (K)

qt, qt+1 Specific humidity at the ’present’ and ’next’ timestep (kg/kg)

TL
i Leaf temperature at level ’i’ (K)

qLi Leaf specific humidity at level ’i’ (kg/kg)

T a
i Atmospheric temperature at level ’i’ (K)

qai Atmospheric specific humidity at level ’i’ (kg/kg)

�T Interval between ’present’ and ’next’ timestep (s)

�zi Di↵erence in height between potential at level ’i’ and level ’i+1’ (m)

�hi Thickness of level ’i’ (m)

✏i Emissivity fraction at level ’i’ (-)

!i Leaf interception coe�cient at level ’i’ (-)

KLW ,KSW Canopy extinction coe�cient for longwave and shortwave, respectively (-)

⇢albi Albedo of vegetation layer ’i’ (-)

� Latent heat of vapourisation (J/kg)

⇢v, ⇢a Vegetation and atmospheric density, respectively (kg/m3)

� Stefan-Boltzmann constant (5.67 x 10�8 Wm�2K�4)

✓i Leaf layer heat capacity at level ’i’(J/ (kg K))

⇥p,a Specific heat capacity of air (J/(kg K))

Ri, R
0
i Stomatal resistance at level ’i’ for sensible and latent heat flux, respectively (s/m)

LEi, Hi Latent heat and sensible heat flux at level ’i’, respectively (W/m2)

LEtot, Htot Total latent heat and sensible heat flux at canopy top, respectively (W/m2)

RLW,i, RSW,i Long-wave and short wave radiation received by level ’i’, respectively (W/m2)

ki Di↵usivity coe�cient for level ’i’ (m2/s)

AT,i, BT,i, CT,i, DT,i Components for substituted equation i)

Aq,i, Bq,i, Cq,i, Dq,i Components for substituted equation ii)

Ei, Fi, Gi Components for substituted equation iii)

✓0 Heat capacity of the infinitesimal surface layer (J/(Km2))

Jsoil Heat flux from the sub-soil (W/m2)

�H ,�LE Respectively sensible and latent heat flux from the infinitesimal surface layer (W/m2)
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Supplementary material

Figure S1 : The analysis of Figure 3 is repeated for the four seasons of the year (every 5th 

measurement is shown in the background in a lighter colour).  Hourly average sensible heat 

flux (annual average) : a) spring ; b) summer ; c) autumn ; d) winter



Figure S2:  The analysis of Figure 3 repeated for the four seasons of the year (every 5th 

measurement is shown in the background in a lighter colour). hourly latent sensible heat flux 

(annual average) : a) spring ; b) summer ; c) autumn ; d) winter



Figure S3 – Fluxnet derived values of downwelling shortwave and longwave radiation that 

was used to force the model (shown for the intensive period from 6th to 12th of November 2006.


