Dear editor Lutz Gross,

Thank you for processing our manuscript. We have revised the manuscript according to the
comments by two reviewers and here replied each comment bellow. The original comments are in

plain text and the replies in italics. The main modifications are stated at last.

Information of our manuscript is as following:

Title: Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor
fields in the local north-oriented reference frame

Author(s): J. Du et al.

MS No.: gmd-2014-215

MS Type: Technical/Development/Evaluation Paper

Referee #1 by Prof. Mehdi Eshagh (Received and published: 10 December 2014)

A. General comments

The paper deals with non-singular formulation of the elements of the vector and tensor of the
Earth’s magnetic field similar to the works done by Petrovskaya and Vershkov (2006) and Eshagh
(2008, 2009). The main difference is related to the normalization factor as in the geomagnetism
the semi-normalised associated Legendre functions (ALFs) are used, but in the gravity field
studies the fully-normalised ones. The developments are very trivial, but can be useful. In addition,
the authors provide the non-singular formulae for the third-order derivatives of the geomagnetic
field. The paper is recommended for publication in Geosciences Model Development after a major
revision. The following general and specific comments are provided for improving the paper.

B. Specific comments

1. The authors are asked to write some words about the differences between the works done by
Petrovskaya and Vershkov (2006) and Eshagh (2008, 2009) and to explain why semi-normalised
ALFs are used for the geomagnetic field.

>Jinsong Du et al.: Thank you. In geomagnetic field studies, the Schmidt semi-normalized
associated Legendre functions (SSALFs) is usually used (e.g. Blakely, 1995; Langel and Hinze,
1998). As for the differences between the works done in gravity field studies by Petrovskaya and

o1-



Vershkov (2006) and Eshagh (2008, 2009), we have added the corresponding content in the end of
section 2.1 in the revised manuscript, which are as following: It should be stated that our work
differs from those presented by Petrovskaya and Vershkov (2006) and Eshagh (2009) in the
LNORF and also the associated Legendre functions (ALFs). Nonetheless, the following
mathematical derivations are carried out based on their studies in gravity field.

2. In the abstract, it is written higher-order derivatives, whilst the paper considers the third-order
ones. It should be revised.

>Jinsong Du et al.: Thank you for pointing this out. We have changed the ‘higher-order
derivatives’ to ‘third-order derivatives’.

3. According to the reference system theory, the local north-oriented frame is defined as a frame
whose z-axis is radially upward and the system is left handed. The equations that e.g. Eshagh
(2009) has used are based on such a frame. Please explain why this frame is defined differently in
the paper.

>Jinsong Du et al.: Thank you. For the geomagnetic fields modeling and their applications, it is
usual to utilize a local topocentric coordinate system (please see the page 113 in the chapter ‘5
Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation’ by Nils
Olsen et al. (2010) in ‘Handbook of Geomathematics’ edited by W. Freeden et al.). In the local
reference frame, the X axis points toward geographic North and the Y axis geographic East and
the Z axis vertically down. This reference frame is an orthogonal right-handed coordinate system.
We have added the corresponding reference to the revised manuscript in section 2.1.

4. The paper presents the mathematical derivations in 7 subsections, but the problem is that the
reader cannot find the connection with these mathematical proofs and the traditional expressions.
It is recommended that the authors start with the traditional expressions of the vector and tensor of
the geomagnetic field as well as the third-order derivatives, and discuss about their importance
and roles in geomagnetic studies, and in the mathematical derivations they refer to the traditional
formulae so that the reader can see the connections between the new and old formulae. For
example, see the Eshagh (2009) that you have referred to.

>Jinsong Du et al.: Thank you very much. According to your suggestion, we have adjusted this
part and stated the connection with the studies by Petrovskaya and Vershkov (2006) and Eshagh
(2009) in the revised manuscript. Based on these connections, our mathematical derivations are
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clearer than those in the discussion paper.

5. The appendix repeats the things that have been already presented in the paper by Eshagh (2009).
Please remove it! Those coefficients related to the third-order derivatives can simply be moved
into the text.

>Jinsong Du et al.: Thank you. In fact, because of the differences in the local-north-oriented
reference frame and also the normalized associated Legendre functions, some coefficients in the
Appendix are different with those presented in the paper by Eshagh (2008, 2009). Therefore, we
have added the coefficients into the text in the revised manuscript.

6. The purpose of the numerical investigation is not clear. If the goal is just to present the maps of
the vector and tensor quantities based on the new formulae, then what will be the role of
considering two geomagnetic models? One of them should be enough, otherwise the author should
discuss about the discrepancies between the models. In addition, the maps of the third-order
derivatives are missing, and this could be a good contribution, which the paper deals with
improperly.

>Jinsong Du et al.: Thank you for your suggestion. The two models are different. The one is the
core field, which is dominated by the spherical harmonic degrees/ovders from 1 to 12~20. Another
one is the lithospheric field, which is dominated by the spherical harmonic degrees/orders higher
than ~16. Originally, we want to use these two models to test the correctness of the formulae in
the full range of the spherical harmonic degrees/orders. In the revised manuscript, we have used
only the GRIMM L120v0.0 (Lesur et al., 2013) with degrees and orders of 16~90 to illustrate the
purpose. At the same time, a core field model with spherical harmonic degrees/ovders 1~15 is also
used to test and the results not shown here indicate the correctness of the formulae in the full
range of the spherical harmonic degrees/orders, where the computational stability of the Legendre
function with ultrahigh-order is not considered. Meanwhile, in the revised manuscript, we only
show the results near the two poles. The third-order derivatives are also presented aiming to
further interpretations of the lithospheric magnetic field models in the future.

C. Technical comments

1. All abbreviations should be defined properly in the introduction even if they are well known
and they should be given some reference, e.g. ESA, GOCE, CHAMP, SAC-C, ST-5, Orsted...
>Jinsong Du et al.: We have defined all abbreviations in the revised manuscript or added the

_3-



corresponding references.

2. The abbreviation ‘SHA’ has been defined but never used. Please remove it!

>Jinsong Du et al.: Thank you for pointing out this abbreviation and we have removed it.

3. In Section 2, above Eq. (1), it is written that ‘... at point P’ whilst P will be introduced later as
the ALF. Simply write any point with the geocentric distance 7, co-latitude € and longitude ¢. The
same holds for the text above Eq. (2a).

>Jinsong Du et al.: We have added some corresponding descriptions about the P(r,0,p) when
appearing first time in the text.

4. Below Eq. (44), the abbreviation SH has not been defined already. Please write the full name!
>Jinsong Du et al.: We have changed this abbreviation and used its full name.

5. The sentence above ‘2-derivation of ...” write: ‘the Kronecker delta’.

>Jinsong Du et al.: Thank you for pointing this out and we have corrected it.

6. The article ‘the’ should not be used when an equation is referred by its number. For example,
write: Eq. (1) and NOT ‘the Eq. (1)’. The same holds for ‘Lemma 3’.

>Jinsong Du et al.: We have removed the corresponding expression ‘the’in the revised manuscript

and thank you.

Referee #2 by Anonymous Referee #2 (Received and published: 8 April 2015)

This paper provides new expressions for the gradient, the double-gradient, and some elements of
the triple-gradient tensors that are stable at the poles in the local-north frame. Calculations of the
gradient and double-gradient are provided for two field models. Unless one is performing a global
analysis that includes data at or very near the poles, then I see the impact of this paper as limited.
However, the paper still provides a useful alternative to the standard gradient and double-gradient
formulae and should be published, but with more emphasis on comparison with the standard
formulae. Too much effort is spent talking about the usefulness of gradients. This is not a paper
about convincing people to use gradients, and it is a paper about using new, better formulae than
the standard ones.

General comments

1. Given that the expressions are stable at the poles, are there any other advantages in using them?
I ask this because, as stated earlier, unless one is doing a global analysis that includes data at the
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poles, can’t you just rotate the underlying spherical coordinate system such that the pole is no
longer in the area of interest, which means that you can use the standard expressions? Are the new
expressions less computationally intensive? Do they require less storage?

>Jinsong Du et al.: Thank you very much. Our method has two main features. The one is the
non-singularity at the poles. Another one is that there is no derivative of the Legendre function.
Therefore, recursive calculation by the Clenshaw or Horner algorithms can be avoided. The
computational efficiency can be improved and the storage is less required. Please note that we
don’t discuss the calculation of the Legendre function. Your suggested rotation is indeed correct
and can be performed. However, compared with the rotation approach, our method doesn’t need
additional computation and thus reduce the complexity and also the computing time. According to
this comment, we have added a sentence in the revised manuscript as following: A rotation of the
coordinate system is always possible to avoid the polar singularity, but this solution is very
ineffective for large data sets.

2. Even in the case where I want to compute the gradient and double-gradient at the poles, can’t I
rotate the coordinate system around the polar axis to eliminate the problems with 1/sin (theta)? If
$0, why use your new expressions?

>Jinsong Du et al.: Thank you. These questions are very similar with those in (1) above. We have
emphasized the advantages of our method compared with the standard ones in the last paragraph
of section 3 in the revised manuscript, which are as following: Compared with the traditional
formulae in section 2.1, there are two advantages of our derived formulae in section 2.3. On the
one hand, the traditional derivatives up to second-order are removed in the new formulae;
therefore, the relatively complicated method by the Horner's recursive algorithm (Holmes and
Featherstone, 2002b) can be avoided. On the other hand, the singular terms of 1/sin0 and 1/ sin’0
are removed in the new formulae; consequently, the scale factor of e.g. 107" (Holmes and
Featherstone, 2002a,b) is not required when the computing point approaches to the poles and the
magnetic fields at the poles can also be calculated in the defined reference frame. In fact, there are
differences between the results by our expressions and those by the Horner's rvecursive algorithm,
for instance, if using the same model and the parameters as those in Fig. 1 and Fig. 2, the
differences of the three components By, By, and B are at a level of [-3 <107 nT : +3x10™" n1].

3. Tables 1 and 2 and Figures 1 and 2 are fairly useless given that you should be showing the
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superiority of your new expressions over the standards. Therefore, you should have similar tables
and figures for the standard expressions, being sure to show the polar neighborhoods in which the
standard expressions begin to degrade. Furthermore, why have you not included polar projections
in Figures 1 and 2 since this is the most important area for comparison? Also, you do not need to
show two field models, just show either Figure 1 or 2.

>Jinsong Du et al.: Thank you for your valuable suggestion. Our original purpose of using two
models is to test the validity for the full range of the degrees and orders. In the revised manuscript,
we have used only the GRIMM L1120 v0.0 (Lesur et al., 2013) with degrees and orders of 16~90
to illustrate the purpose. At the same time, a core field model with spherical harmonic
degrees/orders 1~15 is also used to test and the results not shown here indicate the correctness of
the formulae in the full range of the spherical harmonic degrees/orders, where the computational
stability of the Legendre function with ultrahigh-orvder is not considered. Meanwhile, in the
revised manuscript, we only show the results near the two poles. The third-order derivatives are
also presented aiming to further interpretations of the lithospheric magnetic field models in the
future.

4. At the poles you (arbitrarily) define x_p and y_p to be aligned along some meridians and you
show the smoothness of the functions across the poles when approached along these meridians in
Figure 3. However, what happens if you approach the poles from an arbitrary meridian? Are the
functions still smooth?

>Jinsong Du et al.: Thank you. As shown in Figure 3 in the revised manuscript, the magnetic V,
B, and B..components at the poles are independent of the direction of the xpand yp axes and thus
smooth cross the poles. However, while changing with the direction of the xpand yp axes at the
poles, the B,, B,, B.., By., B.. and B,.. components have the periods of 360° and the B, B, B,,,
By, B.. and B,,. components have the periods of 180°. These variations can be accurately
described by sine or cosine function and the differences among these magnetic effects are
magnitude, period and initial phase. Therefore, By, By, By, By, By, By, Byy, Bxzz, Byzz Bz, Byy- and

B,,. components are not smooth cross the poles.

Main modifications
We have revised the manuscript according to the comments by two reviewers. The small
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modifications on the grammars and English expressions are shown in the revised manuscript. The
main modifications are as following:

1. We have defined all abbreviations in the revised manuscript or added the corresponding
references, such as ESA, GOCE, CHAMP, SAC-C, ST-5, Orsted.

2. We have added four references, which are Sabaka et al. (2015), Kotsiaros et al. (2015), Olsen et
al. (2015) and Olsen et al. (2010).

3. According to the Reviewer 2, we have stated why we don’t use the rotation approach in the
lines 61~63 in the revised manuscript.

4. According to the Reviewer 1, we have stated the connection with the studies by Petrovskaya
and Vershkov (2006) and Eshagh (2009) in the end of the section 2.1 in the revised manuscript.

5. According to the Reviewer 1, we have removed the Appendix A. The Appendix B has been
removed in to the last paragraph of section 4.

6. According to the two reviewers, we have used only the GRIMM_L120 v0.0 (Lesur et al., 2013)
with degrees and orders of 16~90 to illustrate the purpose. At the same time, a core field model
with spherical harmonic degrees/orders 1~15 is also used to test and the results not shown here
indicate the correctness of the formulae in the full range of the spherical harmonic degrees/orders,
where the computational stability of the Legendre function with ultrahigh-order is not considered.
Meanwhile, in the revised manuscript, we only show the results near the two poles. The
third-order derivatives are also presented aiming to further interpretations of the lithospheric
magnetic field models in the future.

7. According to the Reviewer 2, we have emphasized the advantages of our method compared
with the standard ones in the last paragraph of section 3 in the revised manuscript.

8. Considering the contents, the discussion part has been removed in to section 3 in the revised

manuscript.

Best regards,
Jinsong Du et al.

5 May 2015
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Abstract

General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the

potential field in local north-oriented reference frame. Using our newly derived formulae, the

magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of

the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric

corresponding results at the poles are discussed and the validity of the derived formulas is verified

using the Laplace equation of the magnetic potential field.

1 Introduction

Compared to the magnetic vector and scalar measurements, magnetic gradients lead to more
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estimate of their east-west gradients (e.g. Olsen et al., 2004, 2015; Friis-Christensen et al., 2006).

Kotsiaros and Olsen (2012, 2014) proposed to recover the lithospheric magnetic field through

Magnetic Space Gradiometry in the same way that has been done for modeling the gravitational

steady-state Ocean Circulation Explorer (GOCE). Purucker et al. (2005, 2007), Sabaka et al. (2015)

and Kotsiaros et al. (2015) also reported efforts to model the lithospheric magnetic field using

magnetic gradient information from the g

gradients data, the modelled lithospheric magnetic anomaly field has enhanced shorter wavelength

content and has a much higher quality compared to models built from vector field data. This is

because the gradients data can remove the highly time-dependant contributions of the

magnetosphere and ionosphere that are correlated between two side-by-side satellites.

The order-2 magnetic gradient tensor consists of spatial derivatives highlighting certain

structures of the magnetic field (e.g. Schmidt and Clark, 2000, 2006). It can be used to detect the

hidden and small-scale magnetized sources (e.g. Pedersen and Rasmussen, 1990; Harrison and

Southam, 1991) and to investigate the orientation of the lineated magnetic anomalies (e.g. Blakely

and Simpson, 1986). Quantitative magnetic interpretation methods such as the analytic signal,

edge detection, spatial derivatives, Euler deconvolution, and transforms, all set in Cartesian

coordinate system (e.g. Blakely, 1995; Purucker and Whaler, 2007; Taylor et al., 2014) also

require calculating the higher-order derivatives of the magnetic anomaly field and need to be

extended to regional and global scales to handle the curvature of the Earth and other planets. Ravat

et al. (2002) and Ravat (2011) utilized the analytic signal method and the total gradient to interpret

[ MEREIAA . GOCE
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the satellite-altitude magnetic anomaly data. Therefore, both the magnetic field modelling and also

the geological interpretations require the calculation for the partial derivatives of the magnetic

[ BRI NZS:  in form of SH

MEREIIZS : lithospheric

fields of the Earth and other terrestrial planets (e.g. Maus et al., 2008; Langlais et al., 2009;

Thébault et al., 2010, Finlay et al., 2010; Lesur et al., 2013, Sabaka et al., 2013; Olsen et al., 2014).

Series of spherical harmonic functions themselves made of Schmidt semi-normalized associated

Legendre functions (SSALFs) (e.g. Blakely, 1995; Langel and Hinze, 1998), are fitted by

least-squares to magnetic measurements, giving the spherical harmonic coefficients (i.e. the

Gaussian coefficients) defining the model. Kotsiaros and Olsen (2012, 2014) presented the MV

and the MGT using a spherical harmonic representation and, of course, their expressions are

singular as they approach the poles. Even if there are satellite data gaps around the poles, it is

advisable to use non-singular spherical harmonic expressions for the MV and the MGT in case

airborne or shipborne magnetic data are utilized (e.g. Golynsky et al., 2013; Maus, 2010)._A

rotation of the coordinate system is always possible to avoid the polar singularity, but this solution

is very ineffective for large data sets.

In this paper, following Petrovskaya and Vershkov (2006) and Eshagh (2008, 2009) for the

gravitational gradient tensor in the local north oriented, orbital reference and geocentric spherical

HHBR B PIZS : local-north-orie
nted reference frame (LNORF),

(BRmAE: higher |
"""""""""""""""""""""""""""""""""""""" [ BRI PIZ: anomaly ]
[ mmerm: or |

reference frame (LNORF) are presented. In the next section, the traditional expressions of the MV

and the MGT are first stated, then some necessary propositions are proved and at last new
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non-singular expressions are derived. In section 3, the new formulae are tested using the global

lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) and compared

applications are also discussed.

2 Methodology

In this section, the traditional expressions of MV and MGT are presented, and their numerical

problems are stated. Then based on g

given.

2.1 Traditional expressions

The scalar potential V" of the Earth’s magnetic field in a source-free region can be expanded in the

truncated series of spherical harmonics at the point P(r, 6, ¢) with the geocentric distance r,

co-latitude 0 and longitude ¢ (e.g. Backus et al., 1996):

1+1

L.l 4 N
V(r,0,p)= az Z(—) (gl’” cosme@ + k" sin mqo)B’” (cos 9)

=im=0 T (1)

>

‘| WIBREIAZ:  and the main

magnetic field model of

IGRF11 (Finlay et al., 2010)

| mse A further

applications are discussed and

[ W aso

| msr: e

< BB : 57, Oand g are

where a=6371.2 km is the radius of the Earth's magnetic reference sphere; B"(cos 9) (or FN’Z”’
v .

degree; g/ and A" are the geomagnetic harmonic coefficients describing internal sources of

the Earth.

If considered in the LNORF {x,y,z} (e.g. Olsen et al., 2010), where z-axis points downward in

geocentric radial direction, x-axis points to the north, and y-axis towards the east (that is, a

right-handed system). At the poles, we define that the x-axis points to the meridian of 180° E (or

geocentric radius, co-latitude

and longitude, respectively

[ W trsa: si
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180° W)_at north pole and of 0° at south pole, which will be discussed in section 3. Therefore, the

three components of the MV can be expressed as:

1 0
BX(I",Q,Q))Z—;@V(F,Q,Q))

1+2

L 1 -
ZZZ(E) (glm cos me + h" sinm@{;el’,m(cose)}
r

I=1 m=0 ,
B, (r,0,0) =— 1 iV(r,@,(p)
rsin@ o
L 1 a 1+2 1 _
= ZZ(*) m(g,’" sinme@ — h;" cos mqo{,Pl’" (cos 0)}
=l m=0 T sin & ,
0

BZ(I",Q,(O) = —@V(I’,Q,(D)

+2

1
=- I+ 1)(%) (gl’" cosme + k" sin mqo)lN’l’” (cos @)

L 1
=1 m=0
The MGT can be written as (e.g. Kotsiaros and Olsen, 2012)

B, B, B_.) (0B, /ox oB,/dy 0B,léz

VB=|B, B, B, |=|0B,lox 0B, /oy 0B,/éz
B. B, B.| \B./ox 0B./dy 0B./éz

>

where nine elements are expressed respectively as:
a m m .
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1
a
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degrees and orders by using the Holmes and Featherstone (2002a) scheme. However, there exist
the singular terms of 1/sin@ and 1/ sin®0 in Eq. (2b), Eq. (4b), Eq. (4d) and Eq. (4e) when the
computing point approaches to the poles. Besides, some expressions contain the terms of first- and

second-order derivatives of SSALFs, such as Eq. (2a) and Eq. (4a) ~ (4d). Nevertheless, the

relatively complicated and thus we want to use alternative expressions to avoid the singular terms

and_also the partial derivatives of SSALFs. It should be stated that our work differs from those

presented by Petrovskaya and Vershkov (2006) and Eshagh (2009) in the LNORF and also the

associated Legendre functions (ALFs). Nonetheless, the following mathematical derivations are

carried out based on their studies in gravity field.

2.2 Mathematical derivations

To deal with the singular terms and first- and second-order derivatives of the SSALFs, some
useful mathematical derivations are introduced and proved in the following.

1 - Derivation of 8]31"’ 100

[ mmawz: sn
(

The expressions for /. B, and B.. can be calculated stably even for very high spherical harmonic

R R R

)
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, (5)
and the relation between the ALFs and the SSALFs as
B" =.JC,(1—-m)/(l+m)R" ©
thus the first-order derivative of the SSALFs can be deduced as:
OB" 100 =a, B" + b B )
a,’m:0.5\/l+m\/l—m+1\/Cm/CWI ’ (7b)
qm:_05Jﬁ+m+1JanJqMc;ﬂ’ 79
1Lm=0
where C,, =2-9,, = and ¢ is the Kronecker delta.
’ 2.m#0 . .
2 - Derivation of 82131"’ /06
According to Eq. (23) in Eshagh (2008)as
*P" 190> =0.25(1 + m)l—m+ 1)l +m—1){ —m+2)P">
—0.25[(L + m)l =m+1)+ (I = m)l + m+1)|B"
m+2
+0.25P ’ 3)
the second-order derivative of the SSALFs can be written as:
azﬁzm 160° :C/,mﬁ/”kz +d/,mP/m +e/,mP/m+2’ (9a)
gm:ozaﬁ+mdﬁ+m—1qun+2dﬁ—m+1JqMc;4’ (©b)
d,, ==025[(l+m)l —m+1)+( —m)l +m+1)] 69
qﬂ:0%W+m+%ﬁﬂwﬂﬂ—mﬂ—m4¢@/gﬂ' ©d)
3 - Derivation of B" /sin@:
Using Bq. (2.1.42) inIIk (1983)
P /sin@ =05+ m)l+m—1)B"" + B [/ m m=1 (10)

B e

[ mmaE:

[ MK AZ:  function
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143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

]3,'” /sin@ = f/,mP/inf] + g/,mP/inlﬂ m=1

frm =051+ ml+m=1/C,/C,  /m , 1

> >

2n =051=mI-m-1/C,/C,../m , >

>

4-Danmnm’Em/ﬁn29:

P"/sin? @ ={{+m)l+m -1\ -m+1\—m+2)/(m-1)B""?

+[(7+m)i+m=1)/(m=1)+ (I = m)l = m—=1)/(m +1)]P"

+1/(m+1)P""2}/(4m) m>2

Dm 2 Bm-2 Bm Dm+2
B"/sin"0=h , B"""+k B" +n,F m>2

>

By =025Vl +mNl+m =1l -m+Wl-m+2,/C,/C,_, [mm=-1)] ,, =1

ky, = 0.25[(7 + m)l +m=1)/(m=1)+( —m)l —m=1)/(m+1)}/m >,

> >

(11a)

(11b)

(11c)

(13b)

(13c)

n, =0.25\/1—m\/l—m—lx/l+m+2\/l+m+1\/Cm/Cm+2 /[m(m+1)]’m21' (13d)

5 - Derivation of dB" /(sin 606)):

0P /(sin600)=0.25{1 + m)l + m—1)I +m - 2)I - m+1)/(m—1)P"}>
+[(7+m¥ = m+1)/(m=1)=( +m+ 1) +m)/(m+1)]P",

—1/(m+1)B m>2

aﬁl’m /(Sin 080) = Ol,mﬁi’kz + q/,mﬁ/’inl + x/,mﬁ/’in;r2 m > 2

0w =025+ mAl+m—Wl+m-2J1-m+1/C,/C, , [(m=1) ;>

>

G =025 —ml+m[(l =m+1)/(m =)~ +m+1)/(m+1)] 5

> >

/(m+1)

%, =025+ m+ IWI=mI=m-1I-m=-2.JC, I C

m+2

6 - Derivation of dB" /(sin 606)— B" cos 0/sin* 6 :

e

| mmtrE: e
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163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

According to Petrovskaya and Vershkov (2006) and Eshagh (2009), we can write

OP" /(sin6060)— P" cos @ /sin’ O
= 0.5[(m — 1)1+ m¥l = m+1)B" /sin@ — (m+1)P" sin@)/m 1 >1

(16)
and using Eq. (36) in Eshagh (2008), we can obtain
P /sin@=0.5|(1—m+2)l—m+3)PI + P (m—1) pys2 (172)
B /sin = 051 —m)i — m+ 1) + B2 |/(m +1) (17b)

OB" /(sin600)— B" cos O /sin> O
=0.25[(1+ m)I —m+ 1)1 —m+2)( - m+3)B">

1+1
+2m(l —m+1) ’”—P’””]/m m>1

1+1 1+1

OB" /(sin 690)— P" cos 6 /sin’ O
=0.25[Jz+mJ1—m+1J1—m+2Jz—m+3\/cm/cm,21§;";2
+2m\—m+ 11+ m+1B"

+1

AT mA N 2T m 3= mC I C B ym sy "

7 - Derivation of [(! +1)sin? 08" + m*B" — sin 0 cos 80P /80 |/sin’ 0 :

Based on Lemma 3 in Eshagh (2009)as
sin 0 cos 0OF" /00 = mP" + (I +1)sin’ OF" —sin 0" 20)
we can derive
1+ 1)sin> 68" + m* P —sin @ cos 08P / 00|/sin’ 0
= m(m—1)P" /sin® @ + P"" /sin 6 ' o1

According to,Eq. (10), we canwrite
B /sin@ = 0.5+ m+2)1 +m+1)B" + B [/(m+1) @)
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179

180

181

182

183

184

185

186

187

188

189

190

191

[(Z +1)sin”@P" + m*B" —sin 6 cos 0" /89]/sm 0
=0.25(1+m)(z+m—1)(z—m+1)(z—m+z)13m ?
+0.25[(1+ m)I +m—=1)+ (I —=m)l —m—1)m =1)/(m +1)
+2(0+m+2)1 +m+1)/(m+1)|P" +0.258"2

(23)
And combing with Eq. (6), we canderive
[(1+1)sm OP" + m*P" —sin @ cos GOP" /89]/sm 0
=025V +m~NI+m —1J1 ~m+1l-m+2,C,/C, ,B">
+0.25[(+m)I +m—=1)+ (= m)l —m—1)m —1)/(m +1)
+2(0+m+2)1 +m+1)/(m +1)|P"
+025JI+m+1NI+m+ 2l -myl-m-1JC,/C,,B""* 24

2.3 New expressions

L 1 1+2 ~ ~

B = ZZ(E) (gl’" cosme + h" sinme aiml’,m" +b1’mel’"”)
=tm=0 T , (25a)
L 1 a 1+2

B, =ZZ(—) (g, sinme —h" cosmo \a;, P"" +b) P"”')
I=tm=0 T , (25b)
L 1 a 1+2

B. =ZZ(—) (g, cosme + " sinme@ almP’")
i=tm=0 T , (25¢)
1 L 1 a 1+3

B, =—ZZ(—) (g, cosme + h)" sinme\a;", ‘P 2+b“P’” +c mP”’”)
A 5im=o ¥ ) (26a)
1 L 1 a 1+3

B, :*ZZ(*) (gzm sinme — k" cosmg a m})ljrnl ? +bw szrnl ), P;i"fz)

AT T > (26Db)

1 L 1 a 1+3 - ~

B.==Y>*) (g cosmp+h"sinmp)a;’, B +biffnpzm+')
aisim=0 T , (26¢)
1 L 1 a 1+3

B,==>> () (g, cosmo + h" smm(oXaW B" +b2B" +c mP”’”)

Toaf r

, (26d)

- 11 -

[ e

[ mmanE: e

o e e




192

193

194

195

196

197

198

199

200

201

202
203

204

205

1+3

1 L . Sm— Dm+
B, = ;Zz(g) (gzm sinme — h" cos m@xalyjnpli"l L+ B I)
I=1 m=0
1 L a 1+3 -
B = —z Z(—) (gl’” cosmA + k" sin mq))ame,m
a’'sim=0 T

where the corresponding coefficients of the SSALFs are given as following:

a, =05Vl+mi-m+1|C,/C,
b, ==0.5Jl+m+1Jl-m,/C,/C,.,

(26¢)

(261)

i P

A BABEEK

A
C(wmRE: siE GEE)

(79 - (BRAR: s O

(g s GeE)

a), =05Jl+myl+m-1JC,/C, | ,
’ . 27b) [ BRBEEX
bl),}m = 05\/1 - m\/l —m-— 1\/C'm /Cm+l { %%iﬁﬁ‘] YLE (SE[H)
N ‘ B N TS )
aj, = +1) Q%) [(grBe@R

a’ =025Vl +ml+m—11-m+2JI-m+1,/C,/C,_,
b = 0.25[( +mWl —m+ 1)+ (= m)l +m+1)]+ (I +1)
et =-025V1+ m+ 231+ m+ IWI-m\I-m-1,[C,/C,

7d)

a =025Vl +m\l—m+1I-m+2-m+3,/C,/C, ,
b2 =—05mVl—m+1T+m+1
e =025+ m+1NI+m+2\l+m+3JI-m,[C,/C,.,

Q79

a5, =05(+2N1+mNI-m+1)C,/C, , =(+2)a,
by, ==05(+ 2N+ m+1l-m,\[C,/C,., =(+2)b

a?, =025+ ml+m—1NI—m+1I-m+2,/C,/C, ,

b2 = 0.25[(1+ mYl +m—1)+ (I = m)l = m—=1)m —1)/(m +1)
+ 20 +m+2)1+m+1)/(m+1)]

¢ =025\ 1+ m+ 1N+ m+ 24 1—-ml-m-1,/C,/C, ,

(279 i

b, =05(1+ 2N =m1-m~1,C,/C,. = (1+2)

{ag; =0.5(+2N1+myl+m-1,/C,/C, , =(I+2)a],

Q1) -

S (s nE e

{ WRRM: Y08 CLE)

(R s0E ER)

[ BRBEFX

(R E GEE)

~(mam: oE GeE)

(BRBEEX

(R v0E CGEH)

L e IS ACT)

O 0 U U U L

[ BRBEER

(R 0E R

(7p (R siE i)

R E TS )

HABEFER

AR T GERED
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(R E R
(

o A U

(R g0 GER)
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A
(ke siE GeE)

oy iR s CeE)

RE

(g E CER)

Furthermore, some other higher-order partial derivatives and their transforms are usually used

to image geologic boundaries in magnetic prospecting, such as the higher-order enhanced analytic
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206 | signal (e.g. Hsu et al., 1996). Therefore, we also give the third-order partial derivatives of the
e MERHIZR : spherical
207 | ymagnetic potential field as; | harmonics
. anx ) asz ) asz [ﬁ}ﬂl@ﬁﬁl’\]ﬁ following
0z ox0z 0z0x
|l g™ _ | MBREIPIA: 27a
208 - —22 Z =) (gl’” cosme + k" sinme al’f’ij,’"’z + bl‘f‘ijl’" + cl“zP””z)
a Simeo T ) (28a)
B OB, 0B, B, &*B, O'B, asz
"% "o oyor Gty oxir | dodx /| MERRIPYE: 27
1 L ] a 1+4 /
209 jz Z(*) (gz sinme — k" cosme QJYZETI ’ bl‘(rnzpljrnl + C;:nzpzjrnlﬂ)
(e —— , @28b)
B, =Ba_ 0B 0B 0B _05. ‘ I 0
oz 0z  0z° Ox0z 0z0x w e
1 L a 1+4 - - ’
210 —22 Z(—) (gl’" cosme+h"sinmo \a;ZB"" + b= R )
= : (28¢) -
2 _By_ o’B, 0°B, ‘
"o dyez ey [ MERENE: 27d
1 L ] a 1+4 /
211 :—ZZZ(—) (gl cosm@ + h" sinme aZWZP’” 2 bWZP’” +cWZP"”2)
a4 i=tm=0 T , (28d)
s _0B. 0B, o'B, 9*B. 9°B. ‘
=""5, T & o opor | ozdy /| MBHNE: 27e
1 L a 1+4 - - !
212 =SS @) (g sinma - cosmANa}= B + b= )
a ‘Dm0 T , 28¢)
o'B.
B.=—% | MR 27F
Oz
1 L a 1+4 ) ’
213 =52 (g;” cosme + h/" sin m(p)a,”,f,P,m
a mim=o T , @s8f)
""""" L MR AZ : in Appendix A
214 | where the corresponding coefficients of the SSALFs are presented as;, and can be computed once for
| all points.
aly = (1 +3)af;, | mmmr:
by = (1437, [EIEEEE
) = =(1+3), . { WA K GEE)
ST . (292) (iR s (EE)

o U
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217

218

219

220

221

222

223

224

225

226

227

228

229

230

a” =(1+3)a?,
b= +3)7,
i =(+3)i, (296)
% =0.5(1+2)1 +3NI+miI-m+1)C,/C,,

=l +2) 0 +3)a’, = (1 +3)a”,
b= =050+ 2)1 +3Wl+m+1NI-m,\[C,/C, .,

=(1+2)+3)p7, = (1 +3)b7, , (29)
a)y =(I+3)a,
b = (Z + 3)b1y,fn
iy =+3), 290
'z =050+ 2 +3WI+mVl+m—1,/C,/C,

=(1+2)1+3)a}, = (1 +3)a, (29)

. (S

b= =051 +2 I +3NI-mN1-m-1JC,/C,.,

= (14201 +3)), =(1+3),
0ty =1+ 200 +3)= (1437, = (2004 3),. 290

«

In this way, we avoid computing recursively the SSALFs with singular terms, their first- and

conventional form of SSALF that if m < 0, then ]31’" = (— ly’"‘ﬁl""‘ and if m > [, then ]31”’ =0.

3 Numerical investigation_and discussion

magnetic potential, vector and its gradients and also the third-order partial derivatives of the

magnetic potential field on a grid with 0.125°x0.125° cell size at the altitude of 300 km relative to

the Earth’s magnetic reference sphere using the lithospheric magnetic field model GRIMM_L120

14 -

- MR HIAZS : These new

,~{%mﬁm:%w;ﬁ@%

1

| BRERIAZS : respectively
with

relations do not suffer from the

singular terms and don’t

contain the derivatives.

x{w%mW§:m ]
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232

233

234

235

236

237

238

239
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241

242

243

244

245

246

247

248

249

250

251

252

HHIBR B P2 : magnetic field
/| models...: (I) the lithospheric

| magnetic field model
GRIMM_L120 (version 0.0)
(..., ...); (Il) the main
magnetic field model IGRF11
| (Finlay et al., 2010) at the
2. respectively, The corresponding statistics around the north and south poles are, respectively, // / epoch of

// | ]2005.00...global ...and
presented in Table 1_and Table 2, A simple test is that the MGT meets the Laplace's equation of the | / the ...and the main field ...

and Fig. 2, respective[‘*'—u[‘ﬁ

potential field, that is, the trace of the MGT should be equal to zero. Our numerical results show /

that the amplitudes of By t+B,,+B.. in the north and south polar regions are in the range of q/
R T

[:2.012x10" pT/m : 26x10"7 pT/m Tesl - T=10" aT), | MBRKKE: 8.0 [ﬁ

N e (. 137

respectively. The relative error is almost equal the machine accuracy. Therefore, this feature \' MRz +pT a
. : . 1

(EwRAN: Frmis )
MBRBIRE: “pT. . 1pT

. . . /m...% "n../m=1n
that the MGT and also the third-order partial derivatives of the magnetic potential field enhanc ... [5]

proves the validity of our derived formulae. In addition, as shown in Fig. 1 and Fig. 2, it is obvious

the lineation and contacts_at the satellite altitude. It also reveals some small-scale anomalies,

which is very helpful for the further geological interpretation. A core field model with spherical

R . 6]

harmonic degrees/orders 1~15 is also used to test and the results not shown here indicate the .

correctness of the formulae jn the full range of the spherical harmonic degrees/orders, where the

computational stability of the Legendre function with ultrahigh-order is not considered. [ | BRI Fig.2
" | illustrates that the gradients of

JFurthermore, the computed magnetic fields are smooth near the poles and don’t have the the main field are very smooth

but the amplitudes are still
singularities but some components have the dependence on the direction of reference frame at the very high.

[%%ﬁw;%ﬂ:ﬁﬁ% }
o1 EF

BRI 3.... ... The ...

and... (T
- (wkRm .. 1)
yp axes at the poles, the B,, B,, B, B,.. B..;and B,.. components have a period of 360° and the B,,, ) [ BRI : . However ]

(R Eb e
By By Bix-. By and B,,. components have a period of 180°. These variations can be accurately /[ T B P

S SO T)
U vk dEbR
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253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

o U

(. wi: b
described by a sine or cosine function relating to the horizontal rotation of the reference frame and .~ (HHRI: Ffh: Irfift
the differences among these magnetic effects are magnitude, period and initial phase. Therefore,

s N |
By By Biw B Bew BoyaByys By B, B, B, and B, components are not smooth at/cross the I A
s N |
. . . . . i i
poles. Therefore, to determine the single value at the poles_(Fig. 1 and Fig. 2) we specially define iﬁg il
DAk AR
that the x-axis points to the meridian of 180° E (or 180° W) at north pole and of 0° at south pol I P
at the x-axis points to the meridian o (or )_at north pole and of 0° at south pole, otk
s N |
that is, the LNORF moving from Greenwich meridian to the poles.
Compared with the traditional formulae in section 2.1, there are two advantages of our derived
formulae in section 2.3. On the one hand, the traditional derivatives up to second-order are
removed in the new formulae; therefore, the relatively complicated method by the Horner’s
recursive algorithm (Holmes and Featherstone, 2002b) can be avoided. On the other hand, the
singular terms of 1/sind and 1/ sin’6 are removed in the new formulae; consequently, the scale
RE TR
factor of e.g. 10”*" (Holmes and Featherstone, 2002a.b) is not required when the computing point
approaches to the poles and the magnetic fields at the poles can also be calculated in the defined
reference frame. In fact, there are differences between the results by our expressions and those by
the Horner’s recursive algorithm, for instance, if using the same model and the parameters as those
DA iR )
in Fig. 1 and Fig. 2, the differences of the three components By, B, and B, are at a level of [-3x 10" SR J
§ o . D
L0 B 2 L N HE IR T RS }
DA iR )
;R WAL, R }
4 Conclusions = )
i bAF )

We develop in this paper the new expressions for the MV, the MGT and the third-order partial

derivatives of the magnetic potential field in terms of spherical harmonics. The traditional

expressions have complicated forms involving first- and second-order derivatives of the SSALFs

-16 -
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275  and are singular when approaching to the poles. Our newly derived formulae don’t contain the

276  first- and second-order derivatives of the SSALFs and remove the singularities at the poles.

MERHIAZ: local

277 However, our formulae are derived in the spherical north-oriented reference frame

278  For an application to the magnetic data of a satellite gradiometry mission, it is necessary to

279 describe the MV and the MGT in the local orbital or other reference frame, where the new MV

280 and MGT are the linear functions of the MV and the MGT in the LNORF with coefficients related

281 to the satellite track azimuth (e.g. Petrovskaya and Vershkov, 2006)_or other rotation angles. The

282  other main purpose of this paper is in the future to contribute to the signal processing and the

283 | geophysical & geological interpretation of global lithospheric magnetic field model, especially

284 | npear polar areas.

285 Supplementary software implementation is performed by the programming language C/C++.

286 The source code and input data presented in this paper can be obtained by contacting the lead

287 author via email.
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by, =051+ m+14i
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b, =05Vl —mAl—-m

(A2).
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b =0.25[(+m)—n
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405 | Table 1. _Statistics of the magnetic potential, MV, MGT and third-order partial derivatives of the and ...6
406 | magnetic potential field around the north pole (0°<6#<30°) at the altitude of 300 km using the
407  lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for spherical
408 | harmonic degrees 16~90.
— - mHRER ]
Magnetic effecty ~~ Minimum, Maxjimum, Mean, Standard deviation, /{ ] (2]
i RM ( }
VmTxm] -5.1554771, +4.7867519, +0.0828017, +1.7377648, /£ . [13]
/{%mm (114D
B nTL  -14.7389250, +17.6917740, -0.0890689, £4.9797007,
//%%%ﬁm (15D
B InTL  -15.1297000, +13.6053000, +0.0010738, £4.8239313,
/[%’%EWJ . [16]
B.[nTL  -19.8715270, +25.3666030, -0.1988485, +6.7066701,
///{%%ﬁm CTi7D
B, [pT/m] 0.1054684, +0.0621351, +0.0001872, £0.0215871,
/{%mm (18D
BolpT/mk __ -0.0410371, +0.0491030, +0.0000003, £0.0115018,
///{%%ﬁm (119D
B.[pT/mlk  -0.0929498 +0.1082861, +0.0006867, +0.0247522,
/fwzw: [ 201
B,lpT/ml 0.0726248, +0.0505990, -0.0004789, +0.0186580,
/fwzw: )
B.[pT/ml  -0.0868184, +0.0826627, +0.0000058, £0.0228174,
/{%mm [ 221
B.[pT/ml 0.1015986, +0.1511038, +0.0002917, +0.0336965,
A .. [23]
BB, +B.. [pTm] _ -2.012x107% +2.026x10°", +8.085x10™", £5.101x10°"%
/%mm (122
B [aT/m*] -0.7589853, +0.4794999, +0.0002436, +0.1537058
/[%%EWJ . [25]
Bz [aT/m? -0.2628265, +0.3734132, -0.0000004, £0.0734794,
/%mm (126D
B [aT/m’) 0.7067652, +0.8470055, +0.0140820, £0.1752880,
/[%%EWJ 1]
Bz [aT/m’L -0.5259662, +0.4076568, -0.0134321, +0.1370902,
/%mm (128D
By [aT/m’L -0.6058631, +0.6396412, +0.0000341, +0.1448002,
/{%mm (. 1251
B [aT/m’), -0.7609268, +1.1697371, +0.0131885, +0.2421663,
409 ‘
R ,———,,.. - —i  tibbo™toi . [30]

-22 -



410

411

412

413

414

Table 2. _Statistics of the ynagnetic potential, MV, MGT and third-order partial derivatives of the

| mmar: o

magnetic potential field around the south pole (150°<6<180°) at the altitude of 300 km using the

lithospheric magnetic field model GRIMM L120 (version 0.0) (Lesur et al., 2013) for spherical

harmonic degrees 16~90.

S mtr: an

Magnetic effects Minimum Maximum Mean Standard deviation
V [mTxm] -3.3267455 +4.6543369 +0.0801853 +1.2427083
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B, [pT/m] -0.0569493 +0.0706456 +0.0019055 +0.0143289
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B..[pT/m] 0.1367168 +0.0735795 -0.0019900 £0.0258066
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B [aT/m’ 0.2840344 +0.2947601 -0.0000015 £0.0526629
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Figure 1. _[Lithospheric magnetic potential, vector and its gradients fields and third-order -partial

derivatives of the magnetic potential field around the north pole (0°<0<30°) at the altitude of 300 km as

defined by the lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for
| w6 ]
spherical harmonic degrees 16~90. (a) is magnetic potential (¥), (b) (c) and (d) are three components (B,,

B, and B.) of magnetic vector, (), (f), (g), (h), (i) and (j) are six elements (B, By, B, By, B,. and B..) of

magnetic gradient tensor, (k), (1), (m), (n), (0) and (p) are six elements (By.. Byyz, By.z, By, B,- and B...) of

third-order partial derivatives of the magnetic potential field, respectively. The dark green lines are the plate
MR NZ . on a Hammer
boundaries by Bird (2003). All maps are shown by Polar, Stereographic projections. " | projection centered at 90° E
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fined by the lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) fi
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herical harmonic degrees 16~90, (a) is magnetic potential (¥), (b) (c) and (d) are three components (B,,
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and B.) of magnetic vector, (e), (f), (g), (h), (i) and (j) are six elements (B,y, By, By, Byy, B,. and B.) o

m:lgnetic gradient tensor, (k). (1), (m), (n), (0) and (p) are six elements (B, By, Brzz, Byyz. By and B.;) of
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rd-order partial derivatives of the magnetic potential field, respectively. The dark green lines are the plate
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main field at the altitude of
300 km as defined by the main
magnetic field model IGRF11
(Finlay et al., 2011) at the
epoch of 2005.0.0 for spherical
harmonic degrees 1~13....ona

Hammer projection centered at

\900 E. ... [35]

BRI : main magnetic

field model IGRF11 (Finlay et
al., 2011) at the epoch of
2005.0.0 for spherical

harmonic degrees 1
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Figure 3. Limit values of magnetic potential (V), vector (B, B, and B;) and its gradients (B, 2 o Inas
J T
B,,, B.., By,, B,. and B..) and third-order partial derivatives of the magnetic potential field (B, 3 __<_
12—
By By.o. By, B,.. and B...) at the poles when the local reference frames vary from different -180° -
12
meridians (the direction of xp axe changing from different meridian to the poles). Red and plue 8

lines indicate the magnetic effects at north-pole and at south-pole, respectively, . The reference

By, [pT/m]
T T
L~

frame is specially defined that the xp-axis points to the meridian of 180° E (or 180° W)_at north -8

-180° -

MR RE:
BRI A : Solid ...dashed

Red and blue lines indicate

values at two poles showed by black dashed arrows are used to plot the maps in Fig. 1 and Fig. 2.

417 the lithospheric fields and the

main fields, respectively.... At

the poles, t (T30
G
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