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 10 

Abstract 11 

General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the 12 

first- and second-order derivatives of spherical harmonics at different degrees/orders, are relatively 13 

complicated and singular at the poles. In this paper, we derived alternative non-singular 14 

expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic 15 

potential field in local north-oriented reference frame. Using our newly derived formulae, the 16 

magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of 17 

the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric 18 

magnetic field model GRIMM_L120 (version 0.0) with spherical harmonic degrees 16~90. The 19 

corresponding results at the poles are discussed and the validity of the derived formulas is verified 20 

using the Laplace equation of the magnetic potential field. 21 

 22 

1  Introduction 23 

Compared to the magnetic vector and scalar measurements, magnetic gradients lead to more 24 

robust models of the lithospheric magnetic field. The ongoing Swarm mission of the European 25 
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Space Agency (ESA) provides measurements not only of the vector and scalar data but also an 26 

estimate of their east-west gradients (e.g. Olsen et al., 2004, 2015; Friis-Christensen et al., 2006). 27 

Kotsiaros and Olsen (2012, 2014) proposed to recover the lithospheric magnetic field through 28 

Magnetic Space Gradiometry in the same way that has been done for modeling the gravitational 29 

potential field from the satellite gravity gradient tensor measurements by the Gravity field and 30 

steady-state Ocean Circulation Explorer (GOCE). Purucker et al. (2005, 2007), Sabaka et al. (2015) 31 

and Kotsiaros et al. (2015) also reported efforts to model the lithospheric magnetic field using 32 

magnetic gradient information from the satellite constellation. Their results showed that by using 33 

gradients data, the modeled lithospheric magnetic anomaly field has enhanced shorter wavelength 34 

content and has a much higher quality compared to models built from vector field data. This is 35 

because the gradients data can remove the highly time-dependant contributions of the 36 

magnetosphere and ionosphere that are correlated between two side-by-side satellites. 37 

The order-2 magnetic gradient tensor consists of spatial derivatives highlighting certain 38 

structures of the magnetic field (e.g. Schmidt and Clark, 2000, 2006). It can be used to detect the 39 

hidden and small-scale magnetized sources (e.g. Pedersen and Rasmussen, 1990; Harrison and 40 

Southam, 1991) and to investigate the orientation of the lineated magnetic anomalies (e.g. Blakely 41 

and Simpson, 1986). Quantitative magnetic interpretation methods such as the analytic signal, 42 

edge detection, spatial derivatives, Euler deconvolution, and transforms, all set in Cartesian 43 

coordinate system (e.g. Blakely, 1995; Purucker and Whaler, 2007; Taylor et al., 2014) also 44 

require calculating the higher-order derivatives of the magnetic anomaly field and need to be 45 

extended to regional and global scales to handle the curvature of the Earth and other planets. Ravat 46 

et al. (2002) and Ravat (2011) utilized the analytic signal method and the total gradient to interpret 47 
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the satellite-altitude magnetic anomaly data. Therefore, both the magnetic field modeling and also 48 

the geological interpretations require the calculation for the partial derivatives of the magnetic 49 

field, possibly at the poles for specific systems of coordinates. Spherical harmonic analysis, 50 

established originally by Gauss (1839), is generally used to model the global magnetic internal 51 

fields of the Earth and other terrestrial planets (e.g. Maus et al., 2008; Langlais et al., 2009; 52 

Thébault et al., 2010, Finlay et al., 2010; Lesur et al., 2013, Sabaka et al., 2013; Olsen et al., 2014). 53 

Series of spherical harmonic functions themselves made of Schmidt semi-normalized associated 54 

Legendre functions (SSALFs) (e.g. Blakely, 1995; Langel and Hinze, 1998), are fitted by 55 

least-squares to magnetic measurements, giving the spherical harmonic coefficients (i.e. the 56 

Gaussian coefficients) defining the model. Kotsiaros and Olsen (2012, 2014) presented the MV 57 

and the MGT using a spherical harmonic representation and, of course, their expressions are 58 

singular as they approach the poles. Even if there are satellite data gaps around the poles, it is 59 

advisable to use non-singular spherical harmonic expressions for the MV and the MGT in case 60 

airborne or shipborne magnetic data are utilized (e.g. Golynsky et al., 2013; Maus, 2010). A 61 

rotation of the coordinate system is always possible to avoid the polar singularity, but this solution 62 

is very ineffective for large data sets. 63 

In this paper, following Petrovskaya and Vershkov (2006) and Eshagh (2008, 2009) for the 64 

gravitational gradient tensor in the local north oriented, orbital reference and geocentric spherical 65 

frames, the non-singular expressions in terms of spherical harmonics for the MV, the MGT and the 66 

third-order derivatives of the magnetic potential field in the specially defined local-north-oriented 67 

reference frame (LNORF) are presented. In the next section, the traditional expressions of the MV 68 

and the MGT are first stated, then some necessary propositions are proved and at last new 69 
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non-singular expressions are derived. In Section 3, the new formulae are tested using the global 70 

lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) and compared 71 

with the results by traditional formulae. Finally, some conclusions are drawn and further 72 

applications are also discussed. 73 

 74 

2  Methodology 75 

In this section, the traditional expressions of MV and MGT are presented, and their numerical 76 

problems are stated. Then based on some necessary mathematical derivations, new expressions are 77 

given. 78 

2.1 Traditional expressions 79 

The scalar potential V of the Earth′s magnetic field in a source-free region can be expanded in the 80 

truncated series of spherical harmonics at the point P(r, , φ) with the geocentric distance r, 81 

co-latitude θ and longitude φ (e.g. Backus et al., 1996): 82 
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where a=6371.2 km is the radius of the Earth's magnetic reference sphere;  cos~m
lP  (or m

lP~  84 

for simplification) is the SSALF of degree l and order m; L is the maximum spherical harmonic 85 

degree; m
lg  and m

lh  are the geomagnetic harmonic coefficients describing internal sources of 86 

the Earth. 87 

If considered in the LNORF {x,y,z} (e.g. Olsen et al., 2010), where z-axis points downward in 88 

geocentric radial direction, x-axis points to the north, and y-axis towards the east (that is, a 89 

right-handed system). At the poles, we define that the x-axis points to the meridian of 180° E (or 90 
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180° W) at north pole and of 0° at south pole, which will be discussed in Section 3. Therefore, the 91 

three components of the MV can be expressed as: 92 
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The MGT can be written as (e.g. Kotsiaros and Olsen, 2012) 
96 
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where nine elements are expressed respectively as: 98 
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The expressions for V, Bz and Bzz can be calculated stably even for very high spherical harmonic 105 

degrees and orders by using the Holmes and Featherstone (2002a) scheme. However, there exist 106 

the singular terms of 1/sin and 1/ sin2 in Eq. (2b), Eq. (4b), Eq. (4d) and Eq. (4e) when the 107 

computing point approaches to the poles. Besides, some expressions contain the terms of first- and 108 

second-order derivatives of SSALFs, such as Eq. (2a) and Eq. (4a) ~ (4d). Nevertheless, the 109 

derivatives up to second-order for very high degree and orders of SSALFs can be recursively 110 

calculated by the Horner algorithm (Holmes and Featherstone, 2002b). These algorithms are 111 

relatively complicated and thus we want to use alternative expressions to avoid the singular terms 112 

and also the partial derivatives of SSALFs. It should be stated that our work differs from those 113 

presented by Petrovskaya and Vershkov (2006) and Eshagh (2009) in the LNORF and also the 114 

associated Legendre functions (ALFs). Nonetheless, the following mathematical derivations are 115 

carried out based on their studies in gravity field. 116 

2.2 Mathematical derivations 117 

To deal with the singular terms and first- and second-order derivatives of the SSALFs, some 118 

useful mathematical derivations are introduced and proved in the following. 119 

1 - Derivation of d/~d m
lP : 120 
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Based on Eq. (Z.1.44) in Ilk (1983) 121 

   1115.0d/d   m
l

m
l

m
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and the relation between the ALFs and the SSALFs as 123 
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thus the first-order derivative of the SSALFs can be deduced as: 125 
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C mm   and  is the Kronecker delta. 129 

2 - Derivation of 22 d/~d m
lP : 130 

According to Eq. (23) in Eshagh (2008) as 131 

    
      

2

222

25.0
1125.0

21125.0d/d











m
l

m
l

m
l

m
l

P
Pmlmlmlml

PmlmlmlmlP 

,                     (8) 132 

the second-order derivative of the SSALFs can be written as: 133 
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3 - Derivation of sin/~m
lP : 138 

Using Eq. (Z.1.42) in Ilk (1983) 139 
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and Eq. (6), we can obtain that 141 
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4 - Derivation of 2sin/~m
lP : 145 

Employing Eq. (31) in Eshagh (2008) as 146 
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and Eq. (6), we have 148 
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5 - Derivation of  dsin/~d m
lP : 153 

Using Eq. (36) in Eshagh (2008) as 154 

        
          
  2

1

1

2
1

1/1
1/11/1

1/12125.0dsin/d















m
l

m
l

m
l

m
l

Pm
Pmmlmlmmlml

PmmlmlmlmlP 

, 2m ,  (14) 155 

and Eq. (6), we can derive 156 
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6 - Derivation of    2sin/cos~dsin/~d m
l

m
l PP  : 161 
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According to Petrovskaya and Vershkov (2006) and Eshagh (2009), we can write 162 
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and using Eq. (36) in Eshagh (2008), we can obtain 164 
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Substituting Eq. (17) into the right hand side of Eq. (16) and after simplification, we can derive 167 

 
    

   mPPmlm
Pmlmlmlml

PP

m
l

m
l

m
l

m
l

m
l

/12
32125.0

sin/cosdsin/d

2
11

2
1

2











 

, 1m .                        (18) 168 

And combing Eq. (6), we obtain that 169 
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7 - Derivation of     222 sin/d/~dcossin~~sin1 m
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Based on Lemma 3 in Eshagh (2009) as 172 
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According to Eq. (10), we can write 176 

     1/125.0sin/ 21
1  
 mPPmlmlP m

l
m

l
m

l  .                         (22) 177 

Inserting Eq. (12) and Eq. (22) into Eq. (21), and after some simplifications, we obtain that 178 
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And combing with Eq. (6), we can derive 180 
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2.3 New expressions 182 

Inserting the corresponding mathematical derivations in the last section into Eq. (2) and Eq. (4) 183 

and after some simplifications, the new expressions for MV and MGT can be written as: 184 
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where the corresponding coefficients of the SSALFs are given as following: 194 
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Furthermore, some other higher-order partial derivatives and their transforms are usually used 204 

to image geologic boundaries in magnetic prospecting, such as the higher-order enhanced analytic 205 

signal (e.g. Hsu et al., 1996). Therefore, we also give the third-order partial derivatives of the 206 

magnetic potential field as: 207 
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where the corresponding coefficients of the SSALFs are presented as: 214 
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In this way, we avoid computing recursively the SSALFs with singular terms, their first- and 221 

second-order derivatives as in the traditional formulae. The cost is only to calculate two additional 222 

degrees and orders for the SSALFs at most. It should be mentioned that, in this study, we use the 223 

conventional form of SSALF that if m < 0, then   m
l

mm
l PP ~1~

  and if m > l, then 0~ m
lP . 224 

 225 

3  Numerical investigation and discussion 226 

We test the derived expressions and the numerical implementation in C/C++, by calculating the 227 

magnetic potential, vector and its gradients and also the third-order partial derivatives of the 228 

magnetic potential field on a grid with 0.125°×0.125° cell size at the altitude of 300 km relative to 229 

the Earth′s magnetic reference sphere using the lithospheric magnetic field model GRIMM_L120 230 

(version 0.0) defined by Lesur et al. (2013). The magnetic potential, MV, MGT and the third-order 231 

partial derivatives of the magnetic potential field in the two polar regions mapped by the 232 

lithospheric field model with spherical harmonic degrees/orders 16~90 are shown in Fig. 1 and Fig. 233 
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2, respectively. The corresponding statistics around the north and south poles are, respectively, 234 

presented in Table 1 and Table 2. A simple test is that the MGT meets the Laplace's equation of the 235 

potential field, that is, the trace of the MGT should be equal to zero. Our numerical results show 236 

that the amplitudes of Bxx+Byy+Bzz in the north and south polar regions are in the range of 237 

[-2.01210-15 pT/m : +2.02610-15 pT/m] (1 Tesla = 103 mT=109 nT=1012 pT=1018 aT), 238 

respectively. The relative error is almost equal the machine accuracy. Therefore, this feature 239 

proves the validity of our derived formulae. In addition, as shown in Fig. 1 and Fig. 2, it is obvious 240 

that the MGT and also the third-order partial derivatives of the magnetic potential field enhance 241 

the lineation and contacts at the satellite altitude. It also reveals some small-scale anomalies, 242 

which is very helpful for the further geological interpretation. A core field model with spherical 243 

harmonic degrees/orders 1~15 is also used to test and the results not shown here indicate the 244 

correctness of the formulae in the full range of the spherical harmonic degrees/orders, where the 245 

computational stability of the Legendre function with ultrahigh-order is not considered. 246 

Furthermore, the computed magnetic fields are smooth near the poles and don’t have the 247 

singularities but some components have the dependence on the direction of reference frame at the 248 

poles. As shown in Fig. 3, the magnetic potential V, Bz, Bzz and Bzzz components at the poles are 249 

independent of the direction of the xP and yP axes, while changing with the direction of the xP and 250 

yP axes at the poles, the Bx, By, Bxz, Byz, Bxzz and Byzz components have a period of 360° and the Bxx, 251 

Bxy, Byy, Bxxz, Bxyz and Byyz components have a period of 180°. These variations can be accurately 252 

described by a sine or cosine function relating to the horizontal rotation of the reference frame and 253 

the differences among these magnetic effects are magnitude, period and initial phase. Therefore, 254 

Bx, By, Bxz, Byz, Bxx, Bxy, Byy, Bxzz, Byzz Bxxz, Bxyz and Byyz components are not smooth at/cross the 255 
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poles. Therefore, to determine the single value at the poles (Fig. 1 and Fig. 2) we specially define 256 

that the x-axis points to the meridian of 180° E (or 180° W) at north pole and of 0° at south pole, 257 

that is, the LNORF moving from Greenwich meridian to the poles. 258 

Compared with the traditional formulae in Section 2.1, there are two advantages of our derived 259 

formulae in Section 2.3. On the one hand, the traditional derivatives up to second-order are 260 

removed in the new formulae; therefore, the relatively complicated method by the Hornerʹs 261 

recursive algorithm (Holmes and Featherstone, 2002b) can be avoided. On the other hand, the 262 

singular terms of 1/sin and 1/ sin2 are removed in the new formulae; consequently, the scale 263 

factor of e.g. 10-280 (Holmes and Featherstone, 2002a,b) is not required when the computing point 264 

approaches to the poles and the magnetic fields at the poles can also be calculated in the defined 265 

reference frame. In fact, there are differences between the results by our expressions and those by 266 

the Hornerʹs recursive algorithm, for instance, if using the same model and the parameters as those 267 

in Fig. 1 and Fig. 2, the differences of the three components Bx, By and Bz are at a level of [-3×10-11 268 

nT : +3×10-11 nT]. 269 

 270 

4  Conclusions 271 

We develop in this paper the new expressions for the MV, the MGT and the third-order partial 272 

derivatives of the magnetic potential field in terms of spherical harmonics. The traditional 273 

expressions have complicated forms involving first- and second-order derivatives of the SSALFs 274 

and are singular when approaching to the poles. Our newly derived formulae don’t contain the 275 

first- and second-order derivatives of the SSALFs and remove the singularities at the poles. 276 

However, our formulae are derived in the spherical LNORF with specific definition at the poles. 277 
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For an application to the magnetic data of a satellite gradiometry mission in the future (e.g. 278 

Kotsiaros and Olsen, 2014), it is necessary to describe the MV and the MGT in the local orbital or 279 

other reference frame, where the new MV and MGT are the linear functions of the MV and the 280 

MGT in the LNORF with coefficients related to the satellite track azimuth (e.g. Petrovskaya and 281 

Vershkov, 2006) or other rotation angles. The other main purpose of this paper is in the future to 282 

contribute to the signal processing and the geophysical & geological interpretation of global 283 

lithospheric magnetic field model, especially near polar areas. 284 

Supplementary software implementation is performed by the programming language C/C++. 285 

The source code and input data presented in this paper can be obtained by contacting the lead 286 

author via email. 287 

 288 

Acknowledgements. This study is supported by International Cooperation Projection in Science 289 

and Technology (No.: 2010DFA24580), Hubei Subsurface Multi-scale Imaging Key Laboratory 290 

(Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan) (Grant No.: 291 

SMIL-2015-06) and State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy 292 

and Geophysics, CAS) (Grant No.: SKLGED2015-5-5-EZ). Jinsong Du is sponsored by the China 293 

Scholarship Council (CSC). We would like to thank Prof. Mehdi Eshagh and another anonymous 294 

reviewer for their constructive suggestion. All projected figures are drawn using the Generic 295 

Mapping Tools (GMT) (Wessel and Smith, 1991). 296 

 297 

Refferences 298 

Backus, G. E., Parker, R., and Constable, C.: Foundations of Geomagnetism, Cambridge 299 



 - 18 - 

University Press, Cambridge, 1996. 300 

Blakely, R. J. and Simpson, R. W.: Approximating edges of source bodies from magnetic or 301 

gravity anomalies, Geophysics, 51, 1494–1498, 1986. 302 

Blakely, R. G.: Potential Theory in Gravity and Magnetic Applications, Cambridge University 303 

Press, New York, 1995. 304 

Bird, P.: An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), 1027, 305 

doi:10.1029/2001GC000252, 2003. 306 

Eshagh, M.: Non-singular expressions for the vector and gradient tensor of gravitation in a 307 

geocentric spherical frame, Computers & Geosciences, 34, 1762–1768, 2008. 308 

Eshagh, M.: Alternative expressions for gravity gradients in local north-oriented frame and tensor 309 

spherical harmonics, Acta Geophysica, 58(2), 215–243, 2009. 310 

Finlay, C. C., Maus, S., Beggan, C. D., Bondar, T. N., Chambodut, A., Chernova, T. A., Chulliat, 311 

A., Golovkov, V. P., Hamilton, B., Hamoudi, M., Holme, R., Hulot, G., Kuang, W., Langlais, B., 312 

Lesur, V., Lowes, F. J., Lühr, H., Macmillan, S., Mandea, M., McLean, S., Manoj, C., Menvielle, 313 

M., Michaelis, I., Olsen, N., Rauberg, J., Rother, M., Sabaka, T. J., Tangborn, A., 314 

Tøffner-Clausen, L., Thébault, E., Thomson, A. W. P., Wardinski, I., Wei, Z., and Zvereva, T. I.: 315 

International Geomagnetic Reference Field: the eleventh generation, Geophys. J. Int., 183(3), 316 

1216–1230, 2010. 317 

Friis-Christensen, E., Lühr, H., and Hulot, G.: Swarm: A constellation to study the Earth's 318 

magnetic field, Earth Planets Space, 58, 351–358, 2006. 319 

Gauss, C. F.: Allgemeine Theorie des Erdmagnetismus, in: Resultate aus den Beobachtungen des 320 

magnetischen vereins im Jahre 1838, edited by: Gauss, C. F. and Weber, W. (Leipzig, 1839), 321 

1–57, 1838. 322 

Golynsky, A., Bell, R., Blankenship, D., Damaske, D., Ferraccioli, F., Finn, C., Golynsky, D., 323 

Ivanov, S., Jokat, W., Masolov, V., Riedel, S., von Frese, R., Young, D., and ADMAP Working 324 

Group: Air and shipborne magnetic surveys of the Antarctic into the 21st century, 325 

Tectonophysics, 585, 3–12, 2013. 326 

Harrison, C. and Southam, J.: Magnetic field gradients and their uses in the study of the Earth's 327 



 - 19 - 

magnetic field, J. Geomagn. Geoelectr., 43, 485–599, 1991. 328 

Holmes, S. A. and Featherstone, W. E.: A unified approach to the Clenshaw summation and the 329 

recursive computation of very high degree and order normalized associated Legendre functions, 330 

J. Geod., 76, 279–299, 2002a. 331 

Holmes, S. A. and Featherstone, W. E.: SHORT NOTES: extending simplified high-degree 332 

synthesis methods to second latitudinal derivatives of geopotential, J. Geod., 76, 447–450, 333 

2002b. 334 

Hsu, S. K., Sibuet, J. C., and Shyu, C. T.: High-resolution detection of geologic boundaries from 335 

potential-field anomalies: An enhanced analytic signal technique, Geophysics, 61(2), 373–386, 336 

1996. 337 

Ilk, K. H.: Ein eitrag zur Dynamik ausgedehnter Körper-Gravitationswechselwirkung, Deutsche 338 

Geodätische Kommission. Reihe C, Heft Nr. 288, München, 1983. 339 

Kotsiaros, S. and Olsen, N.: The geomagnetic field gradient tensor: Properties and parametrization 340 

in terms of spherical harmonics, Int. J. Geomath., 3, 297–314, 2012. 341 

Kotsiaros, S. and Olsen, N.: End-to-End simulation study of a full magnetic gradiometry mission, 342 

Geophys. J. Int., 196(1), 100–110, 2014. 343 

Kotsiaros, S., Finlay, C. C., and Olsen, N.: Use of along-track magnetic field differences in 344 

lithospheric field modelling, Geophys. J. Int., 200(2), 878–887, 2015. 345 

Langel, R. A. and Hinze, W. J.: The Magnetic Field of the Earth’s Lithosphere: The Satellite 346 

Perspective, Cambridge University Press, Cambridge, United Kingdom, 1998. 347 

Langlais, B., Lesur, V., Purucker, M. E., Connerney, J. E. P., and Mandea, M.: Crustal Magnetic 348 

Fields of Terrestrial Planets, Space Sci. Rev., 152, 223–249, 2010. 349 

Lesur, V., Rother, M., Vervelidou, F., Hamoudi, M., and Thébault, E.: Post-processing scheme for 350 

modeling the lithsopheric magnetic field, Solid Earth, 4, 105–118, 2013. 351 

Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C., and Müller, 352 

R. D.: Resolution of direction of oceanic magnetic lineations by the sixth-generation 353 

lithospheric magnetic field model from CHAMP satellite magnetic measurements, Geochem. 354 

Geophys. Geosyst., 9(7), Q07021, doi:10.1029/2008GC001949, 2008. 355 



 - 20 - 

Maus, S.: An ellipsoidal harmonic representation of Earth′s lithospheric magnetic field to degree 356 

and order 720, Geochem. Geophys. Geosyst., 11, Q06015, doi:10.1029/2010GC003026, 2010. 357 

Olsen, N. and the Swarm End-to-End Consortium: Swarm-End-to-End mission performance 358 

simulator study, ESA contract No. 17263/02/NL/CB, DSRI Report 1/2004, Danish Space 359 

Research Institute, Copenhagen, 2004. 360 

Olsen, N., Hulot, G., and Sabaka, T. J.: Sources of the Geomagnetic Field and the Modern Data 361 

That Enable Their Investigation, in: Handbook of Geomathematics, edited by: Freeden, W., 362 

Nashed, M. Z., and Sonar, T., Springer, Netherlands, 106–124, 2010. 363 

Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J., and Tøffner-Clausen, L.: 364 

The CHAOS-4 geomagnetic field model, Geophys. J. Int., 197: 815–827, 2014. 365 

Olsen, N., Hulot, G., Lesur, V., Finlay, C. C., Beggan, C., Chulliat, A., Sabaka, T. J., Floberghagen, 366 

R., Friis-Christensen, E., Haagmans, R., Kotsiaros, S., Lühr, H, Tøffner-Clausen, L., and 367 

Vigneron, P.: The Swarm Initial Field Model for the 2014 geomagnetic field, Geophys. Res. 368 

Lett., 42, doi:10.1002/2014GL062659, 2015. 369 

Pedersen, L. B. and Rasmussen, T. M.: The gradient tensor of potential field anomalies: Some 370 

implications on data collection and data processing of maps, Geophysics, 55(12), 1558–1566, 371 

1990. 372 

Petrovskaya, M. S. and Vershkov, A. N.: Non-singular expressions for the gravity gradients in the 373 

local north-oriented and orbital reference frames, J. Geod., 80, 117–127, 2006. 374 

Purucker, M. E.: Lithospheric studies using gradients from close encounters of Ørsted, CHAMP 375 

and SAC-C, Earth Planets Space, 57, 1–7, 2005. 376 

Purucker, M., Sabaka, T., Le, G., Slavin, J. A., Strangeway, R. J., and Busby, C.: Magnetic field 377 

gradients from the ST-5 constellation: Improving magnetic and thermal models of the 378 

lithosphere, Geophys. Res. Lett., 34, L24306, 2007. 379 

Purucker, M. and Whaler, K.: Crustal magnetism, in: Treatise on Geophysics, vol. 5, 380 

Geomagnetism, edited by: Kono, M., Elsevier, Amsterdam, 195–237, 2007. 381 

Ravat, D., Wang, B., Wildermuth, E., and Taylor, P. T.: Gradients in the interpretation of 382 

satellite-altitude magnetic data: an example from central Africa, J. Geodyn., 33, 131–142, 2002. 383 



 - 21 - 

Ravat, D.: Interpretation of Mars southern highlands high amplitude magnetic field with total 384 

gradient and fractal source modeling: New insights into the magnetic mystery of Mars, Icarus, 385 

214, 400–412, 2011. 386 

Sabaka, T. J., Tøffner-Clausen, L., and Olsen, N.: Use of the Comprehensive Inversion method for 387 

Swarm satellite data analysis, Earth Planets Space, 65: 1201–1222, 2013. 388 

Sabaka, T. J., Olsen, N., Tyler, R. H., and Kuvshinov, A.: CM5, a pre-Swarm comprehensive 389 

magnetic field model derived from over 12 years of CHAMP, Ørsted, SAC-C and observatory 390 

data, Geophys. J. Int., 200(3), 1596–1626, 2015. 391 

Schmidt, P. and Clark, D.: Advantages of measuring the magnetic gradient tensor, Preview, 85, 392 

26–30, 2000. 393 

Schmidt, P. and Clark, D.: The magnetic gradient tensor: its properties and uses in source 394 

characterization, The Leading Edge, 25(1), 75–78, 2006. 395 

Taylor, P. T., Kis, K. I., and Wittmann, G.: Satellite-altitude horizontal magnetic gradient 396 

anomalies used to define the Kursk magnetic anomaly, J. Appl. Geophys., 397 

doi:10.1016/j/jappgeo.2014.07.018, 2014. 398 

Thébault, E., Purucker, M., Whaler, K. A., Langlais, B., and Sabaka, T. J.: The Magnetic Field of 399 

Earth's Lithosphere, Space Sci. Rev., 155, 95–127, 2010. 400 

Wessel, P. and Smith, W. H. F.: Free software helps map and display data, EOS Trans. AGU, 72, 401 

441&445–446, 1991. 402 



 - 22 - 

Tables and figures 403 

 404 

Table 1.  Statistics of the magnetic potential, MV, MGT and third-order partial derivatives of the 405 

magnetic potential field around the north pole (0°≤θ≤30°) at the altitude of 300 km using the 406 

lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for spherical 407 

harmonic degrees 16~90. 408 

Magnetic effects Minimum Maximum Mean Standard deviation 

V [mT×m] -5.1554771 +4.7867519 +0.0828017 ±1.7377648 

Bx [nT] -14.7389250 +17.6917740 -0.0890689 ±4.9797007 

By [nT] -15.1297000 +13.6053000 +0.0010738 ±4.8239313 

Bz [nT] -19.8715270 +25.3666030 -0.1988485 ±6.7066701 

Bxx [pT/m] -0.1054684 +0.0621351 +0.0001872 ±0.0215871 

Bxy [pT/m] -0.0410371 +0.0491030 +0.0000003 ±0.0115018 

Bxz [pT/m] -0.0929498 +0.1082861 +0.0006867 ±0.0247522 

Byy [pT/m] -0.0726248 +0.0505990 -0.0004789 ±0.0186580 

Byz [pT/m] -0.0868184 +0.0826627 +0.0000058 ±0.0228174 

Bzz [pT/m] -0.1015986 +0.1511038 +0.0002917 ±0.0336965 

Bxx+Byy+Bzz [pT/m] -2.012×10-15 +2.026×10-15 +8.085×10-19 ±5.101×10-16 

Bxxz [aT/m2]  -0.7589853  +0.4794999  +0.0002436  ±0.1537058 

Bxyz [aT/m2]  -0.2628265  +0.3734132 -0.0000004 ±0.0734794 

Bxzz [aT/m2] -0.7067652 +0.8470055 +0.0140820 ±0.1752880 

Byyz [aT/m2] -0.5259662 +0.4076568 -0.0134321 ±0.1370902 

Byzz [aT/m2] -0.6058631 +0.6396412 +0.0000341 ±0.1448002 

Bzzz [aT/m2] -0.7609268 +1.1697371 +0.0131885 ±0.2421663 

 409 
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Table 2.  Statistics of the magnetic potential, MV, MGT and third-order partial derivatives of the 410 

magnetic potential field around the south pole (150°≤θ≤180°) at the altitude of 300 km using the 411 

lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for spherical 412 

harmonic degrees 16~90. 413 

Magnetic effects Minimum Maximum Mean Standard deviation 

V [mT×m] -3.3267455 +4.6543369 +0.0801853 ±1.2427083 

Bx [nT] -11.440070 +15.9109730 +0.3451248 ±3.5403285 

By [nT] -9.1169009 +15.0436160 -0.0001605 ±3.1560093 

Bz [nT] -22.202857 +14.5020010 -0.3022955 ±4.7971494 

Bxx [pT/m] -0.0579914 +0.0704617 +0.0000845 ±0.0166266 

Bxy [pT/m] -0.0364002 +0.0308075 -0.0000006 ±0.0074702 

Bxz [pT/m] -0.0741850 +0.0831062 +0.0019925 ±0.0187492 

Byy [pT/m] -0.0569493 +0.0706456 +0.0019055 ±0.0143289 

Byz [pT/m] -0.0599346 +0.0897167 -0.0000012 ±0.0154623 

Bzz [pT/m] -0.1367168 +0.0735795 -0.0019900 ±0.0258066 

Bxx+Byy+Bzz [pT/m] -1.027×10-15 +2.012×10-15 +1.113×10-18 ±5.059×10-16 

Bxxz [aT/m2] -0.4605216 +0.5307263 +0.0011232 ±0.1328515 

Bxyz [aT/m2] -0.2840344 +0.2947601 -0.0000015 ±0.0526629 

Bxzz [aT/m2] -0.5686811 +0.5634376 0.0181792 ±0.1497829 

Byyz [aT/m2] -0.4262850 +0.5819095 +0.0186968 ±0.1169641 

Byzz [aT/m2] -0.6194116 +0.6520948 -0.0000118 ±0.1085051 

Bzzz [aT/m2] -1.0199774 +0.5863084 -0.0198200 ±0.2084566 

 414 
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Figure 1.  Lithospheric magnetic potential, vector and its gradients fields and third-order partial 

derivatives of the magnetic potential field around the north pole (0°≤θ≤30°) at the altitude of 300 km as 

defined by the lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for 

spherical harmonic degrees 16~90. (a) is magnetic potential (V), (b) (c) and (d) are three components (Bx, 

By and Bz) of magnetic vector, (e), (f), (g), (h), (i) and (j) are six elements (Bxx, Bxy, Bxz, Byy, Byz and Bzz) of 

magnetic gradient tensor, (k), (l), (m), (n), (o) and (p) are six elements (Bxxz, Bxyz, Bxzz, Byyz, Byzz and Bzzz) of 

third-order partial derivatives of the magnetic potential field, respectively. The dark green lines are the plate 

boundaries by Bird (2003). All maps are shown by Polar Stereographic projections. 
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Figure 2.  Lithospheric magnetic potential, vector and its gradients fields and third-order partial 

derivatives of the magnetic potential field around the south pole (150°≤θ≤180°) at the altitude of 300 km as 

defined by the lithospheric magnetic field model GRIMM_L120 (version 0.0) (Lesur et al., 2013) for 

spherical harmonic degrees 16~90. (a) is magnetic potential (V), (b) (c) and (d) are three components (Bx, 

By and Bz) of magnetic vector, (e), (f), (g), (h), (i) and (j) are six elements (Bxx, Bxy, Bxz, Byy, Byz and Bzz) of 

magnetic gradient tensor, (k), (l), (m), (n), (o) and (p) are six elements (Bxxz, Bxyz, Bxzz, Byyz, Byzz and Bzzz) of 

third-order partial derivatives of the magnetic potential field, respectively. The dark green lines are the plate 

boundaries by Bird (2003). All maps are shown by Polar Stereographic projections. 
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Figure 3.  Limit values of magnetic potential (V), vector (Bx, By and Bz) and its gradients (Bxx, 

Bxy, Bxz, Byy, Byz and Bzz) and third-order partial derivatives of the magnetic potential field (Bxxz, 

Bxyz, Bxzz, Byyz, Byzz and Bzzz) at the poles when the local reference frames vary from different 

meridians (the direction of xP axe changing from different meridian to the poles). Red and blue 

lines indicate the magnetic effects at north-pole and at south-pole, respectively. The reference 

frame is specially defined that the xP-axis points to the meridian of 180° E (or 180° W) at north 

pole and 0f 0° at south pole and the yP-axis points to the meridian of 90° E at two poles. The 

values at two poles showed by black dashed arrows are used to plot the maps in Fig. 1 and Fig. 2. 
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