
Reviewer 1 comment Response

Overall I found the manuscript to be generally 
well written and organized.

We thank the reviewer for this comment.

As is typically the case when attempting to 
evaluate model simulations that span large spatial 

domains and time periods, the difficulty becomes 
in summarizing the results in a meaningful way 

that does not overwhelm the reader with statistics 
and numbers. Here, the authors present annual 

mean performance metrics for the entire domain, 
along with regional/seasonal statistics. I generally 

don’t find the annual statistics to be helpful in any
way, other than perhaps initially to make sure 

there isn’t some huge gross error in the model 
results. Otherwise, bulk annual/domain-wide 

statistics are typically difficult to interpret due to 
often compensating seasonal biases (e.g. 

particulate nitrate is often underestimated in the 
summer and overestimated in the winter).

To their credit, the authors do acknowledge this 
issue with the bulk statistics. I’m wondering if the

manuscript would benefit from dropping the 
annual domain-wide statistics and just focus on 

presenting the seasonal and regional statistics. I 
will leave this decision to the authors, but just 

note that I think most readers would find a much 
value in the annual/domain-wide stats and would 

immediately focus on the seasonal/regional stats.

We agree with the review that the seasonal and 
regional statistics are important, but we agree with 

Reviewer 2 that the annual/domain-wide statistics 
are also useful: they show an overall summary of 

model performance. For this reason we would like 
to keep the annual/domain-wide statistics in the 

main manuscript.

It might be nice to move some of the 

seasonal/regional plots for the speciated PM2.5 
components from the supplemental material to the

main text.

This is a good idea. We have moved the 

seasonal/regional scatterplots for PM2.5 subspecies
to the main text.

Finally, the authors need to support some of their 

statements with references, specifically regarding 
difference in sampling protocols and/or analysis 

techniques between the different networks.

In response to this comment, we have added a 

citation of the variability in OC analysis methods. 
We also fixed two inconsistencies in our 

processing of the data, the result of which that 
some of this text was no longer relevant and so was

removed.

Abstract: Perhaps mention the modeling year 

earlier in the abstract.

We added “year 2005” to the first sentence of the 

abstract.

Provide some examples of “contemporary 

models”.

We thank the reviewer for this suggestion. We 

provide examples of contemporary models and 
their performance in the main text. (Adding 

examples in the abstract (and defining the lengthy 
acronyms that make up their names) would add to 

the word count and distract from the main 
messages of the abstract.) In the abstract, we 

changed “contemporary models” to “contemporary
modeling efforts” to better reflect the comparisons 



that we do in the manuscript.

Again, bulk annual average statistics are not all 

the useful. Maybe replace these with more 
meaningful seasonal/regional metrics.

We respect this viewpoint. As mentioned above, 

we feel that both types of statistics are useful.

It’s a little strange to look at 24h average ozone, 
given the large biases that typically can occur with

ozone overnight. It might be better to present a 
different, more meaningful metric for ozone here 

(e.g. daily 8hr average maximum).

In response to this comment, we clarified the 
abstract text to state that average daytime and daily

peak concentrations are more relevant for health 
effects and regulatory analysis, and the model 

performance is better for those metrics.

Page 8435, lines 13-15: It might be a little 

disingenuous to refer to 12-km as “finescale”.
Understanding that scale is relative thing (15 

years ago, 12-km was “fine-scale”), 12-km is 
probably better referred to as regional-scale at this

point in time, considering that more and more 
modeling is taking place at 4-km and below.

In response to this comment, we changed the text 

“fine-scale (12 km or better)” to “12 km or finer 
scale”.

Page 8436, line 21: 28 layers seems like it’s on the
low-end of layer structures these days. Were the 

computer limitations the deciding factor in going 
with 28 layers instead of something closer to say 

40 or even 50? Do the authors feel that increasing 
the number of vertical layers (and in particular 

using the smaller first layer) would significantly 
impact the results?

We thank the reviewer for this comment. In 
response, we added the text “Previous studies (e.g.,

Appel et al., 2012; Yahya et al., 2014) have used 34
vertical layers; our choice of 28 vertical layers 

represents a tradeoff between vertical grid 
resolution and computational expense”. We have 

not investigated the question of how the results 
would be impacted by increasing or decreasing the 

number of vertical layers; that issue is important 
and worthy of further consideration but for the 

present article is outside the scope of our 
investigation.

Page 8437, line 13: What exactly constitutes 
“miscellaneous PM2.5”?

In response to this comment, we changed 
“miscellaneous PM2.5” to “unclassified PM2.5”.

Page 8438, lines 7-9: The 2008 NEI has been 
available for quite some time now (and

2011 NEI is now available too). It seems like 
2005 is a fairly old year to simulate at this point. 

When the authors say that the 2005 NEI was most
recent available it makes it seem like this work 

started a long time ago. Has it just taken that long 
from start to finish for this modeling exercise?

We thank the reviewer for this question. This 
manuscript is part of a larger modeling exercise, 

which has taken a number of years to complete. 
The other part of this study was recently published 

here: 
http://www.pnas.org/content/111/52/18490.abstract

Page 8439, Line 23: A 50-60 meter first layer 
height seems quite large, especially since 

nighttime boundary layers can often reach 50m or 
below. What impact do the authors feel there is 

from having such a deep first layer?

Testing the impact of the number of layers on 
model performance is outside of the scope of this 

study. We note in the Discussion that the 
investigation of model parameters on performance 

is an important area for future research.

Page 8445, Lines 9-10: Exactly what differences 

are there between the network measurement 
techniques and why would they result in such 

larger differences? IMPROVE sites are rural, so 
perhaps background SO2/SO4 is greatly 

overestimated.

In response to this comment, we revisited the 

measurement data documentation and found that 
the IMPROVE network reports elemental sulfur 

concentrations instead of SO4 concentrations. 
Adjusting our calculations to account for this 

decreases the differences between measurement 
networks for SO4. 



Page 8445: First, the authors state a MFB = 
-110%. What is does that statistic represent, since 

later in the paragraph the authors state a 
contiguous US MFB = -120%?

We thank the reviewer for calling this to our 
attention. -110% refers to the bias in annual 

average predictions, whereas -120% refers to 
wintertime predictions. Since the 10% difference is

probably not large enough to warrant discussing 
both statistics separately, we have removed the 

mention of the wintertime statistics and clarified 
that the -110% is for the annual average.

The nitrate biases reported are really large. Do the
authors have any explanation as to

why nitrate is underpredicted by so much 
(especially in the west where nitrate makes

up a greater percentage of the total PM2.5 than in 
the east)?

Particulate nitrate formation is strongly 
temperature dependent, and as we discuss in the 

article, many model performance evaluations only 
cover the summer months. We state in the article 

that nitrate predictive performance is better in the 
summer than in the winter. In Table A2 we 

compare our results to another full-year, 
contiguous U.S. modeling simulation. Predictive 

performance for nitrate in that study is similar to 
our results. 

Page 8446: The OC underestimation at CSN sites 
is really large too. How is it that the differences 

don’t appear to be rural vs. urban, since the urban 
CSN sites have an OC MFB = -113%, but the 

IMPROVE sites have an MFB = 15%)? That 
seems indicative of an urban emissions problem 

(or possibly meteorological, or both). I’d really 
like to know how those large differences are the 

result of simply sampling or analysis. References 
are needed if the authors are going to make 

statements like that.

In response to this comment we reviewed our 
calculations and found and fixed a configuration 

error which was partially responsible for the 
difference between networks. As noted in the text, 

figure A12 shows that the difference between 
networks in similar when considering only urban 

vs. only rural locations. We have added a reference
that discusses the variability in measured values of 

OC when using different analysis methods, which 
can be up a factor of 5.

Page 8446, Line 26: Change “lower” to “worse”. We thank the reviewer for this comment, but we 

think that he or she may have misinterpreted Table 
A2. We state that for most pollutants and networks,

NME is lower in our study than in Yahya et al. The
numbers in Table A2 support this statement. Since 

lower error is generally considered to be better 
than higher error, we don’t feel that it would be 

appropriate to change “lower” to “worse”. To 
clarify this, we changed the text to “lower (i.e., 

better)”.

Table A2: Are these annual values being reported? We edited the title of Table A2 to clarify that the 

values are for annual average performance.

Reviewer 2 comment Response

The manuscript is well written and exhaustive, 
and will provide an excellent reference for future 

studies using WRF-Chem at 12 km resolution.

We thank the reviewer for this comment.

I do not have any major comment on the 

manuscript and I think that it could be published 
as is.

We thank the reviewer for this comment.



[I] agree with reviewer number 1 that seasonal 
statistics are more useful than annual statistics, 

but I do find annual statistics interesting to get a 
first idea of the model performances.

We agree that both sets of statistics are useful.

I suggest to add some maps of the different 
species making up for PM2.5 to the main text.

As mentioned above, we have added the figures for
PM2.5 subspecies to the main text.

Some species are more sensitive to emission 
errors, other to scavenging efficiency, others result

from chemistry, so comparing these 
measurements can give an idea of what is causing 

the bias.

We agree that these comparisons are useful, and we
have tried to suggest possible reasons for the 

model errors we observer wherever possible.
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Abstract

We present results from and evaluate the performance of a 12 month, 12 km horizontal

resolution
✿✿✿✿

year
✿✿✿✿✿

2005
✿

air pollution simulation for the contiguous United States using the

WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chem-

ical transport model (CTM). We employ the 2005 US National Emissions Inventory, the

Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynam-

ics Model for Europe (MADE) with a Volatility Basis Set (VBS) secondary aerosol mod-

ule. Overall, model performance is comparable to contemporary models
✿✿✿✿✿✿✿✿✿

modelling
✿✿✿✿✿✿

efforts

used for regulatory and health-effects analysis, with an annual average daytime ozone (O3)

mean fractional bias (MFB) of 12 % and an annual average fine particulate matter (PM2.5)

MFB of −1 %. WRF-Chem, as configured here, tends to overpredict total PM2.5 at some

high concentration locations, and generally overpredicts average 24 h O3 concentrations,

with better performance at predicting average daytime
✿

.
✿✿✿✿✿✿✿✿✿✿✿✿

Performance
✿✿

is
✿✿✿✿✿✿

better
✿✿

at
✿✿✿✿✿✿✿✿✿✿

predicting

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

daytime-average
✿

and daily peak O3 concentrations,
✿✿✿✿✿✿

which
✿✿✿✿

are
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

relevant
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

regulatory

✿✿✿

and
✿✿✿✿✿✿✿

health
✿✿✿✿✿✿✿

effects
✿✿✿✿✿✿✿✿✿

analyses
✿✿✿✿✿✿✿

relative
✿✿

to
✿✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿✿

average
✿✿✿✿✿✿

values. Predictive performance for

PM2.5 subspecies is mixed: the model overpredicts particulate sulfate (MFB= 65
✿✿✿✿✿

= 36%),

underpredicts particulate nitrate (MFB=−110 %) and organic carbon (MFB=−65
✿✿✿

29 %),

and relatively accurately predicts particulate ammonium (MFB= 3%) and elemental carbon

(MFB= 3%), so that the accuracy in total PM2.5 predictions is to some extent a function of

offsetting over- and underpredictions of PM2.5 subspecies. Model predictive performance

for PM2.5 and its subspecies is in general worse in winter and in the western US than in

other seasons and regions, suggesting spatial and temporal opportunities for future WRF-

Chem model development and evaluation.

1 Introduction

Epidemiological studies have established the importance of health effects from acute and

chronic exposure to fine particulate matter (PM2.5) and ground-level ozone (O3) (Jerrett

2
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et al., 2009; Krewski et al., 2009; Pope and Dockery, 2006). The accuracy of health-impact

predictions for future air pollutant emissions
✿✿✿✿✿

(e.g.,
✿✿✿✿✿✿✿✿

Tessum
✿✿

et
✿✿✿

al.,
✿✿✿✿✿✿

2012;
✿✿✿✿✿✿✿✿

Tessum
✿✿

et
✿✿✿

al.,
✿✿✿✿✿✿

2014)

depends in part on the performance of air quality models over long time scales and in all

seasons. Accurate health-impact predictions often depend on model simulations that cover

large geographic areas such as the contiguous US, so as to capture the full impacts of the

long-range transport of pollutants (Levy et al., 2003). Whereas chemical transport model

(CTM) simulations for a full year for the contiguous US often use 36 km horizontal grids

(e.g., Tesche et al., 2006; Yahya et al., 2014), increasing horizontal grid resolution to 12 km
can result in the more accurate prediction of pollutant concentrations (Fountoukis, 2013)

and population exposure. However, increasing horizontal resolution from 36 to 12 km in

a CTM typically results in a ∼ 27× increase in computational intensity (number of grid cells

increases nine-fold; number of time steps increases three-fold).

Although recent CTM evaluation efforts have focused on 12 month and contiguous

US model evaluations (Galmarini et al., 2012), CTM model performance for fine-scale

horizontal grid size (12 km or better)
✿✿✿✿

finer
✿✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿

grid
✿✿✿✿✿

size for an entire year for the

entire contiguous US is largely unexplored in the peer-reviewed literature. We know of only

one such study: Appel et al. (2012) evaluated the performance of the Community Multiscale

Air Quality (CMAQ) model (Foley et al., 2010) in reproducing year 2006 concentrations of

PM2.5 and O3 for the contiguous US. In a second study (not peer reviewed), the US EPA

(2012) describes model evaluation for PM2.5 concentrations for year 2007, also for the con-

tiguous US and using CMAQ. Our study contributes to this literature by evaluating a different

model with different parameterizations over a different time period. We also provide greater

investigation regarding how model performance varies in space, in time, and by chemical

species.

We employ and evaluate the performance of WRF-Chem (the Weather Research and

Forecasting model with Chemistry) (Grell et al., 2005) for year 2005 for a North Ameri-

can domain. WRF-Chem is functionally similar to CMAQ, but differs from the version used

by Appel et al. (2012) in that WRF-Chem predicts meteorological quantities and air pol-

lution concentrations simultaneously, allowing meteorology quantities to be updated more

3
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frequently as the model is running and allowing representation of interactions between me-

teorology and air pollution. WRF-Chem users can follow a simplified modeling workflow that

does not require running a separate meteorological model. This aspect can be beneficial

for the modeler, not necessarily for the model’s computation demands. For the domain and

settings used here, meteorological modeling accounts for only ∼ 10% of the total compu-

tational expense.

Table A1 summarizes spatial and temporal aspects of recent chemical transport model

evaluation efforts, with a focus on WRF-Chem evaluations in the US. WRF-Chem perfor-

mance in predicting air quality observations has been extensively quantified for simulations

of individual regions of the US, with simulation periods of several weeks or months (Ah-

madov et al., 2012; Chuang et al., 2011; Fast et al., 2005; Grell et al., 2005; McKeen et al.,

2007; Misenis and Zhang, 2010; Zhang et al., 2010, 2012). One study evaluated WRF-

Chem performance for a full year for the contiguous US with a 36 km grid (Yahya et al.,

2014). We present here WRF-Chem results from a full year, 12 km resolution simulation for

the contiguous US, evaluate the performance of the model compared to ambient measure-

ments, and compare WRF-Chem performance to published goals and criteria (Boylan and

Russell, 2006) and to recent CMAQ results for a similar simulation (Appel et al., 2012).

2 Methods

2.1 Model setup

We run the WRF-Chem model version 3.4 using a 12 km resolution grid with 444 rows, 336

columns, and 28 vertical layers. The modeling domain (see Fig. 1) covers the contiguous

US, southern Canada, and northern Mexico.
✿✿✿✿✿✿✿✿

Previous
✿✿✿✿✿✿✿✿

studies
✿✿✿✿✿

(e.g.,
✿✿✿✿✿✿✿

Appel
✿✿

et
✿✿✿✿

al.,
✿✿✿✿✿✿

2012;

✿✿✿✿✿✿

Yahya
✿✿

et
✿✿✿

al.,
✿✿✿✿✿✿

2014)
✿✿✿✿✿

have
✿✿✿✿✿

used
✿✿✿

34
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

layers;
✿✿✿✿

our
✿✿✿✿✿✿

choice
✿✿✿

of
✿✿

28
✿✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿

layers
✿✿✿✿✿✿✿✿✿✿

represents

✿

a
✿✿✿✿✿✿✿✿

tradeoff
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

vertical
✿✿✿✿

grid
✿✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿✿✿✿✿✿

expense.

Within WRF-Chem, we use the Regional Atmospheric Chemistry Mechanism (RACM)

(Stockwell et al., 1997) for gas-phase reactions and the Modal Aerosol Dynamics for Eu-

4
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rope (MADE) (Ackermann et al., 1998) module for aerosol chemistry and physics. RACM

and MADE were selected because of their relatively modest computational expense; at the

time of this study, alternatives to RACM/MADE are impractical for large-scale simulations

such as ours. We use the Volatility Basis Set (VBS) (Ahmadov et al., 2012) to simulate

formation and evaporation of secondary organic aerosol (SOA). The VBS approach differs

from other SOA parameterizations in that it assumes that primary organic aerosol (POA)

is semi-volatile. Meteorology options are set as recommended by the WRF user manual

(Wang et al., 2012) and the WRF-Chem user manual (Peckham et al., 2012) for situations

similar to those studied here. Table 1 summarizes the model options and inputs used. See

supporting information for additional details.

We use results from the MOZART global chemical transport model (Emmons et al.,

2010) as processed by the MOZBC file format converter (available: http://web3.acd.ucar.

edu/wrf-chem) to provide initial and boundary conditions for chemical species. Because the

MOZBC boundary conditions for miscellaneous
✿✿✿✿✿✿✿✿✿✿✿

unclassified
✿

PM2.5 are unrealistic for the

southeastern edges of the modeling domain – their use results in substantial PM2.5 over-

predictions in the southeastern US – we set all initial and boundary concentrations to zero

for miscellaneous
✿✿✿✿✿✿✿✿✿✿✿

unclassified
✿

PM2.5. As in Ahmadov et al. (2012), owing to uncertainty

in secondary organic aerosol (SOA) concentrations over the open ocean, we assume that

initial and boundary concentrations of SOA are zero. Data from the National Centers for

Environmental Prediction (NCEP) Eta model (UCAR, 2005) provide meteorological inputs;

boundary conditions; and, for the Four Dimensional Data Assimilation (FDDA) employed

here, observational “nudging” values.

We use the 2005 National Emissions Inventory (NEI) (US EPA, 2009) to estimate pollu-

tant emissions. The NEI includes emissions from area, point, and mobile sources for year

2005 in the US, year 2006 in Canada, and year 1999 in Mexico. We use the model evalua-

tion version of the NEI, which also includes hourly Continuous Emission Monitoring System

(CEMS) data for electricity generating units, hourly wildfire data, and biogenic emissions

from the BEIS model (Schwede et al., 2005), version 3.14.

5
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We prepare pollutant emissions at 12 km spatial resolution using the Sparse Matrix Op-

erating Kernel Emissions (SMOKE) program (Houyoux, 1999), version 2.6, as bundled with

the NEI data (available from http://www.epa.gov/ttn/chief/emch/index.html), then we convert

the emissions files output by SMOKE to WRF-Chem format and apply a plume rise algo-

rithm (ASME, 1973, as cited in Seinfeld and Pandis, 2006) to estimate the mixing height of

elevated emissions sources and wildfires. Source code for the file format conversion and

plume-rise program is available at https://bitbucket.org/ctessum/emcnv.

We simulate atmospheric pollutant concentrations for the period from 1 January through

31 December 2005. We choose the year 2005 because at the time this study was per-

formed it was the most recent year for which emissions data were available. For logistical

expediency, we separate the year into eight independent model runs, each approximately

1.5 months in length plus a discarded 5 day model spin-up period. We run the simulations

on a high-performance computing system consisting of 2.8GHz Intel Xeon X5560 “Ne-

halem EP” processors with a 40 Gbit QDR InfiniBand (IB) interconnect and a Lustre parallel

file system. Using 768 processors, each 1.5 month model run takes ∼ 19h to complete

(∼ 13processor-years for each annual model run).

2.2 Comparison with observations

We compare WRF-Chem wind speed, air temperature, relative humidity, and precipitation

predictions to data from the US Environmental Protection Agency (EPA) Clean Air Status

and Trends Network (CASTNET) observations. We compare modeled ground-level con-

centrations of total PM2.5 to EPA Air Quality System (AQS) observations (US EPA, 2005)

using 24 h average data (EPA parameter code 88101) and using the less extensive hourly

measurement network (EPA parameter code 88502), which allows us to compare modeled

vs. measured diurnal profiles. We compare WRF-Chem predictions of O3 to measurements

from the AQS (EPA parameter code 44201) and CASTNET networks. We compare the

predictions of PM2.5 subspecies to observation data from the EPA’s Chemical Speciation

Network (CSN) (US EPA, 2005) (formally called Speciation Trends Network (STN)) for or-

ganic carbon (OC, parameter code 88305), elemental carbon (EC, code 88307), particulate

6
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sulfate (SO4, code 88403), particulate nitrate (NO3, code 88306), and particulate ammo-

nium (NH4, code 88301). We additionally compare predictions to data from the Interagency

Monitoring of Protected Visual Environments (IMPROVE) network (University of Califor-

nia Davis, 1995) for particulate OC (code 88320), EC (code 88321),
✿✿✿✿✿

sulfur
✿

(code 88169),

and NO3 (code 88306); and to CASTNET observations for particulate SO4, NH4, and NO3.

WRF-Chem outputs organic aerosol (OA) concentrations, but methods for measuring or-

ganic aerosol only quantify organic carbon (OC). OC comprises a variable fraction of OA,

but it is common to assume an OA : OC ratio of 1.4 (Aiken et al., 2008). Therefore, we

divide WRF-Chem OA predictions by a factor of 1.4 for comparison with OC measure-

ments. Finally, we compare WRF-Chem predictions of gas-phase sulfur dioxide (SO2) and

nitrogen dioxide (NO2) to AQS observations. We remove from consideration those stations

with ≥ 25% missing data relative to the number of scheduled measurements during the

simulation period. The fractions of excluded data for each type of comparison are in the

Supplement.

WRF-Chem, as configured here, outputs instantaneous concentrations at the start of

each hour, whereas the observation data are reported as hourly or daily averages. WRF-

Chem calculates grid-cell-average concentrations, whereas observations generally repre-

sent concentrations at specific locations.

We compare measured and modeled values pair-wise at each time of measurement in

the grid cell containing each measurement station. Twenty-four hour average measure-

ments are compared to the average of the modeled (hourly instantaneous) values within

the same period. Comparisons are only made with observations that occur within the first

(nearest to ground) model layer (height: ∼ 50–60m). Source code for the program used to

extract and pair model and measurement data is available at https://bitbucket.org/ctessum/

aqmcompare.

2.3 Aggregation of results

In addition to reporting annual average model performance for the entire model domain,

we also disaggregate results spatially and temporally. We evaluate performance using two

7

https://bitbucket.org/ctessum/aqmcompare
https://bitbucket.org/ctessum/aqmcompare


❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

spatial approaches. First, we use four regional subdomains: Midwest, Northeast, South, and

West (basis: US Census regions (US Census Bureau, 2013); see Fig. 2). Second, we evalu-

ate urban vs. rural (i.e., not urban) locations, also as defined by the US Census (US Census

Bureau, 2014). CSN monitors tend to be placed in urban areas (85 % of 186 monitors are

urban), whereas IMPROVE monitors tend to be placed in protected rural areas (10 % of

122 monitors are urban). All 67 monitors in the CASTNET network are in rural locations.

We also split the analysis into four seasons: winter (January through March), spring (April

through June), summer (July through September), and fall (October through December).

Employing these time-periods allows us to compare against previously published results

(Appel et al., 2012).

2.4 Performance metrics

After matching all measured values with their corresponding modeled values, and averaging

modeled and measured values across the appropriate time period, we calculate metrics

shown in Eqs. (1)–(8):

MB =
1

n

n
∑

i=1

(Mi−Oi) (1)

ME =
1

n

n
∑

i=1

|Mi−Oi| (2)

NMB =

∑

n

i=1
(Mi−Oi)

∑

n

i=1
Oi

× 100% (3)

NME =

∑

n

i=1
|Mi−Oi|

∑

n

i=1
Oi

× 100% (4)

MFB =
1

n

n
∑

i=1

2(Mi−Oi)

Mi+Oi

× 100% (5)

8
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MFE =
1

n

n
∑

i=1

2|Mi−Oi|

Mi+Oi

× 100% (6)

MR =
1

n

n
∑

i=1

Mi

Oi

(7)

RMSE =

√

∑

n

i=1
(Mi−Oi)2

n
(8)

where i corresponds to one of n measurement locations, M and O are time-averaged

modeled and observed values, respectively, MB is mean bias, ME is mean error, NMB is

normalized mean bias, NME is normalized mean error, MFB is mean fractional bias, MFE

is mean fractional error, MR is model ratio, and RMSE is root-mean-square error. We ad-

ditionally calculate the slope (S), intercept (I), and squared Pearson correlation coefficient

(R2) of a linear regression between modeled and measured values.

Each metric provides a useful and distinct evaluation of model performance. In general,

metrics with “bias” in the name evaluate the accuracy of the model, whereas metrics with

“error” in the name incorporate both precision and accuracy. Metrics that are in normalized

or fractional form tend to emphasize errors where measured and observed values are rel-

atively small, whereas non-normalized metrics tend to emphasize errors where measured

and observed values are relatively large. We mainly focus here on MFB and R2 to evaluate

performance as they facilitate direct comparisons among pollutants. Results for all combi-

nations of time periods, measurement networks, spatial subdomains, and metrics are in the

Supplement.

For O3, we calculate model performance via three model-measurement comparisons:

(1) annual averages, (2) daytime-only (8 a.m. to 8 p.m.) annual averages, as in Appel

et al. (2012), and (3) annual-averages of daily peak concentrations, to match the epidemio-

logical findings in Jerrett et al. (2009).

Model performance goals and criteria have been published for PM2.5 (Boylan and Rus-

sell, 2006). Goals reflect performance that models should strive to achieve; criteria reflect

9
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performance that models should achieve to be used for regulatory purposes. The goals

and criteria suggested by Boylan and Russell (2006) vary with concentration: they are MFB

less than ±30 and ±60 % and MFE less than 50 and 75 %, respectively, for most con-

centrations, but increase exponentially as concentration decreases below ∼ 3µgm−3. To

incorporate this aspect of performance evaluation, we calculate the fraction of observation

stations for which our PM2.5 model results meet both the MFB and MFE performance goals

(fG) and criteria (fC).

3 Results

Figure 1 shows modeled annual average concentrations of PM2.5 and O3, where the

edges of the maps represent the edges of the modeling domain. An animated version of

Fig. 1 showing pollutant concentration as a function of time is available in the Supplement.

Maps of additional pollutants, as well as monthly, weekly, and diurnal maps and profiles of

population-weighted average concentrations, are also available in the Supplement. Mod-

eled O3 concentrations over water in the Gulf of Mexico and along the Atlantic coast tend

to be higher than concentrations over the adjacent land areas. As only areas over water

appear to be affected (as Fig. 2a shows, O3 overpredictions along the Gulf of Mexico and

Atlantic coasts are not greater than overpredictions further inland), this over-water anomaly

in the Gulf of Mexico should not adversely impact estimates of population-weighted con-

centrations.

Figure 2 shows monitor locations for total PM2.5 and for O3, as well annual average

fractional bias (MFB) values at each monitor. Results in Fig. 2a (PM2.5) display high spa-

tial variability, with no obvious spatial patterns in model performance; large overpredic-

tions are sometimes adjacent to large underpredictions (e.g., in southern Louisiana and

Florida). WRF-Chem generally overpredicts daytime O3 concentrations relative to observa-

tions (Fig. 2b). Monitor locations for meteorological variables, PM2.5 subspecies, and other

gas phase species are in Fig. A1.

10



❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

3.1 Meteorological performance

Figure 3 contains scatterplots comparing annual average observed and predicted values for

meteorological variables and pollutant concentrations. The model tends to overpredict near-

ground wind speed (Fig. 3a) and precipitation (Fig. 3d) relative to observations, whereas

temperature (Fig. 3b) and relative humidity (Fig. 3c) predictions agree well with observa-

tions. Figures A2–A5 in Appendix A disaggregate model performance for meteorological

variables by region (region boundaries are shown in Fig. 2) and by season; meteorologi-

cal performance is relatively consistent among seasons and regions. Model-measurement

comparisons provide important evidence on model performance but might overestimate

model robustness for meteorological parameters because FDDA “nudges” model meteoro-

logical estimates toward observed values.

3.2 PM2.5 and O3 performance

Annual average model-measurement agreement is good for total PM2.5 concentration

(Fig. 3e, 94 % of measurements meet performance criteria), although the model tends

to overpredict PM2.5 concentration at relatively high-concentration monitors (Fig. 3e). The

model tends to generally overpredict O3 concentrations, with worse overpredictions for 24 h

average concentrations (Fig. 3f) than for daily peak (Fig. 3g) and daytime average (Fig. 3f)

concentrations.

Figure 4 shows the median and interquartile range for modeled and measured PM2.5 and

O3 concentrations by hour of day (measurements of PM2.5 subspecies are only available

as 24 h averages). For PM2.5, the model generally agrees with measurements, although on

average it underpredicts concentrations at night and overpredicts during the day (Fig. 4a).

For O3, on average the model overpredicts for all times-of-day, but with a much lower frac-

tional error during the day than during the night. For both pollutants, the model accurately

captures the timing of diurnal trends, including the afternoon peak for O3 and the morning

and evening peaks for PM2.5. As a result, when comparing the three averaging-time metrics

for O3, we observe better model performance for the annual-average of daily peak concen-

11



❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

tration (MFB= 11%) and of average daytime concentration (MFB= 12%) than for overall

annual average (MFB= 23%). For O3, the first two metrics may offer greater relevance than

the third. For example, the annual average of daily peak concentrations is more strongly

correlated with health effects than are annual average concentrations (Jerrett et al., 2009);

and, for comparisons to the 8 h peak concentration National Ambient Air Quality Standard

(NAAQS), model performance is more important during daytime than at night.

Figures 5 and 6 disaggregate results by season and by location for total PM2.5 and day-

time O3, respectively; analogous results for other pollutants,
✿✿✿

are
✿✿✿

in
✿✿✿✿✿

Figs.
✿✿✿✿✿✿

7–11
✿✿✿

for PM2.5

✿✿✿✿✿✿✿✿✿✿✿

subspecies,
✿✿

in
✿✿✿✿✿✿

Figs.
✿✿✿✿✿✿✿

A2–A5
✿✿

in
✿✿✿✿✿✿✿✿✿✿

Appendix
✿✿

A
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

meteorological
✿✿✿✿✿✿✿✿✿✿

properties,
✿✿✿

in
✿✿✿✿✿

Figs.
✿✿✿✿✿✿✿

A6–A7

for other O3 temporal summaries, and for meteorological variables are in Appendix

A (Figs. A6–A14)
✿✿

in
✿✿✿✿

Fig.
✿✿✿

A8
✿✿✿

for
✿

SO2
✿

,
✿✿✿✿

and
✿✿

in
✿✿✿✿✿

Fig.
✿✿✿

A9
✿✿✿

for
✿

NO2. Daytime and peak O3 predic-

tive performance does not exhibit obvious patterns among seasons or regions; MFB values

range from −7 to 48 % (daytime; Fig. 6) and −12 to 29 % (peak; Fig. A7). The overpredic-

tion of PM2.5 concentrations at high-concentration monitors is more prevalent in the South

and in urban areas, and is less prevalent in summer than in other seasons (Fig. 5). Model-

measurement correlation for total PM2.5 is higher in summer (AQS R2 = 0.64) than in fall

and winter (AQS R2 = 0.20 and 0.24, respectively), but overall PM2.5 concentrations are not

higher in summer. Previous research has suggested that poor PM predictive performance

in winter is common among CTMs and may be attributable to difficulty in reproducing the

strongly stable meteorological conditions that are responsible for high winter PM concen-

trations (Solazzo et al., 2012). Annual average PM2.5 predictive performance in the West

(AQS R2: 0.45 (summer), 0.13 (winter)) is worse than performance in the Northeast (AQS

R2: 0.70 (summer), 0.37 (winter)). In the Northeast, performance is better in the summer

(R2 = 0.69) than in other seasons (R2 = 0.30–0.40). Taken together, these findings suggest

that there is an opportunity for future model development for PM2.5 to focus on winter or

full-year simulations rather than summer-only simulations, and on the western US or the full

contiguous US rather than just the Northeast.
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3.3 PM2.5 subspecies performance

Figure 3i–m illustrates model performance for annual average concentrations of PM2.5 com-

ponent species. In all cases, > 65% of locations meet performance criteria for at least one

of the three observation networks.

The model overpredicts particulate SO4 (CSN MFB= 34%, IMPROVE

MFB= 126
✿✿✿✿✿

= 40%, CASTNET MFB= 36%) (Fig. 3i) and SO2 (MFB= 51%) (Fig. 3n).

This finding (overprediction of total sulfur) agrees with prior research for multiple CTMs

(McKeen et al., 2007). Performance as compared to the IMPROVE network is worse

than performance as compared to the CSN and CASTNET networks, perhaps owing

to differences in measurement methods. Particulate SO4 prediction performance does

not vary much by region; as with total PM2.5, performance is worse in winter (CSN

MFB= 59%) than summer (CSN MFB= 10.%) (Fig. A8
✿✿

7).

WRF-Chem as configured here performs well in predicting observed particulate NH4

concentrations, with 99 % of locations meeting performance criteria (Fig. 3j). Similar to total

PM2.5, performance for particulate NH4 is worst in the urban areas in the West region

(Fig. A9
✿

8), where a number of monitors report relatively high measured concentrations but

modeled concentrations are relatively low.

Particulate NO3 concentrations are consistently underpredicted (
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿✿

average
✿

MFB=
−110 %) (Fig. 3k). Figure A10

✿

9
✿

shows that these underpredictions are more severe in

some seasons and regions than in others. The best predictive performance is for the Mid-

west in summer (MFB=−39 %) followed by the Northeast in summer (MFB=−47 %). NO3

predictions in the West region are poor for all seasons (MFB=−148 %), as are wintertime

predictions for the contiguous US (MFB=−120). As with other PM2.5 species, there is an

opportunity for future development and evaluation of models for particulate NO3 prediction

to focus on seasons and regions other than summer in the Northeast. Predictions of gas-

phase NO2 (Fig. 3o) agree relatively well with observations (MFB= 4%), but, as with other

species, the model tends to overpredict NO2 concentrations in areas where measured con-

13
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centrations are relatively high. This effect is especially prominent in the West and in urban

areas (Fig. A14
✿✿✿

A9).

Model-measurement agreement for EC concentrations is relatively good (Fig. 3l), with

96 % of monitor locations meeting performance criteria. As with other comparisons, for EC

the model tends to overpredict concentrations for monitors with relatively high concentra-

tions, especially in urban areas (Fig. A11
✿✿

10).

Model predictions of OC concentrations (Fig. 3m) are biased low compared to CSN

(MFB=−113
✿✿

55 %) but agree relatively well with IMPROVE (MFB= 15%). Mean bias val-

ues given here are within the range of values reported by a previous publication using the

VBS SOA formation mechanism (Ahmadov et al., 2012). As shown in Fig. A12
✿✿

11, the dif-

ferences between
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

model-measurement
✿✿✿✿✿✿✿✿✿✿✿✿

aggreement
✿✿✿✿✿✿✿✿

between
✿✿✿✿

the
✿✿✿✿

two
✿

networks do not

appear to be dependent on urban vs. rural monitor location; instead
✿

.
✿✿✿✿✿✿✿

Instead, they may re-

flect between-network differences in sampling or analysis
✿

;
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿✿

techniques
✿✿✿

are

✿✿✿✿✿✿

known
✿✿

to
✿✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿

widely
✿✿✿✿✿✿✿

varying
✿✿✿✿

OC
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿✿✿✿✿

(Cavalli
✿✿✿

et
✿✿✿

al.,
✿✿✿✿✿✿

2010).

3.4 Comparison with other studies

Table 2 compares performance of WRF-Chem as configured here to that of the CMAQ

model in a similar modeling effort by Appel et al. (2012). In this table, CMAQ as configured

by Appel et al. (2012) in most cases predicts O3 observations with greater accuracy and

precision than does WRF-Chem as configured here, while WRF-Chem in most cases does

a better job predicting PM2.5. However, given the many differences in physical and chemical

parameterizations and input data (including a difference in simulation year), the observed

differences may or may not be generalizable. Instead, our conclusion from Table 2 is that

the models are generally comparable in performance.

Table A2 compares WRF-Chem results from this study to results from Yahya et al. (2014)

for a 12 month, contiguous US WRF-Chem simulation with a 36 km horizontal resolution

spatial grid. NME results from the simulation performed here are lower
✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿

better)
✿

than

those reported by Yahya et al. for most pollutants and measurement networks, but NMB

results are more mixed. As horizontal grid resolution, input data, and model parameters all
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differ between the two studies, we are not able to determine the cause of the differences in

results.

4 Discussion

We simulated and evaluated PM2.5 and O3 based on 12 month (year 2005) WRF-Chem

modeling for the United States. The spatial and temporal extent investigated, and the hor-

izontal spatial resolution (12 km) employed, are nearly unprecedented; to our knowledge,

only one prior peer-reviewed article has investigated CTMs using the same
✿✿✿✿

CTM
✿✿✿✿✿✿✿✿✿✿

evaluation

✿✿✿

has
✿✿✿✿✿

used
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

comparable extent and resolution (Appel et al., 2012). We find that WRF-Chem

performance as configured here is generally comparable to other models used in regula-

tory and health impact assessment situations in that model performance is similar to that

reported by Appel et al. (2012) and in most cases meets criteria for air quality model per-

formance suggested by Boylan and Russel (2006).

There is potential for further improvement in model accuracy, especially for these cases:

PM2.5 concentrations in winter and in the western US, ground-level O3 at night and in the

summer, and particulate nitrateand organic carbon. The good agreement in total PM2.5

predictions and observations in some cases reflects offsetting over- and underpredictions,

including by species (Figs. A8–A12
✿✿✿

Fig.
✿✿

3) and time-of-day (Fig. 4a). Performance in pre-

dicting concentrations of PM2.5 and its subspecies tends to be the worst in winter and in

the western US. Overall, WRF-Chem as configured here meets the performance criteria

described above for total PM2.5 concentrations at 94 % of monitor locations.

The WRF-Chem meteorological and chemical settings employed here are reasonable

and justified, but different settings may also be reasonable. Improved understanding of how

alternative parameterizations might impact model performance in large-scale applications

such as ours is an area for continued research. Another area for future research is identi-

fying opportunities to evaluate model performance in terms of how changes in emissions

cause changes in outdoor concentrations.
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5 Supporting information

Supplement includes WRF-Chem configuration settings (ascii format); maps showing spa-

tial patterns in pollutant concentrations by annual average, month of year, day of week,

and hour of day (pdf format); model-measurement comparison statistics (xlsx format); and

monitor-specific paired model and measurement data (json ascii format). A video show-

ing spatially- and temporally-explicit O3 and PM2.5 concentrations is at http://youtu.be/

4bpQXBAUVwE.

The Supplement related to this article is available online at

doi:10.5194/gmdd-0-1-2015-supplement.
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Table 1. Selected WRF-Chem v3.4 settings and parameters employed in this study.

Category Option used

Microphysics WSM 3-class simple ice scheme

Shortwave and longwave radiation CAM scheme

Land surface Unified Noah land surface model

Boundary layer physics YSU scheme

Cumulus physics New Grell scheme (G3)

FDDA meteorology nudging Yes (grid-based)

Gas-phase chemistry NOAA/ESRL RACM

Aerosol chemistry/physics MADE/VBS

Aerosol feedback No

Photolysis Fast-J

Anthropogenic emissions 2005 NEI

Biogenic emissions BEIS v3.14

Horizontal grid resolution 12 km
Number of vertical layers 28
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Table 2. WRF-Chem and CMAQ Seasonal O3 and PM2.5 prediction performance.

Daytimea average O3 (ppb) PM2.5 (µgm−3)

WRF-Chem CMAQb WRF-Chem CMAQb

Winter MB 3.5 −3.5 0.8 3.4

Spring MB 1.5 −1.8 2.0 2.0

Summer MB 9.2 4.4 0.0 −0.6

Fall MB 5.2 2.6 −0.9 4.0

Winter ME 5.5 9.0 3.1 6.0

Spring ME 4.6 9.3 3.3 4.5

Summer ME 10.1 11.0 2.6 4.4

Fall ME 6.2 8.8 2.7 5.6

Winter NMB 12 % −13 % 6 % 30 %

Spring NMB 3 % −4 % 17 % 19 %

Summer NMB 21 % 10. % 0 % −5 %

Fall NMB 19 % 8 % −7 % 36 %

Winter NME 19 % 35 % 25 % 53 %

Spring NME 10 % 29 % 28 % 42 %

Summer NME 23 % 24 % 18 % 31 %

Fall NME 23 % 28 % 23 % 52 %

a Daytime is defined as 8 a.m. to 8 p.m. LT.
b Adapted from Appel et al. (2012) Tables 1 and 2.
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Table A1. Temporal and spatial aspects of recent model evaluations, focusing on WRF-Chem and

North America.

Author and year Model used Time period Spatial extent Horizontal spatial

resolution

Ahmadov et al. (2012) WRF-Chem Aug–Sep 2006 Contiguous US

(evaluation performed

for eastern US)

60 and 20 km

Appel et al. (2006) CMAQ Full year, 2006 Contiguous US

and Europe

12 km

Chuang et al. (2011) WRF-Chem May–Sep 2009 Southeastern US 12 km
Fast et al. (2006) WRF-Chem Late Aug 2000 City of Houston 1.3 km
Grell et al. (2005) WRF-Chem Jul–Aug 2002 Eastern US 27 km
McKeen et al. (2007) WRF-Chem,

CHRONOS,

AURAMS,

STEM,

CMAQ/ETA

Jul–Aug 2004 Northeastern US 12, 21, 27, and 42 km

Misenis and Zhang (2010) WRF-Chem Late Aug 2000 Eastern Texas 4 and 12 km
Tesche et al. (2006) CMAQ,

CAMx

Full year, 2002 Contiguous US 12 km Eastern US,

36 km contiguous US

Yahya et al. (2014) WRF-Chem Full year, 2006 Contiguous US 36 km
Zhang et al. (2010) WRF-Chem Late Aug 2010 Eastern Texas 12 km
Zhang et al. (2012) WRF-Chem Jul 2001 Contiguous US 36 km
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Table A2. WRF-Chem
✿✿✿✿✿✿

annual
✿✿✿✿✿✿✿

average
✿

predictive performance by pollutant in Yahya et al. (2014)

and in the current study.

Variable Network MB NMB NME

Yahya Current Yahya Current Yahya Current

et al. (2014) study et al. (2014) study et al. (2014) study

Daily Peak O3 (ppb) CASTNET −8.6 3.9 −18 % 9 % 24 % 12 %

AQS −0.3 5.5 −5 % 13 % 9 % 15 %

Daytime Average O3 (ppb) CASTNET −5.6 3.5 −13 % 9 % 22 % 11 %

AQS −1.7 4.9 −4 % 13 % 24 % 16 %

SO2 (ppb) AQS −0.6 5.1 −18 % 130 % 87 % 150 %

NO2 (ppb) AQS 1.7 1.6 17 % 12 % 73 % 34 %

Total PM2.5 (µgm−3) CSN 0.0 0.4 0 % 3 % 45 % 18 %

SO4 PM2.5 (µgm−3) IMPROVE 0.5 0.9 35 % 40 % 66 % 42 %

CSN 0.9 1.6 32 % 41 % 59 % 42 %

CASTNET 0.9 1.3 34 % 38 % 55 % 38 %

NH4 PM2.5 (µgm−3) CSN 0.1 0.0 10. % −2 % 53 % 16 %

CASTNET 0.3 0.1 30. % 7 % 50. % 16 %

NO3 PM2.5 (µgm−3) IMPROVE −0.1 −0.5 −14 % −69 % 85 % 69 %

CSN −0.6 −1.3 −38 % −72 % 75 % 72 %

CASTNET −0.1 −0.7 −15 % −65 % 83 % 65 %

EC PM2.5 (µgm−3) IMPROVE 0.0 0.0 15 % −9 % 67 % 31 %

CSN 0.4 0.2 54 % 25 % 90. % 43 %

OC PM2.5 (µgm−3) IMPROVE 0.0 0.2 1 % 17 % 59 % 33 %
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0 2 3.9 5.9 7.9 9.8 12 14 16

46μg m−3

0 6.9 14 21 28 34 41 48 55

57ppbv

(a) Total PM2.5 (b) Average O3

Figure 1. Modeled annual average ground level concentrations of (a) PM2.5 and (b) O3. For ease of

viewing, the color scales contain a break at the 99th percentile of concentrations.

25



❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

(a) Total PM2.5 (b) Daytime O3
AQS AQS Hourly PM2.5 CASTNET

Figure 2. AQS, AQS hourly, and CASTNET monitor locations and annual average fractional bias

for total PM2.5 (a) and daytime average O3 concentrations (b). Corresponding information for other

pollutants and variables is in Fig. A1.
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Figure 3. Annual average modeled and measured ground-level meteorological variables (a–d) and

pollutant concentrations (e–o). Colored lines show linear least-squares fits of the data for the mea-

surement networks with corresponding colors. Grey lines show model to measurement ratios of 2 : 1,

1 : 1, and 1 : 2. Annual average performance statistics are listed to the right of each plot; acronyms

are defined in the methods section.
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Figure 4. Median values (lines) and interquartile ranges (shaded areas) of annual average modeled

values, observed values, and fractional error by hour of day for PM2.5 (a) and O3 (b).
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Figure 5. Comparison of measured and modeled PM2.5 concentration disaggregated by season

and region. Region boundaries are shown in Fig. 2.
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Figure 6. Comparison of measured and modeled annual average of daytime O3 concentration dis-

aggregated by season and region. Region boundaries are shown in Fig. 2.
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Figure 7.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿✿

particulate SO4
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿✿

by

✿✿✿✿✿

region
✿✿✿✿

and
✿✿✿✿✿✿✿

season.
✿
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Figure 8.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿✿

particulate NH4
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿

by

✿✿✿✿✿

region
✿✿✿✿

and
✿✿✿✿✿✿✿

season.
✿
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Figure 9.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿✿

particulate NO3
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿

by

✿✿✿✿✿

region
✿✿✿✿

and
✿✿✿✿✿✿✿

season.
✿
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Figure 10.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿✿

particulate
✿✿

EC
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿

by

✿✿✿✿✿

region
✿✿✿✿

and
✿✿✿✿✿✿✿

season.
✿
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Figure 11.
✿✿✿✿✿✿✿✿✿✿

Comparison
✿✿

of
✿✿✿✿✿✿✿✿

modeled
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

measured
✿✿✿✿✿✿✿✿✿

particulate
✿✿

OC
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿

,
✿✿✿✿✿✿✿✿✿✿✿✿✿

disaggregated
✿✿

by

✿✿✿✿✿

region
✿✿✿✿

and
✿✿✿✿✿✿✿

season.
✿
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Figure A1. AQS, CSN, IMPROVE AQS and CASTNET monitor locations and annual average frac-

tional bias for total meteorological variables (a–d) and pollutant concentrations (e–m).
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Figure A2. Comparison of modeled and measured wind speed, disaggregated by region and sea-

son.
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Figure A3. Comparison of modeled and measured temperature, disaggregated by region and sea-

son.
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Figure A4. Comparison of modeled and measured relative humidity, disaggregated by region and

season.
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Figure A5. Comparison of modeled and measured precipitation, disaggregated by region and sea-

son.
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Figure A6. Comparison of modeled and measured annual-average O3 concentration, disaggregated

by region and season.
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Figure A7. Comparison of modeled and measured average daily peak O3 concentration, disaggre-

gated by region and season.
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Comparison of modeled and measured particulate concentration, disaggregated by region and

season.

Comparison of modeled and measured particulate concentration, disaggregated by region and

season.

Comparison of modeled and measured particulate concentration, disaggregated by region and

season.

Comparison of modeled and measured particulate EC concentration, disaggregated by region and

season.

Comparison of modeled and measured particulate OC concentration, disaggregated by region and

season.
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Figure A8. Comparison of modeled and measured SO2 concentration, disaggregated by region and

season.
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Figure A9. Comparison of modeled and measured NO2 concentration, disaggregated by region and

season.
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