
Manuscript prepared for Geosci. Model Dev.
with version 2014/07/29 7.12 Copernicus papers of the LATEX class coperni-
cus.cls.
Date: 7 May 2015

libcloudph++ 1.0: single-moment bulk, double-moment bulk, and
particle-based warm-rain microphysics library in C++
S. Arabas1, A. Jaruga1, H. Pawlowska1, and W. W. Grabowski2,3

1Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
2National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
3Affiliate Professor at the University of Warsaw, Warsaw, Poland

Correspondence to: S. Arabas (sarabas@igf.fuw.edu.pl)
and H. Pawlowska (hanna.pawlowska@igf.fuw.edu.pl)

Abstract. This paper introduces a library of algorithms for
representing cloud microphysics in numerical models. The
library is written in C++, hence the name libcloudph++.
In the current release, the library covers three warm-rain
schemes: the single- and double-moment bulk schemes, and
the particle-based scheme with Monte-Carlo coalescence.
The three schemes are intended for modelling frameworks
of different dimensionality and complexity, ranging from
parcel models to multi-dimensional cloud-resolving (e.g.
large-eddy) simulations. A two-dimensional prescribed-flow
framework is used in the paper to illustrate the library fea-
tures. The libcloudph++ and all its mandatory dependencies
are free and open-source software. The Boost.units library
is used for zero-overhead dimensional analysis of the code
at compile time. The particle-based scheme is implemented
using the Thrust library that allows to leverage the power of
graphics processing units (GPU), retaining the possibility to
compile the unchanged code for execution on single or mul-
tiple standard processors (CPUs). The paper includes com-
plete description of the programming interface (API) of the
library and a performance analysis including comparison of
GPU and CPU set-ups.

1 Introduction

Representation of cloud processes in numerical models is
crucial for weather and climate prediction. Taking climate
modelling as an example, one may learn that numerous dis-
tinct modelling systems are designed in similar ways, shar-
ing not only the concepts but also the implementations of
some of their components (Pennell and Reichler, 2010). This
creates a perfect opportunity for code reuse which is one

of the key “best practices” for scientific computing (Wilson
et al., 2014, Sect. 6). The reality, however, is that the code
to be shared is often “transplanted” from one model to an-
other (Easterbrook and Johns, 2009, Sect. 4.6) rather than
reused in a way enabling the users to benefit from ongoing
development and updates of the shared code. From the au-
thors’ experience, this practise is not uncommon in devel-
opment of limited-area models as well (yet, such software-
engineering issues are rarely the subject of discussion in lit-
erature). As a consequence, there exist multiple implementa-
tions of the same algorithms but it is difficult to dissect and
attribute the differences among them. Avoiding “transplants”
in the code is not easy, as numerous software projects in at-
mospheric modelling feature monolithic design that hampers
code reuse.

This brings us to the conclusion that there is a poten-
tial demand for a library-type cloud-microphysics software
package that could be readily reused and that would enable
its users to easily benefit from developments of other re-
searchers (by gaining access to enhancements, corrections, or
entirely new schemes). Library approach would not only fa-
cilitate collaboration, but also reduce development time and
maintenance effort by imposing a separation of cloud micro-
physics logic from other model components such as the dy-
namical core or the parallelisation logic. Such strict separa-
tion of concerns is also a prerequisite for genuine software
testing.

Popularity of several geoscientific-modelling software
packages that offer shared-library functionality suggests
soundness of such approach – e.g., libRadtran (Mayer and
Kylling, 2005) and CLUBB (Golaz et al., 2002), cited nearly
350 and 100 times, respectively.

2 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

The motivation behind the development of the lib-
clouph++ library introduced herein is twofold. First, we in-
tend to exemplify the possibilities of library-based code reuse
in the context of cloud modelling. Second, in the long run, we
intend to offer the community a range of tools applicable for
research on some of the key topics in atmospheric science
such as the interactions between aerosol, clouds and precip-
itation – phenomena that still pose significant challenges for
the existing tools and methodologies (Stevens and Feingold,
2009).

The library can be used in simulation frameworks of dif-
ferent dimensionality, different dynamical cores, different
parallelisation strategies, and in principle models written in
different programming languages. Presented library is writ-
ten in C++, a choice motivated by the availability of high-
performance object-oriented libraries and the built-in “tem-
plate” mechanism. C++ templates allow the implemented al-
gorithms not to be bound to a single data type, single ar-
ray dimensionality, or single hardware type (e.g. CPU/GPU
choice). The library code and documentation are released as
free (meaning both gratis & libre) and open-source software
– a prerequisite for use in auditable and reproducible research
(Morin et al., 2012; Ince et al., 2012).

Openness, together with code brevity and documentation,
are also crucial for enabling the users not to treat the library
as a “black box”. While a self-contained package with well-
defined interface is black-box approach compatible, the au-
thors encourage users to inspect and test the code.

Modelling of atmospheric clouds and precipitation em-
ploys computational techniques for particle-laden flows.
These are divided into Eulerian and Lagrangian approaches
(see e.g. Crowe et al., 2012, Chapter 8). In the Eulerian ap-
proach, the cloud and precipitation properties are assumed
to be continuous in space, like those of a fluid. In the La-
grangian approach, the so-called computational particles are
tracked through the model domain. Information associated
with those particles travels along their trajectories. The lo-
cal properties of a given volume are diagnosed by taking into
account the properties of particles contained within it. The
Eulerian approach is well suited for modelling transport of
gaseous species in the atmosphere and is the most common
choice for modelling atmospheric flows. This is why most
cloud microphysics models are built using the Eulerian con-
cept (Straka, 2009, e.g chapter 9.1). However, it is the La-
grangian approach that is particularly well suited for dilute
flows such as those of cloud droplets and rain drops in the
atmosphere.

In the current release, libcloudph++ is equipped with
implementations of three distinct models of cloud micro-
physics. All three belong to the so-called warm-rain class
of schemes, meaning they cover representation of processes
leading to formation of rain but they do not cover representa-
tion of the ice phase (snow, hail, graupel, etc.). The so-called
single-moment bulk and double-moment bulk schemes de-
scribed in Sects. 3 and 4 belong to the Eulerian class of

methods. In Sect. 5, a coupled Eulerian–Lagrangian particle-
based scheme is presented. In the particle-based scheme, La-
grangian tracking is used to represent the dispersed phase
(atmospheric aerosol, cloud droplets, rain drops), while the
continuous phase (moisture, heat) is represented with the Eu-
lerian approach. Description of each of the three schemes in-
cludes:

– discussion of the key assumptions,

– formulation of the scheme,

– definition of the programming interface (API),

– overview of the implementation,

– example results.

The particle-based scheme, being a novel approach to mod-
elling clouds and precipitation, is discussed in more detail
than the bulk schemes.

Description of the programming interface of lib-
cloudph++ includes C++ code listings of all data-structure
definitions and function signatures needed to use the library.
In those sections, C++ nomenclature is used without intro-
duction (for reference, see e.g. Brokken, 2013, that covers
the C++11 version of the language used in the presented
code). Sections covering scheme formulation feature cloud-
modelling nomenclature which is briefly introduced in Ap-
pendix A.

The library is equipped with Python bindings allowing to
use all of libcloudph++ features from the Python program-
ming language. The bindings are described in a separate tech-
nical note (Jarecka et al., 2015) which includes also an exam-
ple solution for interfacing libcloudph++ from Fortran using
the Python bindings.

The paper is structured as follows. Formulation of an ex-
ample modelling framework is presented in Sect. 2. The
three implemented schemes are described in Sects. 3–5. Sec-
tion 6 presents a performance evaluation of all three schemes.
Section 7 provides a summary of the key features of lib-
cloudph++.

Appendix A contains an outline of governing equations
for moist atmospheric flow. Appendix B contains a list of
symbols used throughout the text. Appendix C covers the de-
scription of an example program based on libcloudph++ that
was developed to perform the simulations presented through-
out the text.

The libcloudph++ and the program used to generate all
results presented in the paper are released as free and open-
source software – see the section on code availability at the
end of the paper.

2 Example framework

Being a library, libcloudph++ does not constitute a complete
modelling system. It is a set of reusable software components

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 3

that need to be coupled with a model representing air motion.
In this section, we describe a simple example framework in
which the library may be used. The three following subsec-
tions cover the description of a 2-D kinematic flow model,
a set-up including initial conditions, and a conceptual numer-
ical solver. Example results obtained with these simulation
components are presented alongside the description of mi-
crophysics schemes in Sects. 3, 4 and 5.

A simple 2-D kinematic framework allows, and limits,
one to study cloud microphysical processes decoupled from
cloud dynamics. In fact, the differences between simulations
when feedback on the dynamics is taken out can lead to a
better understanding of the role of flow dynamics (e.g. Slaw-
inska et al., 2009). Such an approach results in a computa-
tionally cheap, yet still insightful, set-up of potential use in:
(i) development and testing of cloud-processes parameteri-
sations for larger scale models, (ii) studying such processes
as cloud processing of aerosols; and (iii) developing remote-
sensing retrieval procedures involving detailed treatment of
cloud microphysics.

2.1 2-D kinematic flow model

The flow model formulation is inspired by the 2-D frame-
work described in Szumowski et al. (1998), Morrison and
Grabowski (2007) and Rasinski et al. (2011). The primary as-
sumption is that the dry-air density does not change in time
(here, a vertical profile ρd(z) is used) which allows to pre-
scribe the 2-D velocity field using a streamfunction:{
ρd ·u=−∂zψ
ρd ·w = ∂xψ

(1)

where ψ = ψ(x,z; t) is the streamfunction and u and w de-
note horizontal and vertical components of the velocity field
u.

One may notice that the stationarity of the dry-air density
field, together with phase-change-related variations in time
of the temperature and the water vapour mixing ratio, imply
time variations of the pressure profile. The deviations from
the initial (hydrostatic) profile are insignificant, though.

2.2 8th ICMW VOCALS set-up

Example results presented in the following sections are based
on a modelling set-up designed for the 8th International
Cloud Modelling Workshop (ICMW, Muhlbauer et al., 2013,
case 1). It was designed as the simplest scenario applicable
for benchmarking models representing aerosol processing by
clouds. The cloud depth and aerosol characteristics are cho-
sen to mimic a drizzling stratocumulus cloud.

The definition of the streamfunction ψ(x,z) is the same as
in Rasinski et al. (2011, Eq. 2):

ψ(x,z) =−wmax
X

π
sin
(
π
z

Z

)
cos
(

2π
x

X

)
(2)

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

Figure 1. The constant-in-time 2-D velocity field used in the pre-
sented simulations. See discussion of Eqs. (1) and (2).

with wmax = 0.6 m s−1, domain width X = 1.5km and do-
main height Z = 1.5km. The resulting velocity field (de-
picted in Fig. 1) mimics an eddy spanning the whole domain,
and thus covering an updraught and a downdraught region.
The domain is periodic in horizontal direction. To maintain
flow incompressibility up to round-off error, velocity com-
ponents (cf. Eq. 1) are derived from Eq. (2) using numeri-
cal differentiation formulæ for a given grid type (Arakawa-C
grid is used in the examples presented in the paper).

The initial profiles of liquid-water potential temperature
θl and the total water mixing ratio rt are defined as con-
stant with altitude (θl = 289K; rt = 7.5 g kg−1). The initial
air-density profile corresponds to the hydrostatic equilibrium
with a pressure of 1015hPa at the bottom of the domain.
This results in supersaturation in the upper part of the do-
main, where a cloud deck is formed in the simulations.

The domain is assumed to contain aerosol particles. Their
dry size spectrum is a bi-modal log-normal distribution:

N(rd) =
∑
m

Nm√
2π ln(σm)

1

rd
exp

−(ln(rdrm)
√

2ln(σm)

)2
 (3)

with the following parameters (values based on the VOCALS
campaign measurements, Allen et al., 2011, Table 4):

σ1 = 1.4; d1 = 0.04µm; N1 = 60cm−3

σ2 = 1.6; d2 = 0.15µm; N2 = 40cm−3

where σ1,2 is the geometric standard deviation, d1,2 = 2 ·r1,2

is the mode diameter andN1,2 is the particle concentration at
standard conditions (T = 20 ◦C and p= 1013.25 hPa). This

4 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

corresponds to a vertical gradient of concentration due to the
vertical gradient of air density, and a gradual shift towards
larger sizes of the wet particle spectrum due to vertical gra-
dient of relative humidity. Both modes of the distribution are
assumed to be composed of ammonium sulphate.

In the examples presented in this paper, the model was
initialised with θ = θl and rv = rt (i.e., no condensed wa-
ter). To avoid unrealistic supersaturation, an arbitrary limit of
5% (RH = 1.05) was imposed when evaluating drop growth
equation during the spin-up.

To maintain steady mean temperature and moisture pro-
files (i.e. to compensate for gradual water loss due to pre-
cipitation and warming of the boundary layer due to latent
heating), mean temperature and moisture profiles are relaxed
to the initial profile. The temperature and moisture equations
include an additional source term in the form−(φ0−〈φ〉)/τ ,
where φ0, 〈φ〉 and τ are the initial profile, the horizontal
mean of φ at a given height and the relaxation time scale,
respectively. The relaxation time scale τ is height-dependant
(mimicking effects of surface heat fluxes) and is prescribed
as τ = τrlx · exp(z/zrlx) with τrlx = 300 s and zrlx = 200 m.
Note that such formulation does not dampen small-scale per-
turbations of φ, but simply shifts the horizontal mean toward
φ0.

For models that include a description of the cloud droplet
size spectrum, the initial data for the droplet concentration
and size are obtained by initialising the simulation with
a two-hour-long spin-up period. During the spin-up, precipi-
tation formation, cloud drop sedimentation and the relaxation
terms are switched off. The spin-up period is intended to ad-
just the initial cloud droplet size spectrum (not specified by
the set-up) to an equilibrium with the initial condition.

The grid steps are 20 m in both directions. The advection-
solver timestep is one second. Shorter sub-timesteps may be
used for the microphysics.

2.3 A conceptual solver

The conceptual solver is meant to perform numerical integra-
tion of a system of heterogeneous transport equations, each
equation of the form:

∂tri +
1

ρd
∇ · (uρdri) = ṙi (4)

where ri is the mixing ratio of the advected constituent, ρd

is the dry-air density, u is the velocity field, and the dot-
ted right-hand-side term ṙi depicts sources (see also Ap-
pendix A). The solver logic consists of five steps executed
in a loop, with each loop repetition advancing the solution
by one timestep. Each of the first four integration steps is an-
notated in Fig. 2 and described in the following paragraph.
The final step does data output and is performed condition-
ally every few timesteps.

The proposed solver features uncentered-in-time integra-
tion of the right-hand-side terms. The source terms that are

solver

adjust

ri = ADJ(ri)

update rhs terms

ṙi = RHS(ri)

apply rhs terms

ri += ∆t · ṙi
advect

ri = ADV(ri, ~C)

output

ri ; . . .

if time for outputif time for output

for each timestepfor each timestep

Figure 2. A sequence diagram depicting control flow in a concep-
tual solver described in Sect. 2.3. This solver design is extended
with libcloudph++ API calls in diagrams presented in Figs. 3, 5,
and 7. The diagram structure is modelled after the Unified Model-
ing Language (UML) sequence diagrams. Arrows with solid lines
depict calls, while the dashed arrows depict returns from the called
code. Individual solver steps are annotated with labels expressed
in semi-mathematical notation and depicting key data dependen-
cies. Model state variables are named ri, their corresponding right-
hand-side terms are named ṙi. If a symbol appears on both sides of
the equation, a programming-like assignment notation is meant, in
which the old value of the symbol is used prior to assignment, e.g.
ri = ADV(ri,C). ADV, ADJ, and RHS depict all operations the
solver does during the advection, adjustment, and right-hand-side
update steps, respectively.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 5

not formulated as time derivatives are referred to as adjust-
ments. The adjustments are applied after advection but before
updating the right-hand-side terms.

The library code is not bound to this particular solver logic
– it is just an example intended to present the library API.
We refer the reader to Grabowski and Smolarkiewicz (2002)
for the discussion of higher-order integration techniques for
moist atmospheric flows.

3 Single-moment bulk scheme

A common approach to represent cloud water and precipita-
tion in a numerical simulation is the so-called single-moment
bulk approach. The concepts behind it date back to the sem-
inal works of Kessler (1995, Sect. 3, and earlier works cited
therein). The constituting assumption of the scheme is the
division of water condensate into two categories: cloud wa-
ter and rain water. The term single-moment refers to the fact
that only the total mass (proportional to the third moment of
the particle size distribution) of water per category (cloud or
rain) is considered in the model formulation.

In an Eulerian framework, two transport equations for the
cloud water mixing ratio rc and the rain water mixing ratio
rr are solved in addition to the state variables θ and rv repre-
senting heat and moisture content, respectively (see Table 1
for a list of model-state variables in all schemes discussed in
the paper).

Single-moment bulk microphysics is a simplistic ap-
proach. Without information about the shape of droplet size
distribution, the model is hardly capable of being coupled
with a description of aerosol- or radiative-transfer processes.

3.1 Formulation

3.1.1 Key assumptions

The basic idea is to maintain saturation in the presence
of cloud water. Condensation/evaporation of cloud water
triggered by supersaturation/subsaturation occurs instanta-
neously. Rain water forms through autoconversion of cloud
water into rain (the negligible condensation of rain water
is not considered). Autoconversion occurs only after a pre-
scribed threshold of the cloud water mixing ratio is reached.
Subsequent increase in rain water is possible through the ac-
cretion of cloud water by rain.

Cloud water is assumed to follow the airflow, whereas rain
water falls relative to the air with a sedimentation velocity.
Rain water evaporates only after all available cloud water has
been evaporated and saturation is still not reached. In contrast
to cloud water, rain water evaporation does not occur instan-
taneously. The rain evaporation rate is a function of relative
humidity and is parameterised with an assumed shape of the
raindrop size distribution.

3.1.2 Phase changes

Phase changes of water are represented with the so-called
saturation adjustment procedure. Unlike in several other for-
mulations of the saturation adjustment procedure (cf. Straka,
2009, chapt. 4.2), the one implemented in libcloudph++ cov-
ers not only cloud water condensation and evaporation, but
also rain water evaporation.

Any excess of water vapour with respect to saturation is
instantly converted into cloud water, bringing the relative hu-
midity to 100 %. Similarly, any deficit with respect to satu-
ration causes instantaneous evaporation of liquid water. The
formulation of the saturation adjustment procedure takes the
latent heat release equation as a starting point. The heat
source depicted with ∆θ is defined through two integrals, the
first representing condensation or evaporation of cloud water,
and the second one representing rain evaporation:

∆θ =

r′v∫
rv

dθ

drv
drv +

r′′v∫
r′v

dθ

drv
drv (5)

∆rv = (r′v− rv)︸ ︷︷ ︸
−∆rc

+(r′′v − r′v)︸ ︷︷ ︸
−∆rr

(6)

where dθ
drv

= −θlv
cpdT

(cf. Eq. A13 in Appendix A) and the in-
tegration limit r′v for cloud water condensation/evaporation
is:

r′v =

r′vs rv > rvs

r′vs rv ≤ rvs ∧ rc ≥ r′vs− rv

rv + rc rv ≤ rvs ∧ rc < r′vs− rv

(7)

where r′vs = rvs(ρd,θ
′, r′v) is the saturation vapour density

evaluated after the adjustment. The first case in Eq. 7 cor-
responds to supersaturation. The second and the third cases
correspond to subsaturation with either sufficient or insuffi-
cient amount of cloud water to bring the air back to satura-
tion.

When saturation is reached through condensation or evap-
oration of the cloud water, the second integral in Eq. (7)
vanishes. If there is not enough cloud water available to
reach saturation through evaporation, the integration contin-
ues with the limit r′′v defined as follows:

r′′v =

r′v r′v = r′vs

r′′vs r′v < r′vs ∧ δrr ≥ r′′vs− r′v
r′v + δrr r′v < r′vs ∧ δrr < r′′vs− r′v

(8)

where δrr depicts the limit of evaporation of rain within one
timestep. Here, it is parameterised as δrr = min(rr,∆t ·Er)
with Er being the rain evaporation rate estimated following
Grabowski and Smolarkiewicz (1996, Eq. 5c) using the for-
mula of Ogura and Takahashi (1971, Eq. 25). As with r′vs,
here r′′vs = rvs(ρd,θ

′′, r′′v).

6 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

Table 1. State variables for the three implemented schemes. Number of state variables times the number of Eulerian grid cells plus number
of particle attributes times the number of Lagrangian computational particles gives an estimation of the memory requirement of a given
scheme. See Appendix B for symbol definitions.

Eulerian (PDE) Lagrangian (ODE)
state variables particle attributes

1-moment bulk θ, rv, rc, rr –
2-moment bulk θ, rv, rc, rr, nc, nr –
particle-based θ, rv r3d, r2w, N , κ

Noteworthy, the name adjustment reserved in Sect. 2.3
for source terms not formulated as time derivative suits the
above-defined procedure which is formulated through in-
tegration over vapour mixing ratio and not over time (see
also discussion of Eq. 3a in Grabowski and Smolarkiewicz,
1990).

3.1.3 Coalescence

The collisions and coalescence of droplets are modelled with
two separate processes: autoconversion and accretion. Au-
toconversion represents collisions between cloud droplets
only, while accretion refers to collisions between rain drops
and cloud droplets. Both are parameterised in a phenomeno-
logical manner as right-hand-side (rhs) terms following
Grabowski and Smolarkiewicz (1996, Eq. 5a,b) using the
Kessler formulæ. See Wood (2005) for a review of how these
formulations compare with other bulk warm-rain schemes.

In the Kessler formulation, autoconversion source term
is proportional to max(rc− rc0,0), where the value of the
mixing-ratio threshold rc0 controls the onset of precipita-
tion. Values of rc0 found in the literature vary from 10−4

to 10−3 kg kg−1 (Grabowski and Smolarkiewicz, 1996).

3.1.4 Sedimentation

Representation of sedimentation of rain water is formulated
as a rhs term1. The rhs term is formulated employing the up-
stream advection scheme:

ṙnew
r = ṙold

r − (Fin−Fout)/ρd (9)
Fin = Fout|above (10)

Fout =− rr

∆z

[ρd|belowvt(rr|below) + ρdvt(rr)]

2
(11)

where old and new superscripts are introduced to indicate that
ṙr is a sum of multiple terms. The |above and |below symbols
refer to the grid cell sequence in a column, vt is the rain ter-
minal velocity parameterised as a function of rain water mix-
ing ratio (Eq. 5d in Grabowski and Smolarkiewicz, 1996),
and Fin and Fout symbolise fluxes of rr through the grid cell
edges.

1Another commonly used approach is to alter the vertical com-
ponent of the Courant number when calculating advection

Employment of the upstream scheme brings several con-
sequences. First, unlike the cellwise formulation of phase
changes and coalescence, the sedimentation scheme is de-
fined over a grid column. Second, the combination of termi-
nal velocity, vertical grid cell spacing ∆z and the timestep
∆t must adhere to the Courant condition (cf. discussion in
Grabowski and Smolarkiewicz, 2002). Last, but not least,
the upstream algorithm introduces numerical diffusion that
can be alleviated by application of a higher-order advection
scheme Smolarkiewicz (e.g., MPDATA, cf. 2006, and refer-
ences therein).

3.2 Programming interface

3.2.1 API elements

The single-moment bulk scheme’s API consists of one struc-
ture (composite data type) and three functions, which are all
defined within the libcloudph::blk_1m namespace. The sep-
aration of the scheme’s logic into the three functions is done
first according to the conceptual solver design (i.e. separa-
tion of rhs terms and adjustments), and second according
to a data-dependency criterion (i.e. cellwise or columnwise
calculations). In case of the single-moment bulk scheme,
the three functions correspond to the three represented pro-
cesses, namely phase changes (cellwise adjustments), coa-
lescence (cellwise rhs terms), and sedimentation (column-
wise rhs term). Sedimentation is the only process involving
columnwise traversal of the domain (note the |above and |below
symbols in Eqs. 9–11).

The blk_1m::opts_t structure (Listing 1) is intended for
storing options of the scheme for a given simulation. The
template parameter real_t controls floating point format
(e.g., float, double, . . .). The structure fields include flags
for toggling individual processes, a value of autoconver-
sion threshold rc0, and an absolute tolerance used in nu-
merical integration of Eq. (7). By default, all processes are
enabled, rc0 = 5× 10−4 kg kg−1 and the tolerance is set
to 2× 10−5 kg kg−1. All three functions from the single-
moment bulk scheme’s API expect an instance of opts_t as
their first parameter (see Listings 2–4).

The saturation adjustment of state variables
(cf. Sect. 3.1.2) is obtained through a call to the
blk_1m::adj_cellwise() function (signature in Listing 2).

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 7

template<typename real_t>

struct opts_t {

bool

cond = true, // condensation

cevp = true, // evaporation of cloud

revp = true, // evaporation of rain

conv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

real_t

r_c0 = 5e-4, // autoconv. threshold

r_eps = 2e-5; // absolute tolerance

};

Listing 1: blk_1m::opts_t definition.

The additional template parameter cont_t specifies the type
of data container used for passing model state variables.
The function expects cont_t to implement an STL-style2

iterator interface (e.g., the standard std::vector class or
a Blitz++ array slice as used in the example code described
in Appendix C). The function arguments include references

template <typename real_t, class cont_t>

void adj_cellwise(

const opts_t<real_t> &opts,

const cont_t &rhod_cont,

cont_t &th_cont,

cont_t &rv_cont,

cont_t &rc_cont,

cont_t &rr_cont,

const real_t &dt

)

Listing 2: blk_1m::adj_cellwise() signature.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_rc_cont,

cont_t &dot_rr_cont,

const cont_t &rc_cont,

const cont_t &rr_cont

)

Listing 3: blk_1m::rhs_cellwise() signature.

to containers storing ρd (read-only) and θ,rv, rc, rr (to be
adjusted). The last argument dt is the timestep needed to
calculate the precipitation evaporation limit (see discussion
of Eq. 8).

2C++ Standard Template Library

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const real_t &dz

)

Listing 4: blk_1m::rhs_columnwise() signature.

Forcings due to autoconversion and accretion are obtained
through a call to the blk_1m::rhs_cellwise() function whose
signature is given in Listing 3. The function modifies ṙc and
ṙr by adding the computed rhs terms to the values already
present in ṙc and ṙr. Read-only access is required for ρd, rc

and rr passed as the last three arguments.
Representation of sedimentation is included in a sepa-

rate function rhs_columnwise() (signature in Listing 4). The
cont_t references passed as arguments are assumed to point
to containers storing vertical columns of data with the last el-
ement placed at the top of the domain. The last argument dz
is the vertical grid spacing. The function returns the value of
Fout (see Eq. 9) for the lowermost grid cell within a column.

3.2.2 Example calling sequence

With the prototype solver concept defined in Sect. 2.3, all
three functions described above are called once per each
timestep. The diagram in Fig. 3 depicts the sequence of
calls. As suggested by its name, the adj_cellwise() func-
tion (covering representation of phase changes) is called
within the adjustments step. Functions rhs_cellwise() and
rhs_columnwise() covering representation of coalescence
and sedimentation, respectively, are both called during the
rhs-update step.

3.3 Implementation overview

The single-moment bulk scheme is implemented as a header-
only C++ library (i.e. one does not have to build it separately
and link with it, just the header files are needed to use it).
The implementation of the single-moment bulk scheme re-
quires a C++ compiler compliant with the C++11 version of
the language.

Variables, function arguments, and return values of physi-
cal meaning are all typed using the Boost.units classes (Sch-
abel and Watanabe, 2008). Consequently, all expressions in-
volving them are subject to dimensional analysis at compile
time – incurring no runtime overhead. This reduces the risk
of typo-like bugs (e.g. divide instead of multiply by density)
and contributes to readibility and hence maintainability of the
code.

8 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

solver libcloudph++

adjust

call adj cellwise(ρd, θ, rv, rc, rr)

condensationmodifies: θ, rv, rc, rr

update rhs terms

call rhs cellwise(rc, rr)

coalescencemodifies: ṙc, ṙr

call rhs columnswise(ρd, rr)

sedimentationmodifies: ṙr, returns rain flux

apply rhs terms

advect

output

if time for outputif time for output

for each timestepfor each timestep

Figure 3. Sequence diagram of libcloudph++ API calls for the single-moment bulk scheme and a prototype transport equation solver. See
discussion in Sect. 3.2.2 and the caption of Fig. 2 for description or the diagram elements.

The integrals in Eq. (7) defining the saturation adjustment
procedure are computed using the Boost.Numeric.Odeint li-
brary (Ahnert and Mulansky, 2013). The container traversals
(e.g., iteration over elements of a set of array slices or a set
of vectors) are performed using the Boost.Iterator library.

3.4 Example results

The simulation framework described in Sect. 2 and imple-
mented as described in Appendix C was used to perform
an example simulation with the single-moment bulk scheme.
Integration of the transport equations was performed using
the nonoscillatory variant of the MPDATA advection scheme
(Smolarkiewicz, 2006). Figure 4 presents a snapshot of the
cloud and the rain water fields after 30 min simulation time
(excluding the spin-up period). The cloud deck is located in
the upper part of the domain with the cloud water content in-

creasing from the cloud base up to the upper boundary of the
domain. The model has reached a quasi-stationary state and
features a drizzle shaft that forms in the updraught region in
the left-hand side of the domain. The quasi-stationary state
was preceded by a transient rainfall across the entire domain
in the first minutes of the simulation. This was caused by
the initial cloud water content exceeding the autoconversion
threshold in the upper part of the entire cloud deck.

4 Double-moment bulk scheme

A common extension of the single-moment bulk approach
is a double-moment bulk scheme. Similarly to the single-
moment approach, the double-moment warm-rain scheme
assumes that condensed water is divided into two categories:
cloud water and rain water. In addition to the total mass of
water in both categories, concentrations of droplets and drops

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 9

cloud water mixing ratio rc [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rain water mixing ratio rr [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0.01

0.1

1

Figure 4. Example results from a 2-D kinematic simulation using the single-moment bulk scheme. All panels depict model state after 30 min
simulation time (excluding the spin-up period). Note the logarithmic colour scale for rain water plots. See Sect. 3.4 for discussion.

are also predicted. As a result, the scheme considers two mo-
ments of particle size distribution, hence the name. In the Eu-
lerian framework, four transport equations for cloud droplet
concentration nc, cloud water mixing ratio rc, rain drop con-
centration nr and rain water mixing ratio rr are solved (see
Table 1 for a list of model-state variables). With additional
information on the concentration of cloud droplets and rain
drops, the double-moment bulk microphysics scheme is bet-
ter suited than the single-moment scheme for coupling to
aerosol and radiative-transfer models.

The double-moment scheme implemented in lib-
cloudph++ was introduced by Morrison and Grabowski
(2007). The scheme includes prediction of the supersatura-
tion, making it well suited for depicting impacts of aerosol
on clouds and precipitation. However, the scheme does
not keep track of the changes of aerosol size distribution,
and hence excludes impacts of clouds and precipitation on
aerosol.

4.1 Formulation

4.1.1 Key assumptions

The formulation of the double-moment bulk scheme assumes
aerosol, cloud, and rain spectra shapes (lognormal, gamma,
and exponential, respectively). Aerosol is assumed to be
well mixed throughout the whole domain and throughout the
whole simulation time (uniform concentration per unit mass
of dry air). Cloud water forms only if some of the aerosol
particles are activated due to supersaturation. Activation and
subsequent growth by condensation are calculated apply-
ing the predicted supersaturation. As in the single-moment
scheme, rain water forms through autoconversion and is fur-
ther increased by accretion. Prediction of the mean size of
cloud droplets and rain drops allows to better link the pa-
rameterisation of autoconversion and accretion to the solu-

tions of the collision-coalescence equation. As in the single-
moment scheme, cloud water is assumed to follow the air-
flow, whereas rain water falls relative to the air. Evapora-
tion of cloud and rain water is included in the formulation of
phase changes (and hence includes the negligible diffusional
growth of rain water).

4.1.2 Phase changes

Cloud droplets form from activated aerosol. The number of
activated droplets is derived by applying the Köhler theory
to the assumed multi-modal lognormal size distribution of
aerosols. Freshly activated cloud droplets are assumed to
have the radius of 1 µm; for full derivation see Morrison
and Grabowski (2007, Eqs. 9–13) and Khvorostyanov and
Curry (2006). The concentrations of activated droplets are
computed separately for each mode of the aerosol size distri-
bution and then summed.

The size distribution of aerosols is not resolved by the
model. To take into account the decrease of aerosol con-
centration due to previous activation, in each timestep the
number of available aerosols is approximated by the differ-
ence between the initial aerosol concentration and the con-
centration of preexisting cloud droplets. Note that this ap-
proximation is valid for weakly precipitating clouds only. For
a strongly raining cloud, the model should include an addi-
tional variable, the concentration of activated cloud droplets.
It differs from the droplet concentration because of collision-
coalescence (see Eqs. (7) and (8) in Morrison and Grabowski,
2008).

The changes in cloud and rain water due to condensation
and evaporation follow Eq. (8) in Morrison and Grabowski
(2007) with the phase relaxation times computed following
Eq. (4) in Morrison et al. (2005) adapted to fall speed param-
eterisation used in Morrison and Grabowski (2007).

10 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

The decrease in number concentration due to evaporation
of cloud droplets and rain drops is computed following the
approach of Khairoutdinov and Kogan (2000). Cloud droplet
concentration is kept constant during evaporation, until all
cloud water has to be removed. Rain drop concentration de-
creases during evaporation preserving the mean size of rain
(drizzle) drops.

4.1.3 Coalescence

Parameterisation of autoconversion and accretion follows
Khairoutdinov and Kogan (2000). In contrast to the single-
moment scheme, the autoconversion rate is a continuous
function, and the rain onset is not controlled by a single
threshold. Drizzle drops formed due to autoconversion are
assumed to have initial radius of 25 µm.

4.1.4 Sedimentation

Sedimentation is calculated in the same way as in the single-
moment scheme (see Sect. 3.1.4), employing upstream ad-
vection. Sedimentation velocities (mass-weighted for the
rain density and number-weighted for the rain drop concen-
tration) are calculated by applying the terminal velocity for-
mulation given in Simmel et al. (2002, Table 2). Sedimenta-
tion velocity is multiplied by ρd0/ρd to follow Eq. (A4) in
Morrison et al. (2005), where ρd0 is the density of dry air at
standard conditions.

4.2 Programming interface

4.2.1 API elements

The double-moment bulk scheme’s API consists of one struc-
ture and two functions, all defined within the libcloud-
phxx::blk_2m namespace. The structure blk_2m::opts_t
holds the scheme’s options and its definition is provided in
Listing 5. Among the options, there are process-toggling
Boolean fields, parameters of the aerosol lognormal size
distribution (see Eq. 3) and the parameter β defining the
solubility of aerosol (see Khvorostyanov and Curry, 2006,
Sect. 2.1).

All processes are represented as right-hand-side
terms. Contributions to the rhs terms, due to phase
changes and coalescence, are obtained through a call
to blk_2m::rhs_cellwise() (see Listing 6). As in the
single-moment bulk scheme’s API, contribution from
sedimentation to the rhs terms can be computed by calling
blk_2m::rhs_columnwise() (Listing 7).

The meaning of the template parameters and the function
arguments is analogous to the single-moment bulk scheme’s
API (see Sect. 3.2). The computed values of rhs terms are
added to the values already present in the arrays passed as
arguments.

The cellwise-formulated processes are handled in the
following order: activation, condensation/evaporation of

template<typename real_t>

struct opts_t

{

bool

acti = true, // activation

cond = true, // condensation

acnv = true, // autoconversion

accr = true, // accretion

sedi = true; // sedimentation

// RH limit for activation

real_t RH_max = 44;

// aerosol spectrum

struct lognormal_mode_t

{

real_t

mean_rd, // [m]

sdev_rd, // [1]

N_stp, // [m-3] @STP

chem_b; // [1]

};

std::vector<lognormal_mode_t> dry_distros;

};

Listing 5: blk_2m::opts_t definition.

template <typename real_t, class cont_t>

void rhs_cellwise(

const opts_t<real_t> &opts,

cont_t &dot_th_cont,

cont_t &dot_rv_cont,

cont_t &dot_rc_cont,

cont_t &dot_nc_cont,

cont_t &dot_rr_cont,

cont_t &dot_nr_cont,

const cont_t &rhod_cont,

const cont_t &th_cont,

const cont_t &rv_cont,

const cont_t &rc_cont,

const cont_t &nc_cont,

const cont_t &rr_cont,

const cont_t &nr_cont,

const real_t &dt

)

Listing 6: blk_2m::rhs_cellwise() signature.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 11

solver libcloudph++

adjust (extrinsic)

update rhs terms

call rhs cellwise(ρd, θ, rv, rc, rr, nc, nr)

condensation

coalescencemodifies: θ̇, ṙv, ṙc, ṙr, ṅc, ṅr

call rhs columnswise(ρd, rr, nr)

sedimentationmodifies: ṙr, ṅr, returns rain flux

apply rhs terms

advect

output

if time for outputif time for output

for each timestepfor each timestep

Figure 5. Sequence diagram of libcloudph++ API calls for the double-moment bulk scheme and a prototype transport equation solver. See
discussion in Sect. 4.2.2 and the caption of Fig. 2 for description of the diagram elements.

template <typename real_t, class cont_t>

real_t rhs_columnwise(

const opts_t<real_t> &opts,

cont_t &dot_rr_cont,

cont_t &dot_nr_cont,

const cont_t &rhod_cont,

const cont_t &rr_cont,

const cont_t &nr_cont,

const real_t &dt,

const real_t &dz

)

Listing 7: blk_1m::rhs_columnwise() signature.

cloud droplets, autoconversion, accretion, and condensa-
tion/evaporation of rain. In principle, there are no guarantees
that the summed contributions from all of those processes,
multiplied by the timestep, are smaller than the available wa-
ter contents or droplet concentrations. To prevent negative
values of water contents or concentrations, each contribution
to the rhs term evaluated within rhs_cellwise() is added to

the array ṙi passed as argument using the following rule:

ṙnew
i = min

(
ṙ?i ,

ri + ∆t · ṙold
i

∆t

)
(12)

where ṙold
i is the value obtained in evaluation of previously-

handled processes, ṙ?i is the value computed using the model
formulæ, and ṙnew

i is the augmented value of rhs term that
guarantees non-negative values of ri after its application.
The same rule is applied when evaluating values of outgo-
ing fluxes Fout from Eq. (9) when calculating rhs term within
rhs_columnwise(). The rhs_columnwise() returns the value
of the Fout flux from the lowermost grid cell within a column.

4.2.2 Example calling sequence

A diagram with an example calling sequence for the double-
moment scheme is presented in Fig. 5. The only differ-
ence from the single-moment bulk scheme’s calling se-
quence presented in Sect. 3.2.2 is the lack of an adjust-
ments step. Condensation is represented using right-hand-
side terms and is computed together with coalescence by
calling blk_2m::rhs_cellwise().

12 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

cloud water mixing ratio rc [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

rain water mixing ratio rr [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0.01

0.1

1

cloud droplet specific concentration nc [mg-1]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

20

40

60

80

100

120

140

rain drop specific concentration nr [mg-1]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0.01

0.1

1

10

Figure 6. Example results from a 2-D kinematic simulation using the double-moment bulk scheme. All panels depict model state after 30 min
simulation time (excluding the spin-up period). Note the logarithmic colour scale used for plotting rain water. See Sect. 4.4 for discussion.

4.3 Implementation overview

The implementation of the double-moment scheme fol-
lows closely the implementation of the single-moment
scheme (see Sect. 3.3). It’s a header-only C++ library,
using Boost.units classes for dimensional analysis and
Boost.Iterator for iterating over sets of array slices.

4.4 Example results

Simulations presented in Sect. 3.4 were repeated with the
double-moment scheme. Figure 6 presents snapshots of the
cloud and rain water content as well as the cloud and rain
drop concentration fields after 30 min simulated time (ex-
cluding the spin-up period). Because of large differences in
the predicted rain, rain water content, and drop concentration
are plotted using logarithmic colour scale in order to keep the
same colour range for all three presented schemes.

Similarly to the results from the single-moment scheme
presented in Fig. 4, cloud water content increases from the
cloud base almost up to the upper boundary of the domain.

However, unlike in the case of the single-moment scheme,
the cloud deck in Fig. 6 features a “cloud hole” above the
downdraught region. The rain forms in the upper part of the
updraught and is advected into the downdraught region in the
right-hand side of the domain. The double-moment simula-
tion at the thirtieth minute is still to reach the quasi-stationary
state. This occurs because of the differences in the parame-
terisation of autoconversion that lead to different timings of
the onset of precipitation.

The cloud droplet concentration plot reveals that the model
captures the impact of the cloud-base vertical velocity (and
hence the supersaturation) on the concentration of activated
cloud droplets. The highest concentrations are found near
the updraught axis, and the lowest near the updraught edges.
There is a difference in shape between the rain drop concen-
tration field nr and the rain water mixing ratio field rr. This
corresponds to the different fall velocities for the two fields
– number- and mass-weighted for nr and rr, respectively.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 13

5 Particle-based scheme

The third scheme available in libcloudph++ differs substan-
tially from the two bulk schemes. It does not treat water con-
densate as continuous medium. Instead, the scheme employs
Lagrangian tracking of particles that represent atmospheric
aerosol, cloud and drizzle droplets, and rain drops. Volumes
relevant to atmospheric flows contain far too many particles
to be individually represented in a numerical model. Con-
sequently, each “computational particle” represents a multi-
plicity of particles of identical properties (i.e. spatial coor-
dinates and physicochemical properties). Such an approach
was recently applied for modelling precipitating clouds by
Andrejczuk et al. (2010), Sölch and Kärcher (2010), Riechel-
mann et al. (2012) and Arabas and Shima (2013). Formula-
tion of the scheme presented here follows the Super Droplet
Method of Shima et al. (2007, 2009) to represent collisions
and coalescence of particles.

5.1 Formulation

The formulated particle-based model involves a Lagrangian
component and an Eulerian component (that is not part of the
library). The Eulerian component is responsible for advect-
ing θ and rv (see Appendix A). The Lagrangian component
is responsible for tracking the computational particles, each
having the following attributes:

– multiplicity N

– location (i.e. spatial coordinates with 0,1,2 or 3 compo-
nents)

– wet radius squared r2
w

– dry radius cubed r3
d

– hygroscopicity parameter κ

Multiplicity depicts the number of particles represented by a
computational particle. All particles represented by one com-
putational particle are assumed to be spherical aqueous solu-
tion droplets of radius rw. Following Shima et al. (2009), the
model is formulated in r2

w for numerical reasons.
The amount of solvent is represented by the dry radius rd

(third power is used in the model code because most often
r3
d serves as a proxy for volume of the solvent). The hy-

groscopicity of the solvent is parameterised using the single-
parameter approach of Petters and Kreidenweis (2007).

The list of particle attributes can be extended. For exam-
ple, parameters describing chemical composition of the so-
lution or the electrical charge of a particle can be added.
Adding new particle attributes does not increase the com-
putational expense of the Eulerian component of the solver.
However, extension of the phase space by a new dimension
(the added attribute) potentially requires using more compu-
tational particles to achieve sufficient coverage of the phase
space.

5.1.1 Key assumptions

Most of the assumptions of the bulk models described in
Sects. 3 and 4 are no longer necessary. All particles are sub-
ject to the same set of processes. As a result, the model rep-
resents even dry deposition and collisions between aerosol
particles (both being effectively negligible). The supersat-
uration is resolved taking into account phase-change kinet-
ics (i.e. condensation and evaporation are not instantaneous).
There are no assumptions on the shape of the particle size
spectrum. Aerosol particles may be internally or externally
mixed (i.e. have the same or different solubility for particles
of different sizes).

There are, however, two notable consequences of the as-
sumptions of all particles being composed of aqueous so-
lution and spherically shaped. First, the humidity within
the domain and the hygroscopicity of the aerosol substance
must both be high enough for the solution to be dilute. For
tropospheric conditions and typical complex-composition
internally-mixed aerosol, this assumption is generally sound
(Fernández-Díaz et al., 1999; Marcolli et al., 2004). Second,
the nonsphericity of large precipitation particles has to be
negligible. It is a valid assumption for drops smaller than
1 mm (Szakáll et al., 2010).

It is also assumed that a particle never breaks up into mul-
tiple particles. It is a reasonable assumption for the evap-
oration of cloud particles into aerosol (Mitra et al., 1992).
However, both collision-induced and spontaneous breakup
become significant (the latter to a much smaller extent) for
larger droplets (McFarquhar, 2010) and hence the scheme
requires an extension in order to allow for diagnosing rain
spectra for strongly precipitating clouds.

There is not yet any mechanism built into the model to
represent aerosol sources (other than regeneration of aerosol
by evaporation of cloud droplets).

5.1.2 Advection

In the current version of the library, it is assumed that particle
motion has two components: advection by the fluid flow and
gravitational sedimentation with the terminal velocity. The
library interface expects that the user passes information on
the flow velocity in the form of Courant number fields, one
per each dimension. The Courant number is defined as the
flow velocity times the ratio of the timestep to the grid step
in a given dimension. The Arakawa-C staggered grid is used
and hence the Courant numbers represent velocities at the
edges of the Eulerian grid cells.

Transport of particles by the flow is computed using the
backward Euler scheme:

x[n+1] = x[n] + ∆x ·C(x[n+1]) (13)

where C is the Courant number field component, and ∆x
is the grid step (formulæ are given for the x dimension, but
are applicable to other dimensions as well). Evaluation of

14 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

C(x[n+1]) is performed using linear approximation (interpo-
lation/extrapolation of the particle velocities using fluid ve-
locity values at the grid cell edges):

C(x[n+1]) = (1−ω) ·C[i− 1
2] +ω ·C[i+ 1

2] (14)

where the fractional indices i− 1
2 and i+ 1

2 denote left and
right edges of a grid cell i in which a given particle is located
at time level n. The weight ω is defined as:

ω = x[n+1]/∆x−bx[n]/∆xc (15)

where bxc depicts the largest integer not greater than x. Sub-
stituting Eqs. (14) and (15) into Eq. (13) results in an analytic
solution for x[n+1]:

x[n+1] =
x[n] + ∆x

(
Ci− 1

2
−bx[n]/∆xc ·∆C

)
1−∆C

(16)

where ∆C = Ci+ 1
2
−Ci− 1

2
.

The same procedure is repeated in other spatial dimensions
if applicable (i.e. depending on the dimensionality of the Eu-
lerian component). Periodic horizontal boundary conditions
are assumed.

5.1.3 Phase changes

The growth rate of particles is calculated using the single-
equation (so-called Maxwell–Mason) approximation to the
heat and vapour diffusion process (Straka, 2009, rearranged
Eq. 5.106):

rw
drw

dt
=
Deff

ρw
(ρv− ρ◦) (17)

where the effective diffusion coefficient is:

D−1
eff =D−1 +K−1 ρvslv

T

(
lv
RvT

− 1

)
(18)

and ρvs stands for the density of water vapour at saturation
with respect to a plane surface of pure water. The vapour
density at drop surface ρ◦ is modelled as:

ρ◦ = ρvs · aw(rw, rd) · exp(A/rw) (19)

where water activity aw and the so-called Kelvin term
exp(A/rw) are evaluated using the κ-Köhler parameteri-
sation of Petters and Kreidenweis (2007). See Arabas and
Pawlowska (2011) for the formulæ for A, lv and ρvs.

Vapour and heat diffusion coefficients D and K are evalu-
ated as:

D =D0 ·βM ·
Sh
2

(20)

K =K0 ·βT ·
Nu
2

(21)

The Fuchs–Sutugin transition-régime correction factors
βM (rw,T) and βT (rw,T,p) are used in the form recom-
mended for cloud modelling by Laaksonen et al. (2005,
i.e. employing mass and heat accommodation coefficients of
unity). The Sherwood number Sh and the Nusselt number
Nu (twice the mean ventilation coefficients) are modelled
following Clift et al. (1978) as advocated by Smolík et al.
(2001).

As in the particle-based ice-microphysics model of Sölch
and Kärcher (2010), no interpolation of the Eulerian state
variables to particle positions is done (in contrast to the ap-
proach employed in warm-rain models of Andrejczuk et al.,
2008; Shima et al., 2009; Riechelmann et al., 2012). It is
therefore assumed, likely in compliance with the logic of an
Eulerian solver component, that the heat and moisture are
homogeneous within a grid cell. Consequently, the effects
of subgrid-scale mixing on the particles follow the so-called
homogeneous-mixing scenario (see Jarecka et al., 2013, and
references therein). Furthermore, no effects of vapour field
inhomogeneity around particles are taken into consideration
(see Vaillancourt et al., 2001; Castellano and Ávila, 2011).

Particle terminal velocities used to evaluate Sh and Nu are
calculated using the parameterisation of Khvorostyanov and
Curry (2002, see also 5.1.5 herein).

The representation of condensation and evaporation in
the Lagrangian component involves a sub-stepping logic
in which the Eulerian component timestep ∆t is divided
into a number of equal sub-steps. This is intended to cope
with potentially large difference between the characteris-
tic timescales of condensation (notably during aerosol ac-
tivation) and of the large-scale air flow solved by the Eu-
lerian component of the solver. Presently, the number of
subtimesteps is kept constant throughout the domain and
throughout the simulation time. However, the actual con-
straints for timestep length ∆t′ differ substantially, particu-
larly with the distance from cloud base (see Fig. 2 in Arabas
and Pawlowska, 2011). An adaptive timestep choice mecha-
nism is planned for a future release. For simplicity, the sub-
stepping procedure is not depicted explicitly in the following
formulæ. It is only hinted by labelling subtimestep as ∆t′

and the subtimestep number as n′. If the user enables sub-
stepping, the advective tendencies of θd and rv are applied
fractionally in each sub-step.

Within each sub-step, the drop growth equation is solved
for each computational particle with an implicit scheme with
respect to wet radius but explicit with respect to rv and θ:

r2[n′+1]

w = r2[n′]

w + ∆t′ · dr2
w

dt

∣∣∣∣
r2

[n′+1]
w ,r

[n′]
v ,θ[n′]

(22)

Solution to the above equation is sought by employing
a predictor-corrector type procedure. First, the value of the
dr2w
dt derivative evaluated at r2[n′]

w is used to construct an

initial-guess range a < r2[n′+1]

w < b in which roots of Eq. (22)

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 15

are to be sought, with:

a= max

(
r2
d, r

2[n′]

w + min

(
2 · dr2

w

dt

∣∣∣∣
r
[n′]
w

,0

))
(23)

b= r2[n′]

w + max

(
2 · dr2

w

dt

∣∣∣∣
r
[n′]
w

,0

)
(24)

Second, r2n′+1

w is iteratively searched using the bisection al-
gorithm. If the initial-guess range choice makes bisection
search ill-posed (minimisation function having the same sign
at a and b), the algorithm stops after first iteration returning
(a+ b)/2, what reduces the whole procedure to the standard
Euler scheme (due to the use of factor 2 in the definition of a
and b). It is worth noting, that such treatment of drop growth
(i.e. Lagrangian in radius space, also called moving sectional
or method of lines approach) incurs no numerical diffusion.

After each sub-step, in addition to application of a fraction
of advective tendency, the thermodynamic fields rv and θ are
adjusted to account for water vapour content change due to
condensation or evaporation on particles within a given grid
cell and within a given sub-step by evaluating:

r[n′+1]
v − r[n′]

v = ρ−1
d

−4πρw

3∆V

∑
i∈grid cell

N[i]

[
r3[n′+1]

w[i]
− r3[n′]

w[i]

]
(25)

θ[n′+1]− θ[n′] =
(
r[n′+1]
v − r[n′]

v

) dθ

drv

∣∣∣∣
r
[n′]
v ,θ[n′]

(26)

where ∆V is the grid cell volume, and ρw is the density of
liquid water. Noteworthy, such formulation maintains con-
servation of heat and moisture in the domain regardless of
the accuracy of integration of the drop growth equation.

Phase-change calculations are performed before any other
processes. This is because condensation and evaporation are
the only process modifying the rv and θ fields of the Eulerian
component. Consequently, Eulerian component of the solver
may continue integration as soon as phase-change calcula-
tions are completed. Such asynchronous logic is applicable
when using a GPU – particle advection, sedimentation, and
collisions can be calculated by the Lagrangian component of
the solver using a GPU while the Eulerian component ad-
vects model state variables using a CPU.

5.1.4 Coalescence

The coalescence scheme is an implementation of the Super
Droplet Method (SDM) described in Shima et al. (2009).
SDM is a Monte-Carlo type algorithm for representing par-
ticle collisions. As it is done for phase changes, coales-
cence of particles is solved using subtimesteps ∆t′′. In
each subtimestep, all computational particles within a given
grid cell are randomly grouped into non-overlapping pairs
(i.e. no computational particle may belong to more than one

pair). Then, the probability of collisions between computa-
tional particles i and j in each pair is evaluated as:

Pij = max(Ni,Nj)K(ri, rj)
∆t′′

∆V

n(n− 1)

2bn/2c
(27)

where n is the total number of computational particles within
a grid cell in a given timestep and K(ri, rj) is the collection
kernel. In analogy to a target-projectile configuration, scaling
the probability of collisions with the larger of the two multi-
plicities max(Ni,Nj) (target size) implies that if a collision
happens, min(Ni,Nj) of particles will collide (number of
projectiles). The last term in Eq. (27) upscales the probability
to account for the fact that not all (n(n−1)/2) possible pairs
of computational particles are examined but only bn/2c of
them. Evaluation of collision probability for non-overlapping
pairs only, instead of for all possible pairs of particles, makes
the computational cost of the algorithm scale linearly, instead
of quadratically, with the number of computational particles
(at the cost of increasing the sampling error of the Monte-
Carlo scheme).

If geometric collisions are considered, the coalescence
kernel has the following form

K(ri, rj) = E(ri, rj) ·π(ri + rj)
2 · |vi− vj | (28)

whereE(ri, rj) is the collection efficiency and v is the termi-
nal velocity of particles (i.e. their flow-relative sedimentation
velocity). The collection efficiency differs from unity if hy-
drodynamic effects (e.g. Vohl et al., 2007) or van der Waals
forces (Rogers and Davis, 1990) are considered. The whole
coalescence kernel may take different form (in particular
may be nonzero for drops of equal terminal velocity) if tur-
bulence effects are taken into account (Grabowski and Wang,
2013, and references therein).

In each subtimestep, the evaluated probability Pij is com-
pared to a random number from a uniform distribution over
the (0,1) interval. If the probability is larger than the ran-
dom number, a collision event is triggered. During a collision
event, all min(Ni,Nj) particles collide (Shima et al., 2009,
see Fig. 1 and Sect. 4.1.4 in). One of the colliding computa-
tional particles (the one with the smaller multiplicity) retains
its multiplicity but changes its dry and wet radii to those of
the newly formed particles. The second colliding computa-
tional particle (the one with the larger multiplicity) retains
its dry and wet radii but changes its multiplicity to the dif-
ference between Ni and Nj . Other particle parameters are
either summed (i.e. extensive parameters such as r3

d) or aver-
aged (i.e. intensive parameters such as κ).

Unlike in the formulation of Shima et al. (2009), parti-
cles with equal multiplicities collide using the same scheme,
leaving one of the particles with zero multiplicity. Particles
with zero multiplicity are “recycled” at the beginning of each
timestep. The recycling procedure first looks for computa-
tional particles with highest multiplicities and then assigns
their properties to the recycled particles halving the multi-
plicity.

16 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

The “multiple coalescence” feature of SDM introduced in
Shima et al. (2009) to robustly cope with an undersampled
condition of Pij > 1 is implemented. It is also planned to use
the values of Pij to control an adaptive timestep logic to be
introduced in a future release.

Noteworthy, the collisional growth is represented in
a numerical-diffusion-free manner, that is, Lagrangian in par-
ticle radius space (both dry and wet radius). This is an ad-
vantage over the Eulerian-type schemes based on the Smolu-
chowski equation which exhibit numerical diffusion (see e.g.
Bott, 1998).

5.1.5 Sedimentation

Sedimentation velocity is computed using the formula of
Khvorostyanov and Curry (2002, Eqs. 2.7, 2.12, 2.13, 3.1).
The explicit Euler scheme is used for adjusting particle po-
sitions Sedimentation may result in the particles leaving
the domain (i.e. dry deposition or ground-reaching rainfall).
Computational particles that left the domain undergo the
same recycling procedure as described in section 5.1.4 for
equal-multiplicity collisions.

5.1.6 Initialisation

One of the key parameters of the particle-based simulation is
the number of computational particles used. As in several re-
cent cloud-studies employing particle-based techniques, the
initial particle spatial coordinates are chosen randomly us-
ing a uniform distribution. Consequently, the initial condition
has a uniform initial mean density of computational particles
(assuming all cells have the same volume). The value of this
initial mean density defines the sampling error in the particle
parameter space, particularly in the context of phase changes
and coalescence which are both formulated on cellwise ba-
sis. The ranges of values used in the recent studies are: 30–
250 (Sölch and Kärcher, 2010, particles injected through-
out simulation), 100–200 (Andrejczuk et al., 2010, grid cell
size variable in height, particles added throughout simula-
tion), 26–186 (Riechelmann et al., 2012), 8–512 (Arabas and
Shima, 2013), 30–260 (Unterstrasser and Sölch, 2014).

The dry radii of the computational particles are chosen
randomly with a uniform distribution in the logarithm of ra-
dius. The minimal and the maximal values of dry radius are
chosen automatically by evaluating the initial dry-size distri-
bution. The criterion is that the particle multiplicity (i.e. the
number of particles represented by a computational particle)
for both the minimal and the maximal radii be greater or
equal one.

The initial spectrum shape is arbitrary. Externally mixed
aerosol may be represented using multiple spectra, each char-
acterised by different value of κ. The initial particle mul-
tiplicities are evaluated treating the input spectra as corre-
sponding to the standard atmospheric conditions (STP) and

hence the concentrations are multiplied by the ratio of the
dry-air density in a given grid cell to the air density at STP.

In one and two dimensions, the grid cell volume ∆V used
to derive multiplicities from the concentrations is defined
assuming a unit length of 1 m in the omitted dimensions.
This assumption has effectively no impact on the computed
rates of condensation or coalescence (Eqs. 25 and 27, re-
spectively), as in their formulation, the multiplicities always
appear divided by ∆V . In a zero-dimensional configuration
intended for parcel-like frameworks the ∆V is updated in
every timestep to match changes in the dry air density by
maintaining a constant total mass of dry air of 1 kg.

Equation (17) defines the relationships between the dry
and the wet spectra in the model. These should, in princi-
ple, be fulfilled by the initial condition imposed on the model
state variables. For cloud-free air, it is obtained by assuming
an equilibrium defined by putting zero on the left-hand side
of Eq. (17). This allows to diagnose the wet spectrum from
the dry one. Bringing all particles to equilibrium at a given
humidity is done without changing θ and rv to resemble bulk
models’ initial state. A small amount of water needed to ob-
tain equilibrium is thus added to the system.

For set-ups assuming initial presence of cloud water within
the model domain, the equilibrium condition may be applied
only to subsaturated regions within the model domain. The
initial wet radius of particles within the supersaturated re-
gions is set to its equilibrium value at a given threshold rela-
tive humidity (e.g. RH = 95 % as used in Lebo and Seinfeld,
2011). Subsequent growth is computed within the first few
minutes of the simulation. Optionally, in order to avoid ac-
tivation of all available aerosol, the drop growth Eq. (17) is
evaluated limiting the value of the supersaturation to a given
threshold, e.g. 5 % as used in the set-up defined in Sect. 2.2
(see also discussion on particle-based simulation initialisa-
tion in Andrejczuk et al., 2010, Sect. 2.2).

5.2 Programming interface

5.2.1 API elements

The particle-based scheme’s API differs substantially from
bulk schemes’ APIs. It features object-oriented approach
of equipping data structures (referred to as classes) with
functions (referred to as methods). Furthermore, unlike
the bulk schemes’ APIs, the particle-based scheme is not
implemented as a header-only library but requires link-
ing with libcloudphxx_lgrngn shared library. The particle-
based scheme’s API consists of four structures (classes), one
function and two enumerations, all defined within the lib-
cloudphxx::lgrngn namespace. The often occurring tem-
plate parameter real_t controls the floating point format.

As in the case of bulk schemes, the scheme options are
stored in a separate structure lgrngn::opts_t whose defini-
tion is given in Listing 8. The first Boolean fields provide
control over process toggling. The RH_max field defines the

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 17

template<typename real_t>

struct opts_t

{

// process toggling

bool adve, sedi, cond, coal;

// RH limit for drop growth

real_t RH_max;

Listing 8: lgrngn::opts_t definition.

RH limit for evaluating drop growth equation (e.g. during a
spin-up period, see Sect. 2.2).

Other options of the particle-based scheme not meant to be
altered during simulation are grouped into a structure named
lgrngn::opts_init_t (Listing 9). The initial dry size spec-

template<typename real_t>

struct opts_init_t

{

// initial dry sizes of aerosol

typedef boost::ptr_unordered_map<

real_t, // kappa

unary_function<real_t> // n(ln(rd)) @ STP

> dry_distros_t;

dry_distros_t dry_distros;

// Eulerian component parameters

int nx, ny, nz;

real_t dx, dy, dz, dt;

// no. of substeps

int sstp_cond, sstp_coal;

// Lagrangian domain extents

real_t x0, y0, z0, x1, y1, z1;

// mean no. of super-droplets per cell

real_t sd_conc_mean;

// coalescence Kernel type

kernel_t kernel;

Listing 9: lgrngn::opts_init_t definition.

trum of aerosol is represented with the dry_distros map.
The map associates values of the solubility parameter κ with
particle size distributions. The size distributions are speci-
fied as pointers to functors returning concentration of parti-
cles at STP as a function of logarithm of dry radius. Sub-
sequent fields specify the geometry of the Eulerian grid and
the timestep. It is assumed that the Eulerian component oper-
ates on a rectilinear grid with a constant grid cell spacing, al-
though this assumption may easily be lifted in future releases
if needed. The parameters x0, y0, z0, x1, y1, z1 are intended

for defining a subregion of the Eulerian domain to be cov-
ered with computational particles. The number of sub-steps
to be taken within one Eulerian timestep when calculating
condensation and coalescence is defined by sstp_cond and
sstp_coal, respectively. The last two fields provide control of
the initial mean concentration of computational particles per
grid cell and the type of the coalescence kernel to be used.
As of the current release, two options are available: the geo-
metric kernel and the Golovin kernel, see Listing 10).

enum kernel_t { geometric, golovin };

Listing 10: lgrngn::kernel_t definition.

Unlike in the case of the bulk schemes, here the actual ge-
ometry and memory layout of the Eulerian grid need to be
known to map the particle spatial coordinates to the Eule-
rian grid cell indices. The memory layout of array data is
represented in the API using the lgrngn::arrinfo_t structure
(Listing 11). The meaning of dataZero and strides fields

template <typename real_t>

struct arrinfo_t

{

// member fields:

real_t * const dataZero;

const ptrdiff_t *strides;

Listing 11: lgrngn::arrinfo_t definition.

match those of equally-named methods of the Blitz++ Array
class. Quoting Blitz++ documentation (Veldhuizen, 2005):
„dataZero is a pointer to the element (0,0, . . .,0), even if
such an element does not exist in the array. What’s the point
of having such a pointer? Say you want to access the ele-
ment (i, j,k). If you add to the pointer the dot product of
(i, j,k) with the stride vector stride, you get a pointer to the
element (i, j,k).” Using arrinfo_t as the type for API func-
tion arguments makes the library potentially compatible with
a wide range of array containers, Blitz++ being just an ex-
ample. In addition, no assumptions are made with respect to
array index ranges or dimension ordering, what allows the li-
brary to operate on array slabs (e.g. array segments excluding
the so-called halo regions) and both row- and column-major
storage.

The state of the Lagrangian component of the model (no-
tably, the values of particle attributes) is stored in an in-
stance of the lgrngn::particles_t class (see Listing 12). In-
ternally, the Lagrangian calculations are implemented using
the Thrust library3 which, among other, allows to run the

3http://thrust.github.io/

18 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

particle-based simulations either on CPU[s] or on a GPU.
The second template parameter of lgrngn::particles_t is
the type of the backend to be used by the Thrust li-
brary, and as of current release it has three possible val-
ues: serial, OpenMP, or CUDA (cf. Listing 13 with def-
inition of the backend_t enumeration). The OpenMP4

backend offers multi-threading using multiple CPU cores
and/or multiple CPUs. The CUDA5 backend enables the
user to perform the computations on a GPU. The serial
backend does single-thread computations on a CPU. The
“backend-aware” particles_t<real_t, backend> inherits
from “backend-unaware” particles_proto_t<real_t> (def-
inition not shown) what allows to use a single pointer to par-
ticles_proto_t with different backends (as used in the return
value of lgrngn::factory() discussed below).

Initialisation, time-stepping, and data output is performed
by calling particles_t’s methods whose signatures are given
in Listing 12 and discussed in the following three paragraphs.

The particles_t::init() method performs the initialisation
steps described in Sect. 5.1.6 and is intended to be called
once at the beginning of the simulation. The first three ar-
guments are mandatory and should point to the θ, rv and
ρd fields of the Eulerian component of the solver. The next
arguments should point to the Courant number field compo-
nents. The number of components depends on the dimension-
ality of the modelling framework, and ranges from zero (par-
cel framework) up to three (3-D simulation). The Courant
number components are expected to be discretised on the
Arakwa-C grid, thus for the 2-D case courant_1’s shape is
(nx+1)×nz and courant_2’s shape is nx× (nz+1).

Time-stepping is split into two methods: parti-
cles_t::step_sync() and particles_t::step_async(). The
former covers representation of the processes that alter the
Eulerian fields (i.e. phase changes). The latter covers all
other processes (transport of particles, sedimentation, and
coalescence) which may be computed asynchronously, for
example, while the Eulerian model calculates advection of
the Eulerian fields. Both methods take a reference to an
instance of lgrngn::opts_t as their first argument. Among
arguments of step_sync(), only the first three are mandatory.
The passed θ and rv fields will be overwritten by the method.
The Courant field components need to be specified only if
the Eulerian component of the model solves air dynamics
(they are omitted in the case of the kinematic framework
used in examples in this paper). The last argument pointing
to a ρd array is also optional and needs to be specified only
if the Eulerian framework allows the density to vary in time.
The step_async() method returns accumulated rain flux
through the bottom of the domain.

The particles_t’s methods prefixed with diag_ pro-
vide a mechanism for obtaining statistical information

4http://openmp.org/
5http://nvidia.com/

template <typename real_t, backend_t backend>

struct particles_t: particles_proto_t<real_t>

{

// initialisation

void init(

const arrinfo_t<real_t> th,

const arrinfo_t<real_t> rv,

const arrinfo_t<real_t> rhod,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3

);

// time-stepping methods

void step_sync(

const opts_t<real_t> &,

arrinfo_t<real_t> th,

arrinfo_t<real_t> rv,

const arrinfo_t<real_t> courant_1,

const arrinfo_t<real_t> courant_2,

const arrinfo_t<real_t> courant_3,

const arrinfo_t<real_t> rhod

);

real_t step_async(

const opts_t<real_t> &

);

// diagnostic methods

void diag_sd_conc();

void diag_dry_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_wet_rng(

const real_t &r_mi, const real_t &r_mx

);

void diag_dry_mom(const int &k);

void diag_wet_mom(const int &k);

real_t *outbuf();

// ...

Listing 12: lgrngn::particles_t definition.

enum backend_t { serial, OpenMP, CUDA };

Listing 13: lgrngn::backend_t definition.

template <typename real_t>

particles_proto_t<real_t> *factory(

const backend_t,

const opts_init_t<real_t> &

);

Listing 14: lgrngn::factory() signature.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 19

on the droplet parameters gridded on the Eulerian com-
ponent mesh. The particles_t::diag_sd_conc() method
calculates the concentration of computational particles
per cell. The particles_t::diag_dry_mom() and parti-
cles_t::diag_wet_mom() calculate statistical moments of
the dry and wet size spectra respectively. The kth moment
M of the dry (d) or wet (w) spectrum is defined here as:

M
[k]
d, w = (ρd∆V)−1

∑
i∈grid cell

rd,w[i]
∈[rmi,rmx]

N[i]r
k
d,w[i]

(29)

where the index i traverses all computational particles andN
is the particle multiplicity. The moment number k is cho-
sen through the methods’ argument k. The range of radii
[rmi, rmx] over which the moments are calculated is chosen
by calling diag_dry_rng() or diag_wet_rng() before calls to
diag_dry_mom() and diag_wet_mom(), respectively. The
particles_t::outbuf() method stores the calculated fields in
an output buffer and returns a pointer to the first element of
this buffer.

The last element of the particle-based scheme’s API is the
factory() function. It returns a pointer to a newly allocated
instance of the particles_t class. Its arguments are the back-
end type (see Listing 13) and the scheme’s options grouped
in the opts_init_t structure (see Listing 9). The purpose of
introducing the lgrngn::factory() function is twofold. First,
it makes the backend choice a runtime mechanism rather than
a compile-time one (backend is one of the compile-time tem-
plate parameters of particles_t). Second, it does report an
error if the library was compiled without CUDA (GPU) or
OpenMP (multi-threading) backend support.

5.2.2 Example calling sequence

Figure 7 depicts an example calling sequence for the particle-
based scheme’s API. The API calls are split among the ad-
justments and output steps of the solver. The rhs steps are
presented in the diagram, but here they refer to forcings ex-
trinsic with respect to the cloud microphysics scheme (e.g.
the relaxation terms in the set-up described in Sect. 2.2).

In the case of bulk schemes (Figs. 3 and 5) both the solver
and library flow control was handled by a single thread (or
a group of threads performing the same operations in case of
domain decomposition). Here, there are two separate threads
(or a group of solver threads plus one library thread in case
of domain decomposition). The synchronisation between the
solver and the library threads is depicted in the diagram with
“wait for . . . ” labels.

In the presented calling sequence, the diagnostic meth-
ods are only called within the output step. Depending on the
modelling framework, such calls may also be needed in every
timestep, for example, to provide data on particle surface for
a radiative-transfer component, or the data on particle mass
for a dynamical component of the solver. Note that a sin-
gle call to diag_dry/wet_rng() may be followed by multiple

calls to diag_dry/wet_mom() as depicted by nesting the “for
each moment” loop within the “for each size range” loop.

5.3 Implementation overview

The Lagrangian component of the model is implemented us-
ing the Thrust library (Hoberock and Bell, 2010). Conse-
quently, all parallelisation logic is hidden behind the Thrust
API calls. The parallelisation is obtained by splitting the
computational-particle population among several computa-
tional units using shared memory. Thrust allows to compile
the same code for execution on multiple parallel architectures
including general-purpose GPUs (via CUDA) and multi-
core CPUs (via OpenMP). The implemented particle-based
scheme is particularly well suited for running in a set-up
where the Eulerian computations are carried out on a CPU,
and the Lagrangian computations are delegated to a GPU.
That is due to:

– the low data exchange rate between these two com-
ponents (there is never a need to transfer the state
of all computational particles to the Eulerian compo-
nent residing in the main memory, only the aggregated
size spectrum parameters defined per each grid box are
needed);

– the possibility to perform part of the microphysics com-
putations asynchronously, simultaneously with other
computations carried out on CPU(s) (cf. Sec. 5.1.3).

Since the version of CUDA compiler available at the time
of development did not support C++11, the particle-based
scheme was implemented using C++03 constructs only. Fur-
thermore, the CUDA compiler does not support all C++
constructs used by the Boost.units library. For this reason,
a fake_units drop-in replacement for Boost.units was writ-
ten and is shipped with libcloudph++. It causes all quanti-
ties in the program to behave as dimensionless. It is included
instead of Boost.units only if compiling the CUDA backend.
Consequently, the particle-based scheme’s code is checked
for unit correctness while compiling other backends.

The asynchronous launch/wait logic is left to be han-
dled by the caller. In the example program icicle (see Ap-
pendix C), it is implemented using the C++11’s std::async()
call.

Both in the case of GPU and CPU configurations, the
Mersenne Twister (Matsumoto and Nishimura, 1998) ran-
dom number generator is used. If using GPU, the CUDA cu-
RAND’s MTGP32 is used offering parallel execution with
multiple random number streams. If not using GPU, the
C++11 std::mt19937 is used and the random number gener-
ation is done by a single thread only, even if using OpenMP.

5.4 Example results

Figures 8 and 9 present results from an example simulation
with the particle-based scheme performed using the frame-

20 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

solver (CPU) libcloudph++ (CPU or GPU)

adjust

wait for particles t::step async()
...

call particles t::step sync(ρd, θ, rv, ρd ~C)

condensationmodifies: θ, rv

launch particles t::step async()

transport

sedimentation

coalescence

...

update rhs terms (extrinsic)

apply rhs terms (extrinsic)

advect

output

wait for particles t::step async()
...

call particles t::diag dry/wet rng(rmi, rmx)

selecting

call particles t::diag dry/wet mom()

countingprovides M (via outbuf())

M ; . . .

for each momentfor each moment

for each size range (dry and/or wet)for each size range (dry and/or wet)

if time for outputif time for output

for each timestepfor each timestep

Figure 7. Sequence diagram of libcloudph++ API calls for the particle-based scheme and a prototype transport equation solver. Diagram
discussed in Sect. 5.2.2. See also caption of Fig. 2 for description or diagram elements.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 21

cloud water mixing ratio [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4a b

c d
e fg h

i j

rain water mixing ratio [g/kg]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0.01

0.1

1a b

c d
e fg h

i j

cloud droplet spec. conc. [mg-1]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

20

40

60

80

100

120

140a b

c d
e fg h

i j

rain drop spec. conc. [mg-1]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0.01

0.1

1

10a b

c d
e fg h

i j

cloud droplet effective radius [μm]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

2

4

6

8

10

12

14

16

18

20a b

c d
e fg h

i j

aerosol concentration [mg-1]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

x [km]

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

z
[k

m
]

0

20

40

60

80

100

120

140a b

c d
e fg h

i j

Figure 8. Example results from a 2-D kinematic simulation using the particle-based scheme. All panels depict model state after 30 min
simulation time (excluding the spin-up period). The black overlaid squares mark grid cells for which the dry and wet size spectra are shown
in Fig. 9. See Sect. 5.4 for discussion.

22 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(i)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(g)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(e)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(c)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(a)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(j)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(h)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(f)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]
particle radius [μm]

(d)
wet radius
dry radius

0.01

0.1

1

10

100

1000

0.
01 0.
1 1 10 10
0

[m
g

-1
 μ

m
-1

]

particle radius [μm]

(b)
wet radius
dry radius

Figure 9. Plots of dry and wet size spectra for ten locations within the model domain. The locations and their labels (a–j) are overlaid on
plots in Fig. 8. The vertical bars at 0.5 and 25 µm indicate the range of particle wet radii which is associated with cloud droplets. See Sect. 5.4
for discussion.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 23

work described in section 2. The simulations are analogous
to those discussed in Sects. 3.4 (single-moment) and 4.4
(double-moment). As before, the plots are for the thirtieth
minute of the simulation time (excluding the two-hour-long
spin-up period). The initial mean concentration of computa-
tional particles was set to 64 per cell. The number of sub-
steps was set to 10 for both condensation and coalescence.
The geometric coalescence kernel was used.

Figure 8 depicts aerosol, cloud, and rain properties ob-
tained by calculating moments of the particle size distribu-
tion in each grid cell. In addition to quantities corresponding
to the bulk model variables rc, rr (cf. Figs 4 and 6) and nc

and nr (cf. Fig. 6), Fig. 8 features plots of the effective radius
(ratio of the third to the second moment of the size spec-
trum) and the aerosol concentration. The distinction between
aerosol particles, cloud droplets, and rain drops is made us-
ing radius thresholds of 0.5 and 25 µm for aerosol/cloud and
cloud/rain boundaries, respectively. The noise in most panels
comes from sampling errors of the particle-based scheme;
these errors get smaller with increasing number of compu-
tational particles used (not shown). The cloud water content
and cloud droplet concentration plots both show strong simi-
larities to the results of simulation using the double-moment
scheme (Fig. 6). The increase with height of cloud water con-
tent, the approximately constant with height drop concentra-
tion, presence of the maximum droplet concentration near
the updraught axis, and presence of the cloud hole are all ev-
ident in both the particle-based and the double-moment sim-
ulations. The range of values of the rain water content and
the rain drop concentration predicted by the particle-based
model roughly matches those of the double-moment scheme,
yet the level of agreement is much smaller than in the case of
cloud water. For example, the maximum rain water content
in the double-moment simulation is located in the centre of
the downdraught, whereas this location features virtually no
rain in the particle-based simulation. The two schemes agree
with respect to the vertical extent of the drizzle shaft as it
vanishes at about 300 m above the bottom boundary of the
domain in both cases.

The plot of the effective radius in Fig. 8 shows the grad-
ual increase of drop sizes from the cloud base up to the top
of the cloud. The effective radius plot features the smoothest
gradients among all presented plots. This is likely due to the
fact that unlike other plotted quantities, the effective radius
is an intensive parameter and hence is not proportional to
the drop concentration which inherits random fluctuations
of the initial aerosol concentrations. The aerosol concen-
tration demonstrates anticipated presence of the interstitial
aerosol within the cloud. The regions of largest rain water
content correspond to regions of lowered aerosol concentra-
tions, both within and below the cloud. This likely demon-
strates the effect of scavenging of aerosol particles by the
drizzle drops, most likely overpredicted by the geometric col-
lision kernel applied in the simulation.

The ten black squares overlaid on each plot in Fig. 8 show
locations of the regions for which the wet and dry particle
size spectra are plotted in Fig. 9. The ten locations are com-
posed of 3× 3 grid cells each. The spectra plotted in Fig. 9
are all averages over the 3× 3 cell regions. The dry spectra
are composed of 40 bins in an isologarithmic layout from
1 nm to 10 µm. The wet spectra are composed of 25 bins ex-
tending the above range up to 100 µm. Each square in the
Fig. 8 and its corresponding panel in Fig. 9 is labelled with
a letter (a to j). All panels in Fig. 9 contain two vertical lines
at 0.5 and 25 µm that depict the threshold values of parti-
cle wet radius used to differentiate between aerosol, cloud
droplets, and rain drops.

To match the pathway of cloud evolution, we shall dis-
cuss the panels in Fig. 9 counterclockwise, starting from
panel (i) which presents data on the aerosol size spectrum
in the updraught below cloud base. There, the wet spectrum
plotted with the thick blue line is slightly shifted towards
larger sizes than the dry spectrum plotted with the thin red
line. This shift corresponds to humidification of the hygro-
scopic aerosol. Panels (g) and (e) show how the wet spec-
trum evolves while the updraught lifts the particles across
the cloud base causing the largest aerosol to be activated and
to form cloud droplets. Panel (c) shows a bimodal wet spec-
trum with an unactivated aerosol mode to the left and the
cloud droplet mode just below 10 µm. Panel (a) depicts the
near-cloud-top conditions and reveals that some of the cloud
droplets had already grown pass the 25 µm threshold, likely
through collisional growth. Such drops have significant fall
velocities which causes the air in the upper part of the do-
main to become void of the largest aerosol. This is evident
from the shape of the dry spectrum in panel (b) depicting
conditions above the downdraught. Panel (d) and panel (c)
show size spectra at the same altitude of about 100 m above
cloud base. Their comparison reveals that the spectrum of
cloud droplets in the downdraught (panel d, edge of the cloud
hole) is much wider than near the updraught axis (panel c).
Finally, panels (f), (h), and (j) show gradual evaporation of
drizzle and cloud droplets back to aerosol-sized particles.

6 Performance evaluation

Computational cost of a microphysics scheme is one of the
key factors determining its practical applicability. Here, we
present a basic analysis of the computational cost of the three
schemes presented in this paper. The analysis is based on
timing of simulations carried out with the kinematic frame-
work and the simulation set-up described in Sect. 2.1 using
the icicle tool described in Appendix C. In order to depict
the contributions of individual elements of the schemes, all
simulations were repeated with four sets of process-toggling
options:

– advection only,

24 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

 1

 10

 100

 1000

advection +condens. +coalesc. +sediment.

bu
lk

8/
ce

ll
32

/c
el

l
12

8/
ce

ll

bu
lk

8/
ce

ll
32

/c
el

l
12

8/
ce

ll

bu
lk

8/
ce

ll
32

/c
el

l
12

8/
ce

ll

bu
lk

8/
ce

ll
32

/c
el

l
12

8/
ce

ll

w
al

l t
im

e
pe

r
gr

id
 b

ox
 p

er
 ti

m
es

te
p

[µ
s]

toggled processes

single-moment bulk
double-moment bulk
particles / 8 per cell / CUDA
particles / 8 per cell / OpenMP / 4 threads
particles / 8 per cell / OpenMP / 2 threads
particles / 8 per cell / serial
particles / 32 per cell / CUDA
particles / 32 per cell / OpenMP / 4 threads
particles / 32 per cell / OpenMP / 2 threads
particles / 32 per cell / serial
particles / 128 per cell / CUDA
particles / 128 per cell / OpenMP / 4 threads
particles / 128 per cell / OpenMP / 2 threads
particles / 128 per cell / serial

Figure 10. Computational cost of the three microphysics schemes expressed as wall-clock time per timestep per grid box. Values measured
for different settings of process-toggling options shown (bottom horizontal axis). Results obtained with the particle-based scheme are grouped
by the number of computational particles used (upper helper horizontal axes). See Sect. 6 for discussion.

– advection and phase changes,

– advection, phase changes, and coalescence,

– all above plus sedimentation.

For the particle-based scheme, the advection-only runs in-
clude transport of particles and the Eulerian fields (moisture
and heat).

Simulations were performed with a 6-core AMD Phe-
nom II CPU and a 96-core nVidia Quadro 600 GPU (an ex-
ample 2010 prosumer desktop computer). The CPU code was
compiled using GCC 4.8 with -Ofast, -march = native and -
DNDEBUG options enabled. The GPU code was compiled
with nvcc 5.5 with -arch = sm_20 and -DNDEBUG options
enabled. No data output was performed.

In order to eliminate from the reported values the time
spent on simulation startup, all simulations were repeated
twice, performing a few timesteps in the first run and a dozen
timesteps in the second run. The long and short run times
were subtracted and the result was normalised by the differ-
ence in number of timesteps.

In order to reduce the influence of other processes on the
wall-clock timing, all simulations were additionally repeated
three times, and the shortest measured time is reported.

The particle-based simulations were performed with three
different mean densities of computation particles, 8, 32 and
128 per grid cell, and with four “backend” settings:

– serial backend,

– OpenMP backend using 2 threads,

– OpenMP backend using 4 threads,

– CUDA backend using the GPU.

The test was completed for single-precision arithmetics. The
GPU used offered about three times higher performance at
single precision. Higher-performance GPU hardware avail-
able in computing centres is expected to deliver similar per-
formance for double precision. Execution times for CPU-
only calculations hardly change when switching from double
to single precision.

Figure 10 presents measured wall-clock times for the four
sets of processes (bottom x axis labels) and for all three
schemes (different colours and symbols). For simulations
with all processes turned on, it takes the double-moment
scheme roughly twice longer than the single-moment scheme
to advance the solution by one timestep. The particle-based
scheme may be anything from about ten- to over hundred-
times more costly than the double-moment bulk scheme de-
pending on its settings.

Figure 10 also shows how the execution time of the
particle-based scheme depends on the backend choice and
on the number of computational particles used. The execu-
tion time is also dependent on the number of subtimesteps
used for phase changes and coalescence (not shown, 10
subtimesteps per one advective step were used here). It is
also evident that computations of phase changes take most
of the simulation time for particle-based simulations. The
code responsible for the iterative implicit solution of the
drop-growth equation is thus the first candidate for optimisa-
tion (e.g., through employment of a faster-converging root-
finding algorithm and through introduction of adaptive time-
stepping).

Arguably, the most striking feature depicted in Fig. 10
is the order-of-magnitude speedup between serial execution
times for CPU and the GPU execution times. Even com-
pared to the four-thread OpenMP runs, the GPU backend of-

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 25

fers a threefold speedup. It is worth reiterating here the two
reasons why the particle-based scheme is particularly well-
suited for GPUs. First, the large body of data defining the
state of all particles never leaves the GPU memory (the GPU-
CPU transfer bandwidth is often a major issue for the perfor-
mance of GPU codes). Here, all data that are transferred from
the GPU are first gridded onto the Eulerian mesh before be-
ing sent from GPU to the main memory. Second, a significant
part of the computations (i.e. everything but phase changes)
may be computed asynchronously, leaving all but one CPU
available for other tasks of the solver (one thread is busy con-
trolling the GPU).

Finally, Fig. 10 also depicts the linear scaling of the com-
putational cost of the particle-based method with the num-
ber of computational particles (cf. Sect. 5). Regardless of the
backend choice, increasing the mean number of particles per
cell from 8 to 32 to 128 gives a linear increase of wall-time
as seen in the logarithmic scale of the plot.

The library is still at its initial stage of development, and
improvements in performance are expected.

7 Summary

The main goal of developing libcloudph++, has been to offer
the community a set of reusable software components of ap-
plicability in modern cloud modelling. Incorporation of the
double-moment bulk and the particle-based schemes makes
the library applicable for research on the widely discussed
indirect effects of aerosol on climate.

The implementation of the library was carried out having
maintainability and auditability as priorities. This is reflected
in:

– the choice of C++ with its concise and modularity-
encouraging syntax6 ;

– the separation of code elements related to the schemes’
formulation (formulæ) from other elements of the li-
brary (API, numerics);

– the adoption of compile-time dimensional analysis for
all physically-meaningful expressions in the code;

– the delegation of substantial part of the library imple-
mentation to external libraries (including the dimen-
sional analysis, algorithm parallelisation and GPU hard-
ware handling);

– the hosting of library development and handling of code
dissemination through a public code repository.

6As of current release, libcloudph++ consists of ca. 100 files
with a total of ca. 8000 lines of code (LOC) of which ca. 1000 LOC
are common to all schemes; ca. 500, 1000, and 4500 LOC are per-
taining to the single-moment, double-moment, and particle-based
schemes, respectively; ca. 1000 LOC define the Python bindings.

All above, supported by the choice of the GNU General Pub-
lic License, underpins our goal of offering reusable code.

Code availability

The library is released under the GNU General Public Li-
cense v3.0. The 1.0 release of the library accompanying this
publication is available for download as an electronic supple-
ment to the paper and tagged as “1.0.0” at the project repos-
itory. See project website for a list of pointers to relevant
resources: http://libcloudphxx.igf.fuw.edu.pl/.

In the current development workflow, we employ con-
tinuous integration on Linux with GNU g++7 and LLVM
clang++8 compilers and on Apple OSX with the Apple
clang++9 compiler. Consequently, these are considered the
supported platforms.

Appendix A: Common concepts and nomenclature

This section presents some key elements of a mostly stan-
dard approach to analytic description of motion of moist air,
particularly in the context of modelling of the warm-rain pro-
cesses. It is given for the sake of completeness of the for-
mulation and to ease referencing particular equations from
within the text and the source code.

Governing equations

There are three key types of matter considered in the model
formulation and their densities ρi and mass mixing ratios ri
are defined as follows:

ρd dry air
ρv = rvρd water vapour (A1)
ρl = rlρd liquid water (A2)

The governing equations are the continuity equation for dry
air, a conservation law for water vapour, and the thermody-
namic equation (see e.g. Vallis, 2006, Sect. 1.6):

∂tρd +∇ · (uρd) = 0 (A3)
Drv

Dt
= ṙv (A4)

Ds

Dt
=
q̇

T
(A5)

where s and q̇ represent entropy and heat sources, respec-
tively (both defined per unit mass of dry air). The dot nota-
tion is used to distinguish variations due to transport and due
to thermodynamic processes.

7http://gcc.gnu.org/
8http://llvm.org/
9http://apple.com/xcode

26 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

It is assumed already in Eq. (A3) that the presence of
moisture and its transformations through phase changes do
not influence the density of dry air. Dry-air flow is assumed
to act as a carrier flow for trace constituents. This assump-
tion is corroborated by the fact that in the Earth’s atmosphere
1� rv > rl.

System of transport equations

Equations (A4) and (A5) may be conveniently expressed as
a pair of transport equations of a similar form to Eq. (A3).

A continuity equation for water vapour density ρv is ob-
tained by summing Eq. (A4) ·ρd + rv·Eq. (A3):

∂t(ρdrv) +∇ · (uρdrv) = ρdṙv (A6)

Combining Eq. (A5) with the definition of potential tem-
perature θ?:

ds= c?pd(lnθ?) (A7)

gives:

c?p
dθ?

dt
=
θ?

T
q̇ (A8)

At this point, no assumption is made on the exact form of θ?

or c?p. Summing Eq. (A3) ·θ?c?p and Eq. (A8) ·ρd and ρdθ
? ·

D
Dtc

?
p = ρdθ

?ċ?p results in a continuity equation for ρdc
?
pθ
?

(akin to energy density):

∂t(ρdc
?
pθ
?) +∇ · (uρdc

?
pθ
?) = ρdθ

?
[
ċ?p + q̇/T

]
(A9)

Resultant Eqs. (A6) and (A9) share the form of a generalised
transport equation (see Smolarkiewicz, 2006, Sect. 4.1):

∂t(ρdφ) +∇ · (ρduφ) = ρdφ̇ (A10)

representing transport of a quantity φ (equal to rv or c?pθ
?)

by a dry-air carrier flow.

Dry air potential temperature

The way the potential temperature was defined in the preced-
ing section gives a degree of freedom in the choice of θ? and
q̇. For moist air containing suspended water aerosol, assum-
ing thermodynamic equilibrium and neglecting the expan-
sion work of liquid water, dsmay be expressed as (Eqs. 6.10–
6.11 in Curry and Webster, 1999):

ds=

cpdd(lnθ)︷ ︸︸ ︷
cpdd(lnT)−Rdd(lnpd)+[lvdrv + (rvcpv + rlcl + rvlv/T)dT]︸ ︷︷ ︸

−dq

/
T

(A11)

where pd = ρdRdT is the partial pressure of dry air, and the
potential temperature θ is defined here as:

θ = T

(
p1000

pd

)Rd
cpd

(A12)

(p1000 = 1000hPa, note that the definition features the dry
air pressure as opposed to the total pressure, see e.g. Bryan,
2008; Duarte et al., 2014).

Substituting c?p = cpd = const and θ? = θ into Eq. (A9) and
employing the form of q̇ hinted with−dq in Eq. (A11) gives:

∂t(ρdθ) +∇ · (uρdθ) =
−ρdθ

cpdT

[
lvṙv +

�����������

Ṫ

(
rvcpv + rlcl +

rvlv
T

)]
(A13)

Neglecting of all but the lvṙ terms on the right-hand side
results in an approximation akin to the one employed in
Grabowski and Smolarkiewicz (1996) and used herein as
well.

Another common choice of θ? and q̇ is obtained by putting
θ? = θ · exp

(
−rvlv
cpdT

)
, what results in the lvdrv term becom-

ing a part of cpdd(lnθ?) instead of−dq in Eq. (A11) (see e.g.
Grabowski and Smolarkiewicz, 1990, Sect. 3).

Diagnosing T and p from state variables

The principal role of any cloud-microphysics scheme is to
close the equation system defined by Eqs. (A6) and (A13)
with a definition of ṙv linked with a representation of liquid
water within the model domain. This requires representation
of various thermodynamic processes that depend on temper-
ature and pressure which are diagnosed from the model state
variables (i.e. the quantities for which the transport equations
are solved). With the approach outlined above, the model
state variables are:

rv water vapour mixing ratio

θ potential temperature

Assuming ρd is known (solved by a dynamical core of
a model), temperature and pressure may be diagnosed from
rv and θ with:

T =

θ(ρdRd

p1000

)Rd
cpd

cpd/(cpd−Rd)

(A14)

p= ρd (Rd + rvRv)T (A15)

Appendix B: List of symbols

A list of symbols is provided in Table A1.

Appendix C: Example program “icicle”

The example simulations discussed in the text were per-
formed with icicle–an implementation of all elements of the
example modelling framework presented in Sect. 2, that is:
the transport equation solver, the 2-D kinematic framework
and the simulation set-up.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 27

icicle

Boost
(program options,

Spirit,
. . .)

libmpdata++

Boost
(. . .)

OpenMP
(or Boost.Thread)

HDF5Blitz++

libcloudph++

Boost
(Units,
odeint,
. . .)

Thrust

CUDA
or OpenMP

Figure C1. A tree of libcloudph++’s and icicle’s major dependencies. In addition to these libraries, several components require C++11
compiler and CMake at build time.

Dependencies

The code of icicle depends on libcloudph++, lib-
cloudph++’s sister project libmpdata++ (Jaruga et al., 2015)
and several components of the Boost10 collection. The libmp-
data++ components solve the transport equations for the Eu-
lerian fields using the MPDATA algorithm (Smolarkiewicz,
2006) and provide data output facility using the HDF5 li-
brary11. Figure C1 presents dependency tree of icicle. Source
code of icicle, libmpdata++ and libcloudph++ is available
for download at http://foss.igf.fuw.edu.pl/. The 1.0.0 release
tarballs for both libcloudph++ and icicle are provided as
an electronic supplement to the paper. All other icicle de-
pendencies are available, for instance, as Debian12 packages.
All icicle dependencies are free (gratis) software, and all but
CUDA (which is an optional dependency) are additionally
libre–open sourced, and released under freedom-ensuring li-
censes.

Compilation

Build automation for icicle, libmpdata++ and libcloudph++
is handled in a standard way using CMake13. In all three
cases, a possible command sequence will resemble:

$ mkdir build
$ cd build
$ cmake ..
$ make
$ make test
$ sudo make install

Usage

Control over simulation options of icicle is available via
command-line parameters. Most of the options correspond to

10http://boost.org/
11http://hdfgroup.org/
12http://debian.org/
13http://cmake.org/

the fields of the opts_t structures of the three microphysics
schemes discussed in the paper. A list of general options may
be obtained by calling:

$ icicle --help

and includes, in particular, the - -micro option that selects
the microphysics scheme. Options specific to each of the
three available schemes are listed as in the following exam-
ple:

$ icicle --micro=lgrngn --help

For the particle-based scheme, the options include such set-
tings as the backend type (serial, OpenMP or CUDA) and the
size ranges for which to output the moments of the particle
size distribution.

Simulations may be stopped at any time by sending the
process a SIGTERM or SIGINT signal (e.g., using the kill
utility or with Ctrl+C). It causes the solver to continue inte-
gration up to the end of the current timestep, close the output
file, and exit. After executing the simulation, its progress may
be monitored for example with top -H as the process threads’
names are continuously updated with the percentage of work
completed.

The Supplement related to this article is available online
at doi:10.5194/gmd-0-1-2015-supplement.

Acknowledgements. S. Arabas thanks Shin-ichiro Shima (Univer-
sity of Hyogo, Japan) for introducing to particle-based simulations.
We thank Dorota Jarecka (University of Warsaw) and Graham Fein-
gold (NOAA) for insightful discussions and comments to the initial
version of the manuscript. We acknowledge contributions to lib-
cloudph++ code from Piotr Dziekan, Dorota Jarecka and Maciej
Waruszewski. Development of libcloudph++, libmpdata++ and
icicle has been supported by Poland’s National Science Centre (Nar-
odowe Centrum Nauki) [decisions no. 2011/01/N/ST10/01483 and

28 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

2012/06/M/ST10/00434]. Additional support was provided by the
European Union 7 FP ACTRIS (Aerosol, Clouds, and Trace gases
Research InfraStructure network) No. 262254. WWG’s institution
NCAR is operated by the University Corporation for Atmospheric
Research under sponsorship of the US National Science Founda-
tion. The authors express their appreciation of the work of the devel-
opers of the free/libre/open-source software which served as a basis
for implementation of the presented library (see Sect. C for a list).
We would like to express our admiration to the way the Clang14 C++
compiler improved the comfort of development and debugging of
heavily-templated code based on libraries such as Boost.units and
Blitz++. All figures were generated using gnuplot15. Development
of libcloudph++ continuesly benefits from the computational ser-
vices offered by Travis at their continuous-integration platform.

References

Ahnert, K. and Mulansky, M.: Boost.Numeric.Odeint: solving or-
dinary differential equations, in: Boost Library Documenta-
tion, available at: http://www.boost.org/doc/libs/ (last access:
15 November 2014), 2013.

Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J.,
Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C.,
Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Klein-
man, L., Lee, Y.-N., Springston, S., Toniazzo, T., Krejci, R.,
Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G.,
Bower, K. N., Williams, P. I., Crosier, J., Crawford, I., Con-
nolly, P., Allan, J. D., Covert, D., Bandy, A. R., Russell, L. M.,
Trembath, J., Bart, M., McQuaid, J. B., Wang, J., and Chand, D.:
South East Pacific atmospheric composition and variability sam-
pled along 20◦ S during VOCALS-REx, Atmos. Chem. Phys.,
11, 5237–5262, doi:10.5194/acp-11-5237-2011, 2011.

Andrejczuk, M., Reisner, J., Henson, B., Dubey, M., and Jeffery, C.:
The potential impacts of pollution on a nondrizzling stratus deck:
does aerosol number matter more than type?, J. Geophys. Res.,
113, D19204, doi:10.1029/2007JD009445, 2008.

Andrejczuk, M., Grabowski, W., Reisner, J., and Gadian, A.:
Cloud-aerosol interactions for boundary layer stratocumulus in
the Lagrangian Cloud Model, J. Geophys. Res., 115, D22214,
doi:10.1029/2010JD014248, 2010.

Arabas, S. and Pawlowska, H.: Adaptive method of lines for
multi-component aerosol condensational growth and CCN ac-
tivation, Geosci. Model Dev., 4, 15–31, doi:10.5194/gmd-4-15-
2011, 2011.

Arabas, S. and Shima, S.: Large Eddy simulations of trade-wind
cumuli using particle-based microphysics with Monte-Carlo co-
alescence, J. Atmos. Sci., 70, 2768–2777, doi:10.1175/JAS-D-
12-0295.1, 2013.

Bott, A.: A flux method for the numerical solution of the
stochastic collection equation, J. Atmos. Sci., 55, 2284–2293,
doi:10.1175/1520-0469(1998)055<2284:AFMFTN>2.0.CO;2,
1998.

Brokken, F.: C++ Annotations, Center of Information Technology,
University of Groningen, available at: http://cppannotations.sf.
net/ (last access: 15 November 2014), 2013.

14http://clang.llvm.org/
15http://gnuplot.info/

Bryan, G.: On the computation of pseudoadiabatic entropy and
equivalent potential temperature, Mon. Weather Rev., 136, 5239–
5245, doi:10.1175/2008MWR2593.1, 2008.

Castellano, N. E., and Ávila, E. E.: Vapour density field of a popula-
tion of cloud droplets, J. Atmos. Sol.-Terr. Phy., 73, 2423–2428,
doi:10.1016/j.jastp.2011.08.013, 2011.

Clift, R., Grace, J., and Weber, M.: Bubbles, Drops, and Particles,
Academic Press, New York, 1978, reprinted by Dover Publica-
tions, 2005.

Crowe, C., Schwarzkopf, J., Sommerfeld, M., and Tsuji, Y.: Mul-
tiphase flows with droplets and particles, 2nd edn., CRC Press,
Boca Raton, FL, USA, 2012.

Curry, J. and Webster, P.: Thermodynamics of Atmospheres and
Oceans, Academic Press, 1999.

Duarte, M., Almgren, A., Balakrishnan, K., Bell, J., and Romps, D.:
A Numerical Study of Methods for Moist Atmospheric Flows:
Compressible Equations, Mon. Weather Rev., 142, 4269–4283,
doi:10.1175/MWR-D-13-00368.1, 2014.

Easterbrook, S. M. and Johns, T. C.: Engineering the software for
understanding climate change, Comput. Sci. Eng., 11, 65–74,
doi:10.1109/MCSE.2009.193, 2009.

Fernández-Díaz, J. M., Braña, M. A. R., García, B. A.,
Muñiz, C. G.-P., and Nieto, P. J. G.: The goodness of the inter-
nally mixed aerosol assumption under condensation-evaporation,
Aerosol Sci. Tech., 31, 17–23, doi:10.1080/027868299304327,
1999.

Golaz, J.-C., Larson, V., and Cotton, W.: A PDF-based model
for boundary layer clouds. Part 1: Method and model de-
scription, J. Atmos. Sci., 59, 3540–3551, doi:10.1175/1520-
0469(2002)059<3540:APBMFB>2.0.CO;2, 2002.

Grabowski, W. and Smolarkiewicz, P.: Monotone finite-difference
approximations to the advection-condensation problem,
Mon. Weather Rev., 118, 2082–2097, doi:10.1175/1520-
0493(1990)118<2082:MFDATT>2.0.CO;2, 1990.

Grabowski, W. and Smolarkiewicz, P.: Two-time-level
semi-lagrangian modeling of precipitating clouds,
Mon. Weather Rev., 124, 487–497, doi:10.1175/1520-
0493(1996)124<0487:TTLSLM>2.0.CO;2, 1996.

Grabowski, W. and Smolarkiewicz, P.: A multiscale anelastic model
for meteorological research, Mon. Weather Rev., 130, 939–956,
doi:10.1175/1520-0493(2002)130<0939:AMAMFM>2.0.CO;2,
2002.

Grabowski, W. W. and Wang, L.-P.: Growth of cloud droplets in
a turbulent environment, Annu. Rev. Fluid Mech., 45, 293–324,
doi:10.1146/annurev-fluid-011212-140750, 2013.

Hoberock, J. and Bell, N.: Thrust: a parallel template library, avail-
able at: http://thrust.github.io/ (last access: 15 November 2014),
2010.

Ince, D., Hatton, L., and Graham-Cumming, J.: The case
for open computer programs, Nature, 482, 485–488,
doi:10.1038/nature10836, 2012.

Jarecka, D., Grabowski, W., Morrison, H., and Pawlowska, H.: Ho-
mogeneity of the subgrid-scale turbulent mixing in large-Eddy
simulation of shallow convection, J. Atmos. Sci., 70, 2751–2767,
doi:10.1175/JAS-D-13-042.1, 2013.

Jarecka, D., Arabas, S., Del Vento, D.: Python bindings for lib-
cloudph++, arXiv:1504.01161, 2015.

Jaruga, A., Arabas, S., Jarecka, D., Pawlowska, H., Smo-
larkiewicz, P., and Waruszewski, M.: llibmpdata++ 1.0: a library

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 29

of parallel MPDATA solvers for systems of generalised transport
equations, Geosci. Model Dev., 8, 1005–1032, doi:10.5194/gmd-
8-1005-2015, 2015.

Kessler, E.: On the continuity and distribution of water sub-
stance in atmospheric circulations, Atmos. Res., 38, 109–145,
doi:10.1016/0169-8095(94)00090-Z, 1995.

Khairoutdinov, M. and Kogan, Y.: A new cloud physics parame-
terization in a large-Eddy simulation model of marine stratocu-
mulus, Mon. Weather Rev., 128, 229–243, doi:10.1175/1520-
0493(2000)128<0229:ANCPPI>2.0.CO;2, 2000.

Khvorostyanov, V. and Curry, J.: Terminal velocities of droplets
and crystals: power laws with continuous parameters over the
size spectrum, J. Atmos. Sci., 59, 1872–1884, doi:10.1175/1520-
0469(2002)059<1872:TVODAC>2.0.CO;2, 2002.

Khvorostyanov, V. and Curry, J.: Aerosol size spectra and
CCN activity spectra: Reconciling the lognormal, alge-
braic, and power laws, J. Geophys. Res., 111, D12202,
doi:10.1029/2005JD006532, 2006.

Laaksonen, A., Vesala, T., Kulmala, M., Winkler, P. M., and Wag-
ner, P. E.: Commentary on cloud modelling and the mass accom-
modation coefficient of water, Atmos. Chem. Phys., 5, 461–464,
doi:10.5194/acp-5-461-2005, 2005.

Lebo, Z. J. and Seinfeld, J. H.: A continuous spectral aerosol-
droplet microphysics model, Atmos. Chem. Phys., 11, 12297–
12316, doi:10.5194/acp-11-12297-2011, 2011.

Marcolli, C., Luo, B. P., Peter, Th., and Wienhold, F. G.: Inter-
nal mixing of the organic aerosol by gas phase diffusion of
semivolatile organic compounds, Atmos. Chem. Phys., 4, 2593–
2599, doi:10.5194/acp-4-2593-2004, 2004.

Matsumoto, M. and Nishimura, T.: Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator, ACM T. Model. Comput. S., 8, 3–30,
doi:10.1145/272991.272995, 1998.

Mayer, B. and Kylling, A.: Technical note: The libRadtran soft-
ware package for radiative transfer calculations–description
and examples of use, Atmos. Chem. Phys., 5, 1855–1877,
doi:10.5194/acp-5-1855-2005, 2005.

McFarquhar, G.: Raindrop size distribution and evolution, in:
Rainfall: State of the Science, edited by: Testik, F. Y. and
Gebremichael, M., Washington, D. C., USA, AGU, 49–59,
doi:10.1029/GM191, 2010.

Mitra, S., Brinkmann, J., and Pruppacher, H.: A wind tunnel study
on the drop-to-particle conversion, J. Aerosol Sci., 23, 245–256,
doi:10.1016/0021-8502(92)90326-Q, 1992.

Morin, A., Urban, J., Adams, P., Foster, I., Sali, A., Baker, D., and
Sliz, P.: Shining light into black boxes, Science, 336, 159–160,
doi:10.1126/science.1218263, 2012.

Morrison, H. and Grabowski, W.: Comparison of bulk and bin
warm-rain microphysics models using a kinematic framework, J.
Atmos. Sci., 64, 2839–2861, doi:10.1175/JAS3980, 2007.

Morrison, H. and Grabowski, W.: Modeling supersat-
uration and subgrid-scale mixing with two-moment
bulk warm microphysics, J. Atmos. Sci., 65, 792–812,
doi:10.1175/2007JAS2374.1, 2008.

Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-
moment microphysics parameterization for application in cloud
and climate models. Part 1: Description, J. Atmos. Sci., 62,
1665–1677, doi:10.1175/JAS3446.1, 2005.

Muhlbauer, A., Grabowski, W. W., Malinowski, S. P., Acker-
man, T. P., Bryan, G. H., Lebo, Z. J., Milbrandt, J. A., Morri-
son, H., Ovchinnikov, M., Tessendorf, S., Thériault, J. M., and
Thompson, G.: Reexamination of the State-of-the-art of cloud
modeling shows real improvements, B. Am. Meteorol. Soc., 94,
ES45–ES48, doi:10.1175/BAMS-D-12-00188.1, 2013.

Ogura, Y. and Takahashi, T.: Numerical simulation of the life
cycle of a thunderstorm cell, Mon. Weather Rev., 99, 895–911,
doi:10.1175/1520-0493(1971)099<0895:NSOTLC>2.3.CO;2,
1971.

Pennell, C. and Reichler, T.: On the effective num-
ber of climate models, J. Climate, 24, 2358–2367,
doi:10.1175/2010JCLI3814.1, 2010.

Petters, M. D. and Kreidenweis, S. M.: A single parameter repre-
sentation of hygroscopic growth and cloud condensation nucleus
activity, Atmos. Chem. Phys., 7, 1961–1971, doi:10.5194/acp-7-
1961-2007, 2007.

Rasinski, P., Pawlowska, H., and Grabowski, W.: Observations and
kinematic modeling of drizzling marine stratocumulus, Atmos.
Res., 102, 120–135, doi:10.1016/j.atmosres.2011.06.020, 2011.

Riechelmann, T., Noh, Y., and Raasch, S.: A new method for large-
eddy simulations of clouds with Lagrangian droplets including
the effects of turbulent collision, New J. Phys., 14, 065008,
doi:10.1088/1367-2630/14/6/065008, 2012.

Rogers, J. and Davis, R.: The effects of van der
Waals attractions on cloud droplet growth by coales-
cence, J. Atmos. Sci., 47, 1075–1080, doi:10.1175/1520-
0469(1990)047<1075:TEOVDW>2.0.CO;2, 1990.

Schabel, M. and Watanabe, S.: Boost.Units: Zero-overhead dimen-
sional analysis and unit/quantity manipulation and conversion,
in: Boost Library Documentation, available at: http://www.boost.
org/doc/libs/ (last access: 15 November 2014), 2008.

Shima, S., Sugiyama, T., Kusano, K., Kawano, A., and Hirose, S.:
Simulation method, simulation program, and simulator, Euro-
pean Patent EP1847939, 2007.

Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and Kawa-
hara, S.: The super-droplet method for the numerical simulation
of clouds and precipitation: a particle-based and probabilistic mi-
crophysics model coupled with a non-hydrostatic model, Q. J.
Roy. Meteor. Soc., 135, 1307–1320, doi:10.1002/qj.441, 2009.

Simmel, M., Trautmann, T., and Tetzlaff, G.: Numerical solution
of the stochastic collection equation–comparison of the Linear
Discrete Method with other methods, Atmos. Res., 61, 135–148,
doi:10.1016/S0169-8095(01)00131-4, 2002.

Slawinska, J., Grabowski, W. W., and Morrison, H.: The impact
of atmospheric aerosols on precipitation from deep organized
convection: a prescribed-flow model study using double-moment
bulk microphysics, Q. J. Roy. Meteor. Soc., 135, 1906–1913,
doi:10.1002/qj.450, 2009.

Smolarkiewicz, P.: Multidimensional positive definite advection
transport algorithm: an overview, Int. J. Numer. Meth. Fl., 50,
1123–1144, doi:10.1002/fld.1071, 2006.

Smolík, J., Džumbová, L., Schwarz, J., and Kulmala, M.: Evapo-
ration of ventilated water droplet: connection between heat and
mass transfer, J. Aerosol Sci., 32, 739–748, doi:10.1016/S0021-
8502(00)00118-X, 2001.

Sölch, I. and Kärcher, B.: A large-eddy model for cirrus clouds
with explicit aerosol and ice microphysics and Lagrangian ice

30 S. Arabas et al.: libcloudph++: cloud microphysics library in C++

particle tracking, Q. J. Roy. Meteor. Soc., 136, 2074–2093,
doi:10.1002/qj.689, 2010.

Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds
and precipitation in a buffered system, Nature, 461, 607–613,
doi:10.1038/nature08281, 2009.

Straka, J.: Cloud and Precipitation Microphysics: Principles and Pa-
rameterizations, Cambridge University Press, 2009.

Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S.: Shapes and
oscillations of falling raindrops – a review, Atmos. Res., 97, 416–
425, doi:10.1016/j.atmosres.2010.03.024, 2010.

Szumowski, M., Grabowski, W., and Ochs III, H.: Sim-
ple two-dimensional kinematic framework designed to test
warm rain microphysical models, Atmos. Res., 45, 299–326,
doi:10.1016/S0169-8095(97)00082-3, 1998.

Unterstrasser, S. and Sölch, I.: Optimisation of the simulation par-
ticle number in a Lagrangian ice microphysical model, Geosci.
Model Dev., 7, 695–709, doi:10.5194/gmd-7-695-2014, 2014.

Vaillancourt, P., Yau, M., and Grabowski, W.: Micro-
scopic approach to cloud droplet growth by condensa-
tion. Part I: Model description and results without turbu-
lence, J. Atmos. Sci., 58, 1945–1964, doi:10.1175/1520-
0469(2001)058<1945:MATCDG>2.0.CO;2, 2001.

Vallis, G.: Atmospheric and oceanic fluid dynamics: fundamentals
and large-scale circulation, Cambridge University Press, Cam-
bridge, 2006.

Veldhuizen, T.: Blitz++ User’s Guide: a C++ class library for sci-
entific computing, version 0.9, available at: http://blitz.sf.net/
resources/blitz-0.9.pdf (last access: 15 November 2014), 2005.

Vohl, O., Mitra, S., Wurzler, S., Diehl, K., and Pruppacher, H.:
Collision efficiencies empirically determined from labora-
tory investigations of collisional growth of small rain-
drops in a laminar flow field, Atmos. Res., 85, 120–125,
doi:10.1016/j.atmosres.2006.12.001, 2007.

Wilson, G., Aruliah, D. A., Titus Brown, C., Chue Hong, N. P.,
Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K.,
Mitchell, I. M., Plumbley, M., Waugh, B., White, E. P., and Wil-
son, P.: Best practices for scientific computing, PLoS Biol., 12,
e1001745, doi:10.1371/journal.pbio.1001745, 2014.

Wood, R.: Drizzle in stratiform boundary layer clouds. Part
II: Microphysical aspects, J. Atmos. Sci., 62, 3034–3050,
doi:10.1175/JAS3530.1, 2005.

S. Arabas et al.: libcloudph++: cloud microphysics library in C++ 31

Table A1. List of symbols.

Symbol SI unit Description

A= 2σw/(RvTρw) [m] Kelvin term exponent parameter
βM , βT [1] transition-régime correction factors
∆t, ∆x, ∆z, ∆V [s] or [m] or [m3] timestep, grid cell dimensions and volume
θl [K] liquid water potential temperature (cf. Sect. 2.2)
θ [K] potential temperature
κ [1] hygroscopicity parameter
ρi depends on i any state variable (density)
ρd, ρv [kg m−3] densities of dry air and vapour vapour
ρc, ρr [kg m−3] cloud and rain water densities/content
ρw = 1000 [kg m−3] density of liquid water
ρvs [kg m−3] saturation vapour density
ρ◦ [kg m−3] vapour density at drop surface
ρ̇i, ρ̇c, ρ̇r depends on i rhs terms (any, cloud water, rain water)
σm [1] geometric standard deviation (lognormal spectrum)
σw = 0.072 [J m−2] surface tension coefficient of water
τ , τrlx [s] relaxation time scale (cf. Sect. 2.2)
φi depends on i any advected specific quantity (e.g. mixing ratio)
ψ [kg m−1 s−1] streamfunction
aw = (r3w − r3d)/(r3w − r3d · (1−κ)) [1] water activity
a, b [m2] initial interval for bisection algorithm
cpd = 1005, cpv = 1850, cl = 4218 [J kg−1 K−1] specific heat at const. pressure (dry air, vapour & liquid water)
C [1] Courant number
dm, rm [m] mode diameter and radius (lognormal spectrum)
D, Deff, D0 [m2 s−1] diffusion coefficients for water vapour in air
Er [kg m−3 s−1] evaporation rate of rain (single-moment scheme)
E(ri, rj) [1] collection efficiency
Fin, Fout [kg m−3 s−1] fluxes of ρr through the grid cell edges
K, K0 [J m−1 s−1 K−1] thermal conductivities of air
K(ri, rj) [m3 s−1] collection kernel
lv0 = 2.5× 106 [J kg−1] latent heat of evaporation at the triple point
lv(T) = lv0 + (cpv − cl) · (T −T0) [J kg−1] latent heat of evaporation at a given temperature
M [k] [m-3+k] kth moment of size spectrum
n [1] total number of computational particles
nc, nr [m−3] cloud droplet and rain drop concentrations
N [1] multiplicity (attribute of computational particle)
Nm [m−3] particle concentration (lognormal spectrum)
p, pd [Pa] pressure, dry air partial pressure
Pij [1] probability of collisions
Q, q [J m−3], [J kg−1] heat per unit volume and mass
rd, rw [m] particle dry and wet radii
rc0 [kg kg−1] autoconversion threshold (mixing ratio)
rv, rl, rt = rv + rl [kg kg−1] mixing ratios (vapour, liquid, total)
Rv, Rd [J K−1 kg−1] gas constants for water vapour and dry air
S, s [J K−1 m−3], [J K−1 kg−1] entropy per unit volume and mass
T [K] temperature
u = (u,v) [m s−1] velocity field
vt, vi, vj [m s−1] terminal velocity
wmax [m s−1] maximum velocity (cf. amplitude of ψ)
w [1] averaging weight in particle advection scheme
x, z [m] spatial coordinate
X , Z [m] domain extent

