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Abstract.
This paper accompanies the first release of libmpdata++,

a C++ library implementing the Multidimensional Positive-
Definite Advection Transport Algorithm (MPDATA) on
regular structured grid. The library offers basic numeri-
cal solvers for systems of generalised transport equations.
The solvers are forward-in-time, conservative and non-
linearly stable. The libmpdata++ library covers the basic
second-order-accurate formulation of MPDATA, its third-
order variant, the infinite-gauge option for variable-sign
fields and a flux-corrected transport extension to guarantee
non-oscillatory solutions. The library is equipped with a non-
symmetric variational elliptic solver for implicit evaluation
of pressure gradient terms. All solvers offer parallelisation
through domain decomposition using shared-memory paral-
lelisation.

The paper describes the library programming interface,
and serves as a user guide. Supported options are illus-
trated with benchmarks discussed in the MPDATA litera-
ture. Benchmark descriptions include code snippets as well
as quantitative representations of simulation results. Exam-
ples of applications include: homogeneous transport in one,
two and three dimensions in Cartesian and spherical do-
mains; shallow-water system compared with analytical so-
lution (originally derived for a 2-D case); and a buoyant con-
vection problem in an incompressible Boussinesq fluid with
interfacial instability. All the examples are implemented out
of the library tree. Regardless of the differences in the prob-
lem dimensionality, right-hand-side terms, boundary condi-
tions and parallelisation approach, all the examples use the
same unmodified library, which is a key goal of libmpdata++
design. The design, based on the principle of separation of

concerns, prioritises the user and developer productivity. The
libmpdata++ library is implemented in C++, making use of
the Blitz++ multi-dimensional array containers, and is re-
leased as free/libre and open-source software.

1 Introduction

The MPDATA advection scheme introduced in Smo-
larkiewicz (1983) has grown into a family of numeri-
cal algorithms for geosciences and beyond (see for ex-
ample Grabowski and Smolarkiewicz, 2002; Cotter et al.,
2002; Smolarkiewicz and Szmelter, 2009; Ortiz and Smo-
larkiewicz, 2009; Hyman et al., 2012; Charbonneau and
Smolarkiewicz, 2013). MPDATA stands for Multidimen-
sional Positive-Definite Advection Transport Algorithm1. It
is a finite-difference/finite-volume algorithm for solving the
generalised transport equation

∂t(Gψ) +∇ · (Guψ) =GR. (1)

Equation (1) describes the advection of a scalar field ψ in
a flow with velocity u. The field R on the right-hand-side
(rhs) is a total of source/sink terms. The scalar field G can
represent the fluid density, the Jacobian of coordinate trans-
formation or their product, and satisfies the equation

∂t(G) +∇ · (Gu) = 0. (2)

1In fact, MPDATA is sign-preserving, rather than merely
positive-definite, but for historical reasons the name remains un-
changed.
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In the homogeneous case (R≡ 0), MPDATA is at least
second-order-accurate in space and time, conservative and
non-linearly stable.

The history of MPDATA spans three decades: Smo-
larkiewicz (1984) – Kühnlein et al. (2012), Smolarkiewicz
et al. (2014) and is widely documented in the literature – see
Smolarkiewicz and Margolin (1998), Smolarkiewicz (2006)
and Prusa et al. (2008) for reviews. Notwithstanding, from
the authors’ experience the software engineering aspects still
overshadow the benefits of MPDATA. To facilitate the use of
MPDATA schemes, hereby we present a new implementation
of the MPDATA family of algorithms for regular structured
grids – libmpdata++.

In the development of libmpdata++ we strive to comply
with the best practices sought-after among the scientific com-
munity (Wilson et al., 2014); in particular, with the paradigm
of maximising code reuse. This paradigm is embodied in the
“open source computational libraries – the main foundation
upon which academic and also a significant part of industrial
computational research rests” (Bangerth and Heister, 2013).

The libmpdata++ has been developed in C++2, making
extensive use of object-oriented programming (OOP) and
template programming. The primary goals when designing
libmpdata++ were to maintain strict separation of concerns
and to reproduce within the code the mathematical “black-
board abstractions” used for documenting numerical algo-
rithms. The adopted design contributes to the readability,
maintainability and conciseness of the code. The current de-
velopment of libmpdata++ is an extension of the research
on OOP implementation of the basic MPDATA scheme pre-
sented in Arabas et al. (2014).

The goal of this article is twofold: first, to document the
library interface by providing usage examples; and second,
to validate the correctness of the implementation by verifying
the results against published benchmarks.

The structure of the paper is as follows. Section 2 outlines
the library design. The four sections that follow correspond
to four types of equation systems solved by the implemented
algorithms, namely: homogeneous advective transport; inho-
mogeneous transport; transport with prognosed velocity; sys-
tems featuring elliptic pressure equation. Each of these sec-
tions outlines the implemented algorithms, describes the li-
brary interface and provides usage examples. Each example
is accompanied with a definition of the solved problem, de-
scription of the program code and discussion of the results.

The paper structure reflects the solver inheritance hierar-
chy in libmpdata++. All features discussed in preceding sec-
tions apply to the one that follows. The set of discussed prob-
lems was selected to match the tutorial structure of the paper.
The presentation begins with simple examples focusing on
the basic library interface. Subsequent examples use increas-
ingly more complicated cases with the most complex reflect-

2In the C++11 revision of the language.

ing potential for applications to cloud dynamics (Grabowski
and Smolarkiewicz, 2002).

The library and programs used to generate all results pre-
sented in the paper are released as free and open-source soft-
ware – see section 7.

2 Library design

2.1 Dependencies and supported platforms

The libmpdata++ package is a header-only C++ library. It
is built upon the Blitz++3 array containers. We refer the
reader to the Blitz++ documentation (Veldhuizen, 2006) for
description of the Blitz++ interface, to which the user is ex-
posed while working with libmpdata++. The libmpdata++
core also depends on several components of the Boost4 li-
brary collection, however these are used internally only. Out-
put handlers included in the library depend additionally on
gnuplot-iostream5 and HDF56, but their use is optional. Ex-
ample programs discussed within this article require gnu-
plot7, Paraview8, Python, and the following Python pack-
ages: h5py9, matplotlib10 and scipy11.

The library code requires a C++11-compliant compiler. In
the current development workflow, we employ continuous in-
tegration on Linux with GNU g++12 and LLVM clang++13

compilers and on Apple OSX with the Apple clang++14

compiler. Consequently, these are considered the supported
platforms.

2.2 Components

Components of the library are grouped as follows:

– solvers:

– mpdata intended for solving homogeneous trans-
port problems, (Sect. 3),

– mpdata_rhs extending the above with rhs term
handling, (Sect. 4),

– mpdata_rhs_vip adding prognosed-velocity sup-
port, (Sect. 5),

– mpdata_rhs_vip_prs further extending the above
with elliptic pressure equation solvers, (Sect. 6);

3see http://sf.net/projects/blitz/
4see http://boost.org/
5see http://gitorious.org/gnuplot-iostream/
6see http://hdfgroup.org/HDF5/
7see http://gnuplot.info/
8see http://paraview.org/
9see http://h5py.org/

10see http://matplotlib.org/
11see http://scipy.org/
12see http://gcc.gnu.org/
13see http://llvm.org/
14see http://apple.com/xcode

http://sf.net/projects/blitz/
http://boost.org/
http://gitorious.org/gnuplot-iostream/
http://hdfgroup.org/HDF5/
http://gnuplot.info/
http://paraview.org/
http://h5py.org/
http://matplotlib.org/
http://scipy.org/
http://gcc.gnu.org/
http://llvm.org/
http://apple.com/xcode
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Figure 1: Inheritance diagram of classes mentioned in the paper. Classes defined within libmpdata++ have their names sur-
rounded with black frames. The coupled_harmosc class is an example of a user-defined class defined out of the library tree.
The solid black lines show the inheritance relations. The output label depicts any of the output handlers available in libmp-
data++.

– output handlers:

– gnuplot offering direct communication with the
gnuplot program with no intermediate output files,

– hdf5 offering basic HDF5 output compatible with
netCDF15 readers,

– hdf5_xdmf implementing the eXtensible Data
Model and Format16 standard supported for in-
stance by the Paraview visualisation tool;

– boundary conditions:

– cyclic implementing periodic boundaries,

– open giving zero-divergence condition on domain
edges,

– polar applicable with spherical coordinates;

– concurrency handlers:

– serial for single-thread operation,

– cxx11_thread for multi-threading using C++11
Thread support library,

– boost_thread for multi-threading using
Boost.Thread,

– openmp for multi-threading using OpenMP,

– threads that defaults to openmp if supported by the
compiler and falls back to boost_thread otherwise.

15see http://www.unidata.ucar.edu/software/netcdf/
16see http://xdmf.org/

Performing integration with libmpdata++ requires choosing
one of the solvers, one output handler, one boundary condi-
tion per each domain edge and one concurrency handler.

The inheritance diagram in Fig. 1 shows relationships be-
tween libmpdata++ solvers defined within the library. The
diagram includes as well an example user-defined class cou-
pled_harmosc defined out of the library tree. The mpdata
solver is displayed at the top, as it is the base class for all
other classes.

2.3 Computational domain and grid

The arrangement of the computational domain used in libm-
pdata++ is shown in Fig. 2. The initial condition for the de-
pendent variable ψ is assumed to be known in nx×ny data
points. The outermost data points are located at the bound-
aries of the domain.

The dual, staggered Arakawa-C grid (Arakawa and Lamb,
1977) used in libmpdata++ is shown in Fig. 3. In this spa-
tial discretisation approach, the cell-mean values of the scalar
fields ψ, and G reside in the centres of computational cells, –
corresponding to the data points of the primary grid in Fig. 2
– whereas the components of the velocity field u are speci-
fied at the cell edges of the dual grid in Fig. 2.

http://www.unidata.ucar.edu/software/netcdf/
http://xdmf.org/
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Figure 2: Schematic of a 2-D computational domain. Bullets
mark the data points for the dependent variable ψ in Eq. (1),
solid lines depict edges of primary grid and dashed lines
mark edges of dual grid in Fig. 3.

ψi,jψi−1,j

ψi,j+1

uxi+1/2,juxi−1/2,j

uyi,j−1/2

Figure 3: A schematic of a 2-D Arakawa-C grid. Bullets de-
note the cell centres and dashed lines denote the cell walls
corresponding to the dual grid in Fig. 2.

2.4 Error and progress reporting

There are several error-handling mechanisms used within
libmpdata++.

First, there are sanity checks within the code implemented
using static_assert() calls. These are reported during compi-
lation, for instance when invalid values of compile-time pa-
rameters are supplied.

Second, there are available numerous run-time sanity
checks, implemented using assert() calls. These are often
time-consuming and are not intended to be executed in pro-
duction runs. To disable them, one needs to compile the pro-
gram using libmpdata++ with the -DNDEBUG compiler
flag. Examples of such checks include detection of NaN val-
ues within the model state variables, which may be useful to
trace origins of numerical instability problems.

Third, the user may chose to activate the Blitz++ debug
mode that enables run-time array range checks. Activating
Blitz++ debug mode requires compiling the program using
libmpdata++ with the -DBZ_DEBUG flag and linking with
libblitz.

Finally, libmpdata++ reports run-time errors by throwing
std::runtime_error exceptions.

Simulation progress is communicated to the user by con-
tinuously updating the process threads’ name with the per-
centage of work completed (can be observed e.g. by invoking
top -H).

3 Advective transport

The focus of this section is on the advection algorithm used
within libmpdata++. Section 3.1 provides a short introduc-
tion to the implemented MPDATA scheme. Section 3.2 de-
scribes the library interface needed for the homogeneous
transport cases. The following Sects. 3.3–3.8 show examples
of usage of libmpdata++ along with the references to other
MPDATA benchmarks.

3.1 Implemented algorithms

This subsection is intended to provide the reader with an out-
line of selected MPDATA features that correspond to the op-
tions presently available in libmpdata++. For the full deriva-
tion of the scheme and its options see the reviews in Smo-
larkiewicz and Margolin (1998) and Smolarkiewicz (2006);
whereas for an extended discussion of stability, positivity and
convexity see Smolarkiewicz and Szmelter (2005).

In the present implementation, it is assumed that G is
constant in time. Consequently, the governing homogeneous
transport equation (1) can be written as

∂tψ+
1

G
∇ · (Guψ) = 0. (3)

This particular form is solved by the mpdata solver of libm-
pdata++.

The following paragraphs will focus on the algorithms
used for handling Eq. (3). The rules for applying source and
sink terms are presented in Sect. 4.

3.1.1 Basic MPDATA

MPDATA is an, at least, second-order-accurate iterative
scheme in which all iterations take the form of a first-order-
accurate donor-cell pass (alias upwind, upstream; cf. Press
et al., 2007, Sect. 20.1.3). For the one-dimensional17 case,
after the discretisation in space (subscripts i) and time (su-

17One-dimensional case was chosen for simplicity, multi-
dimensional MPDATA formulæ can be found in Smolarkiewicz and
Margolin (1998, Sect. 2.2).
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perscripts n), the donor-cell pass applied to Eq. (3) yields

ψn+1
i = ψni −

1

Gi

[
F
(
ψni ,ψ

n
i+1,Gi+1/2,u

n+1/2
i+1/2

)
− (4)

F
(
ψni−1,ψ

n
i ,Gi−1/2,u

n+1/2
i−1/2

)]
. (5)

The flux function F is defined as

F (ψL,ψR,G,u)≡
(
[u]+ψL + [u]−ψR

)
G

∆t

∆x
, (6)

where [u]+ ≡max(u,0) and [u]− ≡min(u,0).
In the case of a time-varying velocity field, the velocity

components are evaluated at an intermediate time level de-
noted by the n+ 1/2 superscript in Eq. (5). Association of
the velocity components with dual-cell edges is denoted by
fractional indices i+ 1/2 and i− 1/2, see Fig. 3.

Hereafter,Gu∆t
∆x is written compactly asGC whereC de-

notes the Courant number. GC is referred to as the advector,
while the scalar field ψ as the advectee – the nomenclature
adopted after Randall (2013).

Evaluation of Eq. (5) concludes the first pass of MP-
DATA. To compensate for the implicit diffusion of the donor-
cell pass, the subsequent passes of MPDATA reuse Eqs. (5)
and (6), but with ψ replaced with the result of the preced-
ing pass and u replaced with the “anti-diffusive” pseudo-
velocity. The pseudo-velocity is analytically derived by ex-
panding Eq. (5) in the second-order Taylor series about spa-
tial point i and time level n, and representing the leading,
dissipative truncation error as an advective flux; see Smo-
larkiewicz (1984) for a derivation. A single corrective pass
ensures second-order accuracy in time and space. Subsequent
corrective passes decrease the amplitude of the leading error,
within second-order accuracy. The one-dimensional formula
for the basic antidiffusive advector is written as

GCk+1
i+1/2 =

∣∣∣GCki+1/2

∣∣∣−
(
GCki+1/2

)2

0.5(Gi+1 +Gi)

 ψki+1−ψki
ψki+1 +ψki

,

(7)

where k numbers MPDATA passes. For k = 1, Ck is the
flow-velocity-based Courant number, whereas for k > 1, Ck

is the pseudo-velocity-based Courant number. The number
of corrective passes can be chosen within libmpdata++.

The library features two implementations of the donor-
cell algorithm defined by Eqs. (5) and (6). The default
one is a “straightforward” summation. The alternative, more
resource-intensive, is the compensated summation algorithm
of Kahan (1965) which reduces round-off error arising when
summing numbers of different magnitudes.

3.1.2 Third-order-accurate variant

Accounting for third-order terms in the Taylor series expan-
sion while deriving the pseudo-velocity improves the accu-
racy of MPDATA. When G≡ 1, u= const and three or more

corrective passes are applied, the procedure ensures third-
order accuracy in time and space. The formulæ for the third-
order scheme, derived analytically in Margolin and Smo-
larkiewicz (1998), can be found in Smolarkiewicz and Mar-
golin (1998, Eq. 36).

3.1.3 Divergent-flow variant

In case of a divergent flow, the pseudo-velocity formulæ are
augmented with an additional term proportional to the flow
divergence. This additional term is implemented in libm-
pdata++ following Smolarkiewicz and Margolin (1998,
Sect. 3.2(3)).

3.1.4 Non-oscillatory option

Solutions obtained with the basic MPDATA are sign-
preserving, and thus non-oscillatory near zero. Generally
however, they feature dispersive ripples characteristic of
higher-order numerical schemes. These can be suppressed by
limiting the pseudo-velocities, in the spirit of flux-corrected
transport. Application of the limiters reduces somewhat the
accuracy of the scheme (Smolarkiewicz and Grabowski,
1990), yet this loss is generally outweighed by ensuring
non-oscillatory (or ripple-free) solutions. Noteworthy, be-
cause MPDATA is built upon the donor-cell scheme char-
acterised by small phase error, the non-oscillatory correc-
tions have to deal with errors in signal amplitude only. The
non-oscillatory option is a default option within the libm-
pdata++. For the derivation and further discussion of the
multi-dimensional non-oscillatory option see Smolarkiewicz
and Grabowski (1990).

3.1.5 Variable-sign scalar fields

The basic MPDATA formulation assumes that the advected
field ψ is exclusively either non-negative or non-positive. In
particular, this assumption is evident in the ψ-fraction factor
ψk

i+1−ψ
k
i

ψk
i+1+ψk

i

of Eq. (7), which can become unbounded in case of
variable-sign field. The libmpdata++ library includes imple-
mentations of two MPDATA options intended for simulating
advection of variable-sign field.

The first method replaces ψ with |ψ| in all ψ-fraction
factors that enter the pseudo-velocity expressions. This ap-
proach is robust but it reduces the solution quality where ψ
crosses through zero; see Sect. 3.2(4) in Smolarkiewicz and
Margolin (1998).

The default method, is the “infinite-gauge” variant of the
algorithm, a generalised one-step Lax–Wendroff (linear, os-
cillatory) limit of MPDATA at infinite constant background,
discussed in Smolarkiewicz (2006, Sect. 4.2). In practice,
the infinite-gauge option of MPDATA is used with the non-
oscillatory enhancement.
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3.2 Library interface

3.2.1 Compile-time parameters

Compile-time parameters include number of dimensions,
number of equations and algorithm options. Most of the
compile-time parameters are declared by defining integer
constants within the compile-time parameter structure. List-
ing 1 depicts a minimal definition that inherits from the
ct_params_default_t structure containing default values for
numerous parameters.

struct ct_params_t : ct_params_default_t

{

using real_t = double;

enum { n_dims = 1 };

enum { n_eqns = 1 };

};

Listing 1: Example definition of compile-time parameters
structure.

All solvers expect a structure with compile-time parame-
ters as their first template parameter, as exemplified in List. 2.

using slv_t = solvers::mpdata<ct_params_t>;

Listing 2: Example alias declaration combining solver- and
compile-time parameters choice.

3.2.2 Choosing library components

The library components listed in Sect. 2.2 are chosen through
template parameters. First, the solver is equipped with an
output mechanism by passing the solver type as a template
parameter to the output type, as exemplified in Listing 3. The
output classes inherit from solvers.

using slv_out_t = output::gnuplot<slv_t>;

Listing 3: Example alias declaration of an output mechanism.

Second, the concurrency handlers expect solver class
(equipped with output) as the first template parameter. Subse-
quent template parameters control boundary condition types
on each of the domain edges (see List. 4).

using run_t = concurr::openmp<

slv_out_t,

bcond::cyclic, bcond::cyclic

>;

Listing 4: Example alias declaration of a concurrency han-
dler.

3.2.3 Run-time parameters

Run-time parameters include the grid size, number of MP-
DATA passes and output file name. The list of applicable
run-time parameters is defined by fields of the rt_params_t
structure. This structure is defined within each solver and ex-
tended when equipping the solver with an output mechanism.
The concurrency handlers expect an instance of the run-time
parameters structure as their constructor argument. Example
code depicting how to set the run-time parameters and then
instantiate a concurrency handler is presented in Listing 5.

typename slv_out_t::rt_params_t p;

p.grid_size = { nx };

run_t run(p);

Listing 5: Example run-time parameter structure declaration
followed by a concurrency handler instantiation.

3.2.4 Public methods

The concurrency handlers act as controlling logic for the
other components, and hence the user is exposed to the public
interface of these handlers only.

Listing 6 contains signatures of methods implemented by
each of the concurrency handlers.

blitz::Array<real_t, n_dims> advectee(int eqn = 0)

blitz::Array<real_t, n_dims> advector(int dim = 0)

blitz::Array<real_t, n_dims> g_factor()

void advance(int)

bool *panic_ptr()

Listing 6: Signatures of all the methods within libmpdata++
application programming interface.

The advectee() is an accessor method for the advected
scalar fields. It can be used for setting the initial condi-
tion as well as for examining the solver state. It expects
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an index of the requested advectee as the argument (ad-
vected scalar fields are numbered from zero). This provides
choice between different advected variables. The returned
blitz::Array is zero-base indexed and has the same size as
the computational grid (set with the grid_size field of the
run-time parameters structure, see Listing 5).

The advector() method allows to access the components
of the vector field of Courant numbers multiplied by the G
factor (i.e., a Jacobian of coordinate transformation, a fluid
density field or their product). The argument selects the vec-
tor field components numbered from zero. The size of the
returned array depends on the component. It equals the grid
size in all but the selected dimension in which it is reduced
by one (i.e. nx×(ny−1) for the “y” component and so forth,
cf. Fig. 3).

The g_factor() is an accessor method for the G field. The
returned array has the same size as the one returned by ad-
vectee(). The default value is set to G≡ 1, (for details, see
Sect. 3.8).

The advance() method launches the time-stepping logic of
the solver advancing the solution by the number of time steps
given as argument.

The panic_ptr() method returns a pointer to a Boolean
variable that if set to true will cause the solver to stop the
computations after the currently computed time step. This
method may be used, for instance, to implement signal han-
dling within programs using libmpdata++.

All multi-dimensional arrays used in libmpdata++ use the
default Blitz++ “row-major” memory layout with the last di-
mension varying fastest. Domain decomposition for parallel
computations is done over the first dimension only.

3.3 Basic example

The source code presented in this subsection is intended to
serve as a minimal complete example on how to use libmp-
data++. In other examples presented throughout the paper,
only the fragments of code that differ significantly from the
minimal example will be presented.
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Figure 4: Simulation results generated by the code in List-
ing 7.

# include <libmpdata++ / solvers / mpdata.hpp>

# include <libmpdata++ / concurr / serial.hpp>

# include <libmpdata++ / output / gnuplot.hpp>

using namespace libmpdataxx;

int main()

{

// compile-time parameters

struct ct_params_t : ct_params_default_t

{

using real_t = double;

enum { n_dims = 1 };

enum { n_eqns = 1 };

};

// solver choice

using slv_t = solvers::mpdata<ct_params_t>;

// output choice

using slv_out_t = output::gnuplot<slv_t>;

// concurency choice

using run_t = concurr::serial<

slv_out_t, bcond::open, bcond::open

>; //left bcond //right bcond

// run-time parameters

typename slv_out_t::rt_params_t p;

int nx = 101, nt = 100;

ct_params_t::real_t dx = 0.1;

p.grid_size = { nx };

p.outfreq = 20;

// instantiation

run_t run(p);

// initial condition

blitz::firstIndex i;

// Witch of Agnesi with a=.5

run.advectee() = -.5 + 1 / (

pow(dx*(i - (nx-1)/2.), 2) + 1

);

// Courant number

run.advector() = .5;

// integration

run.advance(nt);

}

Listing 7: A usage example of libmpdata++. The listing con-
tains the code needed to generate Fig. 4.

The example consists of an elemental transport prob-
lem for a one-dimensional, variable-sign field advected with
a constant velocity. The simulation results using code in List-
ing 7 are shown in Fig. 4. Spatial and temporal directions
are depicted on the abscissa and ordinate, respectively. Cell-
mean values of the transported field are shown on the appli-



8 A. Jaruga et al.: libmpdata++: MPDATA solver library in C++

cate and are presented in compliance with the assumption of
data points representing grid-cell means of the transported
field.

The code in Listing 7 begins with three include statements
that reflect the choice of the library components: solver, con-
currency handler and output mechanism. All compile-time
parameters are grouped into a structure passed as a tem-
plate parameter to the solver. Here, this structure is named
ct_params_t and inherits from ct_params_default_t what
results in assigning default values to parameters not defined
within the inheriting class. The solvers expect the structure to
contain a type real_t which controls the floating point format
used. The two constants that do not have default values and
need to be explicitly defined are n_dims and n_eqns. They
control the dimensionality of the problem and the number of
equations to be solved, respectively.

Choice between different solver types, output mechanisms
and concurrency handlers is done via type alias declara-
tion. Here, the basic mpdata solver is chosen which is then
equipped with the gnuplot output mechanism. All output
classes expect a solver class as their first template parameter,
which is used to define the parent class (i.e., output classes
inherit from solvers).

Classes representing concurrency handlers expect the out-
put class and the boundary conditions as their template pa-
rameters. In the example, a basic serial handler is used and
open boundary conditions on both ends of the domain are
chosen.

The choice of run-time parameters is done by assigning
values to the member fields of the rt_params_t structure de-
fined within the solver class and augmented with additional
fields by the output class. In this example, the instance of
rt_params_t structure is named p, the grid size is set to 101
points and the output is set to be done every 20 time steps.
An instance of the rt_params_t structure is expected as the
constructor parameter for concurrency handlers.

The grid step dx is set to 0.1 and the number of time
steps to 100. Initial values of the Courant number and the
transported scalar fields are set by assigning to the arrays
returned by the advector() and advectee() methods. In this
example, the Courant number equals 0.5 and the advected
shape is described by the Witch of Agnesi formula y(x) =
8a3/(x2 + 4a2) with the coefficient a= 0.5. Initial shape
is centred in the middle of computational domain and is
shifted downwards by 0.5. Finally, the actual integration is
performed by calling the advance() method with the number
of time steps as argument.

3.4 Example: advection scheme options

The following example is intended to present MPDATA ad-
vection scheme options described in Sect. 3.1. The way of
choosing different options is discussed, and the calling se-
quence of the library interface is shown for the case of ad-
vecting multiple scalar fields.

The example consists of transporting two boxcar signals
with different MPDATA options. In all tests, the first signal
extends from 2 to 4 and the second signal extends from −1
to 1, to observe the solution for fixed-sign and variable-sign
signals. Listing 8 shows the compile-time parameters struc-
ture fields common to all cases presented within this exam-
ple. The number of dimensions is set to one and the number
of equations to solve is set to two. Consistent with Listing 7
from the basic example, p shown in Listing 9 is an instance of
rt_params_t structure with run-time parameters of the sim-
ulation. Setting the outfreq field to the number of time steps
results in plotting the initial condition and the final state. The
outvars field contains a map with a structure containing vari-
able name, here left empty, and unit defined for each of the
advected scalar fields. Listing 10 shows how to set initial val-
ues to multiple scalar fields using the advectee() method with
an integer argument specifying the index of the equation in
the solved system.

enum { n_dims = 1 };

enum { n_eqns = 2 };

Listing 8: Compile-time parameters for the example pre-
sented in Sect. 3.4.

int nx = 601, nt = 1200;

// run-time parameters

p.grid_size = { nx };

p.outfreq = nt;

p.outvars = {

{0, {.name = "", .unit = "1"}},

{1, {.name = "", .unit = "1"}}

};

Listing 9: Run-time parameters for the example presented in
Sect. 3.4.

// initial condition

blitz::firstIndex i;

run.advectee(0) = where(

i <= 75 || i >= 125, // if

2, // then

4 // else

);

run.advectee(1) = where(

i <= 75 || i >= 125, // if

-1, // then

1 // else

);

run.advector() = -.75; // Courant

Listing 10: Initial condition and velocity field for the example
presented in Sect. 3.4.
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3.4.1 Variable-sign scalar fields

The libmpdata++ library is equipped with two options
for handling variable-sign fields; recall the discussion in
Sect. 3.1.5. The option using absolute values is named abs,
whereas the “infinite-gauge” option is dubbed iga. The op-
tion flags are defined in the opts namespace. The option
choice is made by defining the opts field of the compile-time
parameters structure, in analogy to n_dims or n_eqns.

In the first test, the choice of handling variable-sign sig-
nal is set to abs, Listing 11. Figure 5 shows the result of
simulation with parameters set in Listing 8, 9, 10 and 11.
The final signal shows dispersive ripples characteristic of
higher-order schemes. It is also evident that the ripple magni-
tude depends on the constant background, a manifestation of
the scheme non-linearity. Furthermore, the final variable-sign
signal features a bogus saddle point at the zero crossings (cf.
Sect. 3.1.5), and this can be eliminated by using the infinite-
gauge (alias iga) option. Listing 12 shows how to choose the
iga option. Figure 6 shows the result of simulation with pa-
rameters set in Listing 8, 9, 10 and 12. Although iga evinces
more pronounced oscillations, their magnitude does not de-
pend on the constant background. This, together with the ro-
bust behaviour of iga when crossing zero, substantiates the
discussion of Sect. 3.1.5 on iga amounting to a linear limit of
MPDATA.

enum { opts = opts::abs };

Listing 11: Advection scheme options for Fig. 5, variable-
sign option is set to absolute value.
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Figure 5: Result of the simulation with the advection scheme
option for variable-sign signal set to absolute value, cf. List-
ing 11.

enum { opts = opts::iga };

Listing 12: Advection scheme options for Fig. 6, variable-
sign option is set to “infinite-gauge”.
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Figure 6: As in Fig. 5 but with variable-sign option set to
“infinite-gauge”, cf. Listing 12.

3.4.2 Third-order-accurate variant

Choosing third-order variant enhances the accuracy of the
scheme when used with more than two passes of MPDATA
or with iga; recall Sect. 3.1.2. Option tot enables the third-
order variant of MPDATA scheme. Figure 7 shows result of
the same test as in Fig. 5 and 6 but with MPDATA options
set as in Listing 13. The resulting signal is evidently more
accurate and symmetric, but the oscillations are still present.

enum { opts = opts::iga | opts::tot };

Listing 13: Advection scheme options for Fig. 7, variable-
sign option is set to “infinite-gauge” and third-order accuracy
variant is chosen.
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Figure 7: As in Fig. 5 but with variable-sign option set to
“infinite-gauge” and third-order-accurate variant, cf. List-
ing 13.

3.4.3 Non-oscillatory option

To eliminate oscillations apparent in the preceding tests, the
non-oscillatory (fct) option (Sect. 3.1.4) needs to be chosen.
This option can be used together with all other MPDATA
options, such as basic scheme, variable-sign signals (abs or
iga) and the third-order-accurate variant (tot).

Here, fct is selected together with iga, cf. Listing 14. This
is the default setting; i.e., when inheriting from the default
parameters structure, and not overriding the opts setting, as
illustrated in Listing 7. Figure 8 shows the corresponding re-
sults. The solutions for both fixed-sign and variable-sign sig-
nals have indistinguishable profiles and all of the dispersive
ripples have been suppressed.

enum { opts = opts::iga | opts::fct };

Listing 14: Advection scheme options for Fig. 8, variable-
sign option is set to “infinite-gauge” and non-oscillatory op-
tion is enabled. This is the default setting in libmpdata++.

To further enhance the accuracy of the solution, fct and
iga can be combined with the tot variant; cf. Listing 15. The
corresponding result is shown in Fig. 9. Enabling the third-
order-accurate variant improves the symmetry of the solu-
tion, as compared to the results presented in Fig. 8.
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Figure 8: As in Fig. 5 but with options set to infinite-
gauge treatment of variable-sign signal and flux corrections,
cf. Listing 14.

enum { opts = opts::iga | opts::tot | opts::fct };

Listing 15: Advection scheme options for Fig. 9, variable-
sign option is set to “infinite-gauge”, non-oscillatory option
is enabled and third-order accuracy variant is chosen.
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Figure 9: As in Fig. 5 but with options set to infinite-gauge
treatment of variable-sign signal, non-oscillatory option and
third-order accuracy variant, cf. Listing 15.

3.5 Example: convergence tests in 1-D

In this subsection the convergence test originated in Smo-
larkiewicz and Grabowski (1990) is used to quantify the ac-
curacy of various MPDATA options.
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The test consists of a series of one-dimensional simula-
tions with Courant numbers

C ∈ (0.05,0.1,0.15,0.2, . . . ,0.85,0.9,0.95),

and grid increments

∆x ∈
(

∆xm
20

,
∆xm

21
,
∆xm

22
,
∆xm

23
,
∆xm

24
,
∆xm

25
,
∆xm

26
,
∆xm

27

)
,

where ∆xm = 1 is the maximal increment. The series
amounts to 152 simulations for each option. In each sim-
ulation, the number of time steps NT and the number of
grid cells NX is adjusted so that the total time T and to-
tal length of the domain X remain constant. The domain size
X = 44∆xm and simulation time T = 1 are selected. The
advective velocity is set to u= ∆xm/T = 1.

In each simulation, a Gaussian profile

ψex(x)t=0 =
1

σ
√

2π
exp

(
− (x−x0)2

2σ2

)
(8)

is advected, and the result of the simulation is compared with
the exact solution ψex. The initial profiles and the exact solu-
tions are calculated by analytically integrating function (8)
over the grid-cell extents, to comply with the inherent MP-
DATA assumption of a data point representing the grid-cell
mean of transported field. The dispersion parameter of the
initial profile (8) is set to σ = 1.5∆xm, while the profile is
centred in the middle of the domain x0 = 0.5X .

As a measure of accuracy, a truncation-error function is
introduced

err(C,∆x)≡ 1

T

√√√√NX∑
i=1

[ψex(xi)−ψ(xi)]2/NX

∣∣∣∣∣
t=T

. (9)

The results of the convergence test for the generic first-
order-accurate donor-cell scheme, the basic MPDATA and
its third-order-accurate variant are shown in Fig. 10a–c. Each
figure displays, in polar coordinates, the base-two logarithm
of the truncation-error function (9) for the entire series of 152
simulations. The radius and angle, respectively,

r = ln2

(
∆x

∆xm

)
+ 8, φ= C

π

2
, (10)

indicate changes in grid increment and Courant number.
Thus, closer to the origin are simulation results for finer
grids, closer to the abscissa are points for small Courant num-
bers, and closer to the ordinate are points with Courant num-
bers approaching unity. The contour interval of dashed iso-
lines and of the colour map is set to 1, corresponding to error
reduction by the factor of 2. Lines of constant grid-cell size
and constant Courant number are overlaid with white con-
tours.

The figures contain information on the convergence rate of
MPDATA options. When moving along the lines of constant

a

b

c

Figure 10: The result of the convergence test. (a) for the
donor-cell scheme, (b) for the basic MPDATA and (c) for
the third-order-accurate variant.

Courant number towards the origin, thus increasing the spa-
tial and temporal resolution, the number of crossed dashed
isolines determines the order of the scheme, cf. Sect. 8.1 in
Margolin and Smolarkiewicz (1998). Therefore, the results in
Fig. 10a–c attest to the first-, second- and third-order asymp-
totic convergence rates, respectively. Furthermore, the shape
of dashed isolines conveys the dependency of the solution ac-
curacy on the Courant number. In particular, they show that at
fixed spatial resolution the solution accuracy increases with
the Courant number. Moreover, as the order of the conver-
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gence increases the isolines become more circular indicating
more isotropic solution accuracy in the Courant number.

Figure 10b reproduces the solution in Fig. 1 of
Smolarkiewicz and Grabowski (1990) and, thus, verifies
the libmpdata++ implementation. For further verification
Fig. 11a and b shows results of the convergence test
for: (i) three-pass MPDATA, (run-time solver parameter
n_iters = 3); and (ii) for two-pass MPDATA with fct option.
These results reproduce Figs. 2 and 3 from Smolarkiewicz
and Grabowski (1990). Noteworthy, an interesting feature
of Fig. 11a is the groove of the third-order convergence
rate formed around φ= 45◦, characteristic of MPDATA with
three or more passes (Margolin and Smolarkiewicz, 1998).
Next, comparing Fig. 11b with 10b shows that the price to
be paid for an oscillation-free result is a reduction in the con-
vergence rate (from 2 to ∼ 1.8, Sect. 4 in Smolarkiewicz and
Grabowski, 1990).

Figure 11c and d documents original results for the con-
vergence test applied to the “infinite-gauge” limit of MP-
DATA. In particular, Fig. 11c shows that iga is as accurate
as three-pass MPDATA, (cf. Sect. 4 in Smolarkiewicz and
Clark, 1986); whereas, Fig. 11d reveals that the third-order-
accurate iga is more anisotropic in Courant number than the
third-order-accurate standard MPDATA in Fig. 10c.

The convergence test results for the default setting of libm-
pdata++ (iga plus fct) are not shown, because they resemble
results from Fig. 11b with somewhat enhanced accuracy for
well-resolved fields (i.e., small grid-cells).

3.6 Example: rotating cone in 2-D

This example introduces libmpdata++ programming inter-
face for two-dimensional simulations with the velocity field
varying in space. Test results are compared with published
MPDATA benchmarks. The example is based on the clas-
sical solid-body rotation test (Molenkamp, 1968). The cur-
rent setup follows Smolarkiewicz and Margolin (1998). The
initial condition features a cone centred around the point
(x0,y0) = (50∆x,75∆y). The grid interval is ∆x= ∆y =
1, and the domain size is 100∆x× 100∆y – thus containing
101×101 data points, cf. Fig. 2. The height of the cone is set
to 4, the radius to 15∆x, and the background level to 1. The
flow velocity is specified as (u,v) = ω (y− yc,−(x−xc)),
where angular velocity ω = 10−1 and (xc,yc) denotes coor-
dinates of the domain centre. With time interval ∆t= 0.1,
one full rotation requires 628 time steps. The total integra-
tion time corresponds to six full rotations.

Implementation of the set-up using the libmpdata++ in-
terface begins with definition of the compile-time parame-
ters structure. The test features a single scalar field in a two-
dimensional space, what is reflected in the values of n_dims
and n_eqns set in Listing 16. In one of the test runs, the num-
ber of MPDATA passes (n_iters) is set to 3, instead of the de-
fault value of 2. Corresponding field of run-time parameters
structure is shown in Listing 17. During instantiation of the

a

b

c

d

Figure 11: As in Fig. 10. (a) for three passes of MPDATA, (b)
for two passes with non-oscillatory option, (c) for infinite-
gauge option, and (d) for infinite-gauge with third-order-
accurate variant.
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concurrency handler, four boundary-condition settings (two
per each dimension) are passed as template arguments. In this
example, open boundary conditions (bcond::open) are set in
both dimensions – see Listing 18.

enum { n_dims = 2 };

enum { n_eqns = 1 };

Listing 16: Compile-time parameter settings for the rotating-
cone test.

p.n_iters = 3;

Listing 17: Run-time parameter responsible for setting the
number of MPDATA passes in Fig. 12c.

The choice of the threads concurrency handler in List-
ing 18 results in multi-threaded calculations – using OpenMP
if the compiler supports it, or using Boost.Thread other-
wise. The number of computational subdomains (and hence
threads) is controlled by the OMP_NUM_THREADS en-
vironment variable, regardless if OpenMP or Boost.Thread
implementation is used. The default is to use all CPUs/cores
available in the system. Notably, replacing concurr::serial
from the previous examples with concurr::threads is the
only modification needed to enable domain decomposition
via shared-memory parallelism.

// instantiation

concurr::threads<

slv_out_t,

bcond::open, bcond::open,

bcond::open, bcond::open

> run(p);

Listing 18: Concurrency handler instantiation for the
rotating-cone test.

The way the initial condition and the velocity field are set
is shown in Listing 19. The Courant number components are
specified using calls to the advector() method with the argu-
ment defining the component index.

The initial condition is displayed in Fig. 12a, and the re-
sults after total integration time are shown in Fig. 12b–d. All
plots are centred around cone’s initial location and show only
a quarter of the computational domain. The isolines of the
advected cone are plotted with 0.25 interval. The results in
Fig. 12b and c were obtained with the fct and the three-pass
tot + fct MPDATA, respectively; whereas Fig. 12d shows
test result for the default setting of libmpdata++. These re-
sults match those presented in Smolarkiewicz and Margolin
(1998, Fig. 1) and Smolarkiewicz and Szmelter (2005, Fig. 4
and Tab. 1). In particular, the rms errors — defined on the rhs

// temporary array of the same ...

decltype(run.advectee()) // type

tmp(run.advectee().extent()); // and size

// ... as the one returned by advectee()

// helper vars for Blitz++ tensor notation

blitz::firstIndex i;

blitz::secondIndex j;

// cone shape ...

tmp = blitz::pow(i * dx - x0, 2) +

blitz::pow(j * dy - y0, 2);

// ... cut off at zero

run.advectee() = h0 + where(

tmp - pow(r, 2) <= 0, //if

h * blitz::sqr(1 - tmp / pow(r, 2)), //then

0. //else

);

// constant-angular-velocity rotational field

run.advector(x) = omega * (j * dy - yc) * dt/dx;

run.advector(y) = -omega * (i * dx - xc) * dt/dy;

Listing 19: Initial condition for the rotating-cone test.

o Eq. (9) — are 0.48e−3, 0.14e−3 and 0.34e−3 for the fct,
three-pass tot fct and and the default libmpdata++ options,
respectively.

3.7 Example: revolving sphere in 3-D

This example extends Sect. 3.6 to three spatial dimensions.
It exemplifies how to specify a three-dimensional set-up us-
ing libmpdata++. Furthermore, the option is described for
saving the simulation results to HDF5 files with XDMF an-
notations.

The setup follows Smolarkiewicz and Szmelter (2005): the
domain size is 100×100×100, with uniform grid consisting
of 59 gridpoints in each direction. The timestep is 0.018∗2π.
The initial condition is a sphere of radius 15 centred around
the point (x0, y0, z0) = (50− 25/

√
3, 50 + 25/

√
3, 50 +

25/
√

3) with constant density equal 4. The sphere is rotat-
ing with constant angular velocity Ω = ω/

√
3(1, 1, 1) of

magnitude ω = 0.1. The components of the advecting veloc-
ity field are (u,v,w) = (−Ωz(y− yc) + Ωy(z− zc), Ωz(x−
xc)−Ωx(z−zc),−Ωy(x−xc)+Ωx(y−yc)), where the co-
ordinates of the rotation centre are (xc,yc,zc) = (50,50,50).
The test lasts for one revolution which takes 556 timesteps.

Specifying the 3-D setup with the libmpdata++ program-
ming interface calls starts by setting the n_dims field to 3,
Listing 20. Listing 21 shows the choice of recommended
three dimensional output handler hdf5_xdmf. This results in
output consisting of HDF5 files with XDMF annotation that
can be viewed, for example, with the Paraview visualisation
software. This output is saved in a directory specified by the
outdir field of the run-time parameters, see Listing 22.
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Figure 12: The results of the example presented in Sect. 3.6;
only a quarter of the domain, centered over the cone’s ini-
tial location, is shown. Abscissa and ordinate mark the spa-
tial dimensions. Colors correspond to the amplitude of the
advected field. Panel (a) shows initial condition of Sect. 3.6,
(b) results for basic MPDATA with fct, (c) for MPDATA with
three passes with fct and tot and (d) for the default setting of
libmpdata++ (iga and fct).

enum { n_dims = 3 };

Listing 20: Compile time parameter setting for the revolving-
sphere test.

using slv_out_t = output::hdf5_xdmf<slv_t>;

Listing 21: Alias declaration of an output mechanism for the
revolving-sphere test.

p.outdir = dir_name;

Listing 22: Run-time parameters field specifying output di-
rectory for the revolving-sphere test.

Figure 13a shows the initial condition, Fig. 13b shows
the results after one revolution for the default libmpdata++
options. The grey volume is composed of dual-grid cells
(Sect. 2.3) encompassing data points with cell-mean values
of density greater than or equal to 1.

Obtained results can be compared with those presented in
Smolarkiewicz and Szmelter (2005, Figs. 9–13 and Tab. 4).
In particular, for the default libmpdata++ setting, the rms
error is 2.8e-3, and it compares favorably with the L2 norm
in their Table 4.

3.8 Example: 2-D advection on a sphere

This subsection concludes homogeneous transport examples
with a 2-D solid-body rotation test on a spherical surface
(Williamson and Rasch, 1989). The purpose of this exam-
ple is to present methods for setting up the simulations in
spherical coordinates.18

Following Smolarkiewicz and Rasch (1991) only the case
when the initial field rotates over the poles is presented. The
initial condition is a cone centred around the point (3π/2,0)
with height and radius equal to 1 and 7π/64, respectively.
The wind field is given by

u=−U sinφcosλ,

v = U sinλ,
(11)

where λ and φ denote respectively longitude and latitude, and
U = π/128. The computational domain [0,2π]×[−π/2,π/2]
is resolved with 128× 64 grid increments ∆λ= ∆φ and is
shifted by 0.5∆φ so that there are no data points on the poles.
The test is run for 5120 time-steps corresponding to one rev-
olution around the globe.

The advection equation in spherical coordinates has the
form of the generalised transport equation (1) with the Jaco-

18The same method, used here to specify a Jacobian of coordinate
transformation, can be applied to prescribe a variable-in-space fluid
density.
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Figure 13: The results of the example presented in Sect. 3.7.
The whole computational domain is shown. The grey vol-
ume encompasses data points with values of density greater
or equal to 1. Panel (a) shows initial condition, (b) results for
the default libmpdata++ options.

bian of coordinate transformation

G= cosφ. (12)

In order to solve the generalised transport equation with G 6≡
1 the nug option has to be set, see Listing 23.

enum { opts = opts::nug };

Listing 23: Compile-time parameter field for the example
presented in Sect. 3.8.

Boundary conditions in this example incorporate princi-
ples of differential geometry (cf. chapter XIV in Maurin,

1980) in the classical spherical latitude-longitude frame-
work (Szmelter and Smolarkiewicz, 2010). They are cyclic
(bcond::cyclic) in the zonal direction, whereas in the merid-
ional direction they represent two degenerated charts (of the
atlas composed of three) defining differentiation of depen-
dent variables in vicinity of the poles (bcond::polar), List-
ing 24. The setting ofG is done using the g_factor() accessor
method as shown in Listing 25; note the shift in latitude by
∆φ/2.

concurr::threads<

slv_out_t,

bcond::cyclic, bcond::cyclic,

bcond::polar, bcond::polar

> run(p);

Listing 24: Concurrency handler for the example presented
in Sect. 3.8.

run.g_factor() = dlmb * dphi *

blitz::cos(dphi * (j + 0.5) - pi / 2);

Listing 25: The Jacobian setting for the example presented in
Sect. 3.8.

The initial condition for the test is plotted in Fig. 14a,
whereas the results are displayed in Fig. 14b and c. All fig-
ures use orthographic projection, with the perspective cen-
tred at the initial condition (the true solution), with the con-
tour interval 0.1. Figure 14b shows the result for the de-
fault libmpdata++ options. There is a visible deformation
in the direction of motion, consistent with earlier Carte-
sian rotational tests. The result in Fig. 14c, obtained using
three passes of MPDATA with fct and tot, shows reduced
deformation and reproduces Fig. 6 in Smolarkiewicz and
Rasch (1991). Error norms were calculated following Smo-
larkiewicz and Rasch (1991, eqs. 24a–24e) to take into ac-
count the effects of coordinate transformation. For instance,
the “energy” conservation error (their ERR2) is −0.066 for
the default libmpdata++ setting and−0.11 for the three-pass
MPDATA with tot and fct, which agrees with the values pre-
sented in Smolarkiewicz and Rasch (1991, Tab. 1)
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Figure 14: The results of the example presented in Sect. 3.8.
The plots are centered over the cone’s initial location and
show the advected field plotted in spherical coordinates. Col-
ors mark the amplitude of the advected field. Panel (a) shows
the initial condition, (b) results for the default libmpdata++
options and (c) results for the three-pass MPDATA with fct
and tot.

4 Inhomogeneous advective transport

4.1 Implemented algorithms

As of the current release, libmpdata++ provides three ways
of handling source terms in the inhomogeneous extension of
Eq. (3)

∂tψ+
1

G
∇ · (Guψ) =R. (13)

The available time integration schemes include: the two vari-
ants of the first-order-accurate Euler-forward scheme (here-
after referred to as euler_a and euler_b); and the second-
order-accurate Crank–Nicolson scheme (trapez). The Euler
schemes are implemented to account for parameterised forc-
ings (e.g., due to cloud microphysics), whereas the Crank–
Nicolson scheme is standard for basic dynamics (e.g., pres-
sure gradient, Coriolis and buoyancy forces). In both Euler
schemes, while calculating the solver state at the time level
n+1, the right-hand-side at the time level n is only needed. In
the euler_a option (Eq. 14), the source terms are computed
and applied standardly after the advection

ψn+1 = ADV(ψn) + ∆tRn. (14)

In the euler_b option (Eq. 15), the source terms are
computed and applied (arguably in the Lagrangian spirit;
Sect. 3.2 in Smolarkiewicz and Szmelter, 2009) before the
advection

ψn+1 = ADV(ψn + ∆tRn). (15)

In the trapez option (Eq. 16), half of the sources terms are
computed and applied as in the euler_a and half as in the
euler_b (arguably in the spirit of the Lagrangian trapezoidal
rule; Sect. 2.2 in Smolarkiewicz and Szmelter, 2009)

ψn+1 = ADV(ψn + 0.5∆tRn) + 0.5∆tRn+1. (16)

4.2 Library interface

The logic for handling source terms is implemented in the
mpdata_rhs solver that inherits from the mpdata class,
Fig. 1. Consequently, all options discussed in the preced-
ing section apply. The choice of the source-term integration
scheme is controlled by the rhs_scheme compile-time pa-
rameter with the valid values of euler_a, euler_b or trapez.

The user is expected to provide information on the source
terms by defining a derived class of mpdata_rhs with the
update_rhs() method overloaded. The update_rhs() signa-
ture is given in Listing 26, whereas the usage example is
given in Sect. 4.3. The method is called by the solver with
the following arguments:

– a vector of arrays rhs storing the source terms for each
equation of the integrated system,

– a floating-point value dt with the time-step value,

– an integer number at indicating if the source terms are
to be computed at time level n (if at = 0) or n+ 1 (if
at = 1).

Calculation of forcings at the n+ 1 time level is needed if
rhs_scheme=trapez option is chosen. The case of at equal
zero is used in the Euler schemes and in the very first time
step when using the trapez option (i.e., once per simulation).
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virtual void update_rhs(

arrvec_t<typename parent_t::arr_t> &rhs,

const typename parent_t::real_t &dt,

const int &at

)

Listing 26: Signature of the method used for defining source-
terms.

When the trapez option is used, the dt passed to the up-
date_rhs method equals half of the original time-step.

The update_rhs method is expected to first call par-
ent_t::update_rhs() to zero out the source and sink terms
stored in rhs. Later, it is expected to calculate the rhs
terms in a given time-step by summing all sources and sinks
and “augment assign” them to the rhs field (e.g., using the
+ = operator).

All elements of the rhs vector corresponding to subse-
quent equations in the system are expected to be modified
in a single update_rhs() call.

4.3 Example: translating oscillator

The purpose of this example is to show how to include rhs
terms in libmpdata++, by creating a user-defined class out
of the library tree.

A system of two one-dimensional advection equations

∂tψ+ ∂x(uoψ) = ωφ

∂tφ+ ∂x(uoφ) =−ωψ
(17)

represents a harmonic oscillator translating with uo = const.;
see Sect. 4.1 in Smolarkiewicz (2006) for a discussion.19 Ap-
plying the trapezoidal rule to integrate the PDE system (17)
leads to following system of coupled implicit algebraic equa-
tions

ψn+1
i = ψ∗i + 0.5 ∆t ω φn+1

i

φn+1
i = φ∗i − 0.5 ∆t ω ψn+1

i ,
(18)

where ψ∗i and φ∗i stand for

ψ∗i = MPDATA(ψni + 0.5 ∆t ω φni ,C) (19)
φ∗i = MPDATA(φni − 0.5 ∆t ω ψni ,C) . (20)

Substituting in Eq. (18) ψn+1
i with φn+1

i and vice versa
and then regrouping leads to:

ψn+1
i =

ψ∗i + 0.5 ∆t ω φ∗i
1 + (0.5 ∆t ω)2

φn+1
i =

φ∗i − 0.5 ∆t ω ψ∗i
1 + (0.5 ∆t ω)2

.

(21)

19The implicit manner of prescribing forcings, similar to the one
presented herein, is an archetype for integrating Coriolis force in
Prusa et al. (2008).

Implementation of forcing terms prescribed in Eq. (21) is
presented in Listing 27. A new solver coupled_harmosc is
defined by inheriting from the mpdata_rhs class. A member
field omega is defined to store the frequency of oscillations.

The rhs terms are defined for both variables, ix::psi and
ix::phi within the update_rhs() method. The method imple-
ments both implicit and explicit formulæ, the two cases are
switched by the at argument. Defining forcings for both n
and n+ 1 cases allows to use this class with both euler and
trapez options. The current state of the model is obtained via
a call to the state() method. Note how the formulæ defined in
update_rhs() in case (1) loosely resemble the mathematical
notation presented in Eq. (21). The 0.5 is absent because the
∆t passed as argument in trapez option is already divided
by 2.

Next, the rt_params_t structure is augmented (by in-
heriting from parent’s rt_params_t) with the omega. Last,
the coupled_harmosc constructor is defined. Within it, the
choice of omega is handled by copying its value from the
p.omega to omega member field and then checking if the
user has altered the default value of 0.

For inhomogeneous transport the rhs_scheme within the
ct_params_t structure needs to be defined. In this exam-
ple it is set to trapez, Listing 28. MPDATA advection
scheme options are set to default by inheriting from the
ct_params_t_default structure. The structure ix allows to
call advected variables by their labels, phi and psi, rather
than integer numbers. Last, when defining the rt_params_t
structure a value is assigned to the member field p.omega,
see Listing 29.

In the present example, the initial condition for ψ is de-
fined as ψ(x) = 0.5[1+cos(2πx/100)] for x ∈ (50,150) and
zero elsewhere. The initial condition for φ is set to zero.

The result of 1400 s of simulated time are shown in
Fig. 15. Note that the solutions for both ψ and φ remain in
phase and feature no substantial amplitude error. This con-
trasts with calculations using Euler-forward schemes (not
shown). In particular, at the end of the simulation, the rms
error is 1e− 7 and 1e− 18 for analogous experiment with
uo ≡ 0 (not shown).
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# include <libmpdata++ / solvers / mpdata_rhs.hpp>

template <class ct_params_t>

struct coupled_harmosc : public

libmpdataxx::solvers::mpdata_rhs<ct_params_t>

{ // aliases

using parent_t =

libmpdataxx::solvers::mpdata_rhs<ct_params_t>;

using ix = typename ct_params_t::ix;

// member fields

typename ct_params_t::real_t omega;

// method called by mpdata_rhs

void update_rhs(

libmpdataxx::arrvec_t<

typename parent_t::arr_t

> &rhs,

const typename parent_t::real_t &dt,

const int &at

) {

parent_t::update_rhs(rhs, dt, at);

// just to shorten code

const auto &psi = this->state(ix::psi);

const auto &phi = this->state(ix::phi);

const auto &i = this->i;

switch (at)

{ // explicit solution for R^{n}

// (note: with trapez used only at t=0)

case (0):

rhs.at(ix::psi)(i) += omega * phi(i);

rhs.at(ix::phi)(i) -= omega * psi(i);

break;

// implicit solution for R^{n+1}

case (1):

rhs.at(ix::psi)(i) += (

(psi(i) + dt * omega * phi(i))

/ (1 + pow(dt * omega, 2))

- psi(i)

) / dt;

rhs.at(ix::phi)(i) += (

(phi(i) - dt * omega * psi(i))

/ (1 + pow(dt * omega, 2))

- phi(i)

) / dt;

break;

}

}

// run-time parameters

struct rt_params_t : parent_t::rt_params_t {

typename ct_params_t::real_t omega = 0;

};

// ctor

coupled_harmosc(

typename parent_t::ctor_args_t args,

const rt_params_t &p

) : parent_t(args, p), omega(p.omega)

{ assert(omega != 0); }

};

Listing 27: Definition of the solver used in the example pre-
sented in Sect. 4.3.

struct ct_params_t : ct_params_default_t

{

using real_t = double;

enum { n_dims = 1 };

enum { n_eqns = 2 };

enum { rhs_scheme =

solvers::rhs_scheme_t::trapez };

struct ix { enum {psi, phi}; };

};

Listing 28: Compile-time parameter structure for the exam-
ple presented in Sect. 4.3.

// run-time parameters

using boost::math::constants::pi;

p.dt = 1;

p.omega = 2 * pi<real_t>() / p.dt / 400;

Listing 29: Run-time parameter structure for the example
presented in Sect. 4.3.
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Figure 15: Simulation results of the example presented in
Sect. 4.3. Abscissa marks the spatial dimension and ordi-
nate represents the oscillator amplitude. The oscillator state
is plotted every 20 timesteps.
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5 Transport with prognosed velocity

5.1 Implemented algorithms

Whenever the velocity field changes in time, the second-
order accuracy of the solution at n+ 1 requires estimate of
the advector at n+1/2. This is provided by linear extrapola-
tions from n and n−1 values (Smolarkiewicz and Margolin,
1998). Furthermore, when the velocity is a dependent vari-
able of the model, Eq. (13) embodies equations of motion.
Then the velocity (or momentum) components are treated as
advected scalars (i.e. advectees) and are predicted at the cen-
tres of the dual-grid cells, Fig. 3. The advector field is then
interpolated linearly to the centres of the cell walls.

5.2 Library interface

The algorithms for interpolating in space and extrapolating in
time the advector field from the model variables are defined
in the mpdata_rhs_vip class and all user-created solvers
with time-varying velocity must inherit from this class.

The transported fields may represent either velocity or mo-
menta. In the latter case the prognosed velocity components
are calculated as ratios of two advectee fields (e.g. momen-
tum components and density). The index of the advectee that
forms the common denominator for all velocity components
should be assigned to vip_den. The vip_i, vip_j and vip_k
store the index of the advected fields appearing in the nu-
merators for each velocity component. These velocity com-
ponents are then used to calculate the advector field. In case
when the velocity components are model variables (as in the
example of Sect. 6.3), the common denominator is redundant
and value −1 should be assigned to vip_den.

For systems where numerators and denominators can uni-
formly approach zeros, the vip_eps value is defined to pre-
vent divisions by zero. Then, if the denominator at a given
grid-point is less than the vip_eps, the resulting advector is
set to zero therein. The default value of vip_eps depends on
the precision chosen for the simulation. Namely, it is set to
be the smallest number that added to 1 produces a result that
is not equal to 1.

The vip_i, vip_j, vip_k and vip_den are expected
to be members of the compile-time parameters structure
ct_params_t of the mpdata_rhs_vip class. The vip_eps
value is a run-time parameter.

As of the current release, the prognosed-velocity features
of libmpdata++ are implemented for constant G≡ 1 only.

5.3 Example: 1-D shallow-water system

The aim of this example is to show how to define simulations
with prognosed velocity field. The necessary compile-time
and run-time parameters as well as the user-defined class
with source and sink terms are discussed. The obtained re-
sults are compared with the analytical solution and a pub-
lished MPDATA benchmark.

The idealised system of 1-D inviscid shallow-water equa-
tions is considered, with both the surface friction and back-
ground rotation neglected. The simulated physical scenario
is a slab-symmetric parabolic drop spreading under gravity;
see Frei (1993) for a general context and Schär and Smo-
larkiewicz (1996) for bespoke analytical solutions. The cor-
responding governing equations take the dimensionless form

∂th+ ∂x(uh) = 0,

∂t(uh) + ∂x(uuh) =−h∂xh,
(22)

where h is a normalised depth of the fluid layer and u is a nor-
malised velocity. Following Schär and Smith (1993) the se-
lected velocity scale is uo = (gho)1/2 where ho is the initial
height of the drop and g denotes the gravitational accelera-
tion. The characteristic time-scale is to = a/uo, where a de-
notes the initial half-width of the drop. At the initial time
a drop is confined to |x| ≤ 1 and centred about x= 0,

h(x,t= 0) =

{
1−x2, for |x| ≤ 1

0, for |x|> 1.
(23)

The time-step is set to 0.01 and the grid spacing is set to 0.05.
The crux of the test is a synchronous solution for the depth
and momentum near the drop edge that accurately diagnoses
the velocity.

The definition of the rhs terms for Sect. 5.3 is presented
in Listing 30. Only the method for calculating the forcing
terms is shown; for the full out-of-the-library-tree definition
of source-terms see Listing 27. As in the Listing 27, the def-
inition in Listing 30 attempts to follow the mathematical no-
tation. Because of the use of the grad function, the nabla
namespace is included.

void update_rhs(

libmpdataxx::arrvec_t<

typename parent_t::arr_t

> &rhs,

const typename parent_t::real_t &dt,

const int &at

) {

using namespace libmpdataxx::formulae::nabla;

parent_t::update_rhs(rhs, dt, at);

rhs.at(ix::qx)(this->i) -=

this->g

* this->state(ix::h)(this->i)

* grad(this->state(ix::h), this->i, this->di);

}

Listing 30: Method for calculating source and sink terms in
the example presented in Sect. 5.3.

Listing 31 specifies the compile-time parameters structure.
Because fluid flow in this example is divergent the opts::dfl
correction is enabled, cf. Sect. 3.1.3. The rhs_scheme is set
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template <int opts_arg>

struct ct_params_t : ct_params_default_t

{

using real_t = ::real_t;

enum { n_dims = 1 };

enum { n_eqns = 2 };

// options

enum { opts = opts_arg | opts::dfl };

enum { rhs_scheme = solvers::trapez };

// indices

struct ix {

enum { qx, h };

enum { vip_i=qx, vip_den=h };

};

// hints

enum { hint_norhs = opts::bit(ix::h) };

};

Listing 31: Compile-time parameters for the example pre-
sented in Sect. 5.3.

to trapez.20 Within the ix structure, the equation indices are
assigned. Furthermore, the recipe for calculating the veloc-
ity is defined by assigning the indices to vip_i and vip_den.
Lack of the rhs terms is specified by toggling nth bit of the
hints_norhs field, where n is the index of the homogeneous
equation. This prevents the unnecessary summation of zeros.

Listing 32 shows the run-time parameters structure. The
value of gravitational acceleration p.g is set to 1 to follow
the dimensionless notation of Eq. (22), and the vip_eps is set
arbitrarily to 10−8.

// run-time parameters

typename solver_t::rt_params_t p;

p.dt = .01;

p.di = .05;

p.grid_size = { int(16 / p.di) };

p.g = 1;

p.vip_eps = 1e-8;

Listing 32: Run-time parameters for the example presented
in Sect. 5.3.

The results of the test are plotted in Fig. 16. Fig-
ure 16a shows the initial condition (black) and the analytical
solution for t= 3 (blue). Solid lines mark the fluid depth and
the dashed line the velocity. The remaining two panels show
numerical results21 at t= 3 for different MPDATA options
(red) plotted over the top panel. Figure 16b shows the solu-

20Because the equation for h is homogeneous, the momentum
forcing at n+1 time level can be readily evaluated after advecting h.

21Similar to advector field evaluation discussed in Sec. 5.2 the
vip_eps value was used as cutoff value to prevent divisions by zero
when calculating velocity field.

tion with options abs and fct, whereas Fig. 16c shows the
solution obtained with options iga and fct.

All presented results are free of apparent artefacts near the
drop edge. The abs+fct in the central panel compares well
with Fig. 7b in Schär and Smolarkiewicz (1996); whereas,
the iga+fct solution in the bottom panel closely reproduces
the analytical result. The rms error, on the rhs of Eq. (9), at
the end of the simulation is 6.49e-4 for abs+fct and 3.51e-4
for iga+fct options.
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Figure 16: Simulation results of the example presented in
Sect. 5.3. Solid lines represent fluid height and dashed lines
represent fluid velocity. Initial condition is plotted in black,
analytical solution in blue and test results in red. (a) shows
the initial condition and analytical solution at t= 3. (b) and
(c) show numerical results plotted over 16 a obtained with
options abs + fct and iga + fct, respectively.

5.4 Example: 2-D shallow-water system

The 2-D shallow-water test discussed here is an original
axis-symmetric extension of the 1-D slab-symmetric test in
Sect. 5.3. The corresponding dimensionless equations take
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the form

∂th+ ∂x(uh) + ∂y(vh) = 0,

∂t(uh) + ∂x(uuh) + ∂y(vuh) =−h∂xh,
∂t(vh) + ∂x(uvh) + ∂y(vvh) =−h∂yh.

(24)

As in 1-D case, h stands for the fluid height and (u,v) are
the velocity components in x and y directions, respectively.
Again, the initial condition consists of a parabolic drop cen-
tred at the origin and confined to x2 + y2 ≤ 1,

h(x,y, t= 0) =

{
1−x2− y2, for

√
x2 + y2 ≤ 1

0, for
√
x2 + y2 > 1.

(25)

Following the method presented by Frei (1993) and Schär
and Smolarkiewicz (1996) the analytical solution of the sys-
tem (24) can be obtained as

h(x,y, t) =
1

λ2
− x2 + y2

λ4
,

u(x,t) = x
λ̇

λ
,

v(y,t) = y
λ̇

λ
.

(26)

Here λ(t) is half-width of the drop, evolving according to

λ(t) =
√

2t2 + 1 (27)

and λ̇≡ dλ/dt is the velocity of the leading edge.
Figure 17 shows a perspective display of drop height at

t= 3, whereas Fig. 18 shows the profiles of velocity and
height of the drop. Similarly to Fig. 16, the top panel shows
the initial condition (black) and analytical solution for t= 3
(blue). Central and bottom panels show corresponding nu-
merical results at t= 3 (red). Solid lines represent the fluid
height and the dashed lines the velocity. The central panel
shows the solution with options abs and fct, whereas the bot-
tom panel shows the solution with options iga and fct. As in
the 1-D case, the velocity field near the drop edge is regular
and the iga+fct result closely follows the analytical solution.
The rms error for abs and fct equals 1.74e-4 and for abs and
iga 0.98e-4; see Jarecka et al. (2015) for a discussion.
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Figure 17: Drop height at t= 3 of the example presented in
Sect. 5.4.
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Figure 18: The same as in Fig. 16 but for a cross-section of
the two-dimensional case.
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6 Systems with elliptic pressure equation

6.1 Implemented algorithms

The libmpdata++ library includes an implicit representation
of pressure gradient terms for incompressible fluid equations.
This necessitates the solution of an elliptic Poisson problem
for pressure. The elliptic problem is solved after applying all
explicitly known forcings to ensure a non-divergent velocity
field at the end of each time step. As of the current release,
the library is equipped with the minimal- and conjugate-
residual variational iterative solvers. For the derivation of
used schemes and further discussion of the elliptic problem
see Smolarkiewicz and Margolin (1994), Smolarkiewicz and
Szmelter (2011) and references therein.

6.2 Library interface

The methods for solving the elliptic problem are imple-
mented in the mpdata_rhs_vip_prs class, Fig. 1. This class
inherits from the mpdata_rhs_vip class. Therefore the way
to specify other source terms as well as the time-varying ve-
locity field remains unchanged.

The choice of elliptic solver is controlled by setting the
compile-time parameter prs_scheme to mr and cr for the
minimal-residual and conjugate-residual solver, respectively.
The iterations within the elliptic solver stop when the diver-
gence of the velocity field is lower than a threshold tolerance
set by a run-time parameter prs_tol, cf (Smolarkiewicz et al.,
1997).

6.3 Example: Boussinesq convection

The goal of this example is to show the user interface for
simulations featuring an elliptic pressure equation. The gov-
erning PDE system consists of momentum, potential temper-
ature, and mass-continuity equations for an ideal, 2-D, in-
compressible Boussinesq fluid

∂tv +∇ · (v⊗v) =−∇π− g
θ′

θo
, (28)

∂tθ+∇ · (vθ) = 0, (29)
∇ ·v = 0. (30)

Here, v = (u,w) denotes the velocity field, π is the pressure
perturbation about the hydrostatic reference state normalised
by the reference density ρo, constant in the Boussinesq model
and g is the gravitational acceleration. Furthermore, θ′ rep-
resents the potential temperature perturbation about the ref-
erence state θo = const, and ⊗ denotes the tensor product.

Combining the velocity prediction from the momentum
equation, according to Eq. (16), with the mass continuity
equation (30) leads to the elliptic Poisson problem

− 1

ρo
∇ · (ρo (v̂− 0.5∆t∇π)) = 0, (31)

where v̂ is the velocity field after the advection summed with
all the explicitly known source terms at time level n+ 1,
namely buoyancy in this example.22 In Eq. (31) the pres-
sure perturbation field π is unknown, and it needs to be ad-
justed such that the final velocity field v̂−0.5∆t∇π satisfies
the mass continuity equation (30). Denoting 0.5∆tπ as φ al-
lows to symbolise Eq. (31) using standard notation for linear
sparse problems, (Smolarkiewicz and Margolin, 1994)

L(φ)−R= 0. (32)

The setup of the test follows Smolarkiewicz and Pudykiewicz
(1992). It consists of a circular potential temperature
anomaly of radius 250 m, embedded in a neutrally stratified
quiescent environment, with θo = 300K, in the domain re-
solved with 200×200 grid-cells of the size dx= dy = 10 m.
The initial anomaly θ′ = 0.5K is centred in the horizontal,
260 m above the lower boundary. The value of gravitational
acceleration g is set to 9.81 m/s. The time-step is set to
∆t= 0.75 s and the simulation takes 800 time-steps.

struct ct_params_t : ct_params_default_t

{

using real_t = double;

enum { n_dims = 2 };

enum { n_eqns = 3 };

enum { rhs_scheme = solvers::trapez };

enum { prs_scheme = solvers::cr };

struct ix { enum {

u, w, tht,

vip_i=u, vip_j=w, vip_den=-1

}; };

};

Listing 33: Compile-time parameters for the example pre-
sented in Sect. 6.3.

Listing 33 shows the compile-time parameters structure.
The time integration scheme for the buoyancy forcing is set
to trapez, as the user has a choice of the algorithm. However,
as of the current release, the elliptic problem formulation re-
quires forcings to be independent of velocity if handled using
the trapez scheme. The implicit pressure gradient terms are
always integrated with the trapezoidal rule (16), regardless of
the rhs_scheme setting. In Listing 33 the elliptic solver op-
tion is set to the conjugate-residual scheme cr. The vip_den
is set to −1, because here the velocity components are the
model kinematic variables, cf. the discussion in second para-
graph of Sect. 5.2.

The convergence threshold of the elliptic solver,∇· (v)≤
ε, is set to 10−7 via the run-time parameter prs_tol, List-
ing 34.

Listing 35 shows the buoyancy forcing definition.

22Because the potential temperature equation (29) is homoge-
neous, the buoyancy at n+1 time level can be readily evaluated
after advecting θ.
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p.prs_tol = 1e-7;

Listing 34: Run-time parameter field setting the accuracy of
the pressure solver.

// explicit forcings

void update_rhs(

libmpdataxx::arrvec_t<

typename parent_t::arr_t

> &rhs,

const real_t &dt,

const int &at

) {

parent_t::update_rhs(rhs, dt, at);

const auto &Tht = this->state(ix::tht);

const auto &ijk = this->ijk;

rhs.at(ix::w)(ijk) +=

g * (Tht(ijk) - Tht_ref) / Tht_ref;

}

Listing 35: Method for calculating source and sink terms in
the example presented in Sect. 6.3.

The evolved θ fields after 200, 600 and 800 time steps
are shown in Figs. 19a–c. These results correspond to plots
from Fig. 3 in Smolarkiewicz and Pudykiewicz (1992)
and illustrate that libmpdata++ captures the interfacial
instabilities and sharp gradients, including small turbulent
structures in Fig. 19c. Yet, the solutions contain small (im-
perceptible in the plots) under- and over-shoots, developing
at the rate of ∆θ/∆t∼∆tθo∇ · (v). These oscillations
depend on the magnitude of the residual errors, ∇ ·v 6= 0,
controlled by the convergence threshold prs_tol. For sub-
stantiation, Table 1 displays the magnitude of such spurious
extrema δθmax – defined as the larger from the maximal
magnitudes of normalised under- and over-shoots with
respects to their initial values – against prs_tol at the time
of Fig. 19c. Note that δθmax is bounded by prs_tol(×800∆t).

The conservation errors for θ′ and (θ′)2 are defined as

err1 =

∑
θ′−

∑
θ′o∑

θ′o
100% , (33)

err2 =

∑
(θ′)2−

∑
(θ′o)

2∑
(θ′o)

2
100% , (34)

where θ′o indicates the initial perturbation and
∑

stands
for summing over the whole computational domain. At
the end of the simulation err1≈ 1.e− 11 is orders of
magnitude smaller than in semi-Lagranian calculations of
Smolarkiewicz and Pudykiewicz (1992), whereas err2 = 14
matches their value, reflecting the implicit LES (ILES) prop-
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Figure 19: The results of the example presented in Sect. 6.3.
Abscissa and ordinate mark the spatial dimensions. Colors
correspond to potential temperature values. Panel (a) shows
results from the 200th, (b) from the 600th and (c) from the
800th time step.

erty of nonoscillatory numerics; see (Smolarkiewicz, 2006),
(Prusa et al., 2008) and references therein.

Table 1. Maximal spurious extrema of θ field after 800 time steps
for various values of the convergence threshold prs_tol.

prs_tol 10−5 10−7 10−9

δθmax 3× 10−4 8× 10−6 1× 10−7
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7 Remarks

In this paper the first release of libmpdata++ was intro-
duced. Versatility of the user interface as well as the cor-
rectness of the implementation were illustrated with a se-
ries of examples with increasing degree of physical, mathe-
matical and programming complexity. Starting from elemen-
tary advection in Cartesian domain, through passive advec-
tion on the sphere, through slab- and axis-symmetric water
drop spreading under gravity, to buoyant convection in an
incompressible Boussinesq fluid, the accompanying discus-
sions included code snippets, description of the user interface
and comparison with previously published benchmarks.

Our priority in the development of libmpdata++ is the re-
searcher productivity. In case of scientific software such as
libmpdata++, the researchers are both users and developers
of the library. The adherence to the principle of separation of
concerns and employment of programming techniques that
promote code conciseness – e.g. the current release consists
of less than 10k lines of code – contribute to the developers
productivity. The user productivity is amplified by ensuring
that the release of the library is accompanied with example-
rich documentation. Both the users and developers benefit
from the free/libre open-source software release of the li-
brary.

Our experience with the current version of libmpdata++
indicates that the embraced object-oriented techniques and
modular design of the library generally do not come as a
trade-off for performance. On small grids, however, there is
a noticeable overhead compared to the original Fortran im-
plementation. For example, in serial runs, up to five-times
longer execution times were measured for the 3D revolving-
sphere tests discussed in section 3.7 (593 grid). The relative
performance improves with increasing grid size, reaching ex-
ecution times on a par with the original Fortran implementa-
tion on the (6×59)3 grid. On the other hand, the separation
of concerns obtained with the object-oriented design of the
library allowed to equip the code with the multi-threading
mechanism, without any substantial changes in the numerics
code. Noteworthy, for all 2D and 3D examples presented in
the paper, a minimum of fivefold speedup is obtained when
executing on six threads. The library is in active develop-
ment and improvements in performance are expected. Fur-
thermore, equipping the library with distributed-memory par-
allelisation is planned for a subsequent release.

Code availability

The library is released under the GNU General Public Li-
cense v3.0. The 1.0 release of the library accompanying this
publication is available for download as an electronic supple-
ment to the paper and tagged as “1.0.0” at the project repos-
itory, see project website for a list of pointers to relevant re-
sources: http://libmpdataxx.igf.fuw.edu.pl/.

All example programs needed to generate plots and error
norms discussed in the paper are shipped with libmpdata++
and are located in the “paper_2015_GMD” folder of the re-
lease tarball and the public code repository. To allow auto-
matic regression testing, reference data in the form of both
model output (e.g. hdf5 files) and calculated error norms
(text files) are stored in “refdata” subfolders. Execution of
test programs and verification of the output against reference
data is automated using CMake/CTest and is a part of the
continuous-integration workflow used in development of the
library. It takes ca. 15 minutes to execute all the discussed ex-
ample programs on commodity hardware (e.g. a multi-core
laptop or a virtual machine in a cloud-computing system).

The Supplement related to this article is available online
at doi:10.5194/gmd-0-1-2015-supplement.

Appendix A: Index of options

Tables A1, A2 and A3 provide a reference of libmpdata++
options documented in the article.

http://libmpdataxx.igf.fuw.edu.pl/
http://dx.doi.org/10.5194/gmd-0-1-2015-supplement.zip
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Table A1. Fields of compile-time parameter structures

parameter possible values relevant section relevant listing short description

available in mpdata and inheriting classes
opts combinations of abs, dfl,

fct, iga, nkh, nug, tot,
eps, npa

3, 3.4 11, 14, 15 MPDATA algorithm options (see Table A3). Options can
be combined with the “|” operator.

real_t float, double 3.3 1, 7 Floating point format used.
n_dims integer constant 3.3 1, 7, 16, 20 Dimensionality of the solved problem.
n_eqns integer constant 3.3 1, 7, 28 Number of advected variables (number of the solved

equations).
available in mpdata_rhs and inheriting classes

rhs_scheme euler_a, euler_b, trapez 4 28, 31 Source/sink term integration scheme
hint_norhs integer constant

interpretted as a bit field
indexed by equation
number

5.3 31 Flag for equations with no source/sink terms (to avoid
summation of zeros when calculating source terms).

available in mpdata_rhs_vip and inheriting classes
vip_i, vip_j,
vip_k

integer constant 5.2 31, 33 Indices of advected variables representing velocity
or momentum components in up to three dimensions.

vip_den integer constant 5.2 31, 33 Optional index of density-like advected variable
by which the above-defined momenta are divided to ob-
tain velocity.

available in mpdata_rhs_vip_prs and inheriting classes
prs_scheme solvers::mr, solvers::cr 6.2 33 Elliptic pressure solver algorithm type (minimal-

residual or conjugate-residual).

Table A2. Fields of run-time parameter structures

parameter possible values relevant sections relevant listings short description

available in mpdata and inheriting classes
n_iters integer constant 3.1.1, 3.5 17 Number of corrective iterations performed within the

MPDATA algorithm. One iteration results in a donor-
cell scheme. Two (the default) or more iterations result
in MPDATA scheme.

grid_size array of integer constants 3.2.3, 3.3 7, Number of grid points per each dimension.
available in mpdata_rhs and inheriting classes

dt floating-point constant 4.2 29, 32 Timestep.
available in mpdata_rhs_vip and inheriting classes

vip_eps floating-point constant 5.2 32 Cut-off value for preventing divisions by zero when cal-
culating velocity field from momenta (for simulations in
which the advected variables represent momenta and not
velocity).

di, dj, dk floating-point constant 32 Grid spacing.
available in mpdata_rhs_vip_prs and inheriting classes

prs_tol floating-point constant 6.2 34 Tolerance of the elliptic pressure solver.
common to all output handlers

outfreq integer number 3.4 7, 9 Output interval (in number of timesteps). The default
value is set to 1, resulting in output performed in every
time-step.

outdir string 22 Directory where output files are saved.
outvars map associating equation

indices with pairs of
strings representing
names and units of
advected variables

3.4 9 List of variables to include in the output files. Mandatory
for simulations with more than one advected field.
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Table A3. Options of MPDATA defined through the compile-time
parameter opts (see Listings 11-15).

option default relevant section short description
abs 3.1.5, 3.4.1, 3.5, 3.6,

5.3, 5.4
Using absolute values in “pseudo-velocity” formulation. (One of the two possible options
for handling variable-sign signals).

dfl 3.1.3, 5.3, 5.4 Augmenting the “pseudo-velocity” formulae with a term proportional to flow divergence.
(To be used with divergent flows only).

fct X 3.1.4, 3.4.3, 3.5, 3.6 Non-oscillatory option of MPDATA.
iga X 3.1.5, 3.4.1, 3.5, 3.6,

5.3, 5.4
Linear limit of MPDATA algorithm at infinite constant background. (One of the two pos-
sible options for handling variable-sign signals).

khn 3.1.1 Employing Kahan summation algorithm in donor-cell calls of MPDATA algorithm.
nug 3.8 Accounting for non-constant density of the fluid and/or coordinate transformation.
tot 3.1.2, 3.4.2, 3.5, 3.6,

3.7
Accounting for third-order terms in “pseudo-velocity” formulae.

pfc Protecting from divisions by zero in ψ-fraction factors (as the last term in Eq. (7) by
conditionally assigning zeros to all grid points for which the denominator equals zero.
The default is to augment the denominator with a small positive number ε (∼ 10−7 for
single precision and ∼ 10−16 for double precision). The default behaviour requires the
signal to be non-negative unless iga or abs is selected.

npa Evaluating [u]+ as (u+|u|)/2 instead of max(u,0) (and analogously for [u]−, see Eq. (6))
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