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Abstract. This paper describes a new parallel, scalable and robust finite-element based solver for the

first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX,

is constructed using the component-based approach to building application codes, in which mature,

modular libraries developed as a part of the Trilinos project are combined using abstract interfaces

and template-based generic programming, resulting in a final code with access to dozens of algo-5

rithmic and advanced analysis capabilities. Following an overview of the relevant partial differential

equations and boundary conditions, the numerical methods chosen to discretize the ice flow equa-

tions are described, along with their implementation. The results of several verification studies of the

model accuracy are presented using: (1) new test cases for simplified 2D versions of the governing

equations derived using the method of manufactured solutions, and (2) canonical ice sheet model-10

ing benchmarks. Model accuracy and convergence with respect to mesh resolution is then studied

on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and

tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on

the solution accuracy and solver performance. The robustness and scalability of our solver on these

problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning15

the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the

idea of semi-coarsening.
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1 Introduction

In its fourth assessment report (AR4), the Intergovernmental Panel on Climate Change (IPCC) de-

clined to include estimates of future sea-level rise from ice sheet dynamics due to the inability of ice20

sheet models to mimic or explain observed dynamic behaviors, such as the acceleration and thinning

then occurring on several of Greenland’s large outlet glaciers (?). Since the AR4, increased sup-

port from United States, United Kingdom, and European Union funding agencies has enabled con-

certed efforts towards improving the representation of ice dynamics in ice sheet models and towards

their coupling to other components of Earth System Models (ESMs) (???). Thanks to this support,25

there has recently been tremendous progress in the development of “next generation” community-

supported ice sheet models (e.g., ??????) able to perform realistic, high-resolution, continental scale

simulations. These models run on high-performance, massively parallel high-performance comput-

ing (HPC) architectures using 102-104 processes and employ modern, well-supported solver libraries

(e.g., PETSC (?) and Trilinos (?)). A primary development focus has been on improving the repre-30

sentation of the momentum balance equations over the “shallow ice” (SIA; (?)) and “shallow-shelf”

(SSA; (?)) approximations through the inclusion of both vertical shear and membrane stresses over

the entire model domain (e.g., ?). These approaches include “hybrid” models (a combination of SIA

and SSA (???)), so-called “higher-order” models (?), “full” Stokes models (???)), and combinations

of a range of approximations up to and including full Stokes (?). By accounting for both vertical35

and horizontal stress gradients, the aforementioned models allow for more realistic and accurate

simulations of outlet glaciers, ice streams, and ice shelves, as well as modeling of the transfer of

perturbations from marginal to inland regions.

Other significant improvements in ice sheet modeling frameworks include the integration of un-

structured (???) or adaptive meshes (?), which allows the focusing of resolution and computational40

power in regions of dynamic complexity. Also becoming standard is the use of formal optimization

and data assimilation techniques for generating realistic model initial conditions. Surface observa-

tions are used to infer poorly known ice properties or parameters, such as the friction coefficient at

the ice-bedrock interface (e.g., ????) or the rheology of floating ice shelves (?), allowing for a quan-

tifiably “optimal” match between modeled and observed velocities. Recently, these approaches have45

been extended to simultaneously optimize both model parameter fields and uncertain initial condi-

tion fields, while also accounting for forcing from climate models in order to minimize transient

shocks when coupling to climate forcing (?). Other recent and noteworthy optimization improve-

ments include the assimilation of time dependent observations (e.g., ?) and the estimation of formal

uncertainties for optimized parameter fields (?).50

The latter capability – the characterization of parameter uncertainties – represents a critical first

step towards formal uncertainty quantification (“UQ”) of ice sheet model output quantities of inter-

ests, such as estimates of future sea-level rise. For this process to be computationally tractable during

both the inverse (parameter estimation and uncertainty assignment) and forward propagation steps,
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it is critical to have robust, efficient, and scalable solves on HPC platforms (?). This, in turn, re-55

quires advanced dynamical core capabilities, such as access to model derivatives (e.g., the Jacobian

matrix), and advanced algorithms for the solution of the nonlinear and linear equations. These same

requirements of robustness, efficiency, and scalability hold for the inclusion of ice sheet models as

fully coupled components of large-scale, high-resolution ESMs.

In this paper, we introduce and focus on a new momentum balance solver for land ice simulations60

based on the first-order approximation of the nonlinear Stokes flow model for glaciers and ice sheets.

This new solver, Albany/FELIX (Finite Elements for Land Ice eXperiments, described in more detail

below), either already includes many of the capabilities discussed above or is designed to allow for

their easy implementation at later stages of development. Here we present algorithms and software

that lead to a robust nonlinear solution procedure (including the use of automatic differentiation65

(AD) technologies), scalable linear algebra, and the ability to use unstructured and highly refined

grids.

The remainder of this paper is organized as follows. In Section 2, we describe in detail our

mathematical model for glaciers and ice sheets, giving the relevant assumptions, partial differential

equations, boundary conditions, and parameter values. Our numerical methods for discretizing this70

model and their implementation in Albany/FELIX are summarized in Section 3. In Section 4, which

focuses on verification of the Albany/FELIX code using the method of manufactured solutions, two

new test cases are derived for simplified 2D versions of the first-order Stokes equations and used in

a convergence verification study involving several types and orders of finite elements. In Section ??,

further verification of the accuracy of solutions computed with our solver is performed using canon-75

ical ice sheet modeling test cases. The results of a mesh convergence study on a realistic Greenland

ice sheet geometry are then discussed in Section ??. This study provides insight into the effects of the

parallel domain decomposition on solver convergence, and the effect of the vertical mesh resolution

on solution accuracy. We then describe our robust, nonlinear solver, which uses homotopy contin-

uation with respect to the regularization parameter in the calculation of the ice effective viscosity.80

The solver’s robustness and scalability is demonstrated on various Greenland ice sheet geometries,

discretized using tetrahedral and hexahedral meshes. Finally, we show that improved scalability of

our code can be achieved by preconditioning the iterative linear solver using an algebraic multi-

level preconditioner, constructed based on the idea of semi-coarsening. A concluding summary is

offered in Section ??. Here, we also touch briefly on the larger ice sheet modeling frameworks that85

Albany/FELIX is being incorporated into for treating the conservation of mass and energy and for

performing prognostic runs in both standalone mode and as coupled components of ESMs.

One objective of this paper is to introduce a new parallel, scalable and robust finite element first-

order Stokes solver for ice flow, namely Albany/FELIX, to the land ice and climate modeling com-

munities. The article also contains several new contributions to the field of ice sheet modeling, which90

are most notably:
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• The derivation of several new test cases based on the method of manufactured solutions for

simplified 2D forms of the first-order Stokes equations, which can be used to verify conver-

gence to an exact solution for parts of the governing PDEs in any ice sheet code that discretizes

these equations.95

• The description of a homotopy continuation algorithm with respect to a regularization pa-

rameter in the ice effective viscosity expression, which greatly improves the robustness of a

Newton nonlinear solver, especially in the absence of a good initial guess.

• Insights into the effects of the parallel decomposition and vertical mesh spacing on solver

performance and solution accuracy for ice sheet simulations.100

• A new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening

and ideal for meshes structured in the vertical direction, that delivers a scalable linear solve

when combined with a preconditioned iterative method.

2 First-order Stokes approximation mathematical model

We consider a power-law viscous, incompressible fluid in a low Reynolds number flow, described by105

the first-order approximation to the nonlinear Stokes flow equations for glaciers and ice sheets (??).

The first-order (FO) approximation, also referred to as the “Blatter-Pattyn” model (??), follows from

assumptions of a small geometric aspect ratio, δ =H/L (where H and L are characteristic length

scales for the vertical and horizontal dimensions, respectively, and H � L), and the assumption that

the normal vectors to the ice sheet’s upper and lower surfaces, n ∈ R3, are nearly vertical:110

nT ≈
(
O(δ), O(δ),±1 +O(δ2)

)
. (1)

Effectively, the FO approximation is derived by neglecting O(δ2) terms in the Stokes equations and

respective boundary conditions (discussed in more detail in Appendix A). Numerical discretization

of the FO Stokes equations gives rise to a much smaller discrete system than numerical discretization

of the full Stokes equations. Moreover, discretization of the FO Stokes system gives rise to a “nice”115

elliptic coercive problem, in contrast to the notoriously difficult saddle-point problem obtained when

discretizing the full Stokes system.

Let u and v denote the x and y components of the ice velocity vector u≡
(
u, v

)T
∈ R2, re-

spectively. The FO approximation consists of the following system of partial differential equations

(PDEs):120 −∇ · (2µε̇1) + ρg ∂s∂x = 0,

−∇ · (2µε̇2) + ρg ∂s∂y = 0,
(2)
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where g denotes the gravitational acceleration, ρ denotes the ice density, and s≡ s(x,y) denotes the

upper surface boundary:

Γs ≡ {(x,y,z) ∈ R3|z = s(x,y)}. (3)

In the most general, three-dimensional (3D) case of the FO approximation, the strain-rate tensor125

ε̇≡
(
ε̇1, ε̇2

)
∈ R3×2, (4)

is given by the following components

ε̇T1 =
(

2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)
∈ R3, (5)

and

ε̇T2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)
∈ R3, (6)130

where

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, ε̇xy =

1
2

(
∂u

∂y
+
∂v

∂x

)
, ε̇xz =

1
2
∂u

∂z
, ε̇yz =

1
2
∂v

∂z
. (7)

The effective viscosity µ can be derived using Glen’s flow law (??) as:

µ=
1
2
A−

1
n ε̇

1
n−1
e , (8)

where ε̇e is the effective strain rate, given by:135

ε̇2e ≡ ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz. (9)

In (8), A is the flow rate factor and n is the Glen’s (power) law exponent, typically taken equal to

3 for ice sheets. Hence, µ (8) is a nonlinear expression, and the system (2) is a nonlinear, elliptic

system of PDEs. The flow law rate factorA is strongly temperature-dependent, and can be described

through the Arrhenius relation,140

A(T ) =A0 exp
(
− Q

RT ∗

)
, (10)

where A0 denotes a constant of proportionality, Q denotes the activation energy for ice creep, T ∗

denotes the ice temperature in Kelvin (K) corrected for the pressure melting point dependence, and

R denotes the universal gas constant. For more details involving the relation between the flow factor

and temperature (10), the reader is referred to ?. For completeness, the expressions for the Cauchy145

stress tensor σ and the pressure p in the FO approximation are provided:

σ = 2µ
(
ε̇1, ε̇2, 0

)T
− ρg(s− z)I, p= ρg(s− z)− 2µ(ε̇xx + ε̇yy), (11)

where 0 =
(

0, 0, 0
)T

and I is the 3×3 identity tensor. The equations (2) are specified on a bounded

3D domain, denoted by Ω, with boundary

Γ≡ Γs ∪Γb ∪Γl. (12)150
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Here, Γs is the upper surface boundary (3), and

Γb = {(x,y,z) ∈ R3|z = b(x,y)}, (13)

Γl = {(x,y,z) ∈ R3|l(x,y) = 0}, (14)

are the lower and (vertical) lateral surface boundaries, respectively. The relevant boundary condi-155

tions on Γ are:

(a) A stress-free (homogeneous Neumann) boundary condition on the upper surface boundary

ε̇1 ·n = ε̇2 ·n = 0, on Γs. (15)

(b) Either a no-slip or a sliding boundary condition on the lower surface:u= v = 0, on Γ0

2µε̇1 ·n +βu= 0, 2µε̇2 ·n +βv = 0, on Γβ ,
(16)160

where Γb is partitioned as Γb = Γ0 ∪Γβ with Γ0 ∩Γβ = ∅, and β ≡ β(x,y)≥ 0 is the basal

sliding coefficient. Note that we assume the partitioning of Γb is known a priori. In practice,

this would be specified (through a conservation of energy equation) by locating regions of

the bed for which the temperature is at the pressure melting point. It is often more practical

to enforce a quasi-no-slip Robin boundary condition on Γ0 by setting β to a large value and165

always using the equation on the second line of (16) (e.g., β = 107 kPa a m−1).

(c) On the lateral boundaries, one of two boundary conditions is applied: either a kinematic

(Dirichlet) boundary condition

u= ul, v = vl, on Γl, (17)

where ul and vl are prescribed values of the ice velocities on the lateral boundary, or a dynamic170

(Neumann) boundary condition

2µε̇i ·n− ρg(s− z)n = ρwgmin(z,0)n, on Γl, (18)

for i= 1,2, where ρw denotes the density of water. In (18), it has been assumed that the

coordinate system has been oriented such that z is strictly elevation (that is, z = 0 at sea level

and values of z increase for higher elevations) (?). The boundary condition (18) is derived by175

assuming that the ice shelf is in hydrostatic equilibrium with the air/water that surrounds it and

is often referred to as an “open-ocean” boundary condition, as it takes into account the pressure

exerted on the ice shelf by neighboring ocean. For some canonical benchmark experiments

performed here (see Section ??), periodic lateral boundary conditions are prescribed as well.
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The values of the parameters that appear in the first-order Stokes equations and the boundary180

conditions described above and used herein are summarized in Table 1. From this point forward, the

new first-order Stokes approximation momentum balance solver will be referred to “Albany/FELIX”.

In this code, the numerical discretization of (2) uses Trilinos, a suite of modular software libraries

(described in detail in (?)).

Table 1. Physical parameter values for first-order Stokes equations and boundary conditions∗

Name Value Units Description

A 10−4 k−(n+1) Pa−n a−1 Flow rate factor

n 3 − Glen’s flow law exponent

g 9.8 m s−2 Gravitational constant

ρ 910 kg m−3 Ice density

ρw 1025 kg m−3 Ocean water density

R 8.314 J K−1 mol−1 Universal gas constant

A0

8<: 1.30× 107, if T < 263 K,

6.22× 1022, if T ≥ 263 K
k−(n+1) Pa−n s−1 Arrhenius constant of proportionality

Q

8<: 6.00× 104, if T < 263 K,

1.39× 105, if T ≥ 263 K,
J mol−1 Activation energy for ice creep

∗The symbol k in the table denotes km/m, i.e., k=km/m= 103.

3 Numerical discretization and implementation185

The model described in Section 2 is discretized and solved using a collection of algorithms and

software implementations that were selected for accuracy, flexibility, robustness, and scalability.

The following brief discussion of the methods presumes prior knowledge of Galerkin finite element

approaches and Newton-Krylov based nonlinear solvers (??).

3.1 Numerical methods190

The PDEs for the FO Stokes model defined by (2) and the associated boundary conditions are dis-

cretized using the classical Galerkin finite element method (FEM) (?).

Let V denote the Hilbert space given by:

V ≡ V(Ω) =
{
φ ∈H1(Ω) : φ|Γ0 = 0

}
, (19)

whereH1(Ω) denotes the space of square-integrable functions whose first derivatives are also square195

integrable. Following classical Galerkin FEM methodology, the weak form of the problem is ob-

tained by projecting each of the equations in (2) onto a test function in V (19) in the continuous
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L2 inner product and integrating the second order terms by parts. Toward this effect, the weak

formulation of (2), for grounded ice, reads: find u,v ∈ V such that
∫

Ω
2µε̇1(u,v) · ∇φ1dΩ +

∫
Γβ
βuφ1dΓ +

∫
Ω
ρg ∂s∂xφ1dΩ = 0,∫

Ω
2µε̇2(u,v) · ∇φ2dΩ +

∫
Γβ
βvφ2dΓ +

∫
Ω
ρg ∂s∂yφ2dΩ = 0,

(20)200

for all φ1,φ2 ∈ V(Ω). The surface integral along the boundary appearing in (20) arises from integra-

tion by parts of the stress term in the variational form of the PDEs. This approach leads to a weak

enforcement of the basal surface boundary condition (16) for the tangential stress, and straightfor-

ward implementation of the basal boundary conditions as an integrated boundary condition. (We

believe, but have not rigorously shown, that the Gelerkin finite element approach for implementing205

the basal surface boundary condition enables one to circumvent robustness issues stemming from

the discretization that were previously seen in our work with a finite difference discretization (?).)

Letting F(u,v;φ1,φ2) denote the operator defining the left hand side of (20), the problem defined

by (20) is equivalent to finding the roots u,v ∈ V of the following nonlinear equation:

F(u,v;φ1,φ2) = 0, ∀φ1,φ2 ∈ V. (21)210

Equation (21) is an infinite-dimensional problem; a finite-dimensional analog of (21) is obtained by

replacing the infinite-dimensional space V by a finite-dimensional finite element space, Vh, where h

is a length scale associated with a triangulation of the domain Ω into a set of disjoint finite elements

Ωe (Ω = ∪nele=1Ωe, where nel ∈ N is the number of finite elements in the triangulation).

Our implementation (a detailed discussion of which is given in Section 3.2) allows for tetrahe-215

dral (with either trilinear or triquadratic basis functions) or hexahedral elements (with bilinear or

biquadratic basis functions) for 3D problems. One reason a finite element approach was selected

was for its flexibility in using unstructured grids with non-uniform mesh density to increase the res-

olution in areas of large velocity gradients, such as in the vicinity of outlet glaciers, while retaining

relatively coarse meshes in the more static interior regions. In this paper, we present results on three220

different types of grids:

(i) Structured uniform hexahedral grids,

(ii) Unstructured uniform tetrahedral grids,

(iii) Unstructured non-uniform tetrahedral grids.

The structured hexahedral meshes are generated by creating a uniform quadrilateral grid of a two-225

dimensional (2D) horizontal cross-section of a geometry Ω, and extruding it in a uniform fashion

as hexahedra in the vertical direction. Similarly, the uniform tetrahedral meshes are created by

meshing a 2D horizontal cross-section of Ω using a uniform triangular mesh, extruding it in the

vertical direction as prisms, then splitting each prism into three tetrahedra (Figure ??)1. For the
1Another possibility, which we have not fully explored yet, is to use wedge elements on prisms.
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unstructured tetrahedral grids, an unstructured Delaunay triangle mesh of a 2D cross-section of Ω is230

generated based on some kind of refinement criteria (e.g., a static refinement based on the gradient

of the velocity) using a meshing software (e.g., Triangle, a Delaunay triangulation mesh (?)), and

extruded in the vertical direction in the same way as a structured triangular grid. More details on

these meshes are provided in Sections ?? and ??. Note that although all the meshes employed for the

ice sheet application considered here were extruded (structured) in the vertical direction, our code235

base allows for completely unstructured grids.

A domain decomposition approach is used to compute the solution to the discretized nonlinear

problem on distributed memory parallel computers. As a pre-processing step, the elements of the

mesh are partitioned into one contiguous domain per processor to provide nearly equal work per

processor. To do the partitioning, we used the decomposition utility (called decomp) available240

as a part of Sandia Engineering Analysis Code Access System (SEACAS) database of Trilinos to

create a linear decomposition of the 2D mesh. Additional discussion of the parallel decompositions

employed can be found in Section ??.

The result of the discretization process is a large, sparse system of nonlinear algebraic equations

for the two components of horizontal velocity at the nodes of the mesh (the discrete counterpart of245

(21)). Our approach to solving this fully-coupled, nonlinear system is Newton’s method. An analytic

Jacobian matrix is computed at each iteration of Newton’s method using automatic differentiation

(AD). The integration of AD into the Albany code base, both for Jacobians and for parameter deriva-

tives for sensitivity analysis and UQ, has been a significant advantage of developing a new model in

this framework. The matrix is stored in sparse form, with rows of the matrix distributed across the250

processors of the machine.

The resulting linear system is solved using a preconditioned iterative method. For the largest

problems, we use multilevel preconditioning (described in Section 3.1.2) to achieve scalability, while

incomplete LU (ILU) additive Schwartz preconditioners work well for modest problem sizes and

processor counts. Since the model is symmetric, the Conjugate Gradient (CG) iterative linear solver255

is employed.

Because of the singularity in the viscosity formulation for stress-free solutions, such as when

computing the nonlinear solution from a trivial initial guess, the Newton iteration does not reliably

converge. To achieve a robust nonlinear solution procedure, we formulated and implemented a

homotopy continuation approach that steps to the final solution by solving a series of nonlinear260

problems that reliably converge. The details of this algorithm are given in Section 3.1.1.

3.1.1 Homotopy continuation algorithm

Although the stress tensor σ (11) is well-defined for any differentiable function u, the Glen’s law

effective viscosity (8) is not defined when u is a rigid movement or exactly 0 (because n is typically

taken to be greater than 1; see e.g., ??). This can pose a problem for nonlinear solvers as the initial265
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guess for u is often taken as uniform or 0. To circumvent this difficulty, a regularization parameter

γ > 0, γ� 1 is added to the sum of the strain rates in the effective strain rate term of the effective

viscosity (8), yielding what we refer to as µγ :

µγ =
1
2
A−

1
n

(
ε̇2e + γ

)( 1
2n−

1
2 )
, where lim

γ→0
µγ = µ. (22)

One common practice is to define µ= µγ in (8) using some small, fixed value for γ, e.g., γ =270

10−10. Here, noting that the nonlinear solver often struggles to converge initially when using New-

ton’s method, we use a variable γ as the continuation parameter in a homotopy method (Algorithm

1). In this approach, a sequence of problems (2) is solved for a sequence of effective viscosities

{µγi} for i= 1,2, ..., with 0< γi+1 < γi, until γ reaches its target value. We use a natural contin-

uation procedure, where the final solution at one value of the continuation parameter α (defined in275

Algorithm 1) is used as the initial guess for the subsequent nonlinear problem. The continuation

algorithm has adaptive step size control, and will backtrack and attempt a smaller parameter step if

the nonlinear solve at some step fails to converge (?). The step size increase is in part based on the

number of Newton iterations that were required to converge the previous step, so a relatively easy

nonlinear solve requiring just a handful of Newton iterations will lead to a more aggressive parame-280

ter step (see ? for the detailed algorithm). We have found that starting with α0 = 0 leads to a system

that will reliably converge from a trivial initial guess, that an initial step size of 0.1 is a good initial

step, and that α∞ = 1 provides an adequate stopping value.

Algorithm 1 Homotopy continuation on regularization parameter γ in µγ

Set α= α0, u0 = u0 and i= 0 .

while α≤ α∞ do

Set γ = 10−10α and define µγ by the formula (22).

Set µ= µγ in (8).

Set i= i+1.

Solve (2) with initial guess ui−1 using Newton’s method, to obtain ui.

Increase α using a homotopy continuation method (e.g., natural continuation).

end while

In general, the homotopy continuation approach leads to many fewer nonlinear solves than when

the regularization parameter γ in (22) is fixed to some small value, e.g., γ = 10−10, especially for285

problems where a “good” initial guess for Newton’s method is unavailable. Moreover, with the

homotopy continuation approach, it is found that a full step can often be employed in the Newton’s

method line search algorithm, without the need for backtracking (i.e., iteratively reducing the step

size in the line search algorithm).

We note that the homotopy continuation approach is in general effective when the initial guess290

is not close to the solution (in which case µγ is very small). Similarly, a good initial guess for u

may not be a good initial guess when using continuation because the initial viscosity µγ0 for the
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continuation algorithm is generally far from the real viscosity µ. When solving transient problems,

it may be better to simply use a standard Newton method (without homotopy continuation), taking

the solution at the previous time step as the initial guess, and using homotopy continuation only if the295

Newton solver has difficulties converging. A different approach, which may be used as an alternative

to homotopy continuation, is to perform a few iterations using the Picard method and then switch to

the Newton method once the nonlinear iterations starts to converge (e.g., (?)). The robustness and

efficiency of the Newton solver with the homotopy continuation approach summarized in Algorithm

1 is studied numerically in Section ??.300

3.1.2 Multilevel preconditioning

Multigrid preconditioners are among the most efficient and scalable linear solution techniques for

resolving matrix equations associated with elliptic operators. The basic idea is to utilize multiple res-

olution versions of the original problem to accelerate the iterative solution procedure. Toward this

effect, smooth error components (in the current solution approximation) can be efficiently damped305

by applying a simple iterative process to a coarse resolution version of the problem. This coarse ver-

sion essentially facilitates the propagation of long range information across the domain. Oscillatory

components are effectively reduced through a simple iterative procedure, while smooth components

are tackled using auxiliary lower resolution versions of the problem. Different geometric multi-

grid methods have been successfully applied to the linear systems arising from ice sheet modeling310

simulations, e.g., ???.

For our capability, we prefer algebraic multigrid (AMG) methods due to the potentially unstruc-

tured nature of the mesh in the horizontal plane. AMG methods have the advantage that the lower

resolution versions of the multigrid hierarchy are constructed automatically using only the matrix

coefficient entries. Unfortunately, solution of the underlying linear systems is problematic due to the315

strong anisotropic nature of the discrete equations. This is essentially a consequence of the disparate

scales in the horizontal and vertical directions and the associated large mesh aspect ratios. At the

discrete level, these aspect ratios give rise to matrices where entries representing vertical coupling

are generally much larger than entries representing horizontal coupling. Anisotropic phenomena

within ice sheets and fairly different types of multigrid methods have been considered in recent prior320

works (???).

From a multigrid perspective, reducing oscillatory errors in the horizontal direction is much more

difficult than in the vertical direction. Further, accurately capturing horizontal coupling on coarse

levels can be challenging due to the relatively small size of the corresponding matrix entries (which

are effectively averaged to generate the low resolution versions). To avoid these difficulties, we have325

developed a hybrid structure/unstructured AMG multigrid capability that leverages the fact that our

meshes, though unstructured in the horizontal plane, are structured in the vertical direction. That is,

our 3D meshes can be viewed as extrusions of unstructured 2D meshes, allowing for varying vertical
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mesh spacing. A paper is in preparation to further describe the details of this hybrid algorithm. Here,

we briefly describe its essence.330

The basic concept behind the hybrid structured/unstructured AMG method is to first apply op-

erator dependent multigrid semi-coarsening to initially coarsen the mesh and construct the first few

levels of the multigrid hierarchy. Semi-coarsening and operator dependent multigrid both have a long

history on structured grid problems (???). Semi-coarsening refers to only coarsening in some subset

of coordinate directions and is often advocated to address anisotropic problems. Essentially, one335

only coarsens in directions where oscillatory errors are easily reduced. Operator dependent multi-

grid refers to family of algorithms that intimately take advantage of structure. They can be viewed

as idealized or “perfect” grid transfers for one dimensional simplifications of the higher dimensional

problem. In this way, several coarse level meshes are effectively constructed, each containing the

same number of points within all horizontal planes. When it is no longer possible to further coarsen340

vertically (as there is just a single horizontal layer), a standard smoothed aggregation AMG method

is applied to this horizontal problem creating additional levels in the hierarchy. Thus, finer levels

of the hierarchy are created via semi-coarsening and operator dependent multigrid (leveraging grid

structure). Coarser levels are constructed via AMG, which is applied after the anisotropic behavior

is no longer present (as there is just a single horizontal layer). To complete this brief description,345

we note that line Jacobi is used as the simple iterative scheme to damp oscillatory errors on the finer

levels. It allows for aggressive semi-coarsening (i.e., reduction factors greater than three in the linear

system dimension as one proceeds to progressively coarser levels). Polynomial smoothing is used

on the levels associated with standard AMG.

The algebraic multilevel preconditioner described above has been implemented in and is available350

through the (open-source) ML package of Trilinos (?), in Trilinos 11.12 or later (see the “Code

Availability” section at the end of this paper). The linear solver can be employed with or without

the Albany and Albany/FELIX codes used to perform the ice sheet simulations described herein.

The general ML User’s guide2 ? contains a detailed description of how to exercise the multigrid

solver. Numerous example applications are included in the Trilinos release demonstrating how the355

multigrid solver can be used in different situations. An addendum to (?) explaining how to invoke

the particular software feature used in this paper (?) describes how the multigrid semi-coarsening

algorithm is specified from a user perspective. A paper is underway describing more algorithm

details (?).

3.2 Software implementation360

The numerical methods described above are implemented in the Albany code base, an open-source3,

multi-physics code/analysis package developed at Sandia National Laboratories. A full description
2Available online at http://www.trilinos.org/oldsite/packages/ml/mlguide5.pdf.
3The Albany framework can be obtained from its public github repository by the interested reader: https://github.com/

gahansen/Albany.
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of Albany can be found in a separate publication (?). Briefly, Albany is a finite element code base

for the solution and analysis of models of coupled PDEs using parallel, unstructured-grid, implicit

algorithms. It makes use of numerous computational mathematics libraries from the Trilinos suite365

(?), and has been previously used in other applications domains such as quantum device modeling

(?) and computational mechanics (?).

The software stack in Albany involves dozens of libraries that are delivered through Trilinos as

independent software packages developed by small teams of domain experts. The Sierra ToolKit

(STK) package is used for mesh database structures and mesh I/O. The Epetra package is used for370

distributed memory, parallel data structures for vectors and sparse matrices, which greatly simplify

parallel operations such as halo exchanges for synchronizing data between processors. The Intrepid

(?) package provides flexible finite element discretization algorithms and general integration kernels.

The PDE equations are described by a set of evaluation kernels, whose evaluation is managed by the

Phalanx package.375

One of the main distinguishing characteristics of the Albany code base is the use of the template-

based generic programming (TBGP) approach (??). With this methodology, all that is required to

implement a new set of physics in Albany is to code the residual of the PDE equations. Given

this residual, Albany automatically computes and assembles the sparse Jacobian matrix and sensi-

tivity vectors without any additional code development. TBGP makes extensive use of the Sacado380

package (?) for automatic differentiation, which employs C++ expression templates with operator

overloading, and has been closely integrated with the Phalanx and Intrepid packages.

The Newton-based nonlinear system solver and homotopy continuation algorithm are imple-

mented in the NOX (?) and LOCA (?) packages, respectively. These solvers can additionally

perform sensitivity analysis using the analytic sensitivity vectors computed with automatic differen-385

tiation with respect to model parameters. Within the solvers, we have full runtime access to all the

Trilinos preconditioners (ILU and algebraic multilevel preconditioners, from the Ifpack and ML soft-

ware packages, respectively) and linear solvers by specification in an input file. For the bulk of the

computations in this paper, the ML package was employed for algebraic multilevel preconditioners

(?), and the Belos package was employed for iterative solvers (CG or GMRES) (?).390

Albany is also coupled to the Dakota framework (?) of sampling-based optimization and UQ

algorithms, which will play a significant role in model initialization, calibration, and projections.

Although the application of optimization and UQ algorithms go beyond the scope of this paper, we

emphasize that the component-based approach for building this application code leads to the rapid

incorporation of many sophisticated capabilities.395

To give the reader an idea of how much time can be saved in writing a solver using modular

packages or libraries, it is noted that it took one staff member working half-time for approximately

six months to write the Albany/FELIX solver and to verify the code on the test cases presented in

Sections 4–??. It is estimated that all the work presented in the paper (including development of the
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AMG preconditioner based on semi-coarsening, described in Section 3.1.2) took approximately 1.5400

FTEs (full-time equivalent units) worth of work.

4 Verification using the method of manufactured solutions (MMS)

We first conduct formal verification of the new Albany/FELIX code described in Section 3 through

the method of manufactured solutions (MMS), using test cases derived here explicitly for this pur-

pose. A survey of the literature reveals that past work has focused on deriving MMS benchmarks405

for the “shallow ice” and nonlinear Stokes models (e.g., ??, respectively) rather than the FO approx-

imation (2). The lack of MMS solutions for the FO Stokes equations in the literature is likely due

to the complexity of these equations, which makes deriving source terms for a given manufactured

solution difficult, if not, intractable. Here, we derive some new MMS benchmarks for simplified

versions of the FO Stokes equations (2) in 2D. These equations are obtained by neglecting gradients410

in one of the coordinate directions, first z (Section 4.1), then y (Section 4.2), and allow us to look at

the convergence of our computed solution to an exact solution for parts of the governing PDEs. The

terms appearing in our test cases are simple enough to be implemented by anyone simply by refer-

ring to the expressions in this paper. It is emphasized that the test cases are intended to be used as

part of a multi-stage code verification that includes also verification of the 3D FO Stokes equations415

using code-to-code comparisons and mesh convergence studies on realistic geometries (Sections ??

and ??, respectively).

Here, we use the Albany/FELIX code and these new MMS benchmarks to verify (i) that the

dynamics have been implemented correctly, and (ii) that the type of finite elements employed show

convergence at their expected theoretical rates.420

We consider four different finite element types in our numerical convergence study: three node

triangles (denoted by “Tri 3”), four node quadrilaterals (denoted by “Quad 4”), six node triangles

(denoted by “Tri 6”), and nine node quadrilaterals (denoted by “Quad 9”) (Figure 1). Convergence

is evaluated in the discrete l2 norm. In particular, the relative error in a computed solution, denoted

by Ediscrel , is calculated from425

Ediscrel =
||un−u||2
||u||2

, (23)

where || · ||2 denotes the discrete l2 norm, uT ≡
(
u, v

)
is the exact solution to (24), and un is the

numerically computed solution to (24). It is well-known from classical finite element theory (?) that

the theoretical convergence rate in the norm considered is two for the Tri 3 and Quad 4 elements, and

three for the Quad 6 and Quad 9 elements. Hence, the first two elements are referred to as first-order430

finite elements and the second two elements are referred to as second-order finite elements. Note

that the quadrilateral elements are expected to deliver a more accurate solution than their triangular

counterparts of the same order.
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(a) (b) (c) (d)

Fig. 1. 2D finite elements evaluated in the manufactured solution test cases. (a) Tri 3, (b) Quad 4, (c) Tri 6, (d)

Quad 9

4.1 x–y MMS test case

Consider the FO Stokes equations (2) in 2D, that is, (2) with all the ∂
∂z terms neglected. Assume435

these equations are posed on a domain whose sides are aligned with the x– and y– axes in a Cartesian

reference frame, so that ∂s
∂x = ∂s

∂y = 0. Let fT ≡
(
f1, f2

)
be a source term for the equations (2),

to be determined such that a given manufactured solution satisfies these equations. Under these

assumptions, the FO Stokes system (2) has the following form:−
∂
∂x

(
4µ2D,xy

∂u
∂x + 2µ2D,xy

∂v
∂y

)
− ∂

∂y

(
µ2D,xy

∂u
∂y +µ2D,xy

∂v
∂x

)
+ f1 = 0,

− ∂
∂x

(
µ2D,xy

∂u
∂x +µ2D,xy

∂v
∂y

)
− ∂

∂y

(
2µ2D,xy

∂u
∂x + 4µ2D,xy

∂v
∂y

)
+ f2 = 0,

(24)440

where the viscosity µ2D,xy is given by the 2D version of (8):

µ2D,xy =
1
2
A−

1
n

{(
∂u

∂x

)2

+
(
∂v

∂y

)2

+
∂u

∂x

∂v

∂y
+

1
4

(
∂u

∂y
+
∂v

∂x

)2
}( 1

2n−
1
2 )
. (25)

We note that the x–y FO Stokes equations (24) can be viewed as a test for ice shelves, stress

gradients in the x–z plane are negligible compared to those in the x–y plane.

The x–y MMS first test case is posed on a box domain, namely Ω = (0,1)× (0,1) with Robin445

boundary conditions on ∂Ω. The source term in (24) is derived such that the exact solution to this

system is given by the following expression:

u = ex sin(2πy),

v = ex cos(2πy).
(26)

(Figure 2). Substituting (26) into (24), the source terms f1 and f2 are obtained:

f1 = 2µ2D,xye
x sin(2πy)

[
2− 3π− 2π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

(2ε̇xx + ε̇yy) +
∂ε̇e,2D
∂y

ε̇xy

)
,

(27)450

f2 = 2µ2D,xye
x cos(2πy)

[
3π+

1
2
− 8π2

]
+A−

1
n

(
1
n
− 1
)
ε̇

1
n−2

e,2D

(
∂ε̇e,2D
∂x

ε̇xy +
∂ε̇e,2D
∂y

(ε̇xx + 2ε̇yy)
)
,
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(28)

where

ε̇e,2D ≡
√(

∂u
∂x

)2
+
(
∂v
∂y

)2

+ ∂u
∂x

∂v
∂y + 1

4

(
∂u
∂y + ∂v

∂x

)2

= ex
√

(1 + 4π2− 2π)sin2(2πy) + 1
4 (2π+ 1)2 cos2(2πy),

(29)

and µ2D,xy is given by (25). The solution (26) implies the following boundary conditions on the455

boundary of Ω:

ε̇1 ·n = 2(π− 1)u, ε̇2 ·n =−
(
π+ 1

2

)
v, at x= 0,

ε̇1 ·n =−2(π− 1)u, ε̇2 ·n =
(
π+ 1

2

)
v, at x= 1,

u = 0, ε̇2 ·n = 0, at y = 0 and y = 1,

v = 0, at (x,y) = (0,0),

(30)

where n denotes the outward unit normal vector to a given boundary and where

ε̇T1 =
(

2ε̇xx + ε̇yy, ε̇xy

)
∈ R2, (31)

and460

ε̇T2 =
(
ε̇xy, ε̇xx + 2ε̇yy

)
∈ R2. (32)

The last condition on (30) is imposed to guarantee uniqueness of the v component of the velocity

vector.

(a) (b)

Fig. 2. Plots of exact solutions to the x–y MMS test case: (a) u, (b) v

For the x–y MMS test case considered here, the values of the flow rate factor and Glen’s flow

law exponent were taken to be A= 1 and n= 3, respectively. The relative errors (23) as a function465

of the mesh size h for the x–y MMS test case are plotted on a log-log plot in Figure 3. The two

lowest-order finite elements (Tri 3 and Quad 4) converge at their theoretical rates of two, whereas the

16



Fig. 3. Convergence rates for x–y MMS test case in the discrete l2 norm (23)

higher-order finite elements (Tri 6 and Quad 9) exhibit a slight superconvergece over their theoretical

convergence rate of three. As expected, the quadrilateral elements deliver a more accurate solution

than their triangular counterparts.470

4.2 x–z MMS test case

The 2D FO Stokes equations in the x− z variables are obtained from (2) by neglecting the y-

component of the velocity (v) and all the ∂
∂y terms. The vector ε̇T1 reads

ε̇T1 =
(

2ε̇xx, ε̇xz
)
, (33)

and the FO Stokes equations reduce to the following 2D equation in the x− z plane:475

− ∂

∂x

(
4µ2D,xz

∂u

∂x

)
− ∂

∂z

(
µ2D,xz

∂u

∂z

)
+ f1 = 0, (34)

where

µ2D,xz =
1
2
A−1/n

(
ε̇2xx + ε̇2xz

) 1
2n−

1
2 , f1 = ρg

∂s

∂x
. (35)

We consider the following approximate solution of (34):

u=
2Aρngn

n+ 1
(
(s− z)n+1−Hn+1

)∣∣∣∣ ∂s∂x
∣∣∣∣n−1

∂s

∂x
− ρg

β
H
∂s

∂x
. (36)480

The first term of u is the solution of the SIA with no-slip at the bedrock interface, whereas the second

term is the solution of the SSA equation when H and β are constant and s is quadratic in x. We

now use the solution u as our manufactured solution, and we modify the forcing term f1 of (34) so

that the FO equation is exactly satisfied by u. In particular, we set n= 3, and consider the geometry
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defined by s= s0−αx2, b= s−H , x ∈ (−L,L), with constants s0,α,H,β. Then,485

f1 =
16
3
Aµ4

2D,xz

(
−2φ2

4φ5 + 24φ3φ4(φ1 + 2αx2)− 6x3φ3
1φ2φ3− 18x2φ2

1φ2φ
2
4− 6xφ1φ3φ5

)
,

(37)

where

φ1 = z− s, φ2 = 4Aα3ρ3g3x, φ3 = 4x3φ5
1φ

2
2,

φ4 = 8αx3φ3
1φ2− 2Hαρg

β + 3xφ2(φ4
1−H4),

φ5 = 56αx2φ3
1φ2 + 48α2x4φ2

1φ2 + 6φ2(φ4
1−H4),

µ2D,xz = 1
2 (Aφ2

4 +Axφ1φ3)−
1
3 .

(38)

Boundary conditions are of the Robin and Neumann type, and are given by

ε̇1 ·n = ftop, at z = s(x),

ε̇1 ·n +βu = fbed, at z = b(x),

ε̇1 ·n = flat, at x= L,

ε̇1 ·n =−flat, at x=−L,

(39)490

where

flat =−4φ4µ2D,xz,

ftop =−4φ4µ2D,xzn
top
x − 4φ2x

2φ3
1µ2D,xzn

top
y ,

fbed =−4φ4µ2D,xzn
bed
x − 4φ2x

2φ3
1µ2D,xzn

bed
y + 2Hαρgx−βx2φ2(φ4

1−H4).

(40)

Here, the components of the normal to the top and bedrock surfaces read ntopx = 2αx√
4α2x2+1

, ntopz =
1√

4α2x2+1
and ntopx =−nbedx , ntopz =−nbedz .

Figure ?? shows a contour plot of the exact solution to the x–z MMS problem (36) and the domain495

Ω on this which problem is posed.

Reasonable values for the constants defining the x–z MMS test case, and the ones used here, are:

L= 50 km, s0 = 2 km, H = 1 km, α= 4e− 5 km−1, β = 1 kPa yr/m and A= 10−4 k−4Pa−3a−1.

Figure ?? plots the relative errors (23) on a log-log scale as a function of the horizontal mesh

resolution hx for the x–z MMS test case. The x and z resolutions considered are such that n= 5,500

10, 20, and 40, where n denotes the number of elements in each spatial direction. The two first

order elements, Tri 3 and Quad 4, converge at a rate of two, their theoretical convergence rate. The

convergence rate of the Tri 6 element is close to its theoretical convergence rate of three. The Quad

9 element exhibits a slight superconvergence overs its theoretical convergence rate of three. As for

the x–y MMS test case considered in Section 4.1 and as expected, the quadrilateral elements deliver505

a more accurate solution than their triangular analogs.

5 Intercomparison with other codes and benchmarks

In this section we discuss further (informal) verification of results for Albany/FELIX using some

canonical ice sheet benchmarks, namely the ISMIP-HOM tests A and C (Section ??), and the con-
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Fig. 4. Contour plot of exact solution to the x–z MMS test case

Fig. 5. Convergence rates for x–z MMS test case in the discrete l2 norm (23)

fined shelf test case (Section ??) (?). For these problems, the exact solution is not known in closed510

analytic form and our quasi-verification consists of code-to-code comparisons between the solution

computed in Albany/FELIX, the results from other models participating in the original benchmark

experiments, and the FO approximation, finite element code of (?).

The values of the physical parameters used in the two test cases considered are summarized in

Table 1. We note that the units employed in our implementation are m a−1 for the ice velocities u515

and v (where “a” denotes years) and km for the length scale (e.g., the mesh dimensions). Our units

are the same as in (?) but differ from other implementations, which often use a length scale of meters

(m). Our units give rise to matrices with smaller differences in scale (which may be better scaled),

as there is in general a smaller difference in scale in the relevant parameter values (e.g., A= 10−4

k−(n+1) Pa−n a−1 when the mesh is in km versus A= 10−16 Pa−n a−1 when the mesh is in m,520
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where k=km/m=103).

5.1 ISMIP-HOM benchmarks

The ISMIP-HOM test cases (?) are a canonical set of benchmark experiments for so-called “higher-

order” ice sheet models. Here, we consider tests A and C, both of which are specified on a horizontal,

periodic domain with a unit length of L km. The bedrock surface, Γb, is given by a continuous525

function z = b(x,y) ∈ R2 and the upper surface, Γs, is given by a continuous function z = s(x,y) ∈
R2. The geometries are generated from a uniform hexahedral mesh of the unit cube (0,1)3 ∈ R3 via

the following transformation:

x= LX, y = LY, z = s(x,y)Z + b(x,y)(1−Z), (41)

where X,Y,Z are the coordinates of the unit cube (in km), and L ∈ N is given. That is, a uni-530

form mesh of nx×ny ×nz elements is first generated of (0,1)3, to yield the nodal coordinates

X , Y , and Z, then the transformation (??) is applied. The following domain sizes are considered:

L= 5,10,20,40,80 and 160 km. Each domain is discretized using an 80× 80× 20 mesh of hex-

ahedral elements. As a part of the quasi-verification, the Albany/FELIX solution is compared with

the solution computed in the finite element code of (?) at the upper surface along the line y = L/4.535

Table ?? shows the relative difference between the Albany/FELIX and (?) solutions in the l2 norm

along this line, calculated from the formula (23) with the (?) solution taken as the reference solu-

tion. Differences in the solutions are likely due to the different finite elements used: trilinear finite

elements on hexahedra are used in Albany/FELIX, whereas linear finite elements on tetrahedra are

used in the code of (?).540

5.1.1 ISMIP-HOM test A

The first ISMIP-HOM benchmark considered is test A. For this problem, the upper ice surface

boundary (Γs) is given by the following linear function

s(x,y) =−xtanα, (42)

and the bedrock boundary (Γb) is given by the following trigonometric function545

b(x,y) = s(x,y)− 1 +
1
2

sin
(

2π
L
x

)
sin
(

2π
L
y

)
, (43)

with α= 0.5◦. The geometry is thus that of a uniformly sloping slab along the x coordinate direction

with a doubly periodic, “egg crate” shaped bed. A no-slip boundary condition is prescribed on Γb

(with Γ0 ≡ Γb and Γβ = ∅), stress-free boundary conditions are prescribed on the upper surface Γs,

and periodic boundary conditions are prescribed on the lateral boundaries Γl.550

Figure ?? compares the solution computed within the Albany/FELIX code for ISMIP-HOM test

A with the solution computed by the code of (?) (denoted by MP12 in this figure). The agreement
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between the two is excellent. The second column of Table ?? reports the relative difference between

these two solutions in the l2 norm (23). The relative difference is at most 0.1% for L= 180 and on

the order of 0.001% for L= 5,10,20,40.555

Figure ?? also includes the mean and standard deviation of solutions computed by other models

participating in the original set of benchmark experiments. For a detailed description of these models

the reader is referred to (?). For all values of L considered, the Albany/FELIX solution is within one

standard deviation of the mean of the other FO models considered in the original set of experiments.

In Figure ??, the solutions labeled “Full Stokes” were calculated using the (more expensive but more560

physically realistic) full Stokes model for ice sheet flow (detailed in Appendix A). Comparing a FO

Stokes solution to the full Stokes solution reveals how well the FO Stokes physics approximate the

full Stokes model. The reader can observe by examining Figure ?? that agreement between the FO

Stokes and the full Stokes solutions improves with increasing L.

5.1.2 ISMIP-HOM test C565

For ISMIP-HOM test C, the upper and bedrock surfaces (Γs and Γb, respectively) are given by the

following linear functions:

s(x,y) =−xtanα, b(x,y) = s(x,y)− 1, (44)

with α= 0.1◦. In addition to having a different geometry than test A, test C also differs in the

boundary conditions. Unlike test A, sliding boundary conditions are prescribed on the bedrock570

(Γβ ≡ Γb and Γ0 ≡ ∅), with the basal sliding coefficient given by

β(x,y) = 1 + sin
(

2π
L
x

)
sin
(

2π
L
y

)
. (45)

The boundary conditions at the upper and lateral boundaries (Γs and Γl respectively) are the same

as for test A, namely stress-free and periodic, respectively. The geometry is thus that of a constant

thickness, uniformly sloping slab along the x coordinate direction with a doubly periodic, “egg575

crate” spatial pattern for the basal friction parameter β.

The test case solution computed in Albany/FELIX is shown in Figure ??, along with the solu-

tion computed using the solver of (?). For every L considered, the relative difference between

Albany/FELIX and the solver of (?) (denoted, as before, by MP12 in Figure ??) is less than 1%

(Table ??). Moreover, as for ISMIP-HOM test A, the Albany/FELIX solution is within one standard580

deviation of the model means for each value of L. As for ISMIP-HOM test A, Figure ?? illustrates

also how well the FO Stokes model compares to the (more expensive but more accurate) full Stokes

model. As for test A, the two models agree better for larger L.

5.2 Confined shelf benchmark

We next consider an idealized ice shelf test case, referred to here as the “confined shelf” test case,585

which is a slightly modified version of test 3 from the Ice Shelf Model Intercomparison exercise (?).
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Fig. 6. ISMIP-HOM test A: surface velocity component u as a function of x at y = L/4 for each L considered.

The blue solid line (MP12) represents results from (?) and the red-dashed line (labeled FelixFO) represents

results from the current solver.

The geometry is that of a 500 m thick slab of ice with equal extents of 200 km along the x– and

y–dimensions, floating in hydrostatic equilibrium. A stress-free boundary condition is applied at

the upper and basal boundaries (z = s and z = b respectively) and homogeneous Dirichlet boundary

conditions (u= v = 0) are applied on three of the four lateral boundaries (the east x= 200, west590

x= 0 and north y = 200 boundaries). The south (y = 0) lateral boundary is open to the ocean and

subject to the open ocean Neumann boundary condition described in Section 2 (boundary condition

(c)). The values of the parameters that appear in (18) can be found in Table 1.

The confined shelf geometry is discretized using a structured tetrahedral mesh of 41× 41 nodes

in the x− y plane with 10 vertical levels. As with the ISMIP-HOM test cases, the solution for the595

confined shelf test case computed in our code, Albany/FELIX, is compared to the solution computed
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Fig. 7. ISMIP-HOM test C: surface velocity component u as a function of x at y = L/4 for each L considered.

The blue solid line (MP12) represents results from (?) and the red-dashed line (labeled FelixFO) represents

results from the current solver. Note that for the 5 km test, the MP12 and FelixFO results directly overly the

results for the full Stokes models participating in the original intercomparison.

by the solver of (?) on the same mesh. Figure ?? shows the solution calculated in Albany/FELIX,

which is visually identical to the solution computed by the solver of (?). The difference between the

Albany/FELIX and (?) solutions was found to be on the order of O(10−10) at all grid points.

6 Convergence study using realistic geometry600

The final results presented herein are the results of a numerical convergence and performance study

using a realistic, 1 km spatial resolution Greenland Ice Sheet (GIS) geometry (i.e., surface and bed

topography from (?)).
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Table 2. Relative differences between Albany/FELIX and (?) solutions for ISMIP-HOM tests A and C

L (km) Test A Test C

5 0.00735% 0.386%

10 0.00629% 0.248%

20 0.00132% 0.176%

40 0.00408% 0.213%

80 0.0407% 0.277%

160 0.127% 0.320%

Fig. 8. Albany/FELIX solution to confined-shelf test case (indistinguishable from solution obtained by the

solver of ?).

First, we present results from a 3D mesh convergence study in which a set of uniform quadrilateral

meshes of different horizontal and vertical resolutions were considered. We began by generating a605

quadrilateral mesh having an 8 km horizontal resolution. We then refined this coarse mesh uniformly

in the horizontal direction (by splitting each quadrilateral finite element into four smaller quadrilat-

erals) four times to yield meshes with resolutions of 4 km, 2 km, 1 km and 500 m. The horizontal

meshes were then extruded into 3D hexahedral meshes having uniform or graded spacing between

the vertical layers. In the graded vertical spacing case, a transformation is performed such that a610

mesh having nz vertical layers is finer near the bedrock boundary Γb and becomes progressively

coarser moving up, towards the surface boundary Γs. The formulas4 for the coordinate of the ith

vertical layer, zi (for i= 0, ...,nz , where nz is the number of vertical layers), for each of these two

spacings is given in Table ??. The number of layers considered in our study ranges from 5 to

4The formula for the graded z–spacing is available in the CISM documentation, available at http://oceans11.lanl.gov/cism.
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Table 3. Formulas for different vertical mesh-spacing strategies (uniform vs. graded), for i= 0, ...,nz .

z–spacing zi

Uniform i
nz

Graded 1− 4
3

»
1−

“
nz

2nz−i

”2
–

80. Realistic basal friction coefficient (β) fields were calculated by solving a deterministic inver-615

sion problem that minimizes simultaneously the discrepancy between modeled and observed surface

velocities, modeled and observed bed topography, and between a specified surface mass balance

field and the modeled flux divergence (see ? for more details). A realistic, 3D temperature field,

originally calculated using CISM for the study in ?, was included as an initial condition in order to

provide realistic values for the flow-law rate factor (10). Prior to being interpolated onto the meshes620

at hand, the original topography, surface height, basal friction and temperature data were smoothed

by convolution with a 2D Gaussian filter (having a standard deviation of 5 km). This smoothing filter

reduces the small-scale variations of the original fields, so that it is reasonable to consider meshes

from 8 km to 500 m for our convergence study. Using directly the non-smoothed data, we would

have needed to consider much finer meshes in order to obtain asymptotic convergence.625

The purpose of our GIS mesh convergence study is three-fold:

(i) To show a theoretical convergence rate for the finite elements evaluated with respect to refine-

ment in all three coordinate directions.

(ii) To determine in a rigorous fashion for a GIS problem with a fixed horizontal mesh resolution

how many vertical layers are required to achieve a solution having a desired accuracy,630

(iii) To investigate whether the performance of our linear and nonlinear solvers changes with the

number of vertical layers.

From finite element theory, theoretical convergence rates are expected for a problem in which the

data is fixed on all meshes considered, so better-resolved data are intentionally not introduced on

the coarser meshes that were part of our convergence study in this section. A high-resolution GIS635

problem, with real, high-resolution data is considered in Section ??.

The FO equations (2) with basal sliding at the bedrock (16) and stress-free boundary conditions

(15) on the remaining boundaries were solved on the base 8 km resolution mesh and the four suc-

cessively refined meshes. Model runs were performed in parallel on Titan5, a Cray XK6 operated

by the Oak Ridge Leadership Computing Facility (OLCF). Note that the parallel decompositions640

employed in the runs were 2D only; all elements with the same x and y coordinates were on the

5More information on Titan can be found at www.olcf.ornl.gov/titan.
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same processor (convergence difficulties were encountered when splitting vertical columns in the

mesh across processors). A parallel decomposition for 16 cores is illustrated in Figure ??.

(a) (b)

Fig. 9. Examples of uniform mesh refinement: (a) No refinement (8 km GIS), (b) 1 level of refinement (4 km

GIS)

Fig. 10. GIS domain decomposition for 16 core, parallel run, with different colors representing portions of the

domain owned by different cores.
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Table 4. Relative errors for GIS mesh convergence study with uniform vertical spacing.

```````````````̀Horizontal resolution

Vertical layers
5 10 20 40 80

8 km 2.0× 10−1

4 km 9.0× 10−2 7.8× 10−2

2 km 4.6× 10−2 2.4× 10−2 2.3× 10−2

1 km 3.8× 10−2 8.9× 10−3 5.5× 10−3 5.1× 10−3

500 m 3.7× 10−2 6.7× 10−3 1.7× 10−3 3.9× 10−4 8.1× 10−5

Table 5. Relative errors for GIS mesh convergence study with graded vertical spacing.

```````````````̀Horizontal resolution

Vertical layers
5 10 20 40 80

8 km 2.0× 10−1

4 km 8.3× 10−2 7.8× 10−2

2 km 3.3× 10−2 2.4× 10−2 2.3× 10−2

1 km 2.2× 10−2 7.3× 10−3 5.3× 10−3 5.1× 10−3

500 m 2.1× 10−2 4.7× 10−3 1.2× 10−3 2.6× 10−4 −

Tables ?? and ?? report the relative errors in the computed solution for each mesh resolution

considered with uniform and graded vertical mesh spacings (respectively). The convergence metric645

employed was the continuous L2 norm. The relative error in each solution was calculated according

to the following formula:

Econtrel ≡

√∫
Ω
||un−uref ||22dΩ∫
Ω
||uref ||22dΩ

. (46)

In (??), ||·||2 denotes the L2 norm, un denotes the computed solution and uref denotes the reference

solution, which here we take as the solution computed for the finest resolution mesh, the 500 m mesh650

with 80 vertical layers and graded vertical spacing (for this quasi-realistic problem, there is no exact

solution available in closed analytic form). This finest mesh had 1.12 billion dofs. The integrals in

(??) were calculated exactly using a sufficiently accurate numerical quadrature rule.

Below, we provide some discussion of the data summarized in Tables ?? and ??, as well as some

conclusion drawn from these results.655
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Mesh convergence

Figure ?? shows the relative error (??) as a function of the horizontal mesh spacing (8 km, 4 km, 2

km, 1 km) on a log-log plot (blue line). The numerical values of the relative error Erel plotted are

the diagonal entries of Tables ?? and ?? (which were identical for the two tables). The asymptotic

convergence rate (the slope of the blue line in Figure ?? disregarding the coarsest mesh data point,660

as it is not in the region of asymptotic convergence) is 1.97. This compares very well with the

theoretical convergence rate of two, for the bilinear hexahedral elements considered in this norm

(black-dashed line in Figure ??).

Fig. 11. Convergence in the continuous L2 norm (??) for the realistic GIS problem with full 3D refinement.

Effect of partitioning on mesh convergence

As noted in the discussion of the full 3D mesh convergence study described in Section ??, our study665

revealed that 2D parallel decompositions of the meshes (i.e., decompositions in which all elements

with the same x and y coordinates were on the same processor, as shown in Figure ??) led to out-

of-the-box convergence of our linear and nonlinear solves. In contrast, convergence difficulties were

encountered when splitting vertical columns in the mesh across processors. The 2D parallel decom-

position is therefore recommended over a full 3D parallel decomposition, especially for problems670

on meshes having a finer vertical resolution.
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Uniform vs. graded vertical spacing

The reader may observe in comparing Table ?? and ?? that there is a not a significant difference

between the errors in the solutions on the meshes with a uniform vertical resolution and those on

meshes with a graded vertical resolution. Nonetheless, there is some value (at no additional compu-675

tational cost) in using a graded mesh over a uniform mesh for some mesh resolutions.

Practical recommendations on mesh resolution

The data in Tables ?? and ?? suggest that, depending on the selected mesh resolution, there can

be more value in refining vertically than horizontally. For example, for the uniform mesh spacing

(Table ??), the solution on a 2 km resolution mesh with 10 vertical layers is more accurate than that680

on a 1 km resolution mesh with 5 vertical layers. Similarly, the solution on a 1 km resolution mesh

with 20 vertical layers is more accurate than that on a 500 m resolution mesh with 10 vertical layers.

For the graded mesh spacing scenario (Table ??), a solution refined 2 times in z is comparable in

accuracy to the solution refined 2 times in the horizontal direction; however, the former problem is

smaller, as refining 2 times vertically leads to a doubling of the number of dofs whereas refining 2685

times horizontally leads to a quadrupling of the number of dofs.

Although there can be value in refining vertically, this is true only up to some level of refinement.

For each horizontal resolution in Tables ?? and ?? except the finest, the errors plateau beyond a

certain vertical resolution. The data in the last row of the tables should be considered very cautiously

as here we are using the same horizontal resolution as the reference solution.690

The results in Tables ?? and ?? can be used by readers to determine the horizontal and vertical

mesh resolution required to attain a desired convergence rate. We note that the errors are for a

controlled study, where the ice geometries are not changing with the horizontal resolution and the

fields are smoother than in reality. When both the mesh resolution and the geometric data resolution

increase simultaneously, horizontal refinement will likely be more important than Tables ?? and ??695

suggest.

6.1 Code performance and scalability

Having demonstrated the numerical convergence of our code on a realistic, large-scale ice sheet

problem we now study the code’s robustness, performance and scalability.

6.1.1 Robustness700

In Section 3.1.1, we described our approach for improving the robustness of the nonlinear solver

using a homotopy continuation of the regularization parameter (denoted by γ) appearing in the ef-

fective viscosity law expression (22). Here, we perform a numerical study of the relative robustness

of Newton’s method with and without the use of this continuation procedure on a realistic, 5 km
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Fig. 12. Robustness of Newton’s method nonlinear solves with homotopy continuation

resolution Greenland ice sheet problem. Three approaches are considered:705

(a) Full Newton with no homotopy continuation.

(b) Newton with backtracking but no homotopy continuation.

(c) Full Newton with homotopy continuation.

For all three methods, a uniform velocity field is specified as the initial guess for Newton’s method.

To prevent the effective viscosity (8) from evaluating to “not-a-number” for this initial guess, we710

replace µ by µγ in (2), where µγ is given by (22) and γ = 10−10 for the first two approaches. The

third approach implements Algorithm 1, in which we use a natural continuation algorithm to reach

γ = 10−10 starting with α0 = 0.1.

Figure ?? illustrates the performance of Newton’s method for the three approaches considered by

plotting the norm of the residual as a function of the total number of Newton iterations. The reader715

can observe that full Newton with no homotopy continuation diverges. If backtracking is employed,

the algorithm converges to a tolerance of 10−4 in 43 nonlinear iterations. With the use of homotopy

continuation, the number of nonlinear iterations is cut almost in half, to 24 nonlinear iterations. The

natural continuation method leads to four homotopy steps.

It is well-known that for Newton’s method to converge to the root of a nonlinear function (i.e.,720

the solution to the discrete counterpart of (21)), it must start with an initial guess which is reason-

ably close to the sought-after solution. The proposed homotopy continuation method is particularly

useful in the case when no “good” initial guess is available for Newton’s method, in which case the
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nonlinear solver may fail to converge (see Section 3.1.1 and Algorithm 1). Homotopy continuation

may not be needed for robust convergence in the case that a “good” initial guess is available (e.g.,725

from observations or from a previously converged model time step).

6.1.2 Controlled weak scalability study on successively refined meshes with coarse mesh data

First, we report results for a controlled weak scalability study. For this experiment, the 8 km GIS

mesh with 5 vertical layers described in Section ?? was scaled up to a 500 m GIS mesh with 80

vertical layers using the uniform 3D mesh refinement discussed earlier. A total of five meshes were730

generated, as summarized in Table ??. The term “controlled” refers to the fact that the resolution of

Table 6. Meshes used in the GIS controlled weak scalability study.

horizontal resolution # vertical layers # dofs # cores

8 km 5 3.34K 4

4 km 10 2.43M 32

2 km 20 18.4M 256

1 km 40 143M 2048

500 m 80 1.12B 16,384

the data describing the ice sheet geometry used for initial conditions was held fixed for all the grids

considered and equal to the polygonal boundary determined by the coarsest 8km mesh. Moreover,

topography, surface height, basal friction and temperature data have been smoothed and then inter-

polated as described in Section ??. Each resolution problem was run in parallel on the Hopper6 Cray735

XE6 supercomputer at the National Energy Research Scientific Computing (NERSC) Center. The

number of cores for each run (third column of Table ??) was calculated so that for each size problem,

each core had approximately the same number of dofs (≈ 70−80K dofs/core). For a detailed discus-

sion of the numerical methods employed, the reader is referred to Section 3. In particular, recall that

the linear solver employed is based on the preconditioned CG iterative method. The preconditioner740

employed is the algebraic multilevel preconditioner based on the idea of semi-coarsening that was

described in Section 3.1.2. This preconditioner is available through the ML package of Trilinos (?).

Figure ??(a) reports the total linear solver time, the finite element (FE) assembly time and the

total time (in seconds) for each resolution problem considered, as a function of the number of cores.

Figure ??(b) shows more detailed timing information, namely:745

• The normalized preconditioner generation time (“Prec Gen Time”).

6More information on the Hopper machine can be found here: http://www.nersc.gov/users/computational-systems/

hopper.
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• The normalized Jacobian fill time, not including the Jacobian export time7 (“Jac Fill - Jac

Export Time”).

• The normalized number of nonlinear solves (“# Nonlin Solves”).

• The normalized average number of linear iterations (“Avg # Lin Iter”).750

• The normalized total time not including I/O (“Total Time - IO”).

The run times and iteration counts have been normalized by the run time and iteration count (respec-

tively) for the smallest run (8 km GIS with 5 vertical layers, run on 4 cores). Figure ?? reveals that

the run times and iteration times scale well, albeit not perfectly, in a weak sense.

(a) (b)

Fig. 13. Controlled, weak scalability study on Hopper: (a) Total linear solve, finite element assembly, and total

run times in seconds, (b) Additional timing information (X = time or # iterations).

6.1.3 Strong scalability for realistic Greenland initial conditions on a variable-resolution755

mesh

For the performance study described in the previous paragraph, the data has been smoothed and

the lateral boundary was determined by the coarsest (8 km resolution) mesh. We now perform a

scalability study for the GIS directly interpolating the original datasets into the mesh considered.

This results in better resolved topography, basal friction and temperature fields temperature fields in760

regions of the domain with higher resolution. As before, the surface topography and temperature

7“Jacobian export time” refers to the time required to transfer (“export”) data from an element-based decomposition,

which can be formed with no communication, to a node-based decomposition, where rows of the matrix are uniquely owned

by a single processor.
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fields are from ? and were generated as a part of the Ice2Sea project (?); the optimized basal friction

coefficient (β) field is from ?.

We consider a tetrahedral mesh with a variable resolution of between 1 km and 7 km and having

approximately 14.4 million elements, leading to approximately 5.5 million dofs (Figure ??(a)). The765

mesh was created by first meshing the base of the GIS using the 2D meshing software Triangle

(?). The 2D mesh generated using Triangle was a nonuniform Delaunay triangulation in which the

areas of the triangles were constrained to be roughly proportional to the norm of the gradient of

the surface velocity data. This yields meshes with better resolutions in places where the solution

has larger variations. The 2D mesh is then extruded in the z–direction as prisms and each prism is770

divided into three tetrahedra (Figure ??(b)).

(a) (b) (c)

Fig. 14. (a) Variable-resolution 1–7 km GIS mesh, (b) Close-up of variable-resolution 1–7 km GIS mesh (boxed

region in (a)), (c) Subdivision of hexahedral finite element into three tetrahedra.

First, we verify that velocities computed on the 1–7 km variable resolution tetrahedral mesh,

shown in Figure ??(a), agree with observations to within expectations. The reader can observe

that there is generally good agreement between the modeled velocities and those from the target

field observations, shown in Figure ??(b) (from ?). Differences between the modeled and observed775

velocities occur as a result of the objective function used during model optimization, which takes

into account factors other than just the velocity mismatch 8.

Next, a strong scaling study on the 1–7 km variable resolution GIS problem is performed. The
8The optimization procedure, discussed in more detail in ?, minimizes the difference between modeled and observed

velocities and between the modeled flux divergence and a target surface mass balance field. The latter constraint, which is

introduced so that the optimized model is in quasi-steady state with climate model forcing, results in the small differences

between the modeled and observed velocities observed in Figure ??.
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(a) (b)

Fig. 15. Solution magnitude |u| in meters per year: (a) Albany/FELIX solution (surface speed) on the variable

resolution (1–7 km) tetrahedral mesh, (b) observed surface speeds (from ?).

problem is run on different numbers of cores on Hopper, from 64 to 512. The total solve, linear solve

and finite element assembly times for each of the runs are reported (in seconds) in Table ??. The780

speed-up relative to the smallest (64 core) run is plotted as a function of the number of cores in Figure

??. Good strong scalability is obtained: a 3.75 times speed-up is observed with 4 times the number

of cores (up to and including 256 cores), and a 6.64 times speed-up is observed with 8 times the

number of cores (up to and including 512 cores). In these results, the linear solver employed was the

preconditioned CG iterative method, with the aforementioned algebraic multilevel preconditioner785

based on the idea of semi-coarsening (see Section 3.1.2).

Table 7. Total, linear solve and finite element assembly times (sec) for variable resolution 1–7 km resolution

GIS problems as a function of # cores of Hopper

# cores Total Solve Time Linear Solve Time Finite Element Assembly Time

64 268.1 119.9 148.3

128 139.9 63.12 76.78

256 78.41 37.92 40.49

512 56.83 33.81 23.02
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Fig. 16. Strong scalability for 1–7km resolution GIS problem: speed-up relative to 64 core run.

7 Conclusions

In this paper, we have presented a new, parallel, finite element solver for the first-order accurate, non-

linear Stokes ice sheet model. This solver, Albany/FELIX, has been written using a component-based

approach to building application codes. The components comprising the code are modular Trilinos790

libraries, which are put together using abstract interfaces and template-based generic programming.

Several verifications of the code’s accuracy and convergence are carried out. First, a mesh conver-

gence study is performed on several new method of manufactured solutions test cases derived for

simplified 2D versions of the first-order Stokes equations. All finite elements tested exhibit their

theoretical rate of convergence. Next, code-to-code comparisons are made on several canonical ice795

sheet benchmarks between the Albany/FELIX code and the finite element solver of ?. The solutions

are shown to agree to within machine precision. As a final verification, a mesh convergence study on

a realistic Greenland geometry is performed. The purpose of this test is two-fold: (1) to demonstrate

that the solution converges at the theoretical rate with mesh refinement, and (2) to determine how

many vertical layers are required to accurately resolve the solution with a fixed x–y resolution, when800

using (low-order) trilinear finite elements. It is found that the parallel decomposition of a mesh has

some effect on the linear and nonlinear solver convergence: better performance is observed on the

finer meshes if a horizontal decomposition (i.e., a decomposition in which all nodes having the same

x and y coordinates are on the same processor) is employed for parallel runs. Further performance
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studies reveal that a robust nonlinear solver is obtained through the use of homotopy continuation805

with respect to a regularization parameter in the effective viscosity in the governing equations, and

that good weak scalability can be achieved by preconditioning the iterative linear solver using an

algebraic multilevel preconditioner constructed based on the idea of semi-coarsening.

Finally, we note that the ultimate purpose for developing Albany/FELIX is to integrate it into more

complete land ice modeling frameworks so that it can be used for prognostic simulations, both in810

standalone mode and as a coupled component of ESMs. In addition to the conservation of linear

momentum being solved by Albany/FELIX, a complete prognostic land ice model must also solve

discretized PDEs for the conservation of mass and energy, in addition to treating other physical pro-

cesses such as lithospheric heat exchange and isostatic bedrock adjustment. To enable prognostic

runs, we have written interfaces for coupling Albany/FELIX to two larger land ice modeling frame-815

works, which discretize and solve the equations for mass and energy conservation: The Community

Ice Sheet Model version 2.0 (CISM2) (?) and The Model for Prediction Across Scales - Land Ice

(MPAS-LI) (?). We refer to the resulting complete land ice models as CISM-Albany and MPAS-

Albany respectively. Prognostic runs using these dycores are iterative in nature, with a diagnostic

solve for the velocity field occurring in Albany/FELIX, followed by solutions for the geometry and820

temperature evolution occurring in CISM2 or MPAS-LI. Further discussion of CISM-Albany and

MPAS-Albany and ongoing work involving their coupling to ESMs will be deferred to subsequent

papers. Similarly, these combined codes will be publicly released at a later point in time.

Appendix A: Nonlinear Stokes model for glaciers and ice sheets

The model considered here, referred to as the first-order (FO) Stokes approximation, or the “Blatter-825

Pattyn” model (??), is an approximation of the nonlinear Stokes model for glacier and ice sheet flow.

In general, glaciers and ice sheets are modeled as an incompressible fluid in a low Reynolds number

flow with a power-law viscous rheology, as described by the Stokes flow equations. The equations

are quasi-static, as the inertial and advective terms can be neglected due to the slow movement of

the ice.830

Let σ denote the Cauchy stress tensor, given by

σ = 2µε̇− pI ∈ R3×3, (47)

where µ denotes the “effective” ice viscosity, p the ice pressure, I the identity tensor, and ε̇ the

strain-rate tensor:

ε̇ij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (48)835

for i, j ∈ {1,2,3}. The effective viscosity is given by Glen’s law (??):

µ=
1
2
A−

1
n ε̇

( 1
n−1)
e , (49)
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where

ε̇e =
√

1
2

∑
ij

ε̇2ij , (50)

denotes the effective strain rate, given by the second invariant of the strain-rate tensor. A denotes the840

flow rate factor (which is strongly dependent on the ice temperature), and n denotes the power law

exponent (generally taken equal to 3). The nonlinear Stokes equations for glacier and ice sheet flow

can then be written as follows:−∇ ·σ = ρg

∇ ·u = 0.
(51)

Here, ρ denotes the ice density, and g the gravitational acceleration vector, i.e., gT =
(

0, 0, −g
)

,845

with g denoting the gravitational acceleration. The values of the parameters that appear in the ex-

pressions above are given in Table 1. A stress-free boundary condition is prescribed on the upper

surface:

σn = 0, on Γs. (52)

On the lower surface, the relevant boundary condition is the no-slip or basal sliding boundary con-850

dition:u = 0, on Γ0,

u ·n = 0 and (σn +βu)|| = 0, on Γβ ,
(53)

assuming Γb = Γ0∪Γβ with Γ0∩Γβ = ∅, where β ≡ β(x,y)≥ 0. The operator (·)|| in (??) performs

the tangential projection onto a given surface.

Code Availability855

The Albany framework is an open-source development project available for download on GitHub

(http://gahansen.github.io/Albany). Albany, currently on its 2.0 release, is released under a publicly

available designation with a three-term BSD license.

The Albany framework was written using many libraries available through Trilinos, also publicly

available (http://trilinos.org). At the time this journal article was written, Trilinos was on its 11.12860

release. The multigrid algorithm presented in this paper (Section 3.1.2) is implemented within the

ML package of Trilinos and is available for use with Trilinos 11.12 or later.

The Albany/FELIX solver described in this paper is not publicly available at the present time. A

public release of the code as part of Albany is planned for 2015. The CISM and MPAS ice sheet

models with supported interfaces to Albany/FELIX will also be made publicly available at a later865

point in time.
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