We would like to thank the anonymous referees’ constructive comments. An item-by-
item response to the comments is presented below. The manuscript was also revised
accordingly with changes/modifications presented below or based on referees’ technical
suggestions. As a consequence, in our opinion the revised manuscript is improved with
respect to the original one.

*

Responses to the first anonymous referee's comments:

Anonymous Referee #1
Received and published: 31 January 2015

In this article, the authors port the WRF YSU PBL scheme onto NVIDIA Tesla K40
CPU. With some optimizations, the GPU code gets a good speedup comparing with
CPU-only code. I have some concerns about the paper.

(1) First, the NVIDIA Tesla K40 GPUs is the state-of-art accelerator. But the Intel Xeon
E5-2603 is not. The comparison may be a little unfair.

The Intel Xeon E5-2603 is the CPU we have here.

(2) Second, the baseline CPU code has not been well tuned. At least the optimization
with height dependence release can also be exploited on CPU.

We ran the CPU-based code on one CPU core using exactly the same optimization
along with height dependence release as the GPU-based code. It took 1204 ms, which
corresponded to speedup of 1.5x.

We added one sentence with a little modification in the third paragraph of Section 5
“Summary and future work” to reflect this issue. The whole paragraph becomes:

“Using one NVIDIA Tesla K40 GPU in the case without 1/0 transfer, our
optimization efforts on the GPU-based YSU PBL scheme can achieve a speedup of
193x with respect to one CPU core, whereas the speedup for one CPU socket (4
cores) with respect to one CPU core is only 3.5x. We also ran the CPU-based code
on one CPU core using exactly the same optimization along with height
dependence release as the GPU-based code, and its speedup is merely 1.5x as
compared to its original Fortran counterpart. In addition, we can even boost the
GPU-based speedup to 360x with respect to one CPU core when two K40 GPUs
are applied; in this case, one minute of model execution on dual Tesla K40 GPUs
will achieve the same outcome as six hours of execution on a single core CPU.”

(3) Third, using share memory is a general technique on GPU. According the Section 4.2,
you just simply use more L1 cache to get better performance. Have you tried to use share
memory for the better locality?

We have tried "cudaFuncCachePreferShared" for using more shared memory as
opposed to "cudaFuncCachePreferL.1" for using more L1 cache. It was found that the
GPU runtime with "cudaFuncCachePreferShared" is almost the same as that with turning
off "cudaFuncCachePreferL.1" for this scheme.

In other words, the GPU runtimes for using "cudaFuncCachePreferShared" or
turning off "cudaFuncCachePreferL1" are liasted in Table 1:

GPU runtime Speedup
Non-coalesced 36.0 ms 50.0x
Coalesced 34.2 ms 52.6x

And, the GPU runtimes for using "cudaFuncCachePreferL1" are presented in Table 2:

GPU runtime Speedup
Non-coalesced 34.3 ms 52.5x
Coalesced 33.0 ms 54.5x

We added one sentence to the last paragraph in Section 4.2 to address this issue. The
whole paragraph becomes:

“Starting with the first CUDA C version of the YSU PBL scheme, the
computing performances with L1 cache command was found to be better than
that without this command, while the latter performance was noticed to be
almost the same as that using "cudaFuncCachePreferShared” command. This
suggests that usage of more L1 cache helps to speed up the CUDA C programs for
this scheme. The GPU runtime and speedup are summarized in Table 2 after L1
cache command “cudaFuncCachePreferL1” is launched.”

*

Responses to the second anonymous referee's comments:

Anonymous Referee #2
Received and published: 6 May 2015

Summary:

This paper presents the GPU porting and optimization process for a sub-process of the
WRF model. The authors describe the mathematical background of the existing model
sub-process, then delve into the wide variety of optimizations made to achieve
performance from the GPU version of the code. The authors compare the results of each
successive optimization to the performance of the original CPU code.

General Comments:
This paper does a good job presenting the various optimization techniques used to
achieve a clearly excellent speedup result. The optimizations used are described well, and

will likely be useful in other domains beyond the scope of accelerating the YSU PBL
scheme.

Thank you for the positive remarks.

*

Questions:
(1) Is there a specific reason that the Yonsei University PBL scheme was chosen for
acceleration instead of any other scheme (none of which were named)?

We have implemented several schemes of the Weather Research and Forecasting
(WRF) model. Yonsei University PBL (YSU PBL) scheme is one of them. Our goal is to
have a GPU-based accelerated WRF model.

(2) Is this the most popular model, or perhaps the most amenable to GPU acceleration? I
believe some discussion of other schemes may be warranted, at least as motivation for
why the YSU scheme was chosen.

The physical feature of no interaction among horizontal grid point (i.e., i and j in the
code) makes all schemes of WRF physical (not dynamical) models very favorable for
parallel processing. Among all PBL schemes, YSU PBL is one of the popular schemes
used by WREF users, and thus we first chose to work on this scheme among all PBL
schemes.

(3) The paper describes a direct mapping from the benchmark dataset’s spatial grid size
to the implementation’s use of thread blocks. Will the accelerated code be easy to apply
to other domains or resolutions and other datasets?

Yes. Our code is designed for any kind of data domain and resolution so that the
users do not need to adjust the code. The users only need to provide the data dimension,
ie., (i, j, k), where (i, j) is the horizontal grid-point dimension while & is the vertical
levels. For example, in our case, (i, j) = (433, 308) and & = 35.

(4) Has some other test dataset been used to examine speedups for a different test case?

For this scheme, we have not tried some other test dataset. Nevertheless, it is

expected that the speedup should be about the same regardless of which dataset or data
size is used.

(5) Is this work intended to be incorporated in some future release of WRF?
Yes.

(6) Is there possibly a timeline for when an accelerated (or partially accelerated) version
of WREF is available?

This will depend on the funding and man power though we aim for finishing the
implementation of all schemes of the WRF model as soon as possible.

(7) How much does the impressive speedup obtained for the PBL scheme improve the
performance of the full WRF model?

Based on those schemes that we have finished the GPU-based implementation, it was
found that different scheme has different speedup. Since we have not completed all
schemes yet, at this moment it is hard to examine how much this GPU-based YSU PBL
scheme would improve the performance of the full WRF model.

(8) It would be good to see some timing data for the full model with the accelerated PBL
scheme incorporated.

Once all schemes of the WRFL model have been implemented on GPUs, we will

definitely investigate the performance of the GPU-based WRF model with the
accelerated YSU PBL scheme incorporated using timing data.

*

Technical Corrections:

Page 8033, line 18: "GPU-accelerated longwave radiation scheme of the rapid radiative
transfer model for general circulation models"

Page 8034, line 8: "which is one of the physical models in WRF."

Page 8041, line 12: "built in the WRF model."

Page 8042, line 15: "The driver, in the C language,"

Page 8042, line 20: "into the memory of the CPU."

Page 8042, line 21: "From the viewpoint of CUDA Programming,"

Page 8043, line 10: "contiguous data, and are aligned in memory."

Page 8043, line 24: "Three major reasons for doing this in this way are"

Page 8043, line 26: "CUDA C programs in a short time."

Page 8044, line 3: "accross the entire US. The WRF domain is"

Page 8045, line 6: "one way to do this is to call"

Page 8045, line 20: "to a parallel GPU basis in the next section."

Page 8046, line 6: "one CPU core of an Intel Xeon E5-2603."

Page 8047, line 22: "to the structure of the WRF model,"

Page 8049, line 3: "per thread at 63."

Page 8049, line 15: "make execution more efficient."

Page 8049, line 16: "of the GPU architecture."

Page 8051, line 19: "In the plot, x starts from value"

Page 8062, Table 6a: Column headings need some label relating to what they represent,
as opposed to just the description in the caption.

Page 8063, Table 6b: Same as for Table 6a, needs column headings.

Page 8076, Figure 12: Include labels for the x-axis of the graph, instead of just the
range mentioned in the paper.

Thank you for the technical corrections. We have made these corrections marked in
“red” color in the revised manuscript that would be submitted to the GMD journal. In
addition, Fig. 12 has been also modified with adding the x-axis labels for the graph (see
below).

em===n0 fast math =====fast math

12

10

ulp
I~
I~
I~

. JATAVI

x values for 150 consecutive 32-bit floating points

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2015/04/24 7.83 Copernicus papers of the IATEX class copernicus.cls.
Date: 8 June 2015

Development of efficient GPU parallelization
of WRF Yonsei University planetary
boundary layer scheme

M. Huang', J. Mielikainen', B. Huang', H. Chen', H.-L. A. Huang', and
M. D. Goldberg?

'Space Science and Engineering Center, University of Wisconsin-Madison, Madison, USA
2NOAA/JPSS, Lanham, MD 20706, USA

Correspondence to: B. Huang (bormin.huang@ssec.wisc.edu)

IodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnoSI(]

Abstract

The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its
character is directly affected by its contact with the underlying planetary surface. The PBL is
responsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric
column. It determines the flux profiles within the well-mixed boundary layer and the more
stable layer above. It thus provides an evolutionary model of atmospheric temperature,
moisture (including clouds), and horizontal momentum in the entire atmospheric column.
For such purposes, several PBL models have been proposed and employed in the weather
research and forecasting (WRF) model of which the Yonsei University (YSU) scheme is one.
To expedite weather research and prediction, we have put tremendous effort into developing
an accelerated implementation of the entire WRF model using Graphics Processing Unit
(GPU) massive parallel computing architecture whilst maintaining its accuracy as compared
to its CPU-based implementation. This paper presents our efficient GPU-based design on
WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL
scheme achieves a speedup of 193x with respect to its Central Processing Unit (CPU)
counterpart running on one CPU core, whereas the speedup for one CPU socket (4 cores)
with respect to one CPU core is only 3.5x. We can even boost the speedup to 360x with
respect to one CPU core as two K40 GPUs are applied.

1 Introduction

The science of meteorology explains observable weather events, and its application is
weather forecasting. Nowadays, sophisticated instruments are used for observations from
upper air atmosphere. The collected quantitative data about the current state of the atmo-
sphere are then used to predict future states. This requires the aid of equations of fluid dy-
namics and thermodynamics that are based on laws of physics, chemistry, and fluid motion.
The weather research and forecasting (WRF) (http://www.wrf-model.org/index.php) model
meets such a requirement, which is a simulation program consisting of several different

2

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

http://www.wrf-model.org/index.php

physical processes and dynamic solvers. It is designed to serve the needs of both opera-
tional forecasting and atmospheric research.

The WRF system supports some of the best possible models for weather forecasting.
Nevertheless, a continual challenge for timely weather forecasting is forecast model execu-
tion speed. This is a challenge even with the fastest supercomputers, in particular for severe
weather events.

With the advent of GPU architectures, the execution speed of weather forecasting mod-
els can be greatly increased by taking advantage of the parallelism feature of GPUs. GPUs
have hundreds of parallel processor cores for execution on tens of thousands of parallel
threads. Furthermore, GPUs possess several merits, such as low cost, low power, large
bandwidth, and high performance. These make GPUs more effective than a massively par-
allel system built from commodity CPUs. Usage of GPUs has been applied very success-
fully to deal with numerous computational problems in various domains, for instance, port-
ing marine ecosystem model spin-up using transport matrices to GPUs (Siewertsen et al.,
2013), GPU-accelerated longwave radiation scheme of the rapid radiative transfer model for
general circulation models (RRTMG) (Price et al., 2014), advances in multi-GPU smoothed
particle hydrodynamics simulations (Rustico et al., 2014), speeding up the computation of
WRF double moment 6-class microphysics scheme with GPU (Mielikainen et al., 2013),
real-time implementation of the pixel purity index algorithm for endmember identification on
GPUs (Wu et al., 2014), fat vs. thin threading approach on GPUs: application to stochastic
simulation of chemical reactions (Klingbeil et al., 2012), ASAMgpu V1.0 — a moist fully com-
pressible atmospheric model using graphics processing units (GPUs) (Horn, 2012), GPU
acceleration of predictive partitioned vector quantization for ultraspectral sounder data com-
pression (Wei, 2011), clusters vs. GPUs for parallel automatic target detection in remotely
sensed hyperspectral images (Paz et al., 2010), a GPU-accelerated wavelet decompres-
sion system with SPIHT and Reed-Solomon decoding for satellite images (Song, 2011), to
name several.

To expedite weather analysis research and forecasting, we have put tremendous efforts
into developing an accelerated implementation of the entire WRF model using Graphics

3

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

Processing Unit (GPU) massive parallel architecture whilst maintaining its accuracy as com-
pared to its CPU-based implementation. This study develops an efficient GPU-based design
on the Yonsei University (YSU) planetary boundary layer scheme, which is one of physical
models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy trans-
ports in the whole atmospheric column. It determines the flux profiles within the well-mixed
boundary layer and the more stable layer above, and thus provides an evolutionary model
of atmospheric temperature, moisture (including clouds), and horizontal momentum in the
entire atmospheric column.

This paper is structured as follows. Section 2 describes YSU PBL scheme. Section 3
outlines the GPU hardware specification as well as a brief description of the basis of CUDA
computing engine for GPUs. The GPU-based implementation is also given in Sect. 3. The
development of optimizing the GPU-based YSU PBL scheme is presented in Sect. 4. Sum-
mary and future work is given in Sect. 5.

2 YSU PBL scheme

The scheme of YSU is one of the PBL models in WRF. The PBL process is illustrated in
Fig. 1. Based on reference (Hong et al., 2006), a brief description of the YSU PBL scheme
is presented below.

2.1 Mixed-layer diffusion

The momentum diffusivity coefficient is formulated based on the work done in references
(Troen et al., 1986; Hong et al., 1996; Noh et al., 2003):

Km:kwsz<1—%>p, (1)

where p is the profile shape exponent taken to be 2, k the von Karman constant (= 0.4), z
the height from the surface, and h the PBL height. The mixed-layer velocity scale is given

4

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

as

Wy = (u‘:’ + gpmkwsz/h) 1/3 , (2)

where u, is the surface frictional velocity scale, ¢,, the wind profile function evaluated at
the top of the surface layer, and w,; the convective velocity scale for the moist air which is
defined as

Wiy = [(9/0va) (0'07,) 1]

The counter-gradient term for # and momentum is given by

1/3

; (3)

where (w'@])o is the corresponding surface flux for 6, u, and v, and b the coefficient of
proportionality which will be derived below. The mixed-layer velocity scale wyg is defined as
the velocity at z = 0.5h in Eq. (@).

The eddy diffusivity for temperature and moisture K is computed from K,, in Eq. (1) by
using the relationship of the Prandtl number (Noh et al., 2003), which is given by

Pr=1+(Prog—1)exp[—3(z —h)?/h?], (4)

where Pro = (¢1/om + bke) is the Prandtl number at the top of the surface layer given by
references (Troen et al.,1986; Hong et al., 1996). The ratio of the surface layer height to the
PBL height, ¢, is specified to be 0.1.

To satisfy the compatibility between the surface layer top and the bottom of the PBL,
identical profile functions are used to those in surface layer physics. First, for unstable and

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

neutral conditions [(w’6?))o > 0],
0.1h\ 4
Om = <1 - 16L> for w and v, (5a)
0.1h\ /2
o = (1 - 16L> for 6 and ¢, (5b)

while for the stable regime [(w'67)o < 0],

0.1h
=@ = |[1+5—
©m Pt |: + L :|)
where h is, again, the PBL height, and L the Monin Obukhov length scale. To determine
the factor b in Eq. (3), the exponent of —1/3 is chosen to ensure the free convection limit.
Typically L ranges from —50 to 0 in unstable situations. Therefore, we can use the following
approximation:

0.1\ /* 0.1\ /3

Following the work in references (Noh et al., 2003; Moeng et al., 1994), the heat flux amount
at the inversion layer is expressed by

(W)h = —eqw’ /h, (8)

where e; is the dimensional coefficient (= 4.5 m~! s?K), w,, the velocity scale based on the
surface layer turbulence (w3, = w3 +5u2), and the mixed-layer velocity scale for the dry air
w, = [(9/0.)(w'8})h]*/3. Using a typical value of 6, at 300K, the gravity at 10 ms~2, and
the limit of u, = 0 in the free convection limit, Eq. can be generalized for the moist air

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

with a non-dimensional constant, which can be expressed by

(w6}, = —0.15 (9;“> w3, /h, (9)

where w,,, considers the water vapor driven virtual effect for buoyancy flux. Given the buoy-
ancy flux at the inversion layer, Eq. (9), the flux at the inversion layer for scalars 6 and ¢, and
vector quantities u and v, are proportional to the change in each variable at the inversion
layer:

(@), = welbl, (10a)
(w'q’),, = welq, (10b)
(W)h = PrpwelAulp, (10c)
(W)h = PraweAv|p, (10d)

respectively. Here w, is the entrainment rate at the inversion layer, which is expressed by

_ (w9)),
we—m, (11)

where the maximum magnitude of we is limited to w,, to prevent excessively strong entrain-
ment in the presence of too small of a jump in 6, in the denominator. The Prandtl number
at the inversion layer Prj, is set as 1. Meanwhile, the flux for the liquid water substance at
the inversion layer is assumed to be zero.

Following the reference (Hong et al., 1996), h is determined by checking the stability
between the lowest model level and levels above considering the temperature perturbation
due to surface buoyancy flux, which is expressed by,

0u(h) = Oa -+ O [: (“;fo)"} | (12)

where a is set to 6.8, the same as the b factor in Eq. (3). In Eq. (2), 7 ranges less than 1 K
under clear-sky condition where 6,,(h) is the virtual potential temperature at 4. The quantity
7

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

a is an important parameter in the new scheme. Numerically, h is obtained by two steps.
First, h is estimated by

Oua|U ()2
g[ev(h) - ‘95]

without considering 67, where Rib, is the critical bulk Richardson number, U(k) the hori-
zontal wind speed at h, 6, the virtual potential temperature at the lowest model level, 8, (h)
the virtual potential temperature at 6,(h), and 65 the near the surface temperature. This
estimated £ is utilized to compute the profile functions in Egs. (5)—(7), and to compute the
wsp, Which is estimated to be the value at z = h/2in Eq. . Secondly, using wso and 67 in
Eq. (12), i is revised by checking the bulk stability, Eq. (12), between the surface layer (low-
est model level) and levels above. With the revised i and wsg, Ky, is obtained by Eq. (1),
entrainment terms in Egs. (9)—(11), and K; by the Prandtl number in Eq. (). The counter
gradient correction terms for 4 in Eq. are also obtained by Eq. (3).

h - Ribcr

2.2 Free atmosphere diffusion

The local diffusion scheme, the so-called local K approach (Louis, 1979) is utilized for free
atmospheric diffusion above the mixed layer (z > h). In this scheme, the effects of local
instabilities in the environmental profile and the penetration of entrainment flux above h
irrespective of local stability are both taken into account within the entrainment zone and
the local K approach above.

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

In the reference (Noh, 2003), the diffusion coefficients for mass (¢ : 6,q) and momentum
(m : u,v) are expressed by

—(w'0}), (z—h)?
=730 /9. - 1
Ktient (aev/az) hexp |: 62 :|) (3a)
(), T =

K. =Prj—h — 13b

m_ent Th (89v/az) hexp |: 52 :|) ()
and the thickness of the entrainment zone can be estimated as
§/h = dy + daRiggn, (14)

where w,, is the velocity scale for the entrainment, Rico, the convective Richardson number
at the inversion layer: Ricon = [(9/0va) h Aev_em]/wfn, and constants d; and d, are set as
0.02 and 0.05, respectively.

Following references (Noh, 2003; Louis, 1979), the vertical diffusivity coefficients for mo-
mentum (m : u,v) and mass (¢;6,q) above h are represented as,

. ou
Km_loc,t_loc = l2fm,t(R|g) <62>) (15)

in terms of the mixing length [, the stability function f,, +(Rig), and the vertical wind shear,
|0U /0z|. The stability functions f,, ; are represented in terms of the local gradient Richard-

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

son number Rig. For the non-cloudy layer,

. g [00,/0z
Rig= < | ———|. 1

9=5, {(8U/8z)2 (162
For the cloudy air, Rig is modified for reduced stability within cloudy air, which is expressed
by (Durran et al., 1982)

. Lyqy . 92 1 (A_B)
Rig, = (1+ 2% |Rig - 1 1
9 (+RdT)[O U/oP e (15 A) | (160)

where A = L2g,/c,R,T? and B = Ly,q,/R4T. The computed Rig is truncated to —100 to
prevent unrealistically unstable regimes. The mixing length scale [is given by

1 1 1

T= T 17
LT m T (17)
where k is the von Karman constant (= 0.4), z the height from the surface, and)\ is the
asymptotic length scale (= 150 m) (Kim et al., 1992). The stability function, f, .(Rig), differ
for stable and unstable regimes. The stability formulas from NCEP MRF model (Betts et al.,

10

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

1996) are used. For the stably stratified free atmosphere (Rig > 0),

fmt(Rig) = (1+51Rig)2’ (18)
and the Prandtl number is given by,

Pr=1.0+2.1=Rig. (19)
For the neutral and unstably stratified atmosphere (Rig < 0),

fm(Rig) =1= 1= 1?:2?/%' (20b)

For the entrainment zone above h, the diffusivity is determined by geometrically averaging
the two different diffusivity coefficients from Egs. (13) and (14), and is expressed by,

Km,t = (Km,t_enth,t_Ioc)l/z- (21)

Equation represents not only the entrainment, but also the free atmospheric mixing
when the entrainment above the bottom of the inversion layer is induced by vertical wind
shear at PBL top. With the diffusion coefficients and counter-gradient correction terms com-
puted in Egs. (1)—(21), the diffusion equations for all prognostic variables (C,u,v,0, ¢y, 4c, ¢)
expressed as, for example for C,

oc 0 oC — [2\3

— = k| — 7.]| - ('), (= 22
ot az[(82 %) (wc)h<h>] (22)
and can be solved by an implicit numerical method (Bright et al., 2002) that has been built
in the WRF model. Here C' is heat capacity, v and v are horizontal velocity components, 6

11

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

is the potential temperature, q,, q., and ¢; are the mixing ratios of water vapor, cloud, and
cloud ice respectively. Note that the term —(w/c’),(%)* is an asymptotic entrainment flux
term at the inversion layer and is not included in the MRF PBL model (Hong et al., 1996).

Since there are no interactions among horizontal grid points, the WRF YSU PBL scheme
is highly suited to massively parallel processing and great speed advantage can be ex-
pected. What follows is a presentation of our GPU-based development on YSU PBL
scheme.

3 GPU hardware specification
3.1 GPU device specification and basis of CUDA engine

We developed the massively parallel GPU version of the YSU PBL scheme using NVIDIA
Tesla K40 GPUs (NVIDIA Tesla GPU; NVIDIA Tesla K40), while Intel Xeon CPU E5-2603
at 1.8 GHz is used for executing its counterpart CPU-based program for speedup compar-
ison. The clock frequencies of memory and GPU processor (in boost mode) are at 3004
and 875 MHz for K40, respectively. One Tesla K40 GPU has 15 Streaming Multiprocessors
(SMX). Each SMX units has 192 CUDA cores, amounting to 2880 cores. The hardware
specification employed in our study is depicted in Fig. 2. In contrast, our CPU system has
two sockets, each of which has four cores.

CUDA C is an extension to the C programming language and which offers a direct pro-
gramming in the GPUs. It is designed such that its construction allows for execution in
a manner of data-level parallelism. A CUDA program is arranged into two parts: a serial
program running on the CPU and a parallel part running on the GPU, where the parallel part
is called a kernel. The driver, in the C language, distributes a large number of copies of the
kernel into available multiprocessors and executes them simultaneously. The CUDA parallel
program automatically utilizes more parallelism on GPUs when there are more processor
cores available. A CUDA program consists of three computational phases: transmission of

12

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

data into the global memory of the GPU, execution of the CUDA kernel, and delivery of
results from the GPU into the memory of the CPU.

From the viewpoint of CUDA programming, a thread is the basic atomic unit of paral-
lelism. Threads are organized into a three-level hierarchy. The highest level is a grid, which
consists of thread blocks. A grid is a three-dimensional array of thread blocks. A domain of
2-dimensional horizontal grid points, 433 x 308, is adopted in the YSU PBL scheme (see
Sect. 3.2), which implies that 433 x 308 threads are required if one GPU is used. Each
thread executes the whole numerical calculation of equations described in Sect. 2. Given
the block size (i.e., number of threads per block) of 64 available, this suggests that one
needs 7 x 308 blocks. Figure 3 illustrates the three-level thread hierarchy of a device for one
GPU that was implemented in our study. Thread blocks implement coarse-grained scalable
data parallelism and they are executed independently, which permits them to be scheduled
in any order across any number of cores. This allows the CUDA program to scale with the
number of processors.

The execution of CUDA programs can be achieved more efficiently in GPUs if the global
memory is maximized and the number of data transactions is minimized. This can be ac-
complished through the global memory access by every 16 threads grouped together and
coalesced into one or two memory transactions. This is the so-called coalesced memory
access, which can be more effective if adjacent threads load or store contiguous data, and
are aligned in memory. To enable the coalesced global memory access, the function in
NVIDIA CUDA library “cudaMallocPitch” is used to pad the data, which would enhance the
data transfer sizes between host and device.

Threads of 32 are arranged together in execution, which are called a warp, while global
memory loads and stores by half of a warp (i.e., 16 threads). A CUDA program group
inside a multiprocessor issues the same instruction to all the threads in a warp. Different
global memory accesses are coalesced by the device in as few as one memory transaction
when the starting address of the memory access is aligned and the threads access the
data sequentially. An efficient use of the global memory is one of the essences for a high
performance CUDA kernel.

13

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

3.2 GPU-based implementation

The current WRF programs are written in the Fortran language. To develop a GPU-based
and parallel implementation, the Fortran programs of YSU PBL scheme are first translated
to standard C programs, followed by converting the C into CUDA C that can run on GPUs
efficiently. Three major reasons for doing this in this way are (i) to ensure correct results, (ii)
to make the difference between C and CUDA C implementations to be very small, and (iii)
to allow conversion from C programs to CUDA C programs in a short time.

To test whether the programming of the YSU PBL scheme is correct, we used a CONi-
nental United States (CONUS) benchmark data set, a 12 km resolution domain, collected
on 24 October 2001 (CONUS website). This is a 48 h forecast over the continental US cap-
turing the development of a strong baroclinic cyclone and a frontal boundary that extends
from north to south across the entire US. The WRF domain is a geographic region of inter-
est discretized into a 2-dimensional grid point parallel to the ground, which are labeled as
(,7) in the WRF codes and in the following discussion. Each grid point deals with multiple
levels, corresponding to various vertical heights in the atmosphere, which is denoted as &
in both the programs and in the discussion presented below. The size of the CONUS 12km
domain is 433 x 308 horizontal grid points with 35 vertical levels. Figure 4 exemplifies the
mapping of CONUS domains onto one GPU thread-block-grid domain.

In generating correct C programs from Fortran, followed by the conversion from C to
CUDA C, considerable care must be taken. First of all, Fortran array-indexing uses non-zero
indices as the first index and these have to be converted into C/CUDA C arrays using zero-
based indexing. That is, the first index value of the Fortran arrays in WRF codes is 1 or non-
zero value, while that of a C/CUDA C array is 0. Secondly, some temporary array variables
are replaced by scalar variables re-computed on GPU memory as needed and stored in
local register memory; we call these scalarable. This is done because re-calculating values
in GPU threads (i.e., local register memory) is faster than transferring them from a relatively
slower global memory.

14

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

The third area for special care relates to the handling of the horizontal grid point (4,)
inside the kernel. When translating C programs to CUDA C programs, the loops for spatial
grid points (i,) are replaced by index computations using thread and block indices:

i = threadldz.z + blockldx.x X blockDim.x
j = blockldx.y

where threadldx and blockldx are thread index and block index respectively, and blockDim
the dimensional size of a block. Each grid point (¢, ;) represents a thread in CUDA C pro-
grams. Hence, there are two purposes for decomposing the domain in this way. One is to
make the execution in each thread independent from one another, and the other is to com-
pute values for all vertical levels (i.e., all kK components in the CUDA C programs) in one
spatial grid position, (%, 7). There are no interactions among horizontal grid points, according
to the physical model described in Sect. 2, which means that this computationally efficient
thread and block layout is permissible.

Fourthly, to check whether a kernel is launched successfully, one way to do this is to call
cudaGetlLastError(). If the kernel launch fails, this command would report error messages
right after CUDA kernel launch. Finally, once a kernel is successfully launched, to obtain
the correct GPU execution runtime, command cudaThreadSynchronize() must be called.

The default compiler options from WRF were used to compile the Fortran and C ver-
sions of the YSU PBL scheme. For Fortran programs, we used gfortran along with compiler
options: -O3 -ftree-vectorize -ftree-loop-linear -funroll-loops. For C programs, we used gcc
with compiler options: -O3 -ftree -vectorize -firee-loop-linear -funroll-loops -Im. We have first
verified that the outputs of C programs were identical to those of the Fortran programs using
the same level of compiler optimization.

When the first CUDA C version of the YSU PBL scheme, directly translated from C ver-
sion without any optimization, was ready, we examined features of the original Fortran pro-
grams to discover further optimization opportunities. We will present the evolution of this
scheme from a CPU basis to a parallel GPU basis in the next section.

15

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

4 Development of GPU-based YSU PBL scheme
4.1 Premise for optimizing GPU-based YSU PBL scheme

To perform the GPU-based YSU PBL scheme, the CUDA C programs were compiled using
nvce (NVIDIA CUDA compiler) version 6.0 and executed on one Tesla K40 GPU with com-
pute capability 3.5. The compiler options are —O3 —gpu-architecture sm 35 -fmad=false -
m64 —maxrregcount 63 —restrict. The value of 63 means the number of registers per thread,
which was randomly picked at present. Besides, the thread block size (i.e., threads per
block) was chosen as 64 at this stage. The effects of block size and registers per thread
for performing this scheme will be discussed in Sects. 4.5 and 4.6 respectively. Table 1 lists
the runtime and speedup of this first-version GPU-based scheme, where the speedup is
calculated as GPU runtime as compared to its CPU counterpart running on one CPU core
of an Intel Xeon E5-2603. The same definition of speedup calculation is used in subsequent
discussions.

Before we go further to present our optimizations on the GPU-based YSU PBL scheme,
a couple of things are worthwhile to mention. The computation of this scheme is merely one
intermediate module of the entire WRF module. When WREF is fully implemented on GPUs,
the inputs of this intermediate module will not have to be transferred from CPU memory.
Instead, they will be results from previous WRF module. Similarly, outputs of this will be
inputs to next WRF module. Hence, transfers to/from CPU memory are not involved in this
intermediate module during its computation. In the studies presented in Sects. 4.1-4.8, 1/0
transfer timings are turned off. The results of computing performance with 1/O transfer and
multi GPUs will be given in Sect. 4.9. In each evolution of optimization, the correctness of
CUDA C outputs must be verified in comparison to the original Fortran outputs.

4.2 Optimization with more L1 cache

For each Tesla K40 GPU (see Fig. 2), every SMX has a data cache, which is shared among
CUDA cores. The data cache can be configured as 16 KB software-managed cache called

16

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

shared memory and 48 KB hardware cache (L1) or the other way around, or both can share
equally the memory, i.e. 32 KB each.

To employ more L1 cache than shared memory, a command “cudaFuncCachePreferL.1”
was launched in our CUDA C programs. In contrast, without this command indicates less
L1 cache than shared memory. Figure 5 depicts the memory allocation between L1 cache
and shared memory with and without launching L1 cache command.

Starting with the first CUDA C version of the YSU PBL scheme, the computing perfor-
mances with L1 cache command was found to be better than that without this command,
while the latter performance was noticed to be almost the same as that using “cudaFunc-
CachePreferShared” command. This suggests that usage of more L1 cache helps to speed
up the CUDA C programs for this scheme. The GPU runtime and speedup are summarized
in Table 2 after L1 cache command “cudaFuncCachePreferL1” is launched.

4.3 Optimization with scalarizing temporary arrays

Due to the parallelism architecture in CUDA programs, each thread must have its own local
copy of the temporary array data. For instance, for 3-dimensional arrays, when they are con-
verted from CPU-based implementation to GPU-based implementation, they are retyained
as 3-dimensional, but 1-dimensional and 2-dimensional arrays that involve with k& (height)
components must be re-arranged as 3-dimensional arrays in GPU-based implementation;
otherwise, the access to the contents of the arrays could be some other computed values
from other threads. One special case is that the 2-dimensional arrays with (7, j) elements,
are still kept as arrays with (¢, 7) elements because what each thread deals with is the grid
point (¢,). By so arranging arrays, which is necessary in GPU-based implementation, mem-
ory usage is considerably increased, and the computing performance degraded. Figure 6
illustrates the concepts of such array re-arrangement.

One solution of such a problem is to reduce the use of loop operation in the CUDA
programs by merging several loop operations into one single loop operation. With this ap-
proach, some scalarable temporary arrays are replaced by scalar variables. Owing to the
structure of the WRF model, this approach can only be applicable to those scalarable tem-

17

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

porary arrays in the vertical-level (i.e., k) components, not in the grid-point component (i.e.,
i or j). The scalar variables are re-computed in fast local memory, rather than in the slower
global memory, in order to reduce the access time. This approach of diminishing the num-
ber of loop operations is applicable to CPU-based programs. However, the computation are
still executed in one single-threaded core by looping through all horizontal grid points (i, 5),
and it would not much speed up the computing performance. In contrast, this loop-reduction
approach is extremely useful for GPU-based programs due to its multi-threaded nature.

Figure 7 illustrates the concept presented here. This reduces the transferring of data
from global memory and delivers significant time savings. For this YSU PBL scheme, such
replacement of temporary arrays by scalar variables drops the temporary arrays from 68
down to only 14 arrays, and apparently enhances the computing performance by a lot.
Table 3 summarizes the GPU runtime and speedup after scalarizing most of temporary
arrays.

4.4 Optimization with height dependence release

The remaining 14 local arrays present difficulties because the k£ components of the verti-
cal heights are not independent with one another. This can be seen from Eq. when
one tries to solve the diffusion equations for those prognostic variables (C,w,v,0, gy, qc,),
where there is dependence in the vertical z level (i.e., K component in the codes). These
14 local arrays are involved in the final solution calculation for those prognostic variables.
For the first part of these 14 array variables involved, the calculation of the kth component
depends on the input of the (k£ — 1)th component. This is to calculate the contents inside
the brackets in Eq. (22), which is a differential equation as a function of the vertical height
and is related to calculations in Egs. (1)—(21). For the second part, the calculation of the
kth component needs inputs from the (k+ 1)th component. This is to carry out the final
results for those prognostic variables, which is again a derivative equation with respect to
the vertical height.

About one third of the original Fortran programs appears to involve dependencies among
(k — D)th, kth, and (k + 1)th components. Figure 8 describes the conceptual idea for how to

18

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

release the height dependence in order to reduce the access time to the global memory.
This is the most time-consuming part in the physical programs. Table 4 gives the GPU
runtime and speedup after the release of the height dependence.

4.5 Impact of block size on GPU-based YSU PBL scheme

The impact of the thread block size on the computing performance of the GPU-based YSU
PBL scheme was evaluated by varying the block size while keeping the registers per thread
at 63. Figure 9 shows the speedup of the optimized CUDA C programs (see Sects. 4.2—
4.4) vs. the block size for cases with and without coalesced memory access. To obtain
this plot, 16 executions of the CUDA C programs are executed in a row for each given
block size. Excluding the first three runtimes due to unstable computing performance, the
remaining runtimes are averaged and used for the average speedup calculation for the
given block size. From this study, it was found that the block size of 64 could produce the
best performance; this is what we used in Sects. 4.1-4.4.

In addition, when the block size is a multiple of 32 threads, i.e., a warp, it was found that
the computing performance is better than the neighboring block sizes, which forms a cycle
of oscillation every 32 threads. This is understandable because threads of 32 are grouped
together and the multiprocessor issues the same instruction to all the threads in a warp in
order to make execution more efficient. This is one of the merits of the GPU architecture.

4.6 Impact of registers per thread on GPU-based YSU PBL scheme

By keeping the block size at 64, the optimized CUDA C version of the YSU PBL scheme
was studied for speedup vs. the number of registers per thread. Similar to the approach pre-
sented in the previous section, given a number of registers per thread, 16 executions of the
CUDA C programs are performed and only the last 13 runtimes are used in calculating the
average speedup. The results are displayed in Fig. 10 for cases with and without coalesced
memory access. This figure shows that the optimal computing performance occurs at 63

19

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

registers per thread for this scheme, and the speedups seem to keep dropping beyond this
number of registers.

4.7 Data transfer between CPU and GPUs

Usually the time consumed by kernel execution is less than the time occupied by the data
transfer between CPU (i.e., host) and GPUs (i.e., devices). Using the optimized CUDA C
programs of the YSU PBL scheme along with the optimal registers/thread = 63 and block
size = 64 just obtained previously, Table 5 lists the GPU runtimes for cases with and without
coalesced memory access. In the YSU PBL scheme, there are 17 3-D-array variables, 17
2-D-array variables, and two 1-D-array variables needed to be input from CPU to GPUs,
amounting to 326 475352 bytes. For the outputs, this scheme need transfer seven 3-D-
array variables and seven 2-D-array variables from GPUs back to the CPU, corresponding
to 134430912 bytes in total. The data size of the outputs is about 41 % of that of the inputs,
which indicates rough consistency with the runtime taken by device-to-host data transfer
as compared to that by host-to-device data copy. This is shown in Table 5, where the 1/O
transfer involved here is synchronous memory access.

This supports the general finding that data transfer between CPU and GPUs takes up
a lot of time, and apparently is a limited factor for the speedup. Since the computation
of this scheme is only one sub-process of the entire WRF model, and what we are more
interested is its speedup with no I/O transfer, for the reasons given in Sect. 4.1.

However, when /O transfer is considered, the use of asynchronous memory access to
overlap CUDA kernel execution with data transfer can be applied. Each Tesla K40 has one
copy engine and one kernel engine, allowing data transfer and kernel execution to overlap.
As commands pipeline, streams execute commands in a manner of first-in-first-out (FIFO)
order. The stream arrangement would result in overlapping CPU-to-GPU and GPU-to-CPU
memory transfers and kernel execution on GPUs with two copy engines. A diagram that
depicts the execution timeline of the YSU PBL computation process is illustrated in Fig. 11,
where the illustrated three streams are in different colors. When asynchronous memory
access is taken into account, the results of computing performance are listed at the last row

20

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

of Table 5. It indicates that using asynchronous access, together with coalesced memory
transfer, seems to help reduce the total runtime for this scheme.

4.8 Output comparison between CPU-based and GPU-based programs

It was found that the GPU-based programs of the YSU PBL scheme were sensitive to
precision. Two key issues we encountered were: special functions such as powf(), expf(),
sqrtf(), and the compiler option for the math calculation. Firstly, when C programs were
converted to CUDA C programs, the special functions taken from GNU C library source
codes must be modified to be used by GPU devices; otherwise incorrect outputs emerge
(in comparison to Fortran outputs) if CUDA C built-in special functions were used. Secondly,
when the compiler option of math calculation, “use fast math” was employed to compile
CUDA C programs, incorrect outputs of some variables would appear, again, as compared
to Fortran outputs. This compiler option made the CUDA C programs run faster, but it could
not produce outputs identical to the Fortran outputs. Thus another math-calculation option
“fmad=false” was chosen.

A mathematical function causing the highest unit in the last place (ulp) difference be-
tween GNU C math library and CUDA C functions is the power function. In Fig. 12, ulp
differences for power function in GPU CUDA C library with and without fast math option are
compared to the GNU C mathematical library. The library function for the power function
is powf(x,y). In the plot, x starts from value 500.37420654296875 and y has a constant
value of 0.9505939483642578125. The spacing of the value x in the plot is non-equal as
each consecutive value is derived from the previous value by adding one ulp to the previ-
ous value. Thus, the plot shows ulp values for 150 consecutive 32-bit floating point values
starting from the first value. For these example values, the ulp ranges from 0 to 10 with fast
math. Without fast math, the maximum ulp value is three. Due to error cascading effects
in the chaotic YSU PBL algorithm, an ulp error of three is capable of causing a large error
in the final output. In order to get exactly the same results for the math functions on GPU
and CPU, we adopted GNU C math libraries for GPU execution by adding CUDA C device
execution qualifiers to the existing C source code.

21

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

The root-mean square error (RMSE) is employed to make a comparison between the
CUDA C outputs of a variable and Fortran outputs of the same variable by aggregating over
all grid-point elements of this variable. The comparison of the maximal RMSE for those
variables having different CUDA C outputs from Fortran outputs are listed in Table 6a. In
addition, as mentioned above, the fast math compiler option, —use_fast_math, may allow us
to execute much faster, but it produces less accurate results. Furthermore, the built-in GPU
CUDA C special functions are also able to make programs run faster, but again with less
accuracy. Table 6b lists the comparison of the speedups for four different running situations.
From these studies, it is found that the option “fmad=false” along with our own modified
special functions can make our CUDA C programs produce outputs identical to Fortran
outputs, albeit with less speedup.

4.9 Multi-GPU implementation

Our multi-GPU setup is displayed in Fig. 13. In this setup, there are two Tesla K40 GPU
cards, each of which has one GPU. Multi-GPU implementation of the YSU PBL scheme
is performed by computing several contiguous j-dimensional values in the arrays within
the same GPU. With asynchronous access taken into account, the optimal numbers of j
dimensions for transfers between CPU and GPUs were found to be 26 for use of one or two
GPUs.

Using the optimal block size = 64 and registers per thread = 63, the YSU PBL scheme
was executed on our multi GPUs setup. Table 7 lists the computation times and speedups
for single GPU and two GPUs with/without I/O transfer and with/without coalesced memory
access. We also ran the Fortran programs using one CPU socket (4 cores), and the runtime
and speedup are also listed in the same table.

5 Summary and future work

In this paper, we develop an efficient parallel GPU-based YSU PBL scheme of the WRF
model using NVIDIA Tesla K40 GPUs. From our study, the communication bandwidth of
22

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

data transfer is one of the main limiting factors for computing performance of CUDA codes
on GPUs. This limitation holds true for other WRF schemes as well. To ameliorate this
problem, several crucial code changes made to improve the computing performance. For
example, we launched L1 cache with more memory than shared memory; some temporary
arrays have been scalarized; and the dependence among the vertical-level components
has been freed. In addition, the effects of threads per block and registers per thread on the
GPU-based YSU PBL scheme were studied. We also discussed how the compiler options
for math calculation would affect the outputs of the GPU-based programs. At the end, we
came up with an optimized GPU-based YSU PBL scheme with outputs identical to the
CPU-based Fortran programs.

When WREF is fully implemented on GPUs, the implementation of input/output transfers
between CPU and GPU(s) will not be needed for each intermediate module. Instead, only
inputs to the first WRF module have to be transferred from CPU to GPU(s), and only the
outputs from the last WRF module will be transferred from GPU(s) to CPU. The YSU PBL
scheme is only one intermediate module of the entire WRF model. Therefore, the speedups
for the YSU PBL scheme are expected to be close to the results presented in the cases
without I/O transfer rather than to those with 1/O transfer.

Using one NVIDIA Tesla K40 GPU in the case without I/O transfer, our optimization efforts
on the GPU-based YSU PBL scheme can achieve a speedup of 193x with respect to one
CPU core, whereas the speedup for one CPU socket (4 cores) with respect to one CPU
core is only 3.5x. We also ran the CPU-based code on one CPU core using exactly the
same optimization along with height dependence release as the GPU-based code, and its
speedup is merely 1.5x as compared to its original Fortran counterpart. In addition, we can
even boost the GPU-based speedup to 360x with respect to one CPU core when two K40
GPUs are applied; in this case, one minute of model execution on dual Tesla K40 GPUs will
achieve the same outcome as six hours of execution on a single core CPU.

Our future work is to continue accelerating other parts of WRF model using GPUs. Even-
tually, we expect to have a WRF model completely running on GPUs. This will provide
a superior performance for weather research and forecasting in the near future.

23

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Acknowledgements. This work is supported by the National Oceanic and Atmospheric Administra-
tion (NOAA) under Grant No. NA1ONES4400013. B. Huang would like to thank Stanley Posey of
NVIDIA for donating Tesla K40 GPUs. The authors are also grateful to James E. Davies of Space
Science and Engineering Center at University of Wisconsin-Madison for professional editing of this
manuscript.

References

Betts, A., Hong, S.-Y., and Pan, H.-L.: Comparison of NCEPNCAR reanalysis with 1987 FIFE data,
Mon. Weather Rev., 124, 1480-1498, 1996.

Bright, D. R. and Mullen, S. L.: The sensitivity of the numerical simulation of the southwest monsoon
boundary layer to the choice of PBL turbulence parameterization in MM5, Weather Forecast., 17,
99-114, 2002.

Continental US (CONUS): WRF V3 Parallel Benchmark Page, Single domain, medium size,
12km CONUS, Oct. 2001, available at: |http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_
Toc212961288, 18 June 2008.

Durran, D. R. and Klemp, J. B.: The effects of moisture on trapped mountain lee waves, J. Atmos.
Sci., 39, 2490-2506, 1982.

Hong, S.-Y. and Pan, H.-L.: Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast
model, Mon. Weather Rev., 124, 2322-2339, 1996.

Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of
entrainment processes, Mon. Weather Rev., 134, 2318-2341, 2006.

Horn, S.: ASAMgpu V1.0 — a moist fully compressible atmospheric model using graphics processing
units (GPUs), Geosci. Model Dev., 5, 345-353, doi:10.5194/gmd-5-345-2012, 2012.

Kim, J. and Mahrt, L.: Simple formulation of turbulent mixing in the stable free atmosphere and
nocturnal boundary layer, Tellus A, 44, 381-394, 1992.

Klingbeil, G., Erban, R., Giles, M., and Maini, P. K.: Fat versus thin threading approach on GPUs:
application to stochastic simulation of chemical reactions, IEEE T. Parall. Distr., 23, 2, 280—287,
doi{10.1109/TPDS.2011.157, 2012.

Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol.,
17, 187-202, 1979.

24

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
http://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961288
http://dx.doi.org/10.5194/gmd-5-345-2012
http://dx.doi.org/10.1109/TPDS.2011.157

Mielikainen, J., Huang, B., Huang, H.-L. A., Goldberg, M. D., and Mehta, A.: Speeding up the com-
putation of WRF double moment 6-class microphysics scheme with GPU, J. Atmos. Ocean. Tech.,
vol 30, 2896—2906, doi:10.1175/JTECH-D-12-00218.1} 2013.

Moeng, C. H. and Sullivan, P. P.: A comparison of shear and buoyancy-driven planetary boundary
layer flows, J. Atmos. Sci., 51, 999-1022, 1994.

Noh, Y., Cheon, W. G., Hong, S.-Y., and Raasch, S.: Improvement of the K-profile model for the
planetary boundary layer based on large eddy simulation data, Bound.-Lay. Meteorol., 107, 401—
427, 20083.

NVIDIA: Tesla GPU Accelerators, available at: http://www.nvidia.com/content/tesla/pdf/
NVIDIA-Tesla-Kepler-Family-Datasheet.pdf, October 2013.

NVIDIA: Tesla K40 versus K20 GPU, available at: |http://blog.xcelerit.com/
benchmarks-nvidia-tesla-k40-vs-k20x-gpu/, November 2013.

Overview of WRF Physics: available at: http:/www2.mmm.ucar.edu/wrf/users/tutorial/201301/
dudhia_physics.pdf, April 2013.

Paz, A. and Plaza, A.: Clusters versus GPUs for parallel automatic target detection in remotely
sensed hyperspectral images, EURASIP J. Adv. Sig. Pr., 35, 18 pp., doi:10.1155/2010/915639,
2010.

Price, E., Mielikainen, J., Huang, M., Huang, B., Huang, H.-L. A., and Lee, T.: GPU-Accelerated
Longwave Radiation Scheme of the Rapid Radiative Transfer Model for General Circulation Mod-
els (RRTMG), IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. (JSTARS), 7, 8, 36603667,
doi{10.1109/JSTARS.2014.2315771,, 2014.

Rustico, E., Bilotta, G., Herault, A., Negro, C. D., and Gallo, G.: Advances in Multi-
GPU Smoothed Particle Hydrodynamics Simulations, IEEE T. Parall. Distr., 25, 1, 43-52,
doi{10.1109/TPDS.2012.340, 2014.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosystem model spin-up using trans-
port matrices to GPUs, Geosci. Model Dev., 6, 17-28, doi:10.5194/gmd-6-17-2013, 2013.

Song, C., Li, Y., and Huang, B.: A GPU-accelerated wavelet decompression system with SPIHT and
Reed-Solomon decoding for satellite images, IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens. (JSTARS), 4, 683—690, doi{10.1109/JSTARS.2011.2159962, 2011.

Troen, |. and Mahrt, L.: A simple model of the atmospheric boundary layer sensitivity to surface
evaporation, Bound.-Lay. Meteorol., 37, 129-148, 1986.

Wei, S.-C. and Huang, B.: GPU acceleration of predictive partitioned vector quantization for ultra-
spectral sounder data compression, IEEE J. Sel. Top. Appl., 4, 677-682, 2011.

25

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

http://dx.doi.org/10.1175/JTECH-D-12-00218.1
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://blog.xcelerit.com/benchmarks-nvidia-tesla-k40-vs-k20x-gpu/
http://blog.xcelerit.com/benchmarks-nvidia-tesla-k40-vs-k20x-gpu/
http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/ dudhia_physics.pdf
http://www2.mmm.ucar.edu/wrf/users/tutorial/201301/ dudhia_physics.pdf
http://dx.doi.org/10.1155/2010/915639
http://dx.doi.org/10.1109/JSTARS.2014.2315771
http://dx.doi.org/10.1109/TPDS.2012.340
http://dx.doi.org/10.5194/gmd-6-17-2013
http://dx.doi.org/10.1109/JSTARS.2011.2159962

Wu, X., Huang, B., Plaza, A., Li, Y., and Wu, C.: Real-time implementation of the pixel purity index
algorithm for endmember identification on GPUs, IEEE Geosci. Remote S., 11, 955-959, 2014.

26

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

IodeJ UOISSNOSI(]

Table 1. GPU runtime and speedup as compared to one single-threaded CPU core for the first
CUDA C version of the YSU PBL scheme, where block size = 64 and registers per thread = 63 are
used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 36.0ms 50.0x
Coalesced 34.2ms 52.6x

27

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 2. GPU runtime and speedup as compared to one single-threaded CPU core for the first
CUDA C version of the YSU PBL scheme after the L1 cache command “cudaFuncCachePreferL1”
is applied, where block size = 64 and registers per thread = 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 34.3ms 52.5x%
Coalesced 33.0ms 54.5%x

28

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 3. GPU runtime and speedup as compared to one single-threaded CPU core after further im-
provement with replacing temporary arrays by scalar variables, where block size = 64 and registers
per thread = 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 22.3ms 80.7 x
Coalesced 21.4ms 84.1x

29

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 4. GPU runtime and speedup as compared to one single-threaded CPU core after releasing
height dependence, where block size = 64 and registers per thread = 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms
Non-coalesced 10.74 ms 167.6 x
Coalesced 9.29ms 193.8x

30

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 5. GPU runtime and speedup as compared to one single-threaded CPU core for data transfer
between CPU and GPIUs, where block size = 64 and registers/thread = 63 are used.

CPU runtime

1800.0 ms

GPU runtime

Non-coalesced Speedup Coalesced Speedup

host to device
kernel execution
device to host
kernel + Sync I/O
with Async I/O

27.26 ms
10.74ms
10.83ms
48.83ms
52.55ms

30.69ms
167.6x 9.29ms
20.39ms
36.9x 60.37ms
34.3x% 54.66 ms

193.8x

29.8x
32.9x%

31

IodeJ UOISSNOSI(]

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

Table 6a. Comparison of maximal RMSE for those variables having different outputs from Fortran
outputs for four different combination cases, where “Spec” stands for special function.

Variables A B C D
Horizontal velocity w component 2.5e-04 1.1e-08 4.1e-06 0
Horizontal velocity v component 2.3e-04 1.0e-08 1.8e-06 0
Potential temperature (6) 5.2e-05 1.0e-07 1.1e-06 O
Mixing ratio of water vapor (gq,) 4.3e-08 1.3e-11 1.5e-09 O
Mixing ratio of cloud water (q.) 1.3e-08 4.7e-14 19e-12 0
Exchange coefficient 3.0e-00 2.9e-06 1.8e-03 O
PBL height 3.9e+02 1.3e-04 28e-02 O

A: -use_fast_math+ CUDA C built-in Spec;
B: -fmad=false + CUDA C built-in Spec;
C: -use_fast_math + our own Spec;

D: -fmad=false + our own Spec.

32

IodeJ UOISSNoSI(]

IodeJ UOISSNoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]

Table 6b. Comparisons of speedups using one GPU for four different combination cases, where
“Spec” stands for special functions. Note that the optimized GPU-based YSU PBL scheme along
with block size = 64 and register/thread = 63 is used in these comparison.

GPU-Based code

running conditions A B C D
Non-coalesced 208.9x 151.6x 193.1x 167.6x
Coalesced 311.2x 167.7x 250.3x 193.8x

A: -use_fast_math+ CUDA C built-in Spec;
B: -fmad=false + CUDA C built-in Spec;
C: -use_fast_math + our own Spec;

D: -fmad=false + our own Spec.

33

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

IodeJ UOISSNOSI(]

Table 7. Results of runtime and speedup for CPU-based and optimized GPU-based YSU PBL
scheme, where block size =64 and registers per thread =63, along with compiler option *“-
fmad=false” as well as our own modified special functions, are used.

IodeJ UOISSNOSI(]

CPU runtime Speedup
One CPU core 1800.0 ms
One CPU socket 509.0ms 3.5x
GPU runtime Speedup
Without 1/0 Non-coalesced Coalesced Non-coalesced Coalesced
1 GPU 10.74 ms 9.29ms 167.6x 193.8x
2 GPUs 5.80ms 4.99ms 310.9x 360.6x
GPU runtime Speedup
Async I/0O Non-coalesced Coalesced Non-coalesced Coalesced
1 GPU 52.55ms 54.66 ms 34.3x% 32.9x
2 GPUs 35.88ms 46.31ms 50.2x 38.9x

34

IodeJ UOISSNoSI(]

IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

A
entrainment
v |PBL Top I
N 1
Non-local mixing
PBL t
t Local mixing
v
ible h |
I Surface Layer Sensible heat flux Latentheat flux ~ .. fion

Figure 1. lllustration of PBL process (Overview of WRF Physics).

35

ITodeJ uOISSNoSI(]

ITode UOISSNOSI(]

ITodeJ UOISSNOSI(]

Tode UOISSNOSI(]

NVIDIA Tesla K40 GPU Device

1D SIourdA

1D AIourdy

=z
=
=
3
e
<
Q
=

SMX 0

SMX 14

[Register File (65,536 x 32bit)]

192 GP CUDA Cores
64 DP Units
32 SF Units

32 LD/ST Units
64 KB Shared
Memory / L1 Cache
48-KB Read-Only
Data Cache

Memory
Bandwidt
288 Gbps;

[Register File (65,536 x 32bit)]

192 GP CUDA Cores
64 DP Units
32 SF Units

32 LD/ST Units

64 KB Shared
Memory / L1 Cache
48-KB Read-Only

Data Cache

1D SIoudA

1) Aloudpy

=z
=
=
3
z
<
Q
=

(

1572 KB L2 Cache

\

3\

~

\.

Global Memory 12.0 GB

/
/ A

Memory Speed: 12 Gbps

Figure 2. Schematic diagram of hardware specification of one NVIDIA Tesla K40 GPU employed in

our study.

< HostcPU >

36

1odeJ woISSNosI(| 1odeJ woISSNasI(] 1odeJ woIssnoasI(|

Tode UOISSNOSI(]

YSU PBL in WRF
Horizontal grid points:
433 x 308

Grid

Block Block e s Block
(0,0) (1, 0)

Thread #/block = 64

I

[7 x 308 blocks needed]

/ \\
Block K@M Block Vh G Block
(0,307) (1,307) 08 (6,307)
N\,
N,
N,

Block (1, 0)

Figure 3. Three-level thread hierarchy of a device for one GPU utilized in our study: threads, thread

block, and grids of block.

37

1odeg uworssnosyq | 1odeq worssnostyq | 1odeq uorssnosyq | Iedeq UWOISSNOSI(T

Equations presented in Section 2

are executed in one thread for
each grid point Idim = 433, Jdim = 308, Kdim = 35

idim=433 ()

Figure 4. Mapping of the CONUS domain onto one GPU thread-block-grid domain, where the size
of the CONUS domain is 433 x 308 horizontal grid point with 35 vertical levels.

38

ITodeJ uOISSNoSI(]

ITode UOISSNOSI(]

ITodeJ UOISSNOSI(]

Tode UOISSNOSI(]

Register Memory]

CUDA Cores

Shared
Memory

Read-Only Data Cache

f[SMX \

[L2 Cache

(R

Command cudaFuncCachePreferlL1
Is Not launched

Qabal Memory /
_ J

39

\Global Memory
|

=

Register Memory]

CUDA Cores

Shared
Memory

Read-Only Data Cache

[L2 cache]

()

Command cudaFuncCachePreferL1
Is launched

Figure 5. Memory allocation of L1 cache and shared memory by launching “cudaFuncCacheP-
referL.1” or not.

1odeg worssnosyq | TodeJ wOISSNOSI(]

1odeJ UOISSNoSI(]

1odeJ UOISSNOSI(]

CPU-based codes GPU-based codes
xafi, k,j) e xafi, k, j)
xblfi, k) ~— yh1(i k)
xb2(k, i) e xb2(i k,)
xc(k)) XC(i K, j)
xe(i, j)) e, j)

Figure 6. lllustration for re-arranging arrays in CPU-based implementation to 3-D and 2-D arrays in
GPU-based implementation, where regular mathematical array syntax is used to express the arrays.

40

| 1edeq uorssnosyq | 1odeg worssnosiq | Todeq uorssnosyq | Iedeg UWOISSNOSI(T

I Example of Fortran codes
doi=i_start, i_end
doj =j_start, j_end

do k = k_start, k_end
xa(i, k, i) =....
xb(i, k, j) =
xc(i, k, j) =
enddo !kloop
enddo Ijloop
end do liloop

doi=i_start, i_end
doj=j_start, j_end
do k = k_start, k_end
va(i, k, i) = wue
yb(i, k, j) =
ye(i, k, j) = ...
enddo !k loop
enddo I'jloop
enddo liloop

doi =i_start, i_end
doj=j_start, j_end
do k = k_start, k_end

zc(i, k, j) = xc(i, k, j) + ye(i, k, j)
enddo ! kloop
end do Ijloop

za(i, k, i) = xa(i, k, j) + ya(i, k, j)
zb(i, k, j) = xb(i, k, j) + yb(i, k, j)

| Example of CUDA C codes |
// Declare scalar variables
les

float xa, xb, xc; // replace original array variab!
float ya, yb, yc; // replace original array variables

i = threadldx.x + blockldx.x * blockDim.x ;
j = blockldx.y ;

If (j >= j_start && j<=j_end) {
if (i>=i_start && i<=i_end){
for (k = k_start; k<= k_end; k++) {
// calculate scalar variables xa, xb, xc
// calculate scalar variables ya, yb, yc
........ // calculation statements
za(i, k,j)=xa+ya;
zb(i, k, j) =xb + yb;
zc(i, k, j) = xc + yc;
} // endofkloop
} // end of | loop
} // end of j loop

xa(i, k, j), xb(i, k, j), xc(i, k, j), and

va(i, k, j), yb(i, k, j), yc(i, k, j) in Fortran codes
have been scalarized to be

xa, xb, xc, and

ya, yb, yc

za(i, k, j), zbl(i, k, j), zc(i, k, j) are assumed as
un-scalarized

1odeJ UOISSNOSI(T 1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(]

K end do liloop /

Figure 7. lllustration of scalarizing temporary arrays by scalar variable in order to recalculate values
in the local memory rather than transferring them from global memory to local memory. In this
illustration , xa, xb, xc, ya, yb, yc are assumed to be scalarable, but za, zb, zc are assumed to be
un-scalarizable. Note that the regular mathematical array syntax is used to express the arrays.

41

1odeJ UOISSNOSI(T

Example of Original Feature
// Declare local array variable I
float *xarray, *yarray : -
float a, b, c, d; I

i = threadldx.x + blockIdx.x + blockDim.x ;
J = blocklIdx.y ; 1

If (j >=j start && j<=j end) { 1
If(i>=i start && i<=i end) {

for (k=k start+1; k<=k end; k++) {

...... // some calculation statements 1

xarray(i, k, j) = -

a * xarray(i, k, j) + b * xarray(i , k-1, j) ... ; 1

...... // some calculation statements I

}+ // end of k loop

for (k =k _end -1; k >=k_start ; k—) {
...... // some calculation statements |
yarray(i, k, j) = .
c*yarray(i, k+1, j) + d*yarray(i, k, j) : I
...... // some calculation statements I
} // end of k loop

Example of Modified Feature
// Declare local array & scalar variables
float *xarray, *yarray :
float x_prev, x_curr, a, b ;
float y prev, y curr, ¢, d;

if (j>=j_start && j<=j end) {
if(i>=1i start && i<=i end) {
x prev = xarray(i, 1,]) ;

for (k = k_start+1; k <=k _end; k++) {
...... // some calculation statecments
Xx_next = xarray(i, k, j) ;
xarray(i, k, j) =

a*x_next + b*x_prev ...;

| // some calculate statements
v X_prev = x_next ;
} // end of k loop

y_next = yarray(i, k_end, j) ;
for (k =k _end-1; k >=k_start; k--) {
...... // some calculation statements
y_prev = yarray(i, k. j) ;
yarray(i, k, j) =
c*y next +d*y prev ... ;

I & ... // some calculation statements
u y_next =y_prev ;
. } // end of k loop

1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(]

Figure 8. lllustration for how to release height dependence in order to reduce the access time to
global memory for those temporary arrays which have dependence among the (k — 1)th, kth, and
(k + 1)th components. The left (right) figure is the original (modified) CUDA program.

42

1odeJ UOISSNOSI(T

200

150~

Best performance occurs at
Threads per Block = ¢4

50 Il with coalesced memory access
[Ino coalesced memory access
Registers per Thread - 63
is used in this study
0

50 100 150

200

250 300

Threads per Block (Block size)

Figure 9. Speedup vs. threads per block (block size) for optimized GPU-based YSU PBL scheme.

43

IodeJ UOISSNOSI(] IodeJ UOISSNoSI(] IodeJ UOISSNOSI(]

IodeJ UOISSNOSI(]

200 T T T

150

Registers per Thread = 63

Best performance occurs at

50 [l with coalesced memory access
[""Ino coalesced memory access
Threads per block = ¢4
is used in this study
0
20 40 60 80 100 120 140
Registers per Thread

Figure 10. Speedup vs. registers per thread for optimized GPU-based YSU PBL scheme.

44

1odeJ UOISSNOSI(T 1odeJ UOISSNOSI(T

1odeJ UOISSNOSI(]

1odeJ UOISSNOSI(T

Device-to-Host
Memory transfer| Memory transfer

Device-to-Host
Memory transfer,

Host-to-Device Ho
Memory transfer | N

Kernel
Engine

CUDA kernel

CUDA kernel

Time

Figure 11. Asynchronous memory transfer among host-to-device memory transfer, GPU kernel ex-
ecution, and device-to-host memory transfer.

45

1odeg uworssnosyq | 1odeq worssnostyq | 1odeq uorssnosyq | Iedeq UWOISSNOSI(T

—no fast math —fast math

| LA
/ /

LA IRTAAY]
| M

: [VWAN

x values for 150 consecutive 32-bit floating points

ulp

Figure 12. Unit in the last place error for power function. Both fast math and no fast math GPU
options are compared to the GNU C math library.

46

1odeg uworssnosyq | 1odeq worssnostyq | 1odeq uorssnosyq | Iedeq UWOISSNOSI(T

K40
GPU 0O

12.0GB
Global
Memory

CPU

32 GB Memory

16x lanes

Figure 13. Schematic diagram of our multi-GPU setup.

47

16x lanes

$

PCle 3.0

K40
GPU1

12.0 GB
Global
Memory

ITodeJ uOISSNoSI(]

ITode UOISSNOSI(]

ITodeJ UOISSNOSI(]

Tode UOISSNOSI(]

