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Abstract. The planetary boundary layer (PBL) is the lowest part of the atmosphere and where its

character is directly affected by its contact with the underlying planetary surface. The PBL is re-

sponsible for vertical sub-grid-scale fluxes due to eddy transport in the whole atmospheric column.

It determines the flux profiles within the well-mixed boundary layer and the more stable layer above.

It thus provides an evolutionary model of atmospheric temperature, moisture (including clouds), and5

horizontal momentum in the entire atmospheric column. For such purposes, several PBL models

have been proposed and employed in the weather research and forecasting (WRF) model of which

the Yonsei University (YSU) scheme is one. To expedite weather research and prediction, we have

put tremendous effort into developing an accelerated implementation of the entire WRF model using

Graphics Processing Unit (GPU) massive parallel computing architecture whilst maintaining its ac-10

curacy as compared to its CPU-based implementation. This paper presents our efficient GPU-based

design on WRF YSU PBL scheme. Using one NVIDIA Tesla K40 GPU, the GPU-based YSU PBL

scheme achieves a speedup of 193× with respect to its Central Processing Unit (CPU) counterpart

running on one CPU core, whereas the speedup for one CPU socket (4 cores) with respect to one

CPU core is only 3.5×. We can even boost the speedup to 360× with respect to one CPU core as15

two K40 GPUs are applied.

1 Introduction

The science of meteorology explains observable weather events, and its application is weather fore-

casting. Nowadays, sophisticated instruments are used for observations from upper air atmosphere.

The collected quantitative data about the current state of the atmosphere are then used to predict20

future states. This requires the aid of equations of fluid dynamics and thermodynamics that are

based on laws of physics, chemistry, and fluid motion. The weather research and forecasting (WRF)

(http://www.wrf-model.org/index.php) model meets such a requirement, which is a simulation pro-

gram consisting of several different physical processes and dynamic solvers. It is designed to serve

the needs of both operational forecasting and atmospheric research.25
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The WRF system supports some of the best possible models for weather forecasting. Neverthe-

less, a continual challenge for timely weather forecasting is forecast model execution speed. This is

a challenge even with the fastest supercomputers, in particular for severe weather events.

With the advent of GPU architectures, the execution speed of weather forecasting models can be

greatly increased by taking advantage of the parallelism feature of GPUs. GPUs have hundreds of30

parallel processor cores for execution on tens of thousands of parallel threads. Furthermore, GPUs

possess several merits, such as low cost, low power, large bandwidth, and high performance. These

make GPUs more effective than a massively parallel system built from commodity CPUs. Usage of

GPUs has been applied very successfully to deal with numerous computational problems in various

domains, for instance, porting marine ecosystem model spin-up using transport matrices to GPUs35

(Siewertsen et al., 2013), GPU-accelerated longwave radiation scheme of the rapid radiative trans-

fer model for general circulation models (RRTMG) (Price et al., 2014), advances in multi-GPU

smoothed particle hydrodynamics simulations (Rustico et al., 2014), speeding up the computation

of WRF double moment 6-class microphysics scheme with GPU (Mielikainen et al., 2013), real-

time implementation of the pixel purity index algorithm for endmember identification on GPUs40

(Wu et al., 2014), fat vs. thin threading approach on GPUs: application to stochastic simulation of

chemical reactions (Klingbeil et al., 2012), ASAMgpu V1.0 – a moist fully compressible atmo-

spheric model using graphics processing units (GPUs) (Horn, 2012), GPU acceleration of predictive

partitioned vector quantization for ultraspectral sounder data compression (Wei, 2011), clusters vs.

GPUs for parallel automatic target detection in remotely sensed hyperspectral images (Paz et al.,45

2010), a GPU-accelerated wavelet decompression system with SPIHT and Reed-Solomon decoding

for satellite images (Song, 2011), to name several.

To expedite weather analysis research and forecasting, we have put tremendous efforts into de-

veloping an accelerated implementation of the entire WRF model using Graphics Processing Unit

(GPU) massive parallel architecture whilst maintaining its accuracy as compared to its CPU-based50

implementation. This study develops an efficient GPU-based design on the Yonsei University (YSU)

planetary boundary layer scheme, which is one of physical models in WRF. The PBL is responsible

for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column. It deter-

mines the flux profiles within the well-mixed boundary layer and the more stable layer above, and

thus provides an evolutionary model of atmospheric temperature, moisture (including clouds), and55

horizontal momentum in the entire atmospheric column.

This paper is structured as follows. Section 2 describes YSU PBL scheme. Section 3 outlines the

GPU hardware specification as well as a brief description of the basis of CUDA computing engine

for GPUs. The GPU-based implementation is also given in Sect. 3. The development of optimizing

the GPU-based YSU PBL scheme is presented in Sect. 4. Summary and future work is given in60

Sect. 5.
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2 YSU PBL scheme

The scheme of YSU is one of the PBL models in WRF. The PBL process is illustrated in Fig. 1.

Based on reference (Hong et al., 2006), a brief description of the YSU PBL scheme is presented

below.65

2.1 Mixed-layer diffusion

The momentum diffusivity coefficient is formulated based on the work done in references (Troen

et al., 1986; Hong et al., 1996; Noh et al., 2003):

Km = kwsz
(

1− z

h

)p

, (1)

where p is the profile shape exponent taken to be 2, k the von Karman constant (= 0.4), z the height70

from the surface, and h the PBL height. The mixed-layer velocity scale is given as

ws =
(
u3∗+ϕmkw

3
∗bz/h

)1/3
, (2)

where u∗ is the surface frictional velocity scale, ϕm the wind profile function evaluated at the top of

the surface layer, and w∗b the convective velocity scale for the moist air which is defined as

w∗b = [(g/θva)(w′θ′v)0h]
1/3

.75

The counter-gradient term for θ and momentum is given by

λc = b

(
w′θ′v

)
0

ws0h
, (3)

where (w′θ′v)0 is the corresponding surface flux for θ, u, and v, and b the coefficient of proportion-

ality which will be derived below. The mixed-layer velocity scale ws0 is defined as the velocity at

z = 0.5h in Eq. (2).80

The eddy diffusivity for temperature and moisture Kt is computed from Km in Eq. (1) by using

the relationship of the Prandtl number (Noh et al., 2003), which is given by

Pr = 1 + (Pr0− 1)exp[−3(z− εh)2/h2], (4)

where Pr0 = (ϕt/ϕm+bkε) is the Prandtl number at the top of the surface layer given by references

(Troen et al.,1986; Hong et al., 1996). The ratio of the surface layer height to the PBL height, ε, is85

specified to be 0.1.

To satisfy the compatibility between the surface layer top and the bottom of the PBL, identical

profile functions are used to those in surface layer physics. First, for unstable and neutral conditions

[(w′θ′v)0 ≥ 0],

ϕm =

(
1− 16

0.1h

L

)−1/4
for u and v, (5a)90

ϕt =

(
1− 16

0.1h

L

)−1/2
for θ and q, (5b)
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while for the stable regime [(w′θ′v)0 < 0],

ϕm = ϕt =

[
1 + 5

0.1h

L

]
, (6)

where h is, again, the PBL height, and L the Monin Obukhov length scale. To determine the factor

b in Eq. (3), the exponent of −1/3 is chosen to ensure the free convection limit. Typically L ranges95

from −50 to 0 in unstable situations. Therefore, we can use the following approximation:

ϕm =

(
1− 16

0.1h

L

)−1/4
'
(

1− 8
0.1h

L

)−1/3
. (7)

Following the work in references (Noh et al., 2003; Moeng et al., 1994), the heat flux amount at the

inversion layer is expressed by(
w′θ′

)
h

=−e1w3
m/h, (8)100

where e1 is the dimensional coefficient (= 4.5 m−1 s2K), wm the velocity scale based on the

surface layer turbulence (w3
m = w3

∗+ 5u3∗), and the mixed-layer velocity scale for the dry air

w∗ = [(g/θa)(w′θ′0)h]1/3. Using a typical value of θa at 300 K, the gravity at 10 ms−2, and the

limit of u∗ = 0 in the free convection limit, Eq. (8) can be generalized for the moist air with a non-

dimensional constant, which can be expressed by105 (
w′θ′v

)
h

=−0.15

(
θva
g

)
w3

m/h, (9)

where wm considers the water vapor driven virtual effect for buoyancy flux. Given the buoyancy flux

at the inversion layer, Eq. (9), the flux at the inversion layer for scalars θ and q, and vector quantities

u and v, are proportional to the change in each variable at the inversion layer:(
w′θ′

)
h

= we∆θ|h, (10a)110 (
w′q′

)
h

= we∆q|h, (10b)(
w′u′

)
h

= Prhwe∆u|h, (10c)(
w′v′

)
h

= Prhwe∆v|h, (10d)

respectively. Here we is the entrainment rate at the inversion layer, which is expressed by

we =

(
w′θ′v

)
h

∆θv|h
, (11)115

where the maximum magnitude of we is limited to wm to prevent excessively strong entrainment in

the presence of too small of a jump in θv in the denominator. The Prandtl number at the inversion

layer Prh is set as 1. Meanwhile, the flux for the liquid water substance at the inversion layer is

assumed to be zero.

Following the reference (Hong et al., 1996), h is determined by checking the stability between120

the lowest model level and levels above considering the temperature perturbation due to surface
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buoyancy flux, which is expressed by,

θv(h) = θva + θT

[
= a

(w′θ′v)0
ws0

]
, (12)

where a is set to 6.8, the same as the b factor in Eq. (3). In Eq. (2), θT ranges less than 1 K under clear-

sky condition where θv(h) is the virtual potential temperature at h. The quantity a is an important125

parameter in the new scheme. Numerically, h is obtained by two steps. First, h is estimated by

h= Ribcr
θva|U(h)|2

g[θv(h)− θs]

without considering θT , where Ribcr is the critical bulk Richardson number, U(h) the horizontal

wind speed at h, θva the virtual potential temperature at the lowest model level, θv(h) the virtual

potential temperature at θv(h), and θs the near the surface temperature. This estimated h is utilized130

to compute the profile functions in Eqs. (5)–(7), and to compute the ws0, which is estimated to be

the value at z = h/2 in Eq. (2). Secondly, using ws0 and θT in Eq. (12), h is revised by checking

the bulk stability, Eq. (12), between the surface layer (lowest model level) and levels above. With

the revised h and ws0, Km is obtained by Eq. (1), entrainment terms in Eqs. (9)–(11), and Kt by the

Prandtl number in Eq. (4). The counter gradient correction terms for θ in Eq. (4) are also obtained135

by Eq. (3).

2.2 Free atmosphere diffusion

The local diffusion scheme, the so-called local K approach (Louis, 1979) is utilized for free atmo-

spheric diffusion above the mixed layer (z > h). In this scheme, the effects of local instabilities in the

environmental profile and the penetration of entrainment flux above h irrespective of local stability140

are both taken into account within the entrainment zone and the local K approach above.

In the reference (Noh, 2003), the diffusion coefficients for mass (t : θ,q) and momentum (m : u,v)

are expressed by

Kt_ent =
−
(
w′θ′v

)
h

(∂θv/∂z) h

exp

[
− (z−h)2

δ2

]
, (13a)

Km_ent = Prh
−
(
w′θ′v

)
h

(∂θv/∂z) h

exp

[
− (z−h)2

δ2

]
, (13b)145

and the thickness of the entrainment zone can be estimated as

δ/h= d1 + d2Ri−1con, (14)

where wm is the velocity scale for the entrainment, Ricon the convective Richardson number at the

inversion layer: Ricon = [(g/θva) h∆θv_ent]/w
2
m, and constants d1 and d2 are set as 0.02 and 0.05,

respectively.150
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Following references (Noh, 2003; Louis, 1979), the vertical diffusivity coefficients for momentum

(m : u,v) and mass (t;θ,q) above h are represented as,

Km_loc,t_loc = l2fm,t(Rig)

(
∂U

∂z

)
, (15)

in terms of the mixing length l, the stability function fm,t(Rig), and the vertical wind shear, |∂U/∂z|.
The stability functions fm,t are represented in terms of the local gradient Richardson number Rig.155

For the non-cloudy layer,

Rig =
g

θv

[
∂θv/∂z

(∂U/∂z)2

]
. (16a)

For the cloudy air, Rig is modified for reduced stability within cloudy air, which is expressed by

(Durran et al., 1982)

Rigc =

(
1 +

Lvqv
RdT

)[
Rig− g2

|∂U/∂z|2
1

cpT

(A−B)

(1 +A)

]
, (16b)160

where A= L2
vqv/cpRvT

2 and B = Lvqv/RdT . The computed Rig is truncated to −100 to prevent

unrealistically unstable regimes. The mixing length scale l is given by

1

l
=

1

kz
+

1

λ0
, (17)

where k is the von Karman constant (= 0.4), z the height from the surface, and λ0 is the asymptotic

length scale (= 150 m) (Kim et al., 1992). The stability function, fm,t(Rig), differ for stable and165

unstable regimes. The stability formulas from NCEP MRF model (Betts et al., 1996) are used. For

the stably stratified free atmosphere (Rig > 0),

fm,t(Rig) =
1

(1 + 5Rig)2
, (18)

and the Prandtl number is given by,

Pr = 1.0 + 2.1 = Rig. (19)170

For the neutral and unstably stratified atmosphere (Rig≤ 0),

ft(Rig) = 1− 8Rig
1 + 1.286

√
−Rig

, (20a)

fm(Rig) = 1− 8Rig
1 + 1.746

√
−Rig

. (20b)

For the entrainment zone above h, the diffusivity is determined by geometrically averaging the two

different diffusivity coefficients from Eqs. (13) and (14), and is expressed by,175

Km,t = (Km,t_entKm,t_loc)
1/2. (21)

Equation (21) represents not only the entrainment, but also the free atmospheric mixing when the

entrainment above the bottom of the inversion layer is induced by vertical wind shear at PBL top.
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With the diffusion coefficients and counter-gradient correction terms computed in Eqs. (1)–(21), the

diffusion equations for all prognostic variables (C,u,v,θ,qv, qc, qi) expressed as, for example for C,180

∂C

∂t
=

∂

∂z

[
kc

(
∂C

∂z
− γc

)
−
(
w′c′

)
h

( z
h

)3
]

(22)

and can be solved by an implicit numerical method (Bright et al., 2002) that has been built in the

WRF model. Here C is heat capacity, u and v are horizontal velocity components, θ is the potential

temperature, qv , qc, and qi are the mixing ratios of water vapor, cloud, and cloud ice respectively.

Note that the term −(w′c′)h( z
h )3 is an asymptotic entrainment flux term at the inversion layer and185

is not included in the MRF PBL model (Hong et al., 1996).

Since there are no interactions among horizontal grid points, the WRF YSU PBL scheme is highly

suited to massively parallel processing and great speed advantage can be expected. What follows is

a presentation of our GPU-based development on YSU PBL scheme.

3 GPU hardware specification190

3.1 GPU device specification and basis of CUDA engine

We developed the massively parallel GPU version of the YSU PBL scheme using NVIDIA Tesla K40

GPUs (NVIDIA Tesla GPU; NVIDIA Tesla K40), while Intel Xeon CPU E5-2603 at 1.8 GHz is used

for executing its counterpart CPU-based program for speedup comparison. The clock frequencies of

memory and GPU processor (in boost mode) are at 3004 and 875 MHz for K40, respectively. One195

Tesla K40 GPU has 15 Streaming Multiprocessors (SMX). Each SMX units has 192 CUDA cores,

amounting to 2880 cores. The hardware specification employed in our study is depicted in Fig. 2. In

contrast, our CPU system has two sockets, each of which has four cores.

CUDA C is an extension to the C programming language and which offers a direct programming

in the GPUs. It is designed such that its construction allows for execution in a manner of data-level200

parallelism. A CUDA program is arranged into two parts: a serial program running on the CPU and

a parallel part running on the GPU, where the parallel part is called a kernel. The driver, in the C lan-

guage, distributes a large number of copies of the kernel into available multiprocessors and executes

them simultaneously. The CUDA parallel program automatically utilizes more parallelism on GPUs

when there are more processor cores available. A CUDA program consists of three computational205

phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and

delivery of results from the GPU into the memory of the CPU.

From the viewpoint of CUDA programming, a thread is the basic atomic unit of parallelism.

Threads are organized into a three-level hierarchy. The highest level is a grid, which consists of

thread blocks. A grid is a three-dimensional array of thread blocks. A domain of 2-dimensional210

horizontal grid points, 433× 308, is adopted in the YSU PBL scheme (see Sect. 3.2), which implies

that 433× 308 threads are required if one GPU is used. Each thread executes the whole numerical
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calculation of equations described in Sect. 2. Given the block size (i.e., number of threads per block)

of 64 available, this suggests that one needs 7×308 blocks. Figure 3 illustrates the three-level thread

hierarchy of a device for one GPU that was implemented in our study. Thread blocks implement215

coarse-grained scalable data parallelism and they are executed independently, which permits them

to be scheduled in any order across any number of cores. This allows the CUDA program to scale

with the number of processors.

The execution of CUDA programs can be achieved more efficiently in GPUs if the global memory

is maximized and the number of data transactions is minimized. This can be accomplished through220

the global memory access by every 16 threads grouped together and coalesced into one or two

memory transactions. This is the so-called coalesced memory access, which can be more effective if

adjacent threads load or store contiguous data, and are aligned in memory. To enable the coalesced

global memory access, the function in NVIDIA CUDA library “cudaMallocPitch” is used to pad

the data, which would enhance the data transfer sizes between host and device.225

Threads of 32 are arranged together in execution, which are called a warp, while global memory

loads and stores by half of a warp (i.e., 16 threads). A CUDA program group inside a multiprocessor

issues the same instruction to all the threads in a warp. Different global memory accesses are coa-

lesced by the device in as few as one memory transaction when the starting address of the memory

access is aligned and the threads access the data sequentially. An efficient use of the global memory230

is one of the essences for a high performance CUDA kernel.

3.2 GPU-based implementation

The current WRF programs are written in the Fortran language. To develop a GPU-based and par-

allel implementation, the Fortran programs of YSU PBL scheme are first translated to standard C

programs, followed by converting the C into CUDA C that can run on GPUs efficiently. Three major235

reasons for doing this in this way are (i) to ensure correct results, (ii) to make the difference between

C and CUDA C implementations to be very small, and (iii) to allow conversion from C programs to

CUDA C programs in a short time.

To test whether the programming of the YSU PBL scheme is correct, we used a CONtinental

United States (CONUS) benchmark data set, a 12 km resolution domain, collected on 24 Octo-240

ber 2001 (CONUS website). This is a 48 h forecast over the continental US capturing the develop-

ment of a strong baroclinic cyclone and a frontal boundary that extends from north to south across

the entire US. The WRF domain is a geographic region of interest discretized into a 2-dimensional

grid point parallel to the ground, which are labeled as (i, j) in the WRF codes and in the following

discussion. Each grid point deals with multiple levels, corresponding to various vertical heights in245

the atmosphere, which is denoted as k in both the programs and in the discussion presented below.

The size of the CONUS 12 km domain is 433× 308 horizontal grid points with 35 vertical levels.

Figure 4 exemplifies the mapping of CONUS domains onto one GPU thread-block-grid domain.
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In generating correct C programs from Fortran, followed by the conversion from C to CUDA C,

considerable care must be taken. First of all, Fortran array-indexing uses non-zero indices as the first250

index and these have to be converted into C/CUDA C arrays using zero-based indexing. That is, the

first index value of the Fortran arrays in WRF codes is 1 or non-zero value, while that of a C/CUDA

C array is 0. Secondly, some temporary array variables are replaced by scalar variables re-computed

on GPU memory as needed and stored in local register memory; we call these scalarable. This is done

because re-calculating values in GPU threads (i.e., local register memory) is faster than transferring255

them from a relatively slower global memory.

The third area for special care relates to the handling of the horizontal grid point (i, j) inside the

kernel. When translating C programs to CUDA C programs, the loops for spatial grid points (i, j)

are replaced by index computations using thread and block indices:

i= threadIdx .x + blockIdx .x × blockDim.x260

j = blockIdx .y

where threadIdx and blockIdx are thread index and block index respectively, and blockDim the di-

mensional size of a block. Each grid point (i, j) represents a thread in CUDA C programs. Hence,

there are two purposes for decomposing the domain in this way. One is to make the execution in

each thread independent from one another, and the other is to compute values for all vertical levels265

(i.e., all k components in the CUDA C programs) in one spatial grid position, (i, j). There are no in-

teractions among horizontal grid points, according to the physical model described in Sect. 2, which

means that this computationally efficient thread and block layout is permissible.

Fourthly, to check whether a kernel is launched successfully, one way to do this is to call cudaGet-

LastError(). If the kernel launch fails, this command would report error messages right after CUDA270

kernel launch. Finally, once a kernel is successfully launched, to obtain the correct GPU execution

runtime, command cudaThreadSynchronize() must be called.

The default compiler options from WRF were used to compile the Fortran and C versions of

the YSU PBL scheme. For Fortran programs, we used gfortran along with compiler options: -O3 -

ftree-vectorize -ftree-loop-linear -funroll-loops. For C programs, we used gcc with compiler options:275

-O3 -ftree -vectorize -ftree-loop-linear -funroll-loops -lm. We have first verified that the outputs

of C programs were identical to those of the Fortran programs using the same level of compiler

optimization.

When the first CUDA C version of the YSU PBL scheme, directly translated from C version with-

out any optimization, was ready, we examined features of the original Fortran programs to discover280

further optimization opportunities. We will present the evolution of this scheme from a CPU basis to

a parallel GPU basis in the next section.
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4 Development of GPU-based YSU PBL scheme

4.1 Premise for optimizing GPU-based YSU PBL scheme

To perform the GPU-based YSU PBL scheme, the CUDA C programs were compiled using nvcc285

(NVIDIA CUDA compiler) version 6.0 and executed on one Tesla K40 GPU with compute capability

3.5. The compiler options are –O3 –gpu-architecture sm 35 -fmad=false -m64 –maxrregcount 63 –

restrict. The value of 63 means the number of registers per thread, which was randomly picked

at present. Besides, the thread block size (i.e., threads per block) was chosen as 64 at this stage.

The effects of block size and registers per thread for performing this scheme will be discussed in290

Sects. 4.5 and 4.6 respectively. Table 1 lists the runtime and speedup of this first-version GPU-

based scheme, where the speedup is calculated as GPU runtime as compared to its CPU counterpart

running on one CPU core of an Intel Xeon E5-2603. The same definition of speedup calculation is

used in subsequent discussions.

Before we go further to present our optimizations on the GPU-based YSU PBL scheme, a couple295

of things are worthwhile to mention. The computation of this scheme is merely one intermediate

module of the entire WRF module. When WRF is fully implemented on GPUs, the inputs of this

intermediate module will not have to be transferred from CPU memory. Instead, they will be results

from previous WRF module. Similarly, outputs of this will be inputs to next WRF module. Hence,

transfers to/from CPU memory are not involved in this intermediate module during its computation.300

In the studies presented in Sects. 4.1–4.8, I/O transfer timings are turned off. The results of com-

puting performance with I/O transfer and multi GPUs will be given in Sect. 4.9. In each evolution

of optimization, the correctness of CUDA C outputs must be verified in comparison to the original

Fortran outputs.

4.2 Optimization with more L1 cache305

For each Tesla K40 GPU (see Fig. 2), every SMX has a data cache, which is shared among CUDA

cores. The data cache can be configured as 16 KB software-managed cache called shared memory

and 48 KB hardware cache (L1) or the other way around, or both can share equally the memory, i.e.

32 KB each.

To employ more L1 cache than shared memory, a command “cudaFuncCachePreferL1” was310

launched in our CUDA C programs. In contrast, without this command indicates less L1 cache than

shared memory. Figure 5 depicts the memory allocation between L1 cache and shared memory with

and without launching L1 cache command.

Starting with the first CUDA C version of the YSU PBL scheme, the computing performances

with L1 cache command was found to be better than that without this command, while the latter315

performance was noticed to be almost the same as that using “cudaFuncCachePreferShared” com-

mand. This suggests that usage of more L1 cache helps to speed up the CUDA C programs for
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this scheme. The GPU runtime and speedup are summarized in Table 2 after L1 cache command

“cudaFuncCachePreferL1” is launched.

4.3 Optimization with scalarizing temporary arrays320

Due to the parallelism architecture in CUDA programs, each thread must have its own local copy of

the temporary array data. For instance, for 3-dimensional arrays, when they are converted from CPU-

based implementation to GPU-based implementation, they are retyained as 3-dimensional, but 1-

dimensional and 2-dimensional arrays that involve with k (height) components must be re-arranged

as 3-dimensional arrays in GPU-based implementation; otherwise, the access to the contents of the325

arrays could be some other computed values from other threads. One special case is that the 2-

dimensional arrays with (i, j) elements, are still kept as arrays with (i, j) elements because what

each thread deals with is the grid point (i, j). By so arranging arrays, which is necessary in GPU-

based implementation, memory usage is considerably increased, and the computing performance

degraded. Figure 6 illustrates the concepts of such array re-arrangement.330

One solution of such a problem is to reduce the use of loop operation in the CUDA programs by

merging several loop operations into one single loop operation. With this approach, some scalarable

temporary arrays are replaced by scalar variables. Owing to the structure of the WRF model, this

approach can only be applicable to those scalarable temporary arrays in the vertical-level (i.e., k)

components, not in the grid-point component (i.e., i or j). The scalar variables are re-computed335

in fast local memory, rather than in the slower global memory, in order to reduce the access time.

This approach of diminishing the number of loop operations is applicable to CPU-based programs.

However, the computation are still executed in one single-threaded core by looping through all hor-

izontal grid points (i, j), and it would not much speed up the computing performance. In contrast,

this loop-reduction approach is extremely useful for GPU-based programs due to its multi-threaded340

nature.

Figure 7 illustrates the concept presented here. This reduces the transferring of data from global

memory and delivers significant time savings. For this YSU PBL scheme, such replacement of tem-

porary arrays by scalar variables drops the temporary arrays from 68 down to only 14 arrays, and

apparently enhances the computing performance by a lot. Table 3 summarizes the GPU runtime and345

speedup after scalarizing most of temporary arrays.

4.4 Optimization with height dependence release

The remaining 14 local arrays present difficulties because the k components of the vertical heights

are not independent with one another. This can be seen from Eq. (22) when one tries to solve the

diffusion equations for those prognostic variables (C,u,v,θ,qv, qc, qi), where there is dependence350

in the vertical z level (i.e., k component in the codes). These 14 local arrays are involved in the

final solution calculation for those prognostic variables. For the first part of these 14 array variables
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involved, the calculation of the kth component depends on the input of the (k− 1)th component.

This is to calculate the contents inside the brackets in Eq. (22), which is a differential equation as

a function of the vertical height and is related to calculations in Eqs. (1)–(21). For the second part,355

the calculation of the kth component needs inputs from the (k+1)th component. This is to carry out

the final results for those prognostic variables, which is again a derivative equation with respect to

the vertical height.

About one third of the original Fortran programs appears to involve dependencies among (k−1)th,

kth, and (k+ 1)th components. Figure 8 describes the conceptual idea for how to release the height360

dependence in order to reduce the access time to the global memory. This is the most time-consuming

part in the physical programs. Table 4 gives the GPU runtime and speedup after the release of the

height dependence.

4.5 Impact of block size on GPU-based YSU PBL scheme

The impact of the thread block size on the computing performance of the GPU-based YSU PBL365

scheme was evaluated by varying the block size while keeping the registers per thread at 63. Figure 9

shows the speedup of the optimized CUDA C programs (see Sects. 4.2–4.4) vs. the block size for

cases with and without coalesced memory access. To obtain this plot, 16 executions of the CUDA

C programs are executed in a row for each given block size. Excluding the first three runtimes due

to unstable computing performance, the remaining runtimes are averaged and used for the average370

speedup calculation for the given block size. From this study, it was found that the block size of 64

could produce the best performance; this is what we used in Sects. 4.1–4.4.

In addition, when the block size is a multiple of 32 threads, i.e., a warp, it was found that the

computing performance is better than the neighboring block sizes, which forms a cycle of oscilla-

tion every 32 threads. This is understandable because threads of 32 are grouped together and the375

multiprocessor issues the same instruction to all the threads in a warp in order to make execution

more efficient. This is one of the merits of the GPU architecture.

4.6 Impact of registers per thread on GPU-based YSU PBL scheme

By keeping the block size at 64, the optimized CUDA C version of the YSU PBL scheme was

studied for speedup vs. the number of registers per thread. Similar to the approach presented in the380

previous section, given a number of registers per thread, 16 executions of the CUDA C programs are

performed and only the last 13 runtimes are used in calculating the average speedup. The results are

displayed in Fig. 10 for cases with and without coalesced memory access. This figure shows that the

optimal computing performance occurs at 63 registers per thread for this scheme, and the speedups

seem to keep dropping beyond this number of registers.385
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4.7 Data transfer between CPU and GPUs

Usually the time consumed by kernel execution is less than the time occupied by the data transfer

between CPU (i.e., host) and GPUs (i.e., devices). Using the optimized CUDA C programs of the

YSU PBL scheme along with the optimal registers/thread = 63 and block size = 64 just obtained

previously, Table 5 lists the GPU runtimes for cases with and without coalesced memory access. In390

the YSU PBL scheme, there are 17 3-D-array variables, 17 2-D-array variables, and two 1-D-array

variables needed to be input from CPU to GPUs, amounting to 326 475 352 bytes. For the outputs,

this scheme need transfer seven 3-D-array variables and seven 2-D-array variables from GPUs back

to the CPU, corresponding to 134 430 912 bytes in total. The data size of the outputs is about 41 % of

that of the inputs, which indicates rough consistency with the runtime taken by device-to-host data395

transfer as compared to that by host-to-device data copy. This is shown in Table 5, where the I/O

transfer involved here is synchronous memory access.

This supports the general finding that data transfer between CPU and GPUs takes up a lot of time,

and apparently is a limited factor for the speedup. Since the computation of this scheme is only one

intermediate module of the entire WRF model, and what we are more interested is its speedup with400

no I/O transfer, for the reasons given in Sect. 4.1.

However, when I/O transfer is considered, the use of asynchronous memory access to overlap

CUDA kernel execution with data transfer can be applied. Each Tesla K40 has one copy engine and

one kernel engine, allowing data transfer and kernel execution to overlap. As commands pipeline,

streams execute commands in a manner of first-in-first-out (FIFO) order. The stream arrangement405

would result in overlapping CPU-to-GPU and GPU-to-CPU memory transfers and kernel execution

on GPUs with two copy engines. A diagram that depicts the execution timeline of the YSU PBL

computation process is illustrated in Fig. 11, where the illustrated three streams are in different

colors. For comparison, when asynchronous memory access is taken into account, the results of

computing performance are listed at the last row of Table 5.410

4.8 Output comparison between CPU-based and GPU-based programs

It was found that the GPU-based programs of the YSU PBL scheme were sensitive to precision.

Two key issues we encountered were: special functions such as powf(), expf(), sqrtf(), and the com-

piler option for the math calculation. Firstly, when C programs were converted to CUDA C pro-

grams, the special functions taken from GNU C library source codes must be modified to be used415

by GPU devices; otherwise incorrect outputs emerge (in comparison to Fortran outputs) if CUDA

C built-in special functions were used. Secondly, when the compiler option of math calculation,

“-use_fast_math” was employed to compile CUDA C programs, incorrect outputs of some vari-

ables would appear, again, as compared to Fortran outputs. This compiler option made the CUDA C
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programs run faster, but it could not produce outputs identical to the Fortran outputs. Thus another420

math-calculation option “-fmad=false” was chosen.

A mathematical function causing the highest unit in the last place (ulp) difference between GNU

C math library and CUDA C functions is the power function. In Fig. 12, ulp differences for power

function in GPU CUDA C library with and without fast math option are compared to the GNU C

mathematical library. The library function for the power function is powf (x,y). In the plot, x starts425

from value 500.37420654296875 and y has a constant value of 0.9505939483642578125. The spac-

ing of the value x in the plot is non-equal as each consecutive value is derived from the previous value

by adding one ulp to the previous value. Thus, the plot shows ulp values for 150 consecutive 32-bit

floating point values starting from the first value. For these example values, the ulp ranges from 0 to

10 with fast math. Without fast math, the maximum ulp value is three. Due to error cascading effects430

in the chaotic YSU PBL algorithm, an ulp error of three is capable of causing a large error in the

final output. In order to get exactly the same results for the math functions on GPU and CPU, we

adopted GNU C math libraries for GPU execution by adding CUDA C device execution qualifiers

to the existing C source code.

The root-mean square error (RMSE) is employed to make a comparison between the CUDA C435

outputs of a variable and Fortran outputs of the same variable by aggregating over all grid-point

elements of this variable. The comparison of the maximal RMSE for those variables having different

CUDA C outputs from Fortran outputs are listed in Table 6a. In addition, as mentioned above, the

fast math compiler option, –use_fast_math, may allow us to execute much faster, but it produces

less accurate results. Furthermore, the built-in GPU CUDA C special functions are also able to make440

programs run faster, but again with less accuracy. Table 6b lists the comparison of the speedups for

four different running situations. From these studies, it is found that the option “-fmad=false” along

with our own modified special functions can make our CUDA C programs produce outputs identical

to Fortran outputs, albeit with less speedup.

4.9 Multi-GPU implementation445

Our multi-GPU setup is displayed in Fig. 13. In this setup, there are two Tesla K40 GPU cards,

each of which has one GPU. Multi-GPU implementation of the YSU PBL scheme is performed

by computing several contiguous j-dimensional values in the arrays within the same GPU. With

asynchronous access taken into account, the optimal numbers of j dimensions for transfers between

CPU and GPUs were found to be 26 for use of one or two GPUs.450

Using the optimal block size = 64 and registers per thread = 63, the YSU PBL scheme was ex-

ecuted on our multi GPUs setup. Table 7 lists the computation times and speedups for single GPU

and two GPUs with/without I/O transfer and with/without coalesced memory access. We also ran

the Fortran programs using one CPU socket (4 cores), and the runtime and speedup are also listed in

the same table.455
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5 Summary and future work

In this paper, we develop an efficient parallel GPU-based YSU PBL scheme of the WRF model using

NVIDIA Tesla K40 GPUs. From our study, the communication bandwidth of data transfer is one of

the main limiting factors for computing performance of CUDA codes on GPUs. This limitation holds

true for other WRF schemes as well. To ameliorate this problem, several crucial code changes made460

to improve the computing performance. For example, we launched L1 cache with more memory

than shared memory; some temporary arrays have been scalarized; and the dependence among the

vertical-level components has been freed. In addition, the effects of threads per block and registers

per thread on the GPU-based YSU PBL scheme were studied. We also discussed how the compiler

options for math calculation would affect the outputs of the GPU-based programs. At the end, we465

came up with an optimized GPU-based YSU PBL scheme with outputs identical to the CPU-based

Fortran programs.

When WRF is fully implemented on GPUs, the implementation of input/output transfers between

CPU and GPU(s) will not be needed for each intermediate module. Instead, only inputs to the first

WRF module have to be transferred from CPU to GPU(s), and only the outputs from the last WRF470

module will be transferred from GPU(s) to CPU. The YSU PBL scheme is only one intermediate

module of the entire WRF model. Therefore, the speedups for the YSU PBL scheme are expected

to be close to the results presented in the cases without I/O transfer rather than to those with I/O

transfer.

Using one NVIDIA Tesla K40 GPU in the case without I/O transfer, our optimization efforts on475

the GPU-based YSU PBL scheme can achieve a speedup of 193× with respect to one CPU core,

whereas the speedup for one CPU socket (4 cores) with respect to one CPU core is only 3.5×.

We also ran the CPU-based code on one CPU core using exactly the same optimization along with

height dependence release as the GPU-based code, and its speedup is merely 1.5x as compared to

its original Fortran counterpart. In addition, we can even boost the GPU-based speedup to 360×480

with respect to one CPU core when two K40 GPUs are applied; in this case, one minute of model

execution on dual Tesla K40 GPUs will achieve the same outcome as six hours of execution on

a single core CPU.

Our future work is to continue accelerating other parts of WRF model using GPUs. Eventually, we

expect to have a WRF model completely running on GPUs. This will provide a superior performance485

for weather research and forecasting in the near future.
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Table 1. GPU runtime and speedup as compared to one single-threaded CPU core for the first CUDA C version

of the YSU PBL scheme, where block size= 64 and registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms

Non-coalesced 36.0 ms 50.0×

Coalesced 34.2 ms 52.6×

Table 2. GPU runtime and speedup as compared to one single-threaded CPU core for the first CUDA C version

of the YSU PBL scheme after the L1 cache command “cudaFuncCachePreferL1” is applied, where block size=

64 and registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms

Non-coalesced 34.3 ms 52.5×

Coalesced 33.0 ms 54.5×

Table 3. GPU runtime and speedup as compared to one single-threaded CPU core after further improvement

with replacing temporary arrays by scalar variables, where block size= 64 and registers per thread= 63 are

used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms

Non-coalesced 22.3 ms 80.7×

Coalesced 21.4 ms 84.1×

Table 4. GPU runtime and speedup as compared to one single-threaded CPU core after releasing height depen-

dence, where block size= 64 and registers per thread= 63 are used.

CPU runtime GPU runtime Speedup

One CPU core 1800.0 ms

Non-coalesced 10.74 ms 167.6×

Coalesced 9.29 ms 193.8×
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Table 5. GPU runtime and speedup as compared to one single-threaded CPU core for data transfer between

CPU and GPIUs, where block size= 64 and registers/thread= 63 are used.

CPU runtime 1800.0 ms

GPU runtime Non-coalesced Speedup Coalesced Speedup

host to device 27.26 ms 30.69 ms

kernel execution 10.74 ms 167.6× 9.29 ms 193.8×

device to host 10.83 ms 20.39 ms

kernel+Sync I/O 48.83 ms 36.9× 60.37 ms 29.8×

with Async I/O 52.55 ms 34.3× 54.66 ms 32.9×

Table 6a. Comparison of maximal RMSE for those variables having different outputs from Fortran outputs for

four different combination cases, where “Spec” stands for special function.

Variables A B C D

Horizontal velocity u component 2.5e-04 1.1e-08 4.1e-06 0

Horizontal velocity v component 2.3e-04 1.0e-08 1.8e-06 0

Potential temperature (θ) 5.2e-05 1.0e-07 1.1e-06 0

Mixing ratio of water vapor (qv) 4.3e-08 1.3e-11 1.5e-09 0

Mixing ratio of cloud water (qc) 1.3e-08 4.7e-14 1.9e-12 0

Exchange coefficient 3.0e-00 2.9e-06 1.8e-03 0

PBL height 3.9e+02 1.3e-04 2.8e-02 0

A: -use_fast_math+ CUDA C built-in Spec;

B: -fmad=false + CUDA C built-in Spec;

C: -use_fast_math + our own Spec;

D: -fmad=false + our own Spec.
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Table 6b. Comparisons of speedups using one GPU for four different combination cases, where “Spec” stands

for special functions. Note that the optimized GPU-based YSU PBL scheme along with block size= 64 and

register/thread= 63 is used in these comparison.

GPU-Based code

running conditions A B C D

Non-coalesced 208.9× 151.6× 193.1× 167.6×

Coalesced 311.2× 167.7× 250.3× 193.8×

A: -use_fast_math+ CUDA C built-in Spec;

B: -fmad=false + CUDA C built-in Spec;

C: -use_fast_math + our own Spec;

D: -fmad=false + our own Spec.

Table 7. Results of runtime and speedup for CPU-based and optimized GPU-based YSU PBL scheme, where

block size= 64 and registers per thread= 63, along with compiler option “-fmad=false” as well as our own

modified special functions, are used.

CPU runtime Speedup

One CPU core 1800.0 ms

One CPU socket 509.0 ms 3.5×

GPU runtime Speedup

Without I/O Non-coalesced Coalesced Non-coalesced Coalesced

1 GPU 10.74 ms 9.29 ms 167.6× 193.8×

2 GPUs 5.80 ms 4.99 ms 310.9× 360.6×

GPU runtime Speedup

Async I/O Non-coalesced Coalesced Non-coalesced Coalesced

1 GPU 52.55 ms 54.66 ms 34.3× 32.9×

2 GPUs 35.88 ms 46.31 ms 50.2× 38.9×
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Figure 1. Illustration of PBL process (Overview of WRF Physics).

Figure 2. Schematic diagram of hardware specification of one NVIDIA Tesla K40 GPU employed in our study.
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Figure 3. Three-level thread hierarchy of a device for one GPU utilized in our study: threads, thread block, and

grids of block.

Figure 4. Mapping of the CONUS domain onto one GPU thread-block-grid domain, where the size of the

CONUS domain is 433× 308 horizontal grid point with 35 vertical levels.
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Figure 5. Memory allocation of L1 cache and shared memory by launching “cudaFuncCachePreferL1” or not.

Figure 6. Illustration for re-arranging arrays in CPU-based implementation to 3-D and 2-D arrays in GPU-based

implementation, where regular mathematical array syntax is used to express the arrays.
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Figure 7. Illustration of scalarizing temporary arrays by scalar variable in order to recalculate values in the

local memory rather than transferring them from global memory to local memory. In this illustration , xa, xb,

xc, ya, yb, yc are assumed to be scalarable, but za, zb, zc are assumed to be un-scalarizable. Note that the regular

mathematical array syntax is used to express the arrays.
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Figure 8. Illustration for how to release height dependence in order to reduce the access time to global memory

for those temporary arrays which have dependence among the (k− 1)th, kth, and (k+1)th components. The

left (right) figure is the original (modified) CUDA program.
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Figure 9. Speedup vs. threads per block (block size) for optimized GPU-based YSU PBL scheme.
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Figure 10. Speedup vs. registers per thread for optimized GPU-based YSU PBL scheme.
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Figure 11. Asynchronous memory transfer among host-to-device memory transfer, GPU kernel execution, and

device-to-host memory transfer.
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Figure 12. Unit in the last place error for power function. Both fast math and no fast math GPU options are

compared to the GNU C math library.
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Figure 13. Schematic diagram of our multi-GPU setup.
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