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Abstract 17 

Karst develops through the dissolution of carbonate rock and is a major source of 18 

groundwater contributing up to half of the total drinking water supply in some European 19 

countries. Previous approaches to model future water availability in Europe are either too-20 

small scale or do not incorporate karst processes, i.e. preferential flow paths. This study 21 

presents the first simulations of groundwater recharge in all karst regions in Europe with a 22 

parsimonious karst hydrology model. A novel parameter confinement strategy combines a 23 

priori information with recharge-related observations (actual evapotranspiration and soil 24 

moisture) at locations across Europe while explicitly identifying uncertainty in the model 25 

parameters. Europe’s karst regions are divided into 4 typical karst landscapes (humid, 26 

mountain, Mediterranean and desert) by cluster analysis and recharge is simulated from 2002 27 

to 2012 for each karst landscape. Mean annual recharge ranges from negligible in deserts to 28 
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>1 m/a in humid regions. The majority of recharge rates ranges from 20%-50% of 29 

precipitation and are sensitive to sub-annual climate variability. Simulation results are 30 

consistent with independent observations of mean annual recharge and significantly better 31 

than other global hydrology models that do not consider karst processes (PCR-GLOBWB, 32 

WaterGAP). Global hydrology models systematically underestimate karst recharge implying 33 

that they over-estimate actual evapotranspiration and surface runoff. Karst water budgets and 34 

thus information to support management decisions regarding drinking water supply and flood 35 

risk are significantly improved by our model.  36 

 37 

1 Introduction 38 

Groundwater is the main source of water supply for billions of people in the world (Gleeson 39 

et al., 2012). Carbonate rock regions only constitute about 35% of Europe’s land surface 40 

(Williams and Ford, 2006), yet contribute up to 50% of the national water supply in some 41 

European countries (COST, 1995) because of their high storage capacity and permeability 42 

(Ford and Williams, 2007). Climate conditions have a primary control on groundwater 43 

recharge (de Vries and Simmers, 2002). Climate simulations suggest that in the next 90 years 44 

Mediterranean regions will be exposed to higher temperatures and lower precipitation 45 

amounts (Christensen et al., 2007). In addition, shifts in hydrological regimes (Milly et al., 46 

2005) and hydrological extremes (Dai, 2012; Hirabayashi et al., 2013) can be expected. To 47 

assess the impact of climate change on regional groundwater resources as groundwater 48 

depletion or deteriorations of water quality, large-scale simulation models are necessary that 49 

go beyond the typical scale of aquifer simulation models (~10-10,000 km²) Additionally, we 50 

expect the future variability of climate to be beyond that reflected in historical observations, 51 

which means that model predictions should derive credibility via more in-depth diagnostic 52 

evaluation of the consistency between the model and the underlying system and not from 53 

some calibration exercise (Wagener et al., 2010). 54 

Currently available global hydrology models discretise the land surface in grids with a 55 

resolution down to 0.25 to 0.5 decimal degrees. Parts of the vertical fluxes are well 56 

represented, e.g. the energy balance (Ek, 2003; Miralles et al., 2011). But groundwater 57 

recharge and groundwater flow are represented simply by heuristic equations (Döll and 58 

Fiedler, 2008a) or assumptions of linearity (Wada et al., 2010, 2014). They do not explicitly 59 

simulate a dynamic water table or regional groundwater flow. Global models also assume 60 
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homogenous conditions of hydrologic and hydraulic properties in each of their grid cells, 61 

rather than variable flow paths, and they completely omit the possibility of preferential flow. 62 

This was criticized in the recent scientific discourse about the need for large-scale hyper-63 

resolution models (Beven and Cloke, 2012; Wood et al., 2011). 64 

The assumption of homogeneity is certainly inappropriate for karst regions. Chemical 65 

weathering of carbonate rock and other physical processes develop preferential pathways and 66 

strong subsurface heterogeneity (Bakalowicz, 2005). Flow and storage are heterogeneous 67 

ranging from very slow diffusion to rapid concentrated flow at the surface, in the soil, the 68 

unsaturated zone and the aquifer (Kiraly, 1998). A range of modeling studies have developed 69 

and applied karst specific models at individual karst systems at the catchment or aquifer scale 70 

(Doummar et al., 2012; Fleury et al., 2007; Hartmann et al., 2013b; Le Moine et al., 2008) but 71 

a lack of a priori information of aquifer properties and observations of groundwater dynamics 72 

have prohibited their application on larger scales (Hartmann et al., 2014a). 73 

Compared to the limited information about the deeper subsurface there is much better 74 

information about the surface and shallow subsurface including maps of soil types and 75 

properties (FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012), observations of soil moisture 76 

(International Soil Moisture Network, Dorigo et al., 2011) and of latent heat fluxes (FluxNet, 77 

Baldocchi et al., 2001), as well as river discharge (GRDC, 2004). Surface and shallow 78 

subsurface information is used for the parameterization and evaluation of the surface routines 79 

of present large-scale models. But, although these data also cover Europe’s karst regions, it 80 

has not been used for the development of large-scale models to simulate karstic surface and 81 

shallow subsurface flow and storage dynamics. 82 

The objective of this study is to develop the first large-scale simulation model for karstic 83 

groundwater recharge over Europe and the Mediterranean. Despite much broader definitions 84 

of groundwater recharge (e.g., Lerner et al., 1990), we focus on potential recharge, that is 85 

vertical percolation from the soil below the depth affected by evapotranspiration. We use a 86 

novel type of model structure that considers the sub-grid heterogeneity of karst properties 87 

using statistical distribution functions. To achieve a realistic parameterization of the model we 88 

identify typical karst landscapes by cluster analysis and by a combined use of a priori 89 

information about soil storage capacities and observations of recharge related fluxes and 90 

storage dynamics. Applying a parameter confinement strategy based on Monte Carlo 91 
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sampling we are able to provide large-scale simulation of annual recharge including a 92 

quantification of their uncertainty. 93 

2 Data and Methods 94 

Due to chemical weathering (karstification) karst systems have a strong subsurface 95 

heterogeneity of flow and storage processes (Bakalowicz, 2005) that have to be considered to 96 

produce realistic simulations (Hartmann et al., 2014a). In this study, large-scale karst recharge 97 

is estimated by a modified version of the VarKarst model (Hartmann et al., 2013a), called 98 

VarKarst-R from here, on a 0.25 x 0.25 decimal degree grid. The model has shown to be 99 

applicable at various scales and climates over Europe (Hartmann et al., 2013b). To apply the 100 

model on a large scale we developed a new parameter estimation procedure that separates the 101 

study area into four karst landscapes by cluster analysis and estimates model parameters and 102 

their uncertainty by a step-wise parameter confinement process. 103 

2.1 The model 104 

The VarKarst-R model simulates potential recharge, which is the water column the vertically 105 

percolated from the soil and epikarst. Hence, the previous version of the model is reduced to 106 

include only the soil and the epikarst simulation routines but still using the same statistical 107 

distribution functions that allow for variable soil depths, variable epikarst depths and variable 108 

subsurface dynamics (Figure 1). This leads to a parametrically efficient process 109 

representation. Comparisons with independently derived field data showed that these 110 

distribution functions are a good approximation of the natural heterogeneity (Hartmann et al., 111 

2014b). 112 

Heterogeneity of soil depths is represented by a mean soil storage capacity Vsoil [mm] and a 113 

variability constant a [-]. The soil storage capacity VS,i [mm] for every compartment i is 114 

defined by: 115 

a
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 max,,         (1) 116 

where Vmax,S [mm] is the maximum soil storage capacity and N is the total number of model 117 

compartments. This is derived from the mean soil storage capacity Vsoil as 118 
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where i1/2 is the compartment at which the soil storage capacities on the left equal the soil 120 

storage capacities on the right (Figure 1a). Preceding work (Hartmann et al., 2013a, 2013b) 121 

showed that the same distribution coefficient a can be used to derive the epikarst storage 122 

distribution VE,i from the mean epikarst storage capacity Vepi [mm] (via the maximum epikarst 123 

storage Vmax,E likewise to Vmax,S in Eq (2)): 124 
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At each time step t, the actual evapotranspiration from each soil compartment Eact,i is found 126 

by: 127 
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where Epot [mm] is the potential evapotranspiration derived by the Priestley-Taylor equation 129 

(Priestley and Taylor, 1972), Peff [mm] is the sum of liquid precipitation and snow melt,  130 

Qsurface,i [mm] is the surface inflow arriving from compartment i-1 (see Eq. (9)), and VS,i [mm] 131 

the water stored in the soil at time step t. Snow fall and snow melt are derived from daily 132 

snow water equivalent available from GLDAS-2 (Table 1). During days with snow cover we 133 

set Eact(t)=0. Flow from the soil to the epikarst REpi,i [mm] is calculated by: 134 

          0,max ,,,,, iSiactiSurfaceeffiSoiliEpi VtEtQtPtVtR    (5) 135 

Following an assumption of linearity (Rimmer and Hartmann, 2012), the epikarst storage 136 

coefficients KE,i [d] controls the epikarst outflow dynamics: 137 
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where VE,i [mm] is the water stored in compartment i of the epikarst at time step t. Again, the 140 

same distribution coefficient a is applied to derive KE,i from the mean epikarst storage 141 

coefficient KEpi. The latter is obtained from the mean epikarst storage coefficient Kepi using:  142 

 1max,
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       (8) 143 

When infiltration exceeds the soil and epikarst storage capacities, surface flow to the next 144 

model compartment QSurf,i+1 [mm] initiates: 145 

      0,max ,,,1, iEiEpiiEpiiSurf VtRtVtQ      (9) 146 

To summarize, the model is completely defined by the four parameters a, Kepi, Vsoil, and Vepi 147 

(Table 2). 148 

2.2 Data availability 149 

Forcing for the VarKarst-R model is derived through the Global Land Data Assimilation 150 

System (GLDAS-2) that assimilates satellite- and ground-based observational data products to 151 

obtain optimal fields of land surface states and fluxes (Rodell et al., 2004; Rui and Beaudoing, 152 

2013). While precipitation, temperature and net radiation are mainly merged from satellite 153 

and gauge observations, snow water equivalent is derived using data assimilation as well as 154 

the snow water equivalent simulations of the NOAH land surface model v3.3 (Ek, 2003) 155 

driven by GLDAS-2 forcing. Europe’s and the Mediterranean’s carbonate rock areas are 156 

derived from a global map (vector data) of carbonate rock (Williams and Ford, 2006). Each 157 

cell of the 0.25 decimal degree simulation grid intersecting a carbonate rock region was 158 

considered a karst region. The model was calibrated and evaluated with observations of actual 159 

evapotranspiration from the FLUXNET (Baldocchi et al., 2001) and with soil water content 160 

data from the International Soil Moisture Network ISMN (Dorigo et al., 2011). Only stations 161 

within carbonate rock regions and with ≥12 months of available data were used (Figure 2). 162 

Months with <25 days of observations were discarded. In addition, months with ≥50% 163 

mismatch in their energy closure were discard from the FLUXNET data set (similar to 164 

Miralles et al., 2011). 165 
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2.3 Parameter estimation 166 

A lack of a priori information and observations of discharge and groundwater levels that can 167 

be used for calibration are the primary reasons why karst models have not been applied on 168 

larger scales yet (Hartmann et al., 2014a). The parameter assessment strategy we present in 169 

the following is meant to overcome this problem by using a combination of a priori 170 

information and recharge-related variables. We define typical karst landscapes over Europe 171 

and the Mediterranean and apply this combined information to a large initial sample of 172 

possible model parameter sets. In a step-wise process we then discard all parameter sets that 173 

produce simulations inconsistent with our a priori information and our recharge-related 174 

observations.  175 

2.3.1 Definition of typical karst landscapes 176 

Our definition of typical karst landscapes is based on the well-known the hydrologic 177 

landscape concept (Winter, 2001), which describes hydrological landscapes based on their 178 

geology, relief and climate. Constraining ourselves to karst regions that mainly develop on 179 

carbonate rock we assume that differences among the karst landscapes are due to differences 180 

in relief and climate, and the consequent processes of landscape evolution including the 181 

weathering of carbonate rock (karstification). The carbonate rock regions in Europe and the 182 

Mediterranean are divided into typical landscapes using simple descriptors of relief (range of 183 

altitude RA) and climate (aridity index AI and mean annual number of days with snow cover 184 

DS) within each of 0.25 decimal degree grid cells and a standard cluster analysis scheme (k-185 

means method). We test the quality of clustering for 2 to 20 clusters by calculating the sums 186 

of squared internal distances to the cluster means. The so-called “elbow method” identifies 187 

the point where adding additional clusters only leads to a marginal reduction in the internal 188 

distance metric, i.e. the percentage of variance explained by adding more clusters would not 189 

increase significantly (Seber, 2009). 190 

2.3.2 Model parameters for each karst landscape 191 

We initially sample 25,000 possible model parameter sets from independent uniform 192 

distributions using parameter ranges derived from previous catchment scale applications of 193 

the VarKarst-R model over Europe and the Mediterranean (Table 2). We use a priori 194 

information and recharge-related observations to assess parameter performance for each karst 195 

landscape. A priori information consists of spatially distributed information about mean soil 196 
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storage capacities as provided by several preceding mapping and modelling studies (Ek, 2003; 197 

FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012; Miralles et al., 2011). Recharge-related variables 198 

are (1) soil moisture observations and (2) observations of actual evaporation at various 199 

locations over the modelling domain (Table 1, Figure 2). Soil moisture is related to recharge 200 

because it indicates the start and duration of saturation of the soil during which diffuse and 201 

preferential recharge can take place. Actual evaporation is related to recharge because usually 202 

no surface runoff occurs in karst regions due to the high infiltration capacities (Jeannin and 203 

Grasso, 1997). The difference of monthly precipitation and actual evaporation is therefore a 204 

valid proxy for groundwater recharge at a monthly time scale or above. The new parameter 205 

confinement strategy is applied to each of the karst landscapes in 3 steps: 206 

1. Bias rule: retain only the parameter sets that produce a bias between observed and 207 

simulated actual evaporation lower than 75% at all FLUXNET locations within the 208 

chosen karst landscape: 209 

  %75minmin
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      (10) 210 

Where msim,i and mobs,i are the sum of simulated and observed actual evapotranspiration 211 

at location i, respectively. The value 75% was found by trial-and-error, which reduced 212 

the initial sample to a reasonable number. The bias rule was not applied on the soil 213 

moisture since porosities of the soil matrix were not available prohibiting a 214 

comparison of simulated and observed soil water contents. 215 

2. Correlation rule: retain only the parameter sets that produce a positive coefficient of 216 

(Pearson) correlation between observations and simulations of both actual evaporation 217 

and soil moisture, at all locations: 218 

    0,(min,(min
!

,,,, 
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where sim,j and obs,j, and sim,j and obs,j are the monthly means of simulated 220 

and observed actual evapotranspiration, and soil water content at locations i/j, 221 

respectively. 222 

3. Application of a priori information: retain only parameter sets in which Vsoil falls 223 

within the feasible ranges that can be derived from a priori information about the 224 

maximum soil storage capacity in different karst landscapes (Ek, 2003; 225 
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FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012; Miralles et al., 2011). Less than usual we 226 

add the a priori information at the last step to evaluate if the posterior distributions of 227 

Vsoil already adapt to the ranges defined in this confinement step. If they do not we 228 

would conclude that the recharge related information applied in confinement steps 1 229 

and 2 is biased. If they do, we have indication that the data applied in all 3 steps is 230 

complementary. 231 

Each step reduces the initial parameter sample differently for each of the karst landscapes. 232 

The posterior parameter distributions within the confined samples should be different among 233 

the karst landscapes if the karst landscapes are properly defined. The rather weak thresholds 234 

in step 1 and 2 were chosen to take into account the uncertainties resulting from the 235 

differences in scales of observations (point) and simulations (grid cell), and from the indirect 236 

observation of recharge (actual evaporation and soil moisture as recharge related variables). 237 

2.4 Recharge simulations over Europe and the Mediterranean 238 

Recharge is simulated over the carbonate regions of Europe and the Mediterranean from 239 

2002/03 to 2011/12 using the confined parameter samples for each of the identified karst 240 

landscapes and the available forcings (Table 1). The mean and standard deviation of 241 

simulated recharge for each grid cell and time step is calculated by uniform discrete sampling 242 

of a representative subset of 250 parameter sets from each of the confined parameters sets 243 

which we regarded to be large enough to provide a reliable measure of spread.  244 

2.5 Model evaluation 245 

To assess the realism of simulated groundwater recharge we compare simulated with 246 

observed mean annual recharge volumes derived independently from karst studies over 247 

Europe and the Mediterranean (Table 3). In addition, we compare our results to the simulated 248 

mean annual recharge volumes of two well-established global simulation models: PCR-249 

GLOBWB (Wada et al., 2010, 2014) and WaterGAP (Döll and Fiedler, 2008a; Döll et al., 250 

2003).  251 

We furthermore apply a global sensitivity analysis strategy, called Regional Sensitivity 252 

Analysis (Spear and Hornberger, 1980), to evaluate the importance of the 4 model parameters 253 

at different simulation time scales ranging from 1 month up to 10 years. This analysis shows 254 

(1) which simulated process and characteristics are dominant at a given time scale and (2) 255 
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which parameters will need more careful calibration when the model will be used in future 256 

studies. We use the same sample of 25,000 parameter sets that was created for the parameter 257 

estimation strategy (subsection 2.3.2) and assess the sensitivity of 4 model outputs 258 

representative of different time scales: coefficient of variation (CV) of simulated monthly 259 

recharge volumes (monthly), CV of simulated 3-monthly recharge volumes (seasonal), CV of 260 

annual recharge volumes (annual), and total recharge over the entire 10-year simulation 261 

period (decadal). We do not consider temporal resolution less than a month given the 262 

assumption that the difference of precipitation and actual evapotranspiration can be a proxy 263 

for groundwater recharge, and due to uncertainties related to differences in simulation (grid 264 

cell) and observation (point). 265 

For each of the identified karst landscapes we choose the 10 locations that are closest to their 266 

cluster means (Euclidean distances to relief and climate descriptors; subsection 2.3.1) as 267 

representative locations. In the regional sensitivity analysis approach, we split the parameter 268 

sets into two groups, those that produce simulations above the simulated median of one of the 269 

4 model outputs and those that produce simulations below. We then calculate the maximum 270 

distance D(x) between marginal cumulative distribution functions (CDFs) produced by these 271 

two distributions for each of the parameters – a large distance D(x) suggests that the 272 

parameter is important for simulating this particular output (Figure 3). 273 

3 Results 274 

3.1 Parameter assessment 275 

3.1.1 Definition of typical karst landscapes 276 

Cluster analysis resulted in four clusters, which are generally spatially contiguous (Figure 4) 277 

and have quantitatively distinct cluster means (Table 4). We can attribute particular 278 

characteristics to each cluster using the mean values of the clustering descriptors (Table 4): 279 

(1) Humid hills and plains (HUM) are characterised by an aridity index <1, a significant 280 

number of days with snow cover and low elevation differences. (2) High range mountains 281 

(MTN) have an aridity index of ~1, they also have a significant number of days with snow 282 

cover and they show very large topographic elevation differences. (3) Mediterranean medium 283 

range mountains (MED) show a high aridity index, only few days with snow cover and high 284 

elevation differences. (4) Desert hills and plains (DES) are described by similar altitude 285 

ranges as the humid hills and plains but they have a high aridity indices and almost no days 286 
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with snow cover. The karst landscapes order from North (HUM) to South (DES) based on 287 

increasing temperatures and decreasing precipitation amounts. While HUM and DES appear 288 

to be separated clearly, MTN and MED mix in some regions, for instance Greece and Turkey 289 

where mountainous regions are in close proximity to the coast. 290 

3.1.2 Model parameter estimates for each karst landscape 291 

The three steps of the new parameter confinement strategy resulted in a significant reduction 292 

of the initial sample of 25,000 parameter sets (Figure 5). Each step has a different impact on 293 

the reduction among the identified landscapes. For the humid karst landscapes, the correlation 294 

rule appears to have the strongest impact while for the mountain and Mediterranean 295 

landscapes the bias rule results in the strongest reduction. For the desert landscape only step 296 

3, i.e. application of a priori information, reduces the initial sample because no data was 297 

available to apply steps 1 and 2. Considering the parameter ranges for each landscape after the 298 

application of the confinement strategy (Table 5), we only achieved a confinement of the 299 

distribution parameter a, the soil storage capacity Vsoil, and slight confinement of the epikarst 300 

storage coefficient Kepi.  301 

The impact of the three confinement steps becomes more obvious when considering their 302 

posterior distributions (Figure 6). The distributions of parameters a, Kepi and Vsoil evolve 303 

significantly away from their initial uniform distributions along the confinement steps. In 304 

general, changes of the posterior distributions of each landscape’s parameter samples are in 305 

accordance with the reductions of their number (Figure 5), though changes are pronounced 306 

differently among the parameters. While a and Vsoil change strongly for HUM, MTN and 307 

MED, Vepi maintains a uniform distribution across all steps. Kepi also exhibits strong changes 308 

for HUM but they are less pronounced for MTN and MED. The posterior distributions of the 309 

DES landscape do not change except for step 3 due to the lack of information to apply 310 

confinement steps 1 and 2. Step 3 results in a tailoring of the distribution of Vsoil for all 311 

landscapes. For HUM, MTN and MED it can be seen that confinement steps 1 and 2 already 312 

pushed the parameter distributions towards their final shape, meaning that the changes in 313 

parameter distributions induced by the comparison with observations are consistent with the a 314 

priori information about the physical characteristics of the karst. 315 
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3.2 Recharge simulations over Europe and the Mediterranean 316 

The parameter confinement strategy allows us to apply VarKarst-R over all of Europe and the 317 

Mediterranean, and to obtain recharge simulations for the hydrological years 2002/03-318 

2011/12. Thanks to the 250 parameter sets that we samples from the posterior parameter 319 

distributions we can include an estimate of uncertainty for each grid cell (Figure 7). Mean 320 

annual recharge ranges from almost 0 to >1000 mm/a with the highest volumes found in 321 

Northern UK, the Alps and former Yugoslavia. The lowest values are found in the desert 322 

regions of Northern Africa. The vast majority of recharge rates ranges from 20%-50% of 323 

precipitation. Considering the simulations individually for each karst landscape reveals that 324 

the mountain landscapes produce the largest recharge volumes followed by the humid and 325 

Mediterranean landscapes (Figure 8a). The desert landscapes produce the lowest recharge 326 

volumes. However, the recharge rates reveal that on average the Mediterranean landscapes 327 

show the largest recharge rates, followed by the highly variable mountains (Figure 8c). 328 

Humid and deserts landscapes exhibit lower recharge rates. Uncertainties, expressed by the 329 

standard deviation of the 250 simulations for each grid cell, are rather low, seldom exceeding 330 

35 mm/a (Figure 8b). However, expressed as coefficients of variation, most of them range 331 

from 5%-25% for the humid, mountain and Mediterranean landscapes but for the desert 332 

landscape they can reach up to 50% of the mean annual recharge (Figure 8d). 333 

3.3 Model evaluation 334 

We compare the simulated recharge volumes of our model with recharge volumes assessed 335 

from independent and published karst studies over Europe and the Mediterranean (Figure 9a). 336 

Even though there is a considerable spread across the simulations their bulk plots well around 337 

the 1:1 line achieving an average deviation of only -22 mm/a (Table 6). Considering the 338 

individual karst landscapes there is an over-estimation of recharge for the humid landscapes 339 

and an under-estimation for the mountain landscapes. The best results are achieved for the 340 

Mediterranean landscapes with only slight under-estimation (Figure 9a). When we compare 341 

the same observations to the simulated recharge volumes of the PCR-GLOBWB (Figure 9b) 342 

and WaterGAP models (Figure 9c) we find a strong tendency of under-estimation that is 343 

strongest for the mountain and Mediterranean landscapes but still significant for the humid 344 

landscapes (Table 6). For the humid landscapes absolute deviations are similar among the 345 

three models. 346 
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In addition to comparing simulated and observed annual averages, sensitivity analysis on the 347 

model output gives us insight in the realism of the model and the importance of individual 348 

model parameters at different time scales (Figure 10). Our results show that parameters a and 349 

Vsoil have the overall strongest influence on the simulated recharge from a monthly to a 10-350 

year time scale but their influence decreases toward shorter time scales. Simultaneously the 351 

epikarst parameter Kepi gains more importance. This behaviour is most pronounced for the 352 

Mediterranean and desert landscapes. The same is true for Vepi, but its overall importance 353 

remains much lower, which was also found in the parameter confinement strategy (Figure 6).  354 

4 Discussion 355 

4.1 Reliability of parameter estimation 356 

4.1.1 Identification of karst landscapes 357 

The identification of different karst landscapes is a crucial step within our new parameter 358 

estimation strategy. The four karst landscapes we identified depend mostly on the choice of 359 

climatic and topographic descriptors (Table 4) and the selected number of clusters. Even 360 

though neglecting several factors as depositional environments, fracturing by tectonic 361 

processes or regional variations in rain acidity our choice of descriptors is well justified from 362 

our understanding of dominant hydrologic process controls as formalized in the hydrologic 363 

landscape concept (Winter, 2001) and applied similarly at many other studies (Leibowitz et 364 

al., 2014; Sawicz et al., 2011; Wigington et al., 2013). The appropriate choice of clusters for 365 

the k-means method is less unambiguous (Ketchen and Shook, 1996). The change in number 366 

of clusters when the sum of squared distances to our cluster centres only reduces marginally 367 

was not clearly definable (Figure A 1). However, choosing only 3 clusters instead of 4 would 368 

have resulted in unrealistic spatial distribution of clusters. The attribution of Northern African 369 

regions with Northern Europe to the same cluster occurred because of their similarity of 370 

altitude ranges (Table 4). On the other hand, a selection of 5 clusters would have resulted in a 371 

cluster with properties just between the MTN and the MED clusters and, because of a much 372 

stronger scattering, weaker spatial distinction between them. With 4 clusters our karst 373 

landscapes are similar to the Koeppen Geiger climate regions (Kottek et al., 2006), in 374 

particular the Oceanic Climate (HUM), the Hot and Warm summer Mediterranean Climate 375 

(MED), and the Hot Desert Climates (DES). We see deviations when comparing the Polar and 376 
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Alpine Climate regions of Koeppen-Geiger with our High Range Mountain karst landscape 377 

though, since our landscapes are also defined by their elevation ranges. 378 

The borders of these hydrologic landscapes are also uncertain. Natural systems usually do not 379 

have straight borders that fall on a grid as assumed by this analysis. Typical transitions 380 

between landscape types are continuous and hence transitions from a parameter set 381 

representing one landscape to another parameter set of another cluster should be graded, as 382 

well. This will be discussed in the following subsection. 383 

4.1.2 Confinement of parameters 384 

How the 3 steps of the parameter confinement strategy reduce the initial sample shows which 385 

type of data provides the most relevant information for each of the karst landscapes. While the 386 

timing of actual evapotranspiration and soil saturation that is expressed by the correlation rule 387 

appears to be most relevant for the humid landscapes, the bias rule, which represents the 388 

volumes of monthly evapotranspiration is more relevant for the mountain and Mediterranean 389 

landscapes. Swapping the order of the correlation rule and the bias rule would provide the 390 

same results for HUM and MTN. But for MED the alternative order increases the importance 391 

of timing expressed by the correlation rule indicating the similar importance of both 392 

confinement steps. 393 

The thresholds we set in confinement step 1 and 2 are not very strict, and the ranges of soil 394 

storage capacity we used as a priori information in step 3 are quite large This compensates for 395 

the fact that (1) only recharge-related variables are available rather than direct recharge 396 

observations, (2) these variables are not available at the simulation scale (0.25° grid) but at a 397 

point-scale, and (3) the transition between the landscapes is more continuous than discrete. 398 

Despite these rather weak constraints, the initial parameter sample of 25,000 reduces to a 399 

quite low numbers between 679 (HUM) and 2,731 (MED). All posterior parameters overlap 400 

except for the soil storage capacities that are tailored by the a priori information (confinement 401 

step 3). Hence, a little number of parameter sets for one landscape is also acceptable for some 402 

of the other landscape and therefore taking into account the continuous transition between 403 

them. 404 

All model parameters, except for Vepi, show different shapes in their cumulative distribution 405 

functions across the karst landscapes. The desert landscape parameters only differ from the 406 

initial sample for the Vsoil parameter due to the lack of information to apply confinement steps 407 
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1 and 2. The distribution parameter a is found at the lower values of its feasible range for the 408 

humid and mountain landscapes indicating a significant contribution of preferential recharge. 409 

Since altitude ranges are rather low for HUM this may be attributed to a significant epikarst 410 

development (Perrin et al., 2003; Williams, 1983). For MTN a mixture of epikarst 411 

development and topography driven interflow at the mountain hill slopes and valleys can be 412 

expected to control the dynamics of karstic recharge (Scanlon et al., 2002; Tague and Grant, 413 

2009). At the Mediterranean landscapes the a parameter adapts to ranges that are rather found 414 

at the higher values of its initial range indicating that there is a stronger differentiation 415 

between diffuse and concentrated recharge. This may be due to the generally thinner soils 416 

(Table 5) that limit the availability of CO2 for karst evolution (Ford and Williams, 2007). 417 

Instead, local surface runoff channels the water to the next enlarged fissure or crack to reach 418 

the subsurface as concentrated recharge (Lange et al., 2003). The epikarst storage coefficient 419 

Kepi for HUM and MED is at lower values of the initial range indicating realistic mean 420 

residence times of days to weeks (Aquilina et al., 2006; Hartmann et al., 2013a). The MTN 421 

landscapes show larger Kepi values indicating slower epikarst dynamics most probably due to 422 

the reasons mentioned above. The application of a priori information in confinement step 3 423 

automatically tailors the values of Vsoil to ranges that we assume to be realistic. The fact that 424 

confinement steps 1 and 2 already push the shape of their posteriors towards the a priori 425 

ranges corroborates that assumption.  426 

The little changes that occur to the initial distributions of the DES parameter sets elaborate the 427 

flexibility of our parameter assessment strategy. The posterior distribution evolves only 428 

where information is available (for this landscape on Vsoil). This is also evident in the 429 

behaviour of parameter Vepi. The available information is just not precise enough to achieve 430 

identification beyond its a priori ranges. For parameter a in HUM, MTN and MED, a lot of 431 

information is derived from the available data and its posteriors differ strongly from its initial 432 

distribution, while there is less information to determine Kepi. This explicit handling of 433 

uncertainties in the parameter identification process allows us to provide recharge simulations 434 

over Europe’s karst regions with uncertainty estimates that represent confidence for each of 435 

the identified karst landscapes. 436 
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4.2 Simulation of karst recharge over Europe and the Mediterranean 437 

4.2.1 Realism of spatial patterns 438 

Simulated mean annual recharge amounts for the period 2002/03-2011/12 show a wide range 439 

of values, from 0 >1000 mm/a (Figure 7). Total water availability (mean annual precipitation) 440 

appears to be the main driver for its spatial pattern in many regions, for instance at former 441 

Yugoslavia or Northern UK. This is consistent with findings of other studies (Hartmann et al., 442 

2014c; Samuels et al., 2010). When we normalize the recharge rates by the observed 443 

precipitation amounts we find that water availability is not the only control on mean annual 444 

recharge volumes. A strong relation of evapotranspiration and karst characteristics and 445 

processes was shown in many studies and is also found here (Heilman et al., 2014; Jukic and 446 

Denic-Jukic, 2008). Potential evaporation is generally increasing from North to South and has 447 

an important impact on recharge rates as well; for instance on the Arabian Peninsula or in the 448 

Alps.  449 

Mountain ranges are considered to be the water towers of the world (Viviroli et al., 2007). 450 

Here the MTN landscapes also show the largest recharge volumes due to the large 451 

precipitation volumes they receive, though with a considerable spread in our study. HUM and 452 

MED landscapes behave similarly with significantly less recharge than MTN. Not 453 

surprisingly there is not much recharge in the desert landscapes at all. But the differences 454 

among the clusters shift when considering recharge rates. Due to their thin soils, and therefore 455 

low soil storage for evaporation (Table 5), the DES karst landscapes transfer up to 45% of the 456 

little precipitation they receive into recharge. The MED landscapes show similarly high 457 

recharge rates. Though since their soils are generally thicker than the DES soils the typical 458 

seasonal and convective rainfall patterns of the Mediterranean climate (Goldreich, 2003; 459 

Lionello, 2012) might have an important impact, too.  460 

Even though there is still considerable spread in our confined parameter sets, the uncertainty 461 

in simulated mean annual recharge volumes is quite low. The uncertainties that follow the 462 

limited information contained in the observations are revealed more clearly when we relate 463 

the standard deviation of simulated recharge to its mean volumes with the coefficient of 464 

variation. The uncertainty for the DES landscape is the largest among the clusters because a 465 

priori information is only available for Vsoil. The uncertainty reduces for the MED and MTN 466 

landscapes. The low uncertainties for the coefficient of variation of our recharge simulations 467 
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for the HUM landscape indicate that the available data contained significant information for 468 

confining the model parameter ranges. 469 

4.2.2 Relevance of different recharge processes to simulation time scales 470 

The mean annual water balance of a hydrological system is dominated by the separation of 471 

precipitation into actual evapotranspiration and discharge (Budyko and Miller, 1974; 472 

Sivapalan et al., 2011). Actual evapotranspiration is controlled by the soil storage capacity 473 

Vsoil and the distribution coefficient a within the VarKarst-R model. Regional sensitivity 474 

analysis shows that both of them are most sensitive for the 10-year and annual time scale 475 

(Figure 10). Both parameters loose some impact at higher temporal resolutions (seasonal or 476 

monthly time scale) in favour of the parameters that control the dynamics of the epikarst. This 477 

behaviour is consistent with evidence from field and other modelling studies that showed that 478 

the epikarst can be considered as a temporary storage and distribution system for karstic 479 

recharge (Hartmann et al., 2012; Williams, 1983) – potentially storing water for several days 480 

to weeks (Aquilina et al., 2006; Hartmann et al., 2013a). Parameter Vepi does not show much 481 

sensitivity across all landscapes as suggested by the posterior distributions of the confinement 482 

strategy. First of all, this finding indicates that the data we used for our confinement strategy 483 

do not bias the general model behaviour. It also shows that for the epikarst storage and flow 484 

dynamics Kepi is much more important when simulating at monthly or seasonal resolution. 485 

Furthermore, the results of the regional sensitivity analysis show which parameters are most 486 

important at a given time scale. Depending on the purpose a new study may start with the 487 

initial ranges of the model parameters or it might continue with the confined parameter ranges 488 

that we found here. The latter would result in slightly different sensitivities (Figure A 2). For 489 

both cases, the epikarst parameters will require more attention when applying the VarKarst-R 490 

model for simulations at seasonal or monthly time scales. When working at a smaller spatial 491 

scale, combined analysis of spring discharge and its hydrochemistry may provide such 492 

additional information (Lee and Krothe, 2001; Mudarra and Andreo, 2011). When working at 493 

a time scale of >1 year the variability constant a and the soil storage capacity Vsoil require 494 

most attention if one starts from the initial ranges. The distribution parameter is most 495 

important when using the confined ranges. Again, spring discharge analysis may help to 496 

understand the degree of karstification (Kiraly, 2003) and the distribution of concentrated and 497 

diffuse recharge mechanisms that are controlled by a. In addition, more precise digital 498 

elevation models or soil maps may help to better identify a and Vsoil. A limitation of the 499 
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regional sensitivity analysis approach used here is that parameter interactions are only 500 

included implicitly, considering parameter interactions with more elaborate methods (Saltelli 501 

et al., 2008) may reveal even more characteristics of the VarKarst-R model at different 502 

simulation time scales. But this is beyond the scope of this paper. 503 

4.3 Impact of karstic subsurface heterogeneity 504 

Even though some deviations occur among the individual karst landscapes, the general 505 

simulations of the VarKarst-R model follow well the observations of mean annual recharge 506 

rates over Europe and the Mediterranean (Figure 9). On the other hand, the widely-used large-507 

scale simulation models PCR-GLOBWB (Wada et al., 2010, 2014) and WaterGAP (Döll and 508 

Fiedler, 2008b; Döll et al., 2003) generally under-estimate groundwater recharge (Table 6). 509 

The reason for this is the representation of karstic subsurface heterogeneity within the 510 

VarKarst-R model, i.e. the inclusion of preferential flowpaths and of subsurface 511 

heterogeneity. Based on the conceptual understanding of soil and epikarst storage behaviour 512 

(Figure 1c) it allows (1) for more recharge during wet conditions because surface runoff is not 513 

generated, and (2) for more recharge during dry conditions because the thin soil 514 

compartments will always allow for some water to percolate downwards before it is 515 

consumed by evapotranspiration. During wet conditions, both PCR-GLOBWB and 516 

WaterGAP would produce surface runoff instead that is subsequently lost from groundwater 517 

recharge. During dry conditions, due to its non-variable soil storage capacity, the PCR-518 

GLOBWB model would not produce any recharge when the soil water is below its minimum 519 

storage. Separating surface runoff and groundwater recharge by a constant factor the 520 

WaterGAP model would produce recharge during dry conditions, but a constant fraction of 521 

effective precipitation will always become fast surface/subsurface runoff resulting in reduced 522 

recharge volumes.  523 

This does not mean that the representation of recharge processes in models like PCR-524 

GLOBWB or WaterGAP is generally wrong, but can be limited since our analysis shows that 525 

the structures of such models need more adaption to the particularities of different hydrologic 526 

landscapes. In particular it adds to the need for incorporating sub-grid heterogeneity in our 527 

large-scale simulation models (Beven and Cloke, 2012). Karst regions comprise about 35% of 528 

Europe’s land surface and our results indicate that presently their groundwater recharge is 529 

under-estimated, while surface runoff and actual evaporation are over-estimated. Given the 530 

expected decrease of precipitation in semi-arid regions, such as the Mediterranean, and an 531 
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increase of extreme rainfall events at the same time in the near future (2016-2035, Kirtman et 532 

al., 2013) current large-scale simulation models will over-estimate both the vulnerability of 533 

groundwater recharge and the flood hazard in karst regions in Europe and the Mediterranean. 534 

The same is true for the long-term future (end of 21st century, Collins et al., 2013). Of course, 535 

an over-estimation of vulnerability and hazard might be the “lesser evil” compared to an over-536 

estimation. But at times of limited financial resources excessive investments in ensuring the 537 

security of drinking water supply and flood risk management for potential future changes may 538 

unnecessarily aggravate the socio-economic impacts of climate change. 539 

5 Conclusions 540 

In this study we have presented the first attempt to model groundwater recharge over all karst 541 

regions in Europe and the Mediterranean. The model application was made possible by a 542 

novel parameter confinement strategy that utilized a combination of a priori information and 543 

recharge related observations on 4 typical karst landscapes that were identified through cluster 544 

analysis. Handling the remaining uncertainty explicitly as posterior parameter distributions 545 

resulting from the confinement strategy we were finally able to produce recharge simulations 546 

and an estimate of their uncertainty. We found an adequate agreement with our new model 547 

when comparing our results with independent observations of recharge at study sites over 548 

Europe and the Mediterranean. We further show that current large-scale modelling 549 

approaches tend to significantly under-estimate recharge volumes. 550 

Overall, our analysis showed that the subsurface heterogeneity of karst regions and the 551 

presence of preferential flowpaths enhances recharge. It results in high infiltration capacities 552 

prohibiting surface runoff and reducing actual evapotranspiration during wet conditions. On 553 

the other hand it allows for recharge during dry conditions because some water can always 554 

percolate downwards passing the thin fraction of the distributed soil depths. This particular 555 

behaviour suggests that karstic regions might be more resilient to climate change in terms of 556 

both flooding and droughts. Drinking water and flood risk management is liable to be based 557 

on erroneous information at least at the 35% of Europe’s land surface since this is not 558 

considered in current large-scale modelling approaches.  559 

However, using recharge directly as a proxy for “available” groundwater resources may not 560 

be good in all cases, neither in karst regions nor in other types of aquifers (Bredehoeft, 2002). 561 

To precisely estimate the sustainably usable fraction of groundwater the aquifer outflow 562 

should be known rather than just the inflow. Further pumpingstrategies should consider the 563 
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geometry and transmissivity of the aquifer. Hence, recharge estimation can be considered 564 

only as a first proxy of available groundwater and future studies should focus on the large-565 

scale simulation of karst groundwater flow and storage to further improve water resources 566 

predictions in karst regions. 567 
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Tables 878 

Table 1: Data availability, data properties and sources 879 

Variable Spatial 
resolution 

Time period Frequency Source Reference 

Precipitation 0.25° 2002-2012 daily GLDAS-2 
(Rodell et al., 2004; Rui and 
Beaudoing, 2013) 

Temperature 0.25° 2002-2012 daily GLDAS-2 

Net radiation 0.25° 2002-2012 daily GLDAS-2 
Snow water 
equivalent 

0.25° 2002-2012 daily 
NOAHv3.3 
/GLDAS-2 

(Ek, 2003; Rodell et al., 2004) 

Carbonate rock 
areas 

vector data  - -  (Williams and Ford, 2006) 

Elevation 3’’ - - SRMT V2.1 (USGS, 2006) 
Rock permeability vector data  - -  (Gleeson et al., 2014a) 
Actual evaporation individual 

locations 
individual 
periods 

daily FLUXNET (Baldocchi et al., 2001) 

Soil moisture Individual 
locations 

individual 
periods 

daily ISMN (Dorigo et al., 2011) 

 880 

Table 2: Parameter description and initial ranges for Monte Carlo sampling based on previous field 881 

studies and large-scale model applications 882 

Parameter Unit Description 
Lower 
Limit* 

Upper 
limit* 

References 

a [-] Variability constant 0 6 (Hartmann et al., 2013b, 2014c, 2015) 
Vsoil [mm] Mean soil storage 

capacity 
0 1250 (Miralles et al., 2011; 

FAO/IIASA/ISRIC/ISSCAS/JRCv, 2012; Ek, 2003) 
Vepi [mm] Mean epikarst storage 

capacity 
200 700 (Perrin et al., 2003; Williams, 2008) 

Kepi [d] Mean epikarst storage 
coefficient 

0 50 (Gleeson et al., 2014b; Hartmann et al., 2013b) 

 883 

884 
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 885 

Table 3: Independent observations of mean annual recharge from field and modelling studies over Europe 886 

and the Mediterranean 887 

Location Latitude Longitude 
Mean annual 

recharge Method Author 

(country, province) [dec. degr.] [dec. degr.] [mm] 

Austria (Siebenquellen spring, 
Schneeaple) 

47.69 15.6 694 observed water balance 
(Maloszewski et al., 
2002) 

Croatia (Jadro spring, Dugopolje) 43.58 16.6 795 simulated water balance 
(Jukic and Denic-Jukic, 
2008) 

Croatia (St. Ivan, Mirna) 45.22 13.6 386 observed water balance (Bonacci, 2001) 

France (Bonnieure, La 
Rouchefoucald-Touvre ) 

45.8 0.44 250 simulated water balance (Le Moine et al., 2007) 

France (Durzon spring, La 
Cavalerie) 

44.01 3.16 378 observed water balance (Tritz et al., 2011) 

France (Fontaine de Vaucluse) 43.92 5.13 568 observed water balance (Fleury et al., 2007) 

France (St Hippolyte-du-Fort, 
Vidourle) 

43.93 3.85 287 observed water balance (Vaute et al., 1997) 

Germany (Bohming spring, 
Rieshofen) 

48.93 11.3 130 observed water balance (Einsiedl, 2005) 

Germany (Gallusquelle spring, 
Swabian Albs) 

48.21 9.15 351 observed water balance (Doummar et al., 2012) 

Germany (Hohenfells) 49.2 11.8 200 observed water balance (Quinn et al., 2006) 

Greece (Arvi, Crete)* 35.13 24.55 241 observed water balance (Koutroulis et al., 2013) 

Greece (Aitoloakarnania) 38.60 21.15 484 
empiric estimation 
method 

(Zagana et al., 2011) 

Italy (Cerella spring, Latina) 41.88 12.9 416 
empiric estimation 
method 

(Allocca et al., 2014) 

Italy (Forcella spring, Sapri) 41.05 14.55 559 
empiric estimation 
method 

(Allocca et al., 2014) 

Italy (Gran Sasso, Teramo) 42.27 13.34 700 observed water balance (Barbieri et al., 2005) 

Italy (Sanità) 40.78 15.13 974 observed water balance (Vita et al., 2012) 

Italy (Taburno spring) 39.9 15.81 693 
empiric estimation 
method 

(Allocca et al., 2014) 

Lebanon (Anjar-Chamsine) 33.73 35.93 278 observed water balance (Bakalowicz et al., 2008) 

Lebanon (Zarka) 34.08 36.30 205 observed water balance (Bakalowicz et al., 2008) 

Lebanon (Afka) 34.05 35.95 842 observed water balance (Bakalowicz et al., 2008) 

Palestine (Mountain Aquifer) ~32.00 ~35.30 144 simulated water balance (Hughes et al., 2008) 

Portugal (Algarve, minimum 
value) 

~37.10 ~-7.90 130 not mentioned 
(de Vries and Simmers, 
2002) 

Portugal (Algarve, maximum 
value) 

~37.10 ~-7.90 300 not mentioned 
(de Vries and Simmers, 
2002) 

Saudi Arabia (Eastern Arabian 
peninsula) 

~26.50 ~46.50 44 natural tracers (Hoetzl, 1995) 

Spain (Cazorla, Sierra de Cazorla ) 37.9 -3.03 244 
empiric estimation 
method 

(Andreo et al., 2008) 

Spain (La Villa spring, El Torcel) 36.93 -4.52 463 observed water balance (Padilla et al., 1994) 

Spain (Sierra de las Cabras, Arcos 
de la frontera) 

36.65 -5.72 318 
empiric estimation 
method 

(Andreo et al., 2008) 

Switzerland (Rappenfluh Spring) 47.87 7.67 650 simulated water balance 
(Butscher and 
Huggenberger, 2008) 

Turkey (Aydincik, Mersin) 36.97 33.22 552 observed water balance 
(Hatipoglu-Bagci and 
Sazan, 2014) 

Turkey (Harmankoy, Beyyayla)  40.15 30.65 32 observed water balance (Aydin et al., 2013) 

UK (Marlborough and Berkshire 
Downs and South-West Chilterns, 

51.53 -1.15 146 simulated water balance (Jackson et al., 2010) 
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minimum value) 

UK (Marlborough and Berkshire 
Downs and South-West Chilterns, 
maximum value) 

51.53 -1.15 365 simulated water balance (Jackson et al., 2010) 

UK (Dorset) 50.75 -2.45 700 observed water balance (Foster, 1998) 

UK (Norfolk) 52.60 0.88 260 observed water balance (Foster, 1998) 

UK (Greta spring, Durham) 54.52 -1.87 690 observed water balance (Arnell, 2003) 

UK( R. Teme, Tenbury wells) 52.3 -2.58 355 observed water balance (Arnell, 2003) 

UK(Lambourn) 51.5 -1.53 234 observed water balance (Arnell, 2003) 

UK (Hampshire) 51.1 -1.26 348 observed water balance (Wellings, 1984)  

 888 

Table 4: Cluster means of the 4 identified karst landscapes (AI: aridity index, DS mean annual number of 889 

days with snow cover, RA: range of altitudes) 890 

descriptor unit 
number of cluster/karst landscape 

1.HUM 2.MTN 3.MED 4.DES 

AI [-] 0.80 0.98 3.18 20.00 

DS [a-1] 85 76 16 1 

RA [m] 228 1785 691 232 

 891 

892 
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 893 

Table 5: Minima and maxima of the confined parameter samples for each of the identified landscapes 894 

Parameter Unit 
HUM   MTN   MED   DES 

min max   min max   min max   min max 

a [-] 1.1 3.3 
 0.3 2.9 

 
0.8 6.0 

 
0.1 6.0 

Vsoil* [mm] 
900.1 1248.9 

 500.4 899.9 
 

51.7 498.4 
 

0.2 49.1 

(900) (1250) 
 (500) (900) 

 
(50) (500) 

 
(0) (500) 

Vepi [mm] 204.3 694.8 
 201.6 699.4 

 
200.1 696.7 

 
202.3 695.7 

Kepi [d] 0.0 35.8   7.3 49.9   0.0 48.4   10.4 49.9 

* in brackets: a priori infromation used for step 3 of the parameter confinement strategy 895 

 896 

Table 6: Mean deviations of the VarKarst-R, the PCR-GLOBWB model and the WaterGAP model from 897 

all observations and the individual regions 898 

region 
mean deviation [mm/a] 

VarKarst-R PCR-GLOBWB WaterGAP 

all -58.3 -230.4 -264.2 

HUM 65.5 -90.2 -151.6 

MTN -202.8 -427.5 -446.4 

MED -4.3 -217.3 -211.4 

 899 

900 
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Figures 901 

 902 

Figure 1: (a) schematic description of the model for one grid cell including the soil (yellow) and epikarst 903 

storages (grey) and the simulated fluxes, (b) its gridded discretisation over karst regions and (c) the 904 

subsurface heterogeneity that its structure represents for each grid cell. 905 

 906 

 907 

Figure 2: Carbonate rock areas over Europe and the Mediterranean, and location of the selected 908 

FLUXNET and ISMN stations 909 

 910 
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 911 

Figure 3: Schematic elaboration of the regional sensitivity analysis procedure 912 

 913 

 914 

Figure 4: Map with clusters and typical karst landscapes that were attributed to them 915 

 916 

 917 

Figure 5: Evolution of the initial sample of 25,000 parameter sets (each including the 4 model parameters 918 

sampled from within their initial ranges) along the different confinement steps for the 4 karst landscapes 919 
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 920 

Figure 6: Evolution of posterior probabilities of the 4 model parameters for the 4 karst landscapes along 921 

the steps of the parameter confinement strategy. 922 

 923 
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 924 

Figure 7: (a) Observed precipitation and (d) potential evaporation versus the simulated (b) mean annual recharge and (e) mean annual recharge rates derived 925 

from the mean of all 250 parameter sets, and (c) the standard deviation and (f) coefficients of variation of the simulations due to the variability among the 250 926 

parameter sets. 927 
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 928 

Figure 8: (a) Simulated mean annual recharge, among the 4 karst landscapes, (b) their standard 929 

deviations, (c) recharge rates, and (d) coefficients of variation obtained by the final sample of parameters. 930 

 931 

 932 

Figure 9: Observations of mean annual recharge from independent studies (Table 3) versus the simulated 933 

mean annual recharge by the VarKarst-R and the PCR-GLOBWB model (no data for the DES region 934 

available) 935 
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 936 

 937 

Figure 10: Sensitivity of simulated recharge to the model parameters at different time scales and in the 938 

different karst landscapes. Sensitivity is measured by the maximum distance (D) between the distribution 939 

of parameter sets that produce ‘low’ recharge (i.e. below the median) and the distribution producing 940 

‘high’ recharge (above the median). Parameter sets are initially sampled from the ranges in Table 2. 941 

 942 
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6 Appendix 943 

6.1 Results of the cluster analysis 944 

 945 

Figure A 1: Elbow plot of sum of squared distances to cluster centres for k-means method 946 
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6.2 Results of the regional sensitivity using initial ranges 947 

 948 

Figure A 2: Sensitivity of simulated recharge to the model parameters at different time scales 949 

and in the different karst landscapes, as in Figure 10 but sampling parameters from the 950 

confined parameter ranges of Table 5 951 

 952 


