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Abstract 17 

Climate models are not often evaluated or calibrated against observations of past climate 18 

extremes, resulting in poor performance during for instance heat wave conditions. Here we 19 

use the Weather Research and Forecasting (WRF) regional climate model with a large 20 

combination of different atmospheric physics schemes, with the goal of detecting the most 21 

sensitive physics and identifying those that appear most suitable for simulating the heat wave 22 

events of 2003 in Western Europe and 2010 in Russia. 55 out of 216 simulations combining 23 

different atmospheric physical schemes have a temperature bias smaller than 1 degree during 24 

the heat wave episodes, the majority of simulations showing a cold bias of on average 2-3°C. 25 

Conversely, precipitation is mostly overestimated prior to heat waves, and short wave 26 

radiation is slightly overestimated. Convection is found to be the most sensitive atmospheric 27 

physical process impacting simulated heat wave temperature, across four different convection 28 

schemes in the simulation ensemble. Based on these comparisons, we design a reduced 29 

ensemble of five well performing and diverse scheme combinations, which may be used in the 30 

future to perform heat wave analysis and to investigate the impact of climate change in 31 

summer in Europe. Future studies could include the sensitivity to land surface processes 32 

controlling soil moisture, through the use of varied land surface models together with varied 33 

physics schemes. 34 

1. Introduction 35 

An increasing number of simulations and studies project a higher frequency of several types 36 

of extreme weather events in the future (e.g. Schär et al., 2004; Meehl et al., 2004; Della-37 

Marta et al., 2007; Beniston et al., 2007; Kuglistsch et al., 2010; Fischer and Schär, 2010; 38 

Seneviratne et al., 2012; Orlowsky and Seneviratne, 2012). Since summer heat waves are 39 

among the most problematic of such phenomena - threatening society and ecosystems - 40 



climate models used for future projections must provide accurate simulations of these 41 

phenomena, or at least their uncertainties should be documented. Even if climate models have 42 

been evaluated using observed weather in past decades, it is unclear whether they will be able 43 

to simulate extreme heat waves in future climates that may not have analogues in the 44 

historical record. At least, models should be able to reproduce the conditions measured during 45 

recent extreme heat wave cases, some of them having been shown to be unprecedented when 46 

considering the climate over the past five or six centuries (Chuine et al., 2004; Luterbacher et 47 

al., 2010; García-Herrera et al., 2010; Barriopedro et al., 2011; Tingley and Huybers, 2013). 48 

Given the importance of forecasting summer heat waves well in advance, many studies have 49 

analyzed their predictability, which remains poor in seasonal forecasts. For instance the 2003 50 

European heat wave was not simulated realistically (neither timing nor intensity) by the 51 

operational European Centre for Medium-Range Weather Forecasts (ECMWF) system, but 52 

improvements were clear with the use of a new soil, convection and radiation schemes (e.g. 53 

Weisheimer et al., 2011; Dole et al. 2011; Koster et al. 2010; van den Hurk et al. 2012). 54 

However seasonal forecasting experiments do not easily allow the assessment of model 55 

physical processes underlying extreme temperatures during heat waves because model biases 56 

are mixed with sensitivity to initial conditions. These may inhibit the effect of the 57 

representation of physical processes in reproducing the exact atmospheric circulation when 58 

starting simulations at the beginning of the season. 59 

From a statistical perspective, extreme temperatures have been found to be reasonably well 60 

represented in global simulations of the current climate (IPCC, 2013), as well as in regional 61 

simulations (Nikulin et al., 2010). In recent regional modeling evaluation experiments, using 62 

an ensemble of state-of-the-art regional models guided by re-analysis at the boundaries of a 63 

European domain, summer extreme seasonal temperatures were shown to be simulated with 64 

biases in the range of a few degrees (Vautard et al., 2013). Individual mega heat waves (2003 65 



in Western Europe, 2010 in Russia) were reproduced by most models. However, it was 66 

difficult to infer whether these models could also simulate associated processes leading to the 67 

extreme heat waves. The exact same events with similar atmospheric flow and its persistence 68 

could not be reproduced due to internal variability of the models. 69 

A comprehensive assessment of simulations of recent mega heat waves has only been the 70 

object of a limited number of such studies. Process-oriented studies of high extreme 71 

temperatures over Europe have focused on land-atmosphere feedbacks (e.g. Seneviratne et al., 72 

2006 and 2010; Fischer et al., 2007; Teuling et al., 2009; Stegehuis et al., 2013; Miralles et al., 73 

2014) because, beyond atmospheric synoptic circulation, these feedbacks are known to play 74 

an important role in summer heat waves. However, the sensitivity of simulated heat wave 75 

conditions to physical processes in models has not yet been explored in a systematic way. 76 

This could be important because error compensation among processes that involve land-77 

atmosphere interactions, radiation and clouds may cause high temperatures for the wrong 78 

reasons (Lenderink et al., 2007).  79 

The goal of the present study is threefold. First we examine the ability of a regional climate 80 

model, the Weather Research and Forecast (WRF, Skamarock et al., 2008), to simulate recent 81 

European mega heat waves, with a number of different model configurations. Analysis of 82 

these experiments then allows understanding which physical parameterizations are prone to 83 

reproduce the build-up of extreme temperatures, and thus the need for carefully constraining 84 

them in order to simulate these events properly. Finally, using observational constraints of 85 

temperature, precipitation and radiation, we select a reduced ensemble of WRF configurations 86 

that best simulates European heat waves, with different sets of physical schemes combinations. 87 

This constrained multi-physics ensemble aims therefore at spanning a range of possible 88 

physical parameterizations in extreme heat wave cases while keeping simulations close to 89 

observations. 90 



Our multi-physics regional ensemble approach contrasts with the classical multi-model 91 

ensembles that are constructed by the availability of model simulations in coordinated 92 

experiments (see e.g. Déqué et al., 2007 and references therein) or combinations of 93 

parameterizations selected by different groups using the same model system (García-Díez et 94 

al., 2014). In the latter “democracy-driven” ensemble, the lack of overall design strategy may 95 

lead the uncertainty estimation to be biased and the models to be farther from observations. In 96 

addition, the real cause of model spread is difficult to understand because of interacting 97 

physical processes and their biases. Regional perturbed-physics or multi-physics ensembles 98 

could help understand and constrain uncertainties more effectively, but so far they have been 99 

seldom explored. García-Díez et al. (2014) showed that even a small multi-physics ensemble 100 

confronted to several climate variable observations can help diagnose mean biases of a RCM. 101 

Bellprat et al. (2012) showed that a well-constrained perturbed physics ensemble may 102 

encompass the observations. Their perturbed physics ensemble was designed by varying the 103 

values of a number of free parameters, and selecting only the configurations that were closest 104 

to the observations; however, the number of combinations of different physical 105 

parameterization schemes was limited to a total of eight different configurations.  106 

The WRF model offers several parameterization schemes for most physical processes, and is 107 

thus suitable for a multi-physics approach. In fact, a WRF multi-physics approach has been 108 

used in several studies (e.g. García-Díez et al., 2011; Evans et al., 2012; Awan et al., 2011; 109 

Mooney et al., 2013), also with its predecessor MM5, but not specifically to simulate extreme 110 

heat waves. 111 

Here we run an ensemble of 216 combinations of WRF physical parameterizations, and 112 

compare each simulation with a set of observations of relevant variables in order to select a 113 

reduced set of 5 combinations that best represent European summer mega heat waves. The 114 

evaluation is made over the extreme 2003 and 2010 events. The ensemble is also evaluated 115 



for a more regular summer (2007) in order to test the model configurations under non-heat 116 

wave conditions. 117 

2. Methods 118 

 119 

Simulations and general model setup 120 

We use the WRF version 3.3.1 and simulate the three summers (2003, 2007, 2010) using an 121 

ensemble of physics scheme combinations. We first test the time necessary to initialize the 122 

soil moisture on a limited number of cases. Soil conditions are initialized using the ERA-123 

Interim (Dee et al., 2011) soil moisture and temperatures; thereafter soil moisture and air 124 

temperature are calculated as prognostic variables by WRF. For the August 2003 case, we 125 

find that temperatures differ by less than 0.5°C among one another when starting experiments 126 

before May 1st. Thus in the current study, each simulation is run from the beginning of May to 127 

the end of August for the years 2003, 2007 and 2010. The regional domain considered is the 128 

EURO-CORDEX domain (Jacob et al., 2014; Vautard et al., 2013) and the low-resolution 129 

setup of 50 km x 50 km (~0.44 degree on a rotated lat-lon grid) is used – note that Vautard et 130 

al. (2013) recently concluded that a higher spatial resolution did not provide a substantial 131 

improvement in heat wave simulations. We use a vertical resolution with 32 levels for WRF. 132 

Boundary conditions come from ERA-Interim (as well as initial snow cover, soil moisture and 133 

temperature). In order to focus on physical processes in the boundary layer and the soil-134 

atmosphere interface, and to avoid chaotic evolution of large-scale atmospheric circulation, 135 

we constrain the model wind fields with ERA-Interim re-analyses above Model Level #15 136 

(about 3000m), similar to previous studies (Vautard et al., 2014),  using grid nudging, with a 137 

relaxation coefficient of 5.10-5 s-1, corresponding to a relaxation time about equivalent to the 138 

input frequency (every six hours) (Omrani et al., 2013). Temperature and water vapor were 139 

not constrained, to let feedbacks fully develop.   140 



Physics schemes 141 

We test 216 combinations of physics schemes. We consider different physics of the planetary 142 

boundary layer and surface layer (PBL; 6 schemes), microphysics (MP; 3 schemes), radiation 143 

(RA; 3 schemes) and of convection (CU; 4 schemes). For each type of scheme, a few options 144 

were selected among the ensemble of possibilities offered in WRF. The selection was made to 145 

avoid variants of the same scheme, and to maximize the difference of temperature and 146 

precipitation outputs in preliminary experiments. At the time of study and model development 147 

stage, different land-surface schemes were available in WRF: 5-layer Thermal Diffusion 148 

Scheme (Dudhia, 1996), NOAH (Tewari et al., 2004), Rapid Update Cycle (RUC) (Benjamin 149 

et al., 2004) and Pleim-Xiu (Gilliam & Pleim, 2010). We decided however to only use one, 150 

the NOAH land surface scheme, in order to focus our study on atmospheric processes while 151 

limiting the number of simulations, and because the NOAH scheme is the most widely used in 152 

WRF applications. This was also motivated by the poor performance and extreme sensitivity 153 

of the RUC land surface scheme for the land latent and sensible heat flux as compared with 154 

local observations in 2003. It simulates strong latent heat fluxes in the beginning of the season 155 

and an extreme drying at the end, while sensible heat flux is overestimated. The NOAH 156 

scheme seemed more stable in the tests that were done for capturing both latent and sensible 157 

heat fluxes during the 2003 heat wave at selected flux tower sites in Western Europe (Figure 158 

1). Furthermore the Pleim-Xiu scheme is especially recommended for retrospective air quality 159 

simulations, and is developed with a specific surface layer scheme as coupled configuration 160 

(Gilliam & Pleim, 2010). The last possible option is the 5-layer thermal diffusion scheme 161 

(Dudhia, 1996) which predicts ground and soil temperatures but no soil moisture, and is 162 

therefore also not suitable for our study. Table 1 describes the physical schemes that were 163 

combined to simulate the weather over the three summer seasons. 164 

Observational data  165 



In order to evaluate the ensemble and to rank and select its best performing simulations we 166 

use gridded observed daily temperature and precipitation from E-OBS with a 0.25 degree 167 

resolution (version 7.0) (Haylock et al., 2008). Bilinear interpolation is used to regrid E-OBS 168 

data and the model output to the same grid. Furthermore we use station data of monthly global 169 

radiation from the Global Energy Balance Archive (GEBA) network (Wild et al., 2009). For 170 

France 2003 the data of 21 stations were available, for 2007 this number was 20. Observations 171 

over Russia were too scarce, and were not considered. Model data are interpolated to these 172 

stations using the nearest neighbor method. In addition, in order to check land-atmosphere 173 

fluxes and the partitioning of net radiation into sensible and latent heat fluxes, we use the 174 

satellite observation-driven estimates of daily latent heat fluxes from GLEAM (Miralles et al., 175 

2011). Since the latter is not a direct measurement we do not use them to validate and rank the 176 

model configurations. Furthermore latent- and sensible heat flux measurements are used from 177 

three FLUXNET sites from the Carbo-Extreme database (Neustift/Stubai – Austria 178 

(Wohlfahrt et al., 2010); Tharandt-Anchor station –  Germany (Grünwald & Bernhofer, 179 

2007); and Soroe-LilleBogeskov – Denmark (Pilegaard et al., 2009)), for the evaluation of the 180 

land surface schemes. 181 

Evaluation and ranking of model simulations 182 

For ranking, we set up several measures of model skill, based on the differences between 183 

observed and simulated spatial averages over two domains: France for 2003 and 2007 (5W–184 

5E & 44N–50N), and one in Russia for 2007 and 2010 (25E–60E & 50N–60N) (Fig. 2). A 185 

first scheme selection is made based on the skill to reproduce air temperature dynamics, since 186 

this is the primary impacted variable and observations are reliable. Because we are interested 187 

in heat waves, we select only those simulations that are within a 1 K regional average 188 

difference between simulated and observed temperature, for heat wave periods; these periods 189 

are defined as August 1st-15th for France (in 2003), and July 1st till August 15th for Russia (in 190 



2010). The 1 K threshold is arbitrary but is used to avoid processing a large number of 191 

simulations that have unrealistic temperatures. Only 55 of the 216 simulations meet this 192 

criterion and are further considered. Then, the ranking of the retained simulations is done 193 

based on: (i) the daily temperature difference between simulations and observations during 194 

the heat wave periods (as above for 2003 and 2010), and during the period 1st-31st August for 195 

the normal year 2007, (ii) the root mean square error of monthly precipitation and radiation 196 

for the months July, June and August. The GEBA data set only contains scarce radiation 197 

observations over Russia, and therefore we could not consider this region for ranking models 198 

against incoming shortwave radiation. As a final step, an overall ranking is proposed by 199 

averaging the ranks obtained from the three variables (temperature, precipitation and 200 

radiation). From this final ranking, and in order to select an elite of multi-physics 201 

combinations, we selected the top-5 highest-ranked configurations. Note that observational 202 

uncertainty is not considered in this study, which is shown to be able to impact model ranking 203 

over Spain (Gomez-Navarro et al., 2012). 204 

3. Results 205 

3.1. Large systematic errors found during heat wave periods 206 

Figure 3 shows the large temperature range spanned by the 216 ensemble members for the 207 

spatial average over the heat wave areas. The min-max range between ensemble members is 208 

up to 5°C during heat wave periods (Figure 3). Locally at 50 km resolution, the difference 209 

between the warmest and the coldest simulation during a heat wave is larger, reaching more 210 

than 10°C in 2003 (Figure 3d). In 2007, when summer temperatures were not extreme, the 211 

range is about twice as small. Only a few simulations match the observed high temperatures 212 

(Figure 3a-c). In Fig. 3a, we select two extreme configurations (blue and red lines), based on 213 

daily mean temperature over France during the 2003 heat wave. Interestingly, they are 214 



extreme in all regions and years, indicating that each combination tends to induce a rather 215 

large systematic bias. This bias however, is different for the ‘warm’ and the ‘cold’ 216 

configuration. It seems not to be due to a misrepresentation of the diurnal cycle, since they 217 

remain when analyzing time series of maximum and minimum daily temperatures 218 

independently (see supplementary Figures 1a-f). However, minimum temperatures show a 219 

less consistent bias than maximum daily temperatures. A systematic temperature 220 

underestimation by WRF simulations over Europe has also been found in other multi-physics 221 

ensemble studies over Europe (e.g. Awan et al., 2011; García-Díez et al., 2011, 2014). 222 

For monthly precipitation we obtain a large range of simulated values, with most 223 

configurations overestimating monthly summer rainfall (JJA) during heat waves years, and to 224 

a lesser extent  during the wetter 2007 season (Fig. 4a-c). This is in line with the findings 225 

reported by Warrach-Sagi et al. (2013) and Awan et al. (2011), and with the overestimation of 226 

precipitation by many EURO-CORDEX models shown by Kotlarski et al. (2014). The two 227 

selected extreme combinations (based on temperature, as explained above) are reproducing 228 

precipitation overall without a major bias. This suggests that the temperature bias in these two 229 

extreme simulations is not explicitly caused by a misrepresentation of the atmospheric water 230 

supply from precipitation. However soil moisture (the soil moisture over the whole column) 231 

does show a strong relation to temperature biases in model simulations. Figure 5a-d shows 232 

soil moisture at the end of July versus temperature in August 2003 for each model 233 

configuration. Configurations with low soil moisture level are associated with higher 234 

temperatures and vice versa, confirming the role of land-atmosphere feedbacks during heat 235 

waves, already pointed out by previous studies. This indicates that the evapotranspiration 236 

from spring to summer depleting soil moisture can be a critical process during summer for the 237 

development of heat waves, and that this process is not simply related to summer 238 

precipitation.  239 



For solar radiation, the mean differences between our simulations over France 2003 and 2007 240 

reaches approximately 100 Wm-2 (Fig. 6a,b). Observations for France (black dots) are found 241 

below the median value of the simulations so a slight overestimation of the ensemble is 242 

obtained. The first (warmest) extreme configuration (red dot) is associated with an 243 

overestimated radiation of 10-50 Wm-2 while the other (coldest, blue dot) extreme 244 

configuration exhibits an underestimated radiation by about the same amount. Since the 245 

warmest simulation agrees better with temperature observations than the coldest simulation, 246 

one may therefore suspect that it contains a cooling mechanism that partly compensates for 247 

the overestimated solar radiation. 248 

3.2. Sensitivity of temperatures to physical parameterizations and sources of spread 249 

In order to identify the physics schemes to which the development of heat waves is most 250 

sensitive, we examine how resulting temperatures are clustered as a function of the scheme 251 

used. We find that the spread between all simulations – both in terms of temperature and soil 252 

moisture – is mostly due to the differences in convection scheme (clustering of dots with the 253 

same color in Fig. 5a). For instance the Tiedtke scheme (blue dots) systematically leads to 254 

higher temperatures and lower soil moisture, while the Kain-Fritsch scheme (green dots) leads 255 

to wetter soils and lower temperatures, inhibiting heat waves. Microphysics and radiation 256 

schemes are also contributing to the spread of simulated temperature and soil moisture values 257 

(Fig. 5b-c), although their effect is less marked than for convection. Heat wave temperatures 258 

and soil moisture seem to be least sensitive to the planetary boundary layer and surface layer 259 

physics schemes. The sensitivity of the convection scheme in WRF has already been 260 

mentioned in previous studies (Jankov et al., 2005; Awan et al., 2011;; Vautard et al., 2013; 261 

García-Díez et al., 2014). Note that the soil moisture simulated in early August 2003 is better 262 

correlated with preceding radiation than with precipitation (compare Supplementary Figures 2 263 

and 3), indicating that the way clouds, and particularly convective clouds, affect radiation 264 



prior to the onset of heat waves is a major driver of the spread for the development of heat 265 

waves, higher radiation leading to drier soils and higher temperatures during heat waves. 266 

3.3. A constrained reduced ensemble of best simulations 267 

Focusing only on the 55 selected simulations that differ less than 1°C from the observations 268 

during the heat waves, we apply the ranking method introduced in Section 2 based on 269 

temperature, precipitation and radiation model-observation comparison metrics. The 5 highest 270 

ranked simulations are given in Table 2 and are actually the numbers 1-5 in Supplementary 271 

Table 1. Figure 7a confirms the ranking by showing that these simulations also perform well 272 

in terms of temperature, during the months prior to the heat wave. The same is furthermore 273 

found for the years 2007 in France (Supp. Fig. 5) and 2010 in Russia (Supp. Fig. 4), and also 274 

for other regions such as the Iberian Peninsula and Scandinavia (Supp. Fig. 6a,d). The 275 

selected simulations however performed less well for precipitation over France in 2003 (Fig. 276 

7b), but do not show a large overestimation of precipitation either. Precipitation over Russia 277 

for the 5 highest-ranked simulations does show good performance (Supp. Fig. 4b), as well as 278 

for other European regions (Supp. Fig. 6). The mean radiation of the ensemble of the five best 279 

simulations is closer to the GEBA observations than in the case of the original ensemble (Fig. 280 

7c).  281 

Nonetheless, the better match of the reduced ensemble of the five highest-ranked simulations 282 

to the observations of temperature, precipitation and radiation is to a very large degree 283 

unsurprising: the selection was based on the fit to observations. However, it is still 284 

satisfactory to see that some simulations are capable of matching all three variables. 285 

Conversely, we also compare simulations against another key variable that was not used for 286 

evaluating and ranking simulations, namely the latent heat flux (Figure 7d). Albeit somehow 287 

reduced compared to the full-ensemble spread, the spread of the five best simulations for the 288 



latent heat flux remains large over the whole period, on average between 50 and 120 Wm-2 289 

(observed values are around 75 Wm-2). However, during the 2003 heat wave over France 290 

three of the five best simulations exhibit a close resemblance to the latent heat observations 291 

(approximately 5-10 Wm-2) (Fig. 7d). The two simulations that are found to considerable 292 

overestimate latent heat flux by approximately 30-40 Wm-2 (as compared to GLEAM) are 293 

those that use a different convection scheme than the Tiedtke scheme. The overestimation of 294 

latent heat fluxes in these schemes is however not generalized for other regions and years 295 

(Suppl. Fig. 4c, 5d, 6c,f-h), for which the latent heat flux was fairly well simulated within the 296 

range of uncertainty of GLEAM.  297 

A cross-comparison for the years 2003 and 2010, that is, using only the 2010 heat wave to 298 

select schemes and verify the performance of the selected schemes over 2003 and vice versa, 299 

yields some promising results. Table 3 shows the average ranking of the best (5, 10, 15, 20 300 

and 25) simulations. When only using one heat wave to select the best configurations, they all 301 

lie in the top-ranked half, and even higher in the ranking in the case of the 2010 heat wave 302 

over Russia being used to select the best configurations. This suggests that the selection based 303 

upon one heat wave in one region should also provide better simulations for other heat waves 304 

or heat waves in other areas, i.e. that the bias of a member of the WRF ensemble is not local, 305 

but at least regional at the scale of Western Europe. 306 

4. Concluding remarks 307 

In this study we designed and analyzed a large multi-physics ensemble with the WRF model. 308 

It is made of all possible combinations of a set of different atmospheric physics 309 

parameterization schemes. They were evaluated for their ability to simulate the European heat 310 

waves of 2003 and 2010 using the regional climate model WRF based on temperature, 311 

precipitation and shortwave radiation. Even though the simulations were constrained by grid 312 



nudging, we found a large spread between the different physics for the simulations for 313 

temperature, precipitation and incoming shortwave radiation, three variables we used to create 314 

an overall configuration ranking. Most simulations systematically underestimate temperature 315 

and overestimate precipitation during heat waves, a model pattern that was already found in 316 

previous studies dealing with much smaller ensembles (e.g. Awan et al., 2011; García-Díez et 317 

al., 2011; Warrach-Sagi et al., 2013). The spread among ensemble members is amplified 318 

during the two extreme heat waves of study. Since we only considered a single land surface 319 

scheme, it is probable that the ensemble spread would largely increase when incorporating the 320 

uncertainty associated with modeling land surface processes. Nevertheless, considering only 321 

atmospheric processes, the magnitude of the spread still reaches 5°C during the peak of the 322 

heat waves.  323 

We also showed that among atmospheric process parameterizations, the choice of a 324 

convection scheme appears to dominate the ensemble spread. We found indications that the 325 

large differences between convection schemes seem to occur mostly through radiation, and 326 

therefore the way convective clouds affect the surface energy and water budget prior to and 327 

during heat waves. Changes in incoming radiation cause changes in evapotranspiration and 328 

therefore soil moisture, which may subsequently feed back on air temperature. 329 

From this ensemble, we selected a small sub-ensemble with the five best combinations of 330 

atmospheric physics schemes based on the fit to observations. These combinations capture 331 

well the temperature dynamics during the mega heat waves of France and Russia, and they 332 

perform better than other combinations in other regions of Europe. In addition, they are 333 

consistent with independent latent heat flux data used for cross-validation. This indicates that 334 

the constraints set for the selection reduce the uncertainty across the whole European 335 

continent and points towards the creation of an optimized ensemble of WRF configurations 336 

specific for heat waves, with reduced error compensations. A sub-ensemble that outperforms 337 



a larger ensemble was also found by Herrera et al. (2010). The sub-ensemble based on mean 338 

precipitation showed better results for extreme precipitation as well.  339 

However a limitation of this study is the use of only one land-surface scheme; the five 340 

selected WRF configurations may actually all be affected by systematic errors of the NOAH 341 

land surface scheme. The importance of the selected land surface scheme is further confirmed 342 

by the larger spread of the “best” ensemble for latent heat (in Wm-2) than for shortwave 343 

radiation. In order to mimic radically different land surface processes, a sensitivity test where 344 

initial soil moisture was artificially increased and decreased by 20% all along the soil column 345 

was conducted. Results confirm the sensitivity of the temperature simulations to soil moisture, 346 

a variable partly controlled by the land surface scheme (Figure 8). The full answer to this 347 

question is left for a future study in which different atmospheric schemes and surface schemes 348 

will be jointly permuted. 349 

Although our ensemble is trained on only summer conditions, our results have several 350 

implications for climate modeling. First, the constrained WRF ensemble may be used in 351 

future studies of climate change; each of the five members may exhibit a different sensitivity 352 

to future climate change conditions, leading to a constrained exploration of the uncertainty. 353 

Then it is important to notice that our study pinpoints the need to carefully design or adjust 354 

the convection scheme for a proper representation of the summer climate during heat waves. 355 

This is particularly important in order to evaluate the impacts of climate change on 356 

ecosystems, health, carbon cycle, water and cooling capacity of thermal energy plants, since 357 

heat waves in the mid latitudes are expected to be of the most impacting phenomena in a 358 

human altered climate. Therefore, impact studies can be designed based on the selected 359 

configurations. 360 

 361 
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Table and figure captions 613 

 614 

Table 1. Physics schemes used in this study (with references). All possible permutations are 615 

made, yielding a total of 216 simulations. The numbers in the table refer to the number the 616 

schemes have in the Weather Research and Forecasting (WRF) model.  617 

 618 

Table 2. The five best performing combinations of physics in ranked from the first to the fifth 619 

best.  620 

 621 

Table 3. Cross-comparison between France 2003 and Russia 2010. The (5, 10, 15, 20 and 25) 622 

best simulations, when only using one heat wave to select the best configurations and vice 623 

versa, are taken and compared with their ranking for the other heat wave. If there would be no 624 

correlation between the two years, the average ranking would lay approximately at half of the 625 

total number of simulations for both years that lay within a first selection of 1K (column 8). In 626 

bold the rankings that are lower than this number. Because observations of radiation are 627 

lacking over Russia, we tested France with and without including radiation in the ranking.  628 

 629 

Figure 1. Time series of daily land heat fluxes in 2003 from May to the end of August on 630 

three different FLUXNET sites, with latent heat flux (LH) on the first row, sensible heat flux 631 

(SH) on the second row, and evaporative fraction (EF – latent heat flux divided by the sum of 632 

latent and sensible heat flux) on the last row. The three columns represent three sites, with 633 

Neustift/Stubai (Austria – ATneu 47N, 11E) in the first column, Tharandt (Germany – 634 

DETha, 51N, 4E) in the second, and Soroe-LilleBogeskov (Denmark – DKsor, 66N, 11E) in 635 

the third column. Vegetation types on the three sites are respectively grassland (GRA), 636 

evergreen needleleaf forest (ENF), and deciduous broadleaf forest (DBF). In grey all 216 637 



simulations with the NOAH scheme. Observational data is shown in black (FLUXNET). The 638 

solid light blue line is one configuration with NOAH, while the blue dots represent the same 639 

configuration but with RUC instead of NOAH.  640 

 641 

Figure 2. Domains used in this study: France, Iberian Peninsula, Russia and Scandinavia. 642 

 643 

Figure 3. Time series of daily mean temperature over France in 2003 (a) and 2007 (b) and 644 

Russia in 2010 (c). Every simulation is shown in gray and observations of E-OBS in black. 645 

The blue and red lines are the coldest and the warmest simulations over France during the 646 

heat wave. These lines have the same set of physics in all the figures (3, 4, 5). Figure d shows 647 

the simulated temperature min-max range during the heatwave of 2003 (1-15 August). The 648 

range is calculated as the difference between the warmest and the coldest simulation during 649 

the heat wave period between the 216 members of the ensemble. 650 

 651 

Figure 4. Monthly precipitation over France in 2003 (a) and 2007 (b) and Russia 2010 (c). 652 

The boxplots show the extremes, 25th, 50th, and 75th percentiles. The blue and red dots are the 653 

coldest and the warmest simulations over France during the heat wave (as in figure 3). 654 

 655 

Figure 5. Scatter plot of soil moisture content at July 31, and temperature in August. Every 656 

point is one simulation. Different colors and symbols represent different physics for 657 

convection (CU) (a), microphysics (MP) (b), radiation (RA) (c) and planetary boundary layer-658 

surface (PBL-SF) (d). 659 

 660 

Figure 6. Monthly radiation over France in 2003 (a) and 2007 (b); no radiation data being 661 

available in Russia for 2010.  The boxplots show the extremes, 25th, 50th, and 75th percentiles. 662 



The blue and red dots are the coldest and the warmest simulations over France during the heat 663 

wave (as in figure 3). 664 

 665 

Figure 7. Daily time series of temperature (a) and latent heat flux (c); monthly time series of 666 

precipitation (b) and incoming shortwave radiation (d). Observations are shown in black, and 667 

the five best performing runs in colors. Gray lines indicate other simulations. All figures are a 668 

spatial average over France during summer 2003. 669 

 670 

Figure 8. Sensitivity test of the initialization of soil moisture. Difference between the ‘control’ 671 

simulation and the perturbed ones (minus (red) and plus (blue) 20% initial soil moisture) of 672 

the five highest ranked configurations. The darkest lines are the best simulations (1), and 673 

descending colour shade agrees with descending ranking (1-5). 674 



Table 1 675 

 676 

Microphysics (MP) PBL+Surface 

(PBL-SF) 

Radiation (RA) Convection (CU) Soil 

6) WRF-SM6 

(Hong et al. 2006a) 

1-1) Yonsei Uni-

MM5 (Hong et al. 

2006b; Beljaars, 

1994) 

3) CAM (Collins 

et al. 2004) 

1) Kain-Fritsch 

(Kain 2004) 

2) NOAH (Tewari 

et al. 2004) 

8) New Thompson 

(Thompson et al. 

2008) 

2-2) MYJ-ETA 

(Janjic et al. 1994; 

Janjic, 2002) 

4) RRTMG 

(Iacono et al. 

2008) 

3) Grell-Devenyi 

(Grell & Devenyi, 

2012) 

 

10) Morrison DM 

(Morrison et al. 

2009) 

4-4) QNSE-QNSE 

(Sukoriansky et al. 

2005) 

5) Goddard (Chou 

& Suarez, 1999) 

6) Tiedtke 

(Tiedtke 1989; 

Zhang et al. 2011) 

 

 5-2) MYNN-ETA 

(Nakanishi & 

Niino, 2006, 2009; 

Janjic, 2002) 

 14) New SAS 

(Han & Pan, 2011) 

 

 5-5) MYNN-

MYNN (Nakanishi 

& Niino, 2006, 

2009) 

   



 7-1) ACM2-MM5 

(Pleim 2007; 

Beljaars, 1994) 

   

 677 



Table 2 678 

 679 

Microphysics PBL-Surface Radiation Convection Soil Rank 

Morrison DM Yonsei Uni-

MM5 

RRTMG Tiedtke NOAH 1 

WRF-SM6 MYNN-

MYNN 

RRTMG Grell-Devenyi NOAH 2 

WRF-SM6 ACM2-MM5 Goddard Tiedtke NOAH 3 

New Thompson MYNN-

MYNN 

RRTMG New SAS NOAH 4 

New Thompson ACM2-MM5 RRTMG Tiedtke NOAH 5 



Table 3 680 

 681 

  Average ranking of 5, 10, 15, 20 and 25 best simulations  

  5 10 15 20 25 Number of 
simulations 
within 1ºC  

With 
radiation 

Average 
rank Fr-Ru 

22.6 21.8 25.3 23.1 27.5 104 

With 
radiation 

Average 
rank Ru-Fr 

15.75 15.2 14.7 13 39.3 58 

Without 
radiation 

Average 
rank Fr-Ru 

53 37 28.4 27.6 25.5 104 

Without 
radiation 

Average 
rank Ru-Fr 

20.25 16.8 18.1 17 19.9 58 
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Figure 1 684 
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Figure 2 688 
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Figure 3 690 
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Figure 4a-c 694 
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Figure 5a-d 699 
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Figure 6a-b 704 
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Figure 7a-d 708 
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Figure 8 711 
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