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Abstract

Climate models are not often evaluated or calilbratgainst observations of past climate
extremes, resulting in poor performance duringifstance heat wave conditions. Here we

use theWeather Research and Forecast{VgRF) regional climate model with a large

combination of different atmospheric physics schemdth the goal of detecting the most
sensitive physics and identifying those that appeast suitable for simulating the heat wave
events of 2003 in Western Europe and 2010 in RuSSiaut of 216 simulations combining

different atmospheric physical schemes have a teatye bias smaller than 1 degree during
the heat wave episodes, the majority of simulatglm®swving a cold bias of on average 2-3°C.
Conversely, precipitation is mostly overestimateibrpto heat waves, and short wave
radiation is slightly overestimated. Convectiorfiaand to be the most sensitive atmospheric
physical process impacting simulated heat wave ésatpre, across four different convection
schemes in the simulation ensemble. Based on tbesgarisons, we design a reduced
ensemble of five well performing and diverse scheorabinations, which may be used in the
future to perform heat wave analysis and to ingasti the impact of climate change in
summer in Europe. Future studies could include siesitivity to land surface processes
controlling soil moisture, through the use of vdrland surface models together with varied

physics schemes.

1. Introduction

An increasing number of simulations and studiegeptaa higher frequency of several types
of extreme weather events in the future (e.g. Sehél., 2004; Meehl et al., 2004; Della-
Marta et al., 2007; Beniston et al., 2007; Kugtbt®t al., 2010; Fischer and Schéar, 2010;
Seneviratne et al., 2012; Orlowsky and Senevira®@42). Since summer heat waves are

among the most problematic of such phenomena atdmeng society and ecosystems -
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climate models used for future projections mustvig® accurate simulations of these
phenomena, or at least their uncertainties shoallddcumented. Even if climate models have
been evaluated using observed weather in past egciéds unclear whether they will be able
to simulate extreme heat waves in future climatest tmay not have analogues in the
historical record. At least, models should be &bleeproduce the conditions measured during
recent extreme heat wave cases, some of them hbgemgshown to be unprecedented when
considering the climate over the past five or @rtaries (Chuine et al., 2004; Luterbacher et

al., 2010; Garcia-Herrera et al., 2010; Barriopestral., 2011; Tingley and Huybers, 2013).

Given the importance of forecasting summer heatewavell in advance, many studies have
analyzed their predictability, which remains paoiseasonal forecasts. For instance the 2003
European heat wave was not simulated realistic@gither timing nor intensity) by the
operational European Centre for Medium-Range Wedtoeecasts (ECMWF) system, but
improvements were clear with the use of a new soihvection and radiation schemes (e.qg.
Weisheimer et al., 2011; Dole et al. 2011; Kostenle 2010; van den Hurk et al. 2012).
However seasonal forecasting experiments do ndtyeaow the assessment of model
physical processes underlying extreme temperatiugsg heat waves because model biases
are mixed with sensitivity to initial conditions.h&se may inhibit the effect of the
representation of physical processes in reproduttisgexact atmospheric circulation when

starting simulations at the beginning of the season

From a statistical perspective, extreme temperathexe been found to be reasonably well
represented in global simulations of the curremhate (IPCC, 2013), as well as in regional
simulations (Nikulin et al., 2010). In recent rega modeling evaluation experiments, using
an ensemble of state-of-the-art regional modeldegliby re-analysis at the boundaries of a
European domain, summer extreme seasonal tempesatiare shown to be simulated with

biases in the range of a few degrees (Vautard ,e2@l3). Individual mega heat waves (2003
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in Western Europe, 2010 in Russia) were reprodumednost models. However, it was
difficult to infer whether these models could atsmulate associated processes leading to the
extreme heat waves. The exact same events withasiatmospheric flow and its persistence

could not be reproduced due to internal variaboityhe models.

A comprehensive assessment of simulations of recega heat waves has only been the
object of a limited number of such studies. Proagsnted studies of high extreme

temperatures over Europe have focused on land-atmos feedbacks (e.g. Seneviratne et al.,
2006 and 2010; Fischer et al., 2007; Teuling e28l09; Stegehuis et al., 2013; Miralles et al.,
2014) because, beyond atmospheric synoptic ciionlathese feedbacks are known to play
an important role in summer heat waves. Howevex, sitnsitivity of simulated heat wave

conditions to physical processes in models hasyabbeen explored in a systematic way.
This could be important because error compensaimong processes that involve land-
atmosphere interactions, radiation and clouds nease high temperatures for the wrong

reasons (Lenderink et al., 2007).

The goal of the present study is threefold. Firstaxamine the ability of a regional climate
model, the Weather Research and Forecast (WRF, @kaknet al., 2008), to simulate recent
European mega heat waves, with a number of diffemesdel configurations. Analysis of
these experiments then allows understanding whingtsipal parameterizations are prone to
reproduce the build-up of extreme temperatures,thnsl the need for carefully constraining
them in order to simulate these events properlgalli, using observational constraints of
temperature, precipitation and radiation, we saedaetduced ensemble of WRF configurations
that best simulates European heat waves, withrdiftesets of physical schemes combinations.
This constrained multi-physics ensemble aims tloeeefat spanning a range of possible
physical parameterizations in extreme heat wavescagile keeping simulations close to

observations.
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Our multi-physics regional ensemble approach cetdravith the classical multi-model
ensembles that are constructed by the availabditymodel simulations in coordinated
experiments (see e.g. Déqué et al.,, 2007 and nefesetherein) or combinations of
parameterizations selected by different groupsgudie same model system (Garcia-Diez et
al., 2014). In the latter “democracy-driven” enséenithe lack of overall design strategy may
lead the uncertainty estimation to be biased aadrtbdels to be farther from observations. In
addition, the real cause of model spread is diffito understand because of interacting
physical processes and their biases. Regional rpedtphysics or multi-physics ensembles
could help understand and constrain uncertaintie® raffectively, but so far they have been
seldom explored. Garcia-Diez et al. (2014) showetl éven a small multi-physics ensemble
confronted to several climate variable observatars help diagnose mean biases of a RCM.
Bellprat et al. (2012) showed that a well-constdinperturbed physics ensemble may
encompass the observations. Their perturbed phgsissmble was designed by varying the
values of a number of free parameters, and setgotity the configurations that were closest
to the observations; however, the number of contiona of different physical

parameterization schemes was limited to a totelgiit different configurations.

The WRF model offers several parameterization selsefor most physical processes, and is
thus suitable for a multi-physics approach. In factWRF multi-physics approach has been
used in several studies (e.g. Garcia-Diez et @lL12Evans et al., 2012; Awan et al., 2011,
Mooney et al., 2013), also with its predecessor ME not specifically to simulate extreme

heat waves.

Here we run an ensemble of 216 combinations of WiRisical parameterizations, and
compare each simulation with a set of observat@in®levant variables in order to select a
reduced set of 5 combinations that best represerdpgan summer mega heat waves. The

evaluation is made over the extreme 2003 and 20&0t® The ensemble is also evaluated
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for a more regular summer (2007) in order to testmodel configurations under non-heat

wave conditions.

2. Methods

Simulations and general model setup

We use the WRF version 3.3.1 and simulate the thuesmers (2003, 2007, 2010) using an
ensemble of physics scheme combinations. We fusdt the time necessary to initialize the
soil moisture on a limited number of cases. Sonditions are initialized using the ERA-
Interim (Dee et al., 2011) soil moisture and terapees; thereafter soil moisture and air
temperature are calculated as prognostic varidiye¥/RF. For the August 2003 case, we
find that temperatures differ by less than 0.5°@agione another when starting experiments
before May . Thus in the current study, each simulation isfram the beginning of May to
the end of August for the years 2003, 2007 and 20he regional domain considered is the
EURO-CORDEX domain (Jacob et al., 2014; Vautar&let2013) and the low-resolution
setup of 50 km x 50 km (~0.44 degree on a rotaetbh grid) is used — note that Vautard et
al. (2013) recently concluded that a higher spatablution did not provide a substantial
improvement in heat wave simulations. We use doantesolution with 32 levels for WRF.
Boundary conditions come from ERA-Interim (as vadlinitial snow cover, soil moisture and
temperature). In order to focus on physical proegda the boundary layer and the soil-
atmosphere interface, and to avoid chaotic evalutiblarge-scale atmospheric circulation,
we constrain the model wind fields with ERA-Interme-analyses above Model Level #15
(about 3000m), similar to previous studies (Vautral., 2014), using grid nudging, with a
relaxation coefficient of 5.10s?, corresponding to a relaxation time about equivale the
input frequency (every six hours) (Omrani et aQ12). Temperature and water vapor were

not constrained, to let feedbacks fully develop.
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Physics schemes

We test 216 combinations of physics schemes. Wsidendifferent physics of the planetary
boundary layer and surface layer (PBL; 6 schenmg)ophysics (MP; 3 schemes), radiation
(RA; 3 schemes) and of convection (CU; 4 schentas)each type of scheme, a few options
were selected among the ensemble of possibiliffesenl in WRF. The selection was made to
avoid variants of the same scheme, and to maxirtheedifference of temperature and
precipitation outputs in preliminary experiments.the time of study and model development
stage, different land-surface schemes were availablWRF: 5-layer Thermal Diffusion
Scheme (Dudhia, 1996), NOAH (Tewari et al., 200Rgpid Update Cycle (RUC) (Benjamin
et al., 2004) and Pleim-Xiu (Gilliam & Pleim, 2010)/e decided however to only use one,
the NOAH land surface scheme, in order to focussbudy on atmospheric processes while
limiting the number of simulations, and becauseNBBAH scheme is the most widely used in
WREF applications. This was also motivated by thergmerformance and extreme sensitivity
of the RUC land surface scheme for the land laagidt sensible heat flux as compared with
local observations in 2003. It simulates strongriaheat fluxes in the beginning of the season
and an extreme drying at the end, while sensibbt Hax is overestimated. The NOAH
scheme seemed more stable in the tests that waeefdocapturing both latent and sensible
heat fluxes during the 2003 heat wave at seledtedtdwer sites in Western Europe (Figure
1). Furthermore the Pleim-Xiu scheme is especiaépmmended for retrospective air quality
simulations, and is developed with a specific steflayer scheme as coupled configuration
(Gilliam & Pleim, 2010). The last possible optian the 5-layer thermal diffusion scheme
(Dudhia, 1996) which predicts ground and soil terapges but no soil moisture, and is
therefore also not suitable for our study. Tabldescribes the physical schemes that were

combined to simulate the weather over the threearsemseasons.

Observational data
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In order to evaluate the ensemble and to rank afettsits best performing simulations we
use gridded observed daily temperature and pratimit from E-OBS with a 0.25 degree
resolution (version 7.0) (Haylock et al., 2008)lirBzar interpolation is used to regrid E-OBS
data and the model output to the same grid. Furtbex we use station data of monthly global
radiation from the Global Energy Balance ArchiveEER) network (Wild et al., 2009). For
France 2003 the data of 21 stations were avail&m&007 this number was 20. Observations
over Russia were too scarce, and were not considbtedel data are interpolated to these
stations using the nearest neighbor method. Intiaddiin order to check land-atmosphere
fluxes and the partitioning of net radiation intensible and latent heat fluxes, we use the
satellite observation-driven estimates of dailgtatheat fluxes from GLEAM (Miralles et al.,
2011). Since the latter is not a direct measuremverdo not use them to validate and rank the
model configurations. Furthermore latent- and ddadieat flux measurements are used from
three FLUXNET sites from the Carbo-Extreme databdbBeustift/Stubai — Austria
(Wohlfahrt et al., 2010); Tharandt-Anchor station Germany (Grunwald & Bernhofer,
2007); and Soroe-LilleBogeskov — Denmark (Pilegaardl., 2009)), for the evaluation of the

land surface schemes.
Evaluation and ranking of model simulations

For ranking, we set up several measures of modi] Blased on the differences between
observed and simulated spatial averages over twwainhs: France for 2003 and 2007 (5W-
5E & 44N-50N), and one in Russia for 2007 and 2(2BE—60E & 50N-60N) (Fig. 2). A
first scheme selection is made based on the skitpproduce air temperature dynamics, since
this is the primary impacted variable and obseovettiare reliable. Because we are interested
in heat waves, we select only those simulation$ #ma within a 1 K regional average
difference between simulated and observed temperdtr heat wave periods; these periods

are defined as AugustL5™ for France (in 2003), and Jul§' fill August 18" for Russia (in
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2010). The 1 K threshold is arbitrary but is usedatoid processing a large number of
simulations that have unrealistic temperatures.y@i of the 216 simulations meet this
criterion and are further considered. Then, th&iranof the retained simulations is done
based on: (i) the daily temperature difference betwsimulations and observations during
the heat wave periods (as above for 2003 and 2@h@)during the period®131% August for
the normal year 2007, (ii) the root mean squareresf monthly precipitation and radiation
for the months July, June and August. The GEBA dataonly contains scarce radiation
observations over Russia, and therefore we couldamsider this region for ranking models
against incoming shortwave radiation. As a finapstan overall ranking is proposed by
averaging the ranks obtained from the three vagltemperature, precipitation and
radiation). From this final ranking, and in ordev telect an elite of multi-physics
combinations, we selected the top-5 highest-rardadigurations. Note that observational
uncertainty is not considered in this study, whgkhown to be able to impact model ranking

over Spain (Gomez-Navarro et al., 2012).
3. Resaults
3.1. Large systematic errorsfound during heat wave periods

Figure 3 shows the large temperature range spaoyede 216 ensemble members for the
spatial average over the heat wave areas. The mxnrange between ensemble members is
up to 5°C during heat wave periods (Figure 3). llgcat 50 km resolution, the difference

between the warmest and the coldest simulatiomduaiheat wave is larger, reaching more
than 10°C in 2003 (Figure 3d). In 2007, when sumtearperatures were not extreme, the
range is about twice as small. Only a few simufetimmatch the observed high temperatures
(Figure 3a-c). In Fig. 3a, we select two extremefigurations (blue and red lines), based on

daily mean temperature over France during the 2088 wave. Interestingly, they are



215  extreme in all regions and years, indicating thethecombination tends to induce a rather
216 large systematic bias. This bias however, is differfor the ‘warm’ and the ‘cold’
217  configuration. It seems not to be due to a missgtation of the diurnal cycle, since they
218 remain when analyzing time series of maximum anchimim daily temperatures
219 independently (see supplementary Figures la-f). édew minimum temperatures show a
220 less consistent bias than maximum daily temperatur® systematic temperature
221  underestimation by WRF simulations over Europediss been found in other multi-physics

222  ensemble studies over Europe (e.g. Awan et all1;2Ba&rcia-Diez et al., 2011, 2014).

223 For monthly precipitation we obtain a large rangk simulated values, with most
224  configurations overestimating monthly summer rdlr(fRJA) during heat waves years, and to
225 a lesser extent during the wetter 2007 season f&g). This is in line with the findings
226  reported by Warrach-Sagi et al. (2013) and Awaal.€2011), and with the overestimation of
227  precipitation by many EURO-CORDEX models shown hytl&rski et al. (2014). The two
228 selected extreme combinations (based on temperasrexplained above) are reproducing
229  precipitation overall without a major bias. Thigygasts that the temperature bias in these two
230 extreme simulations is not explicitly caused by iarepresentation of the atmospheric water
231 supply from precipitation. However soil moisturbgtsoil moisture over the whole column)
232 does show a strong relation to temperature biasesodel simulations. Figure 5a-d shows
233  soil moisture at the end of July versus temperaiareAugust 2003 for each model
234  configuration. Configurations with low soil moisturlevel are associated with higher
235 temperatures and vice versa, confirming the roléanél-atmosphere feedbacks during heat
236 waves, already pointed out by previous studiess Tihdicates that the evapotranspiration
237  from spring to summer depleting soil moisture caralxritical process during summer for the
238 development of heat waves, and that this processois simply related to summer

239  precipitation.
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For solar radiation, the mean differences betwegrsinulations over France 2003 and 2007
reaches approximately 100 Whn{Fig. 6a,b). Observations for France (black dats) found
below the median value of the simulations so ahsligverestimation of the ensemble is
obtained. The first (warmest) extreme configuratimed dot) is associated with an
overestimated radiation of 10-50 Wmwhile the other (coldest, blue dot) extreme
configuration exhibits an underestimated radiatipn about the same amount. Since the
warmest simulation agrees better with temperatbseiwations than the coldest simulation,
one may therefore suspect that it contains a cgatiechanism that partly compensates for

the overestimated solar radiation.
3.2. Sensitivity of temperaturesto physical parameterizations and sour ces of spread

In order to identify the physics schemes to whicé tlevelopment of heat waves is most
sensitive, we examine how resulting temperatureschustered as a function of the scheme
used. We find that the spread between all simulatieboth in terms of temperature and soil
moisture — is mostly due to the differences in @mton scheme (clustering of dots with the
same color in Fig. 5a). For instance the Tiedtkees® (blue dots) systematically leads to
higher temperatures and lower soil moisture, wthieeKain-Fritsch scheme (green dots) leads
to wetter soils and lower temperatures, inhibitmeat waves. Microphysics and radiation

schemes are also contributing to the spread oflateditemperature and soil moisture values
(Fig. 5b-c), although their effect is less markkdrt for convection. Heat wave temperatures
and soil moisture seem to be least sensitive t@lduieetary boundary layer and surface layer
physics schemes. The sensitivity of the convecsoheme in WRF has already been
mentioned in previous studies (Jankov et al., 2@0%an et al., 2011;; Vautard et al., 2013;

Garcia-Diez et al., 2014). Note that the soil nuessimulated in early August 2003 is better
correlated with preceding radiation than with ppéeition (compare Supplementary Figures 2

and 3), indicating that the way clouds, and paldidy convective clouds, affect radiation
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prior to the onset of heat waves is a major driethe spread for the development of heat

waves, higher radiation leading to drier soils higher temperatures during heat waves.

3.3. A constrained reduced ensemble of best smulations

Focusing only on the 55 selected simulations tiiféérdess than 1°C from the observations
during the heat waves, we apply the ranking metimbebduced in Section 2 based on
temperature, precipitation and radiation model-oket@n comparison metrics. The 5 highest
ranked simulations are given in Table 2 and araadigtthe numbers 1-5 in Supplementary
Table 1. Figure 7a confirms the ranking by showtimat these simulations also perform well
in terms of temperature, during the months priothi® heat wave. The same is furthermore
found for the years 2007 in France (Supp. Fig.rne) 2010 in Russia (Supp. Fig. 4), and also
for other regions such as the Iberian Peninsula @oahdinavia (Supp. Fig. 6a,d). The
selected simulations however performed less welpfecipitation over France in 2003 (Fig.
7b), but do not show a large overestimation of ipietion either. Precipitation over Russia
for the 5 highest-ranked simulations does show gmrtbrmance (Supp. Fig. 4b), as well as
for other European regions (Supp. Fig. 6). The nradration of the ensemble of the five best
simulations is closer to the GEBA observations timaiihe case of the original ensemble (Fig.

7C).

Nonetheless, the better match of the reduced ereasfhithe five highest-ranked simulations
to the observations of temperature, precipitation aadiation is to a very large degree
unsurprising: the selection was based on the fitobservations. However, it is still
satisfactory to see that some simulations are d¢apab matching all three variables.
Conversely, we also compare simulations againsthandey variable that was not used for
evaluating and ranking simulations, namely thenfateeat flux (Figure 7d). Albeit somehow

reduced compared to the full-ensemble spread,ptead of the five best simulations for the
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latent heat flux remains large over the whole pkrimn average between 50 and 120 ¥m
(observed values are around 75 WmHowever, during the 2003 heat wave over France
three of the five best simulations exhibit a clossemblance to the latent heat observations
(approximately 5-10 Wif) (Fig. 7d). The two simulations that are foundctmnsiderable
overestimate latent heat flux by approximately 80MIm? (as compared to GLEAM) are
those that use a different convection scheme thaTiedtke scheme. The overestimation of
latent heat fluxes in these schemes is howevegeoeéralized for other regions and years
(Suppl. Fig. 4c, 5d, 6c,f-h), for which the latéaat flux was fairly well simulated within the

range of uncertainty of GLEAM.

A cross-comparison for the years 2003 and 201Q,ishaising only the 2010 heat wave to
select schemes and verify the performance of tleeteel schemes over 2003 and vice versa,
yields some promising results. Table 3 shows thexame ranking of the best (5, 10, 15, 20
and 25) simulations. When only using one heat wawselect the best configurations, they all
lie in the top-ranked half, and even higher in theking in the case of the 2010 heat wave
over Russia being used to select the best contigng This suggests that the selection based
upon one heat wave in one region should also peovétter simulations for other heat waves
or heat waves in other areas, i.e. that the biasmémber of the WRF ensemble is not local,

but at least regional at the scale of Western Europ
4. Concluding remarks

In this study we designed and analyzed a largeiplajtsics ensemble with the WRF model.
It is made of all possible combinations of a set different atmospheric physics
parameterization schemes. They were evaluatedhéar dbility to simulate the European heat
waves of 2003 and 2010 using the regional climateleh WRF based on temperature,

precipitation and shortwave radiation. Even thotlgh simulations were constrained by grid
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nudging, we found a large spread between the diffephysics for the simulations for

temperature, precipitation and incoming shortwaadation, three variables we used to create
an overall configuration ranking. Most simulatiosystematically underestimate temperature
and overestimate precipitation during heat wavaspdel pattern that was already found in
previous studies dealing with much smaller ensesnf@ey. Awan et al., 2011; Garcia-Diez et
al.,, 2011; Warrach-Sagi et al., 2013). The spreadrg ensemble members is amplified
during the two extreme heat waves of study. Sineeonly considered a single land surface
scheme, it is probable that the ensemble spreatbiangely increase when incorporating the
uncertainty associated with modeling land surfacegsses. Nevertheless, considering only
atmospheric processes, the magnitude of the sgtéhdeaches 5°C during the peak of the

heat waves.

We also showed that among atmospheric process ptFapations, the choice of a
convection scheme appears to dominate the ensespidad. We found indications that the
large differences between convection schemes seesocur mostly through radiation, and
therefore the way convective clouds affect theasiegfenergy and water budget prior to and
during heat waves. Changes in incoming radiatiarseachanges in evapotranspiration and

therefore soil moisture, which may subsequentid fegck on air temperature.

From this ensemble, we selected a small sub-ensewilth the five best combinations of
atmospheric physics schemes based on the fit tergditsons. These combinations capture
well the temperature dynamics during the mega teaes of France and Russia, and they
perform better than other combinations in otheriaieg) of Europe. In addition, they are
consistent with independent latent heat flux datduor cross-validation. This indicates that
the constraints set for the selection reduce theemminty across the whole European
continent and points towards the creation of annupéd ensemble of WRF configurations

specific for heat waves, with reduced error compgass. A sub-ensemble that outperforms
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a larger ensemble was also found by Herrera ¢2@L0). The sub-ensemble based on mean

precipitation showed better results for extremeipreation as well.

However a limitation of this study is the use oflyoone land-surface scheme; the five
selected WRF configurations may actually all beeti#d by systematic errors of the NOAH
land surface scheme. The importance of the seléatedsurface scheme is further confirmed
by the larger spread of the “best” ensemble foenatheat (in Wm-2) than for shortwave
radiation. In order to mimic radically differentnid surface processes, a sensitivity test where
initial soil moisture was atrtificially increaseddadecreased by 20% all along the soil column
was conducted. Results confirm the sensitivityheftemperature simulations to soil moisture,

a variable partly controlled by the land surfachesoe (Figure 8). The full answer to this
question is left for a future study in which di#et atmospheric schemes and surface schemes

will be jointly permuted.

Although our ensemble is trained on only summerddmns, our results have several
implications for climate modeling. First, the caasted WRF ensemble may be used in
future studies of climate change; each of the fn@mbers may exhibit a different sensitivity
to future climate change conditions, leading tooastrained exploration of the uncertainty.
Then it is important to notice that our study pimp® the need to carefully design or adjust
the convection scheme for a proper representafieneosummer climate during heat waves.
This is particularly important in order to evaluatiee impacts of climate change on
ecosystems, health, carbon cycle, water and cockpgcity of thermal energy plants, since
heat waves in the mid latitudes are expected tofbie most impacting phenomena in a
human altered climate. Therefore, impact studies loa designed based on the selected

configurations.
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Tableand figure captions

Table 1. Physics schemes used in this study (weifitrences). All possible permutations are
made, yielding a total of 216 simulations. The nershin the table refer to the number the

schemes have in the Weather Research and Forec@atiRF) model.

Table 2. The five best performing combinations loycs in ranked from the first to the fifth

best.

Table 3. Cross-comparison between France 2003 assid&2010. The (5, 10, 15, 20 and 25)
best simulations, when only using one heat wavsetect the best configurations and vice
versa, are taken and compared with their rankinghi® other heat wave. If there would be no
correlation between the two years, the averagemgnould lay approximately at half of the
total number of simulations for both years thatwathin a first selection of 1K (column 8). In
bold the rankings that are lower than this numiB&Ecause observations of radiation are

lacking over Russia, we tested France with andawitincluding radiation in the ranking.

Figure 1. Time series of daily land heat fluxe2003 from May to the end of August on
three different FLUXNET sites, with latent heatl(LH) on the first row, sensible heat flux
(SH) on the second row, and evaporative fractidhHatent heat flux divided by the sum of
latent and sensible heat flux) on the last row. Tiree columns represent three sites, with
Neustift/Stubai (Austria — ATneu 47N, 11E) in thest column, Tharandt (Germany —
DETha, 51N, 4E) in the second, and Soroe-LilleBeagegDenmark — DKsor, 66N, 11E) in
the third column. Vegetation types on the threessiare respectively grassland (GRA),

evergreen needleleaf forest (ENF), and deciduooadieaf forest (DBF). In grey all 216
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simulations with the NOAH scheme. Observationaadatshown in black (FLUXNET). The
solid light blue line is one configuration with N®#A while the blue dots represent the same

configuration but with RUC instead of NOAH.

Figure 2. Domains used in this study: France, #eReninsula, Russia and Scandinavia.

Figure 3. Time series of daily mean temperature évance in 2003 (a) and 2007 (b) and
Russia in 2010 (c). Every simulation is shown iaygand observations of E-OBS in black.
The blue and red lines are the coldest and the e&rsimulations over France during the
heat wave. These lines have the same set of phgsatisthe figures (3, 4, 5). Figure d shows
the simulated temperature min-max range duringhéregwave of 2003 (1-15 August). The
range is calculated as the difference between #menest and the coldest simulation during

the heat wave period between the 216 members @tbemble.

Figure 4. Monthly precipitation over France in 20@3 and 2007 (b) and Russia 2010 (c).
The boxplots show the extremes™"250", and 78 percentiles. The blue and red dots are the

coldest and the warmest simulations over Francegltine heat wave (as in figure 3).

Figure 5. Scatter plot of soil moisture contenflaly 31, and temperature in August. Every
point is one simulation. Different colors and synsbaepresent different physics for
convection (CU) (a), microphysics (MP) (b), radmatiRA) (c) and planetary boundary layer-

surface (PBL-SF) (d).

Figure 6. Monthly radiation over France in 2003 &aQd 2007 (b); no radiation data being

available in Russia for 2010. The boxplots shosvektremes, 2% 50", and 7%' percentiles.
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The blue and red dots are the coldest and the v&asitaulations over France during the heat

wave (as in figure 3).

Figure 7. Daily time series of temperature (a) Etent heat flux (c); monthly time series of
precipitation (b) and incoming shortwave radiat{dh Observations are shown in black, and
the five best performing runs in colors. Gray limedicate other simulations. All figures are a

spatial average over France during summer 2003.

Figure 8. Sensitivity test of the initialization £6il moisture. Difference between the ‘control’
simulation and the perturbed ones (minus (red) @od (blue) 20% initial soil moisture) of
the five highest ranked configurations. The darkess are the best simulations (1), and

descending colour shade agrees with descendinghta(ile5).
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Tablel

Microphysics (MPPBL+Surface Radiation (RA) Convection (CU) Saill
(PBL-SF)

6) WRFSM61-1) Yonsei Uni3) CAM (Collingl) Kain+ritsch2) NOAH (Tewar

(Hong et al. 2006éMM5 (Hong et alet al. 2004) (Kain 2004) et al. 2004)
2006b;  Beljaar
1994)

8) New Thompsa2-2) MYJETA4) RRTMG3) Grell-Deveny

(Thompson et g(Janjic et al. 199¢(lacono et a(Grell & Devenyi

2008) Janijic, 2002) 2008) 2012)

10) Morrison DNM4-4) QNSEQNSE5) Goddard (Chad6) Tiedtke

(Morrison et al(Sukoriansky et e& Suarez, 1999) (Tiedtke 198¢

2009)

2005)

Zhang et al. 2011

5-2) MYNN-ETA
(Nakanishi &
Niino, 2006, 200¢

Janjic, 2002)

14) New SAS

(Han & Pan, 2011

5-5) MYNN-
MYNN (Nakanish
& Niino, 2006

2009)
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7-1) ACM2-MM5
(Pleim 2007

Beljaars, 1994)




Table?2

Microphysics  |PBL-Surface |Radiation Convection Saoll Rank

Morrison DM Yonsei UniiRRTMG Tiedtke NOAH 1
MM5

WRF-SM6 MYNN- RRTMG Grell-Devenyi NOAH 2
MYNN

WRF-SM6 ACM2-MM5 |Goddard Tiedtke NOAH 3

New Thompson MYNN- RRTMG New SAS NOAH 4
MYNN

New Thompson ACM2-MM5 | RRTMG Tiedtke NOAH 5




680 Table3
681
Average ranking of 5, 10, 15, 20 and 25 best sitiarig
5 10 15 20 25 Number o
simulations
within 1°C
With Average [22.6 21.8 25.3 23.1 275 104
radiation rank Fr-Ru
With Average [15.75 15.2 14.7 13 39.3 58
radiation [rank Ru-Fr
Without |Average |53 37 28.4 27.6 25.5 104
radiation rank Fr-Ru
Without |Average 20.25 16.8 18.1 17 19.9 58
radiation [rank Ru-Fr
682

683
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Figure5a-d
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