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Dear Nicolas Delbart, 

 

Firstly we would like to thank you for taking the time to review this manuscript. The 

comments you provided on our manuscript have been very insightful and we believe they 

have contributed substantially to improving the quality of this manuscript. 

In the following pages we provide responses to the comments made on the manuscript. We 

hope that our responses have dealt with all the issues raised in the review process, however 

please do not hesitate to contact us if you require any further clarification. 

  

Yours sincerely, 

 

 

 

Dr.  Lucy Rowland and co-authors. 

  



Response to major and minor comments from reviewer Nicolas Delbart.  

(Please note that responses by the authors are shown in red and that our page numbers 

references are from the revised MS word document) 

 

Major comments: 

1. My main comment is about the experimental setup. To my understanding all these models, 

maybe except ED2, are steady state equilibrium models. However, the experiments carried 

out in this manuscript consist in rising temperature dramatically and abruptly, or dropping the 

precipitation, after the model spin-up. Then the model is run for eight years. I am not a model 

expert but it seems to me these models are not designed to be able to respond adequately in a 

short term to such disturbances. Thus I am afraid that the model outputs that are presented 

only reflect how a model adjusts itself during a transition period to a new and totally different 

climatic situation. I think the models are here used outside of what they are built to do. I 

think it would be more adequate to impose a temperature increase ramp after the spin-up, or 

at least run the models much longer than eight years. Moreover that may be more informative 

on real ecosystem response as it would be closer to realistic climatic changes that do not 

consist in such abrupt changes. I am not saying the authors should redo the experiments but 

they must explain very precisely why steady-state equilibrium models can be used in such a 

way. 

 

We agree that many of these models are designed to only be run in steady state equilibrium 

conditions. The methodology used for the spin up and model simulations was pre-constrained 

by a method which tested the capacity to simulate the responses of two experimental drought 

(see Powell et al 2013), where the forest was indeed exposed to an abrupt change in 

precipitation, in the model and in the field-scale experiments from which the test data were 

derived. Working within the existing simulation framework of our modelling consortium our 

study therefore focuses on model responses to short term shifts in temperature and 

precipitation at a tropical forest site. We agree that it would be interesting to study a slow 

ramp-up in temperature as well as a more abrupt change as modelled here. However, we note 

that there is increasing evidence that this region will experience increasingly severe short-

term changes in climate (Cox et al., 2008; Reichstein et al., 2013), and that the Amazon 

region has already experienced two abrupt and severe drought events in the last decade 

(Marengo et al., 2011). Hence, whilst testing against a slow ramp up is of much interest, we 

do still believe that there is significant value in analysing these short-term responses. 

Secondly analysing short-term responses is also important as much of the physiology has a 

fast response timescale, even if (much less well understood) components such as allocation 

and acclimation may operate over longer timescales. Many of the rapid physiological 

response mechanisms are dependent on temperature response functions; examples of these 

which are a key focus of our paper are photosynthetic responses or shifts in VPD which 

change stomatal conductance (see Figure 1). If we studied these processes after running the 



models to equilibrium, the responses of some of the key variables in the study (An, gs) are 

more likely to be dominated by the effect of long term soil drying rather than any direct 

temperature responses, particularly at the highest temperature changes in the models which 

simulate a soil water stress function. We acknowledge and discuss in the paper that even at 

our shorter time-scale the model responses are bound up into responses of the change in soil 

moisture stress (Lines 383-395), however within the shorter-term time-scales used we argue 

there is greater scope to look at the shorter-term  responses to changes in temperature.  

Thirdly because of the responses to variables such as the soil water stress function, if run to 

equilibrium with the temperature scenarios imposed, many of these models would have 

shifted from a tropical forest ecosystem to grassland, as CLM3.5 did even over a short time-

scale. As discussed below (comment 3) these responses are indeed interesting, but 

unfortunately not the focus of this paper. 

Fourthly analysing data from short-term model simulations allowed us to compare model 

outputs with the Doughty and Goulden data which looked at short-term instantaneous 

responses of leaves to increased temperature; this validation/test is particularly valuable 

because there are very few other datasets beyond Doughty and Goublden focusing on this key 

issue.  

For these reasons above we would argue that this and other studies (e.g. Luo et al., 2008) 

which explore the short -term responses of Amazonian forest to changes in climate are 

extremely valuable. However, we agree with the reviewer that we have not made these 

arguments clear enough in the manuscript and have endeavored to insert the sentences below 

to amend this: 

 

Lines 31-35: However, significant uncertainty remains regarding the response of tropical 

forests to warming (Corlett, 2011; Reed et al., 2012; Wood et al., 2012), altered precipitation 

(Meir et al., 2008; Meir and Woodward, 2010) and short-term abrupt changes in in both 

precipitation and temperature (Cox et al., 2008). 

Lines 44-48: However model responses to simultaneous changes in precipitation and 

temperature complex are difficult to evaluate due to the compound effect of drought and 

temperature responses (Luo et al., 2008). There are particular challenges when considering 

short-to-medium term responses (Luo et al., 2008) linked to climatic extremes, such as severe 

drought (Cox et al., 2008; Marengo et al., 2011). 

Lines 87-93: Our model simulations represent short-term non-equilibrium responses to 

changes in temperature to make them comparable to the perturbation data collected by 

Doughty and Goulden (2008). Evaluation of non-equilibrium changes in models is valuable 

for assessing how models will perform when simulating responses to extreme shifts in 

temperature and precipitation, which are predicted to increase in frequency and severity 

across Amazonia (Cox et al., 2008; Marengo et al., 2011). If the models were run to their 

equilibrium response to a simulated climate shift, the changes in some of the key variables in 



the study (An, gs) are more likely to be dominated by the effect of long term soil drying rather 

than direct temperature responses. 

Lines 351-354: Had the models been run to their equilibrium states, it is likely that there 

would have been greater divergence of model responses at both the canopy- and leaf-scales. 

Prolonged higher temperatures reduce long-term soil moisture availability and cause more 

severe changes in β; in dynamic-PFT models this can result in a substantial shift of PFT 

away from tropical forest.  

 

 

2. My second comment concerns the conclusions that the authors should give. If it is found that 

the models only really agree on NEP, less on GPP, and disagree on all processes, it is 

probably necessary to conclude that despite their complexity these models do not present a 

clear advantage over simpler models such as light use models or statistical models adjusted 

on existing ecosystem exchange measurements. Complex models are useful if they allow 

understanding the mechanisms behind canopy scale measurements, but here we see the 

models do not bring this knowledge. Thus, the authors should bring a general conclusion on 

the utility of complex models at their current stage of development to address the question of 

changes in Amazonian forests in response to climatic variability. 

 

Thank you for raising this point; it is very interesting and something which should be 

discussed in the manuscript. Model development often advances by using different 

approaches – simpler (statistical or optimized) and complex. Development of more 

mechanistic processes should ultimately lead to improvements in our ability to simulate and 

understand these complex natural systems. We acknowledge that mechanistic understanding 

is always limited, hence it is certainly very interesting to test if statistical models or 

simplified ‘optimised’ models, which may have greater random, but less systematic error, 

will give a more informative prediction than detailed complex models. This discussion is 

relevant to many aspects of gross ecosystem process simulation. We hope that we have 

adequately addressed this issue by introducing a sentence in line 436-442 of the discussion 

which states:  

“The range of model responses in this study is likely to stem from real uncertainty in our 

understanding of the responses by tropical rain forest ecosystems to changes in precipitation 

and temperature. Further analysis of the same questions using models that vary in complexity 

(eg, statistical or optimized models, as well as purely mechanistic) might provide additional 

insight into mechanistic and simulation bias (systematic or random), as well advancing 

understanding about climate risk that we derive from them (Meir, Mencuccini and Dewar, 

2015) 

 

3. My third comment is that it seems to me that ecosystem response to such large changes 

(+6◦C) should be treated with the scope of plant functional type changes, as a transition from 



forest to savannah should be expected. Except on page 7834 line 12 this crucial question is 

not addressed, and must be developed. 

 

We agree that the potential transitions from forest to grassland are very important, especially 

in the context of making ecosystem scale predictions. However there are other manuscripts 

currently in prep from the same modelling consortium which will discuss the implications of 

PFT shifts in model simulations done across the Amazon. The focus of this paper was 

assessing the effects of climate extremes on physiology in tropical forests, particularly in 

relation to the data comparison aspect of the manuscript. Therefore we did not address the 

issue of long-term adaptation and forest transitions, as this involves assessment of the 

competition matrix within the models, which would introduce a new and complex topic into 

an already complex and fairly long paper. Finally two of the models used in this study do not 

have multiple PFT’s and comparing the responses of these models, to models which do have 

competing PFT’s becomes impossible if PFT shifts occur.   

 

 

4. My final general comment is about the simulation of respiration. As the inter-model 

agreement is higher on NEP than on GPP, it is necessary to develop the changes on 

respiration, and maybe to separate heterotrophic and autotrophic respiration responses. It is 

commented but not shown, and maybe this is a good option to keep the manuscript in a 

reasonable length but still these results should be a bit more developed. We also need to 

know how the models differ in term of both respiration fluxes right after spin-up, and thus the 

biomass and the soil carbon should also be given to understand the initial differences 

between the different model simulations. 

 

We agree that the responses of autotrophic and heterotrophic respiration are both very 

important and that a single graph of total respiration is insufficient to deal with the 

complexities of this problem. However, the purpose of the respiration figure is not to provide 

an answer to the responses of respiration fluxes to temperature and drought, but to show the 

other half of the NEE flux, so the reader can understand what proportion of the NEE response 

is driven by GPP versus respiration. Although we would be keen to explore the complexities 

of respiration in detail, this paper is necessarily focused on the gross primary productivity 

response to climate extremes. Respiration responses are beyond the scope of our paper, which 

is already relatively complex in addressing leaf to canopy assimilation processes.  

In terms of how carbon stocks and fluxes differ between models at this site following spin up, 

when no climate changes have been imposed, and after drought is imposed, this has already 

been addressed and published by Powell et al. (2013). 

 

 



Minor comments: 

 Page 7825 Lines 8-10 and 16-18 comment results on GPP and should be grouped. Thank 

you for pointing this out, now grouped. 

 

 21 : maybe remove “to”  Done 

 

 23-26: this a key issue. As said page 7837, lines 23-25, uncertainties on LAI are 

compensated by uncertainties on leaf scale processes. May it be possible that this is 

explained by the fact that the main source of validation data is canopy scale exchanges 

measurements? Moreover you point the lack of data later (page 7827), thus which validation 

strategy are you suggesting here? Thank you for your comment, we have changed the 

sentence to make it clear that it is validation at both the leaf and canopy scale which is 

necessary: 

“To improve the reliability of simulations of the response of Amazonian rainforest to 

climate change the mechanistic underpinnings of vegetation models need to be validated at 

both leaf- and canopy-scales to improve accuracy and consistency in the quantification of 

processes within and across an ecosystem. . 

 

 Page 7826, line 23. Meaning of SWC should be given first. Thank you, now done 

 

 Page 7829 lines 14 and 19: same information, should be reorganized. Now re-organised so 

similar sentences are concatenated 

 

 Page 7834, figure 3. It would be cleared to me to see the LAI changes expressed in LAI 

units rather than in initial LAI fraction. Moreover, in figure 3, what is shown is not the 

fraction of change but the fraction that does not change, or am I wrong?  Thank you for this 

comment, we agree that the way we have described the fractional changes in the figure 

legend is maybe confusing and therefore we have changed the figure legend to read: 

“Figure 3: Modelled effect of short-term changes in temperature and drought.  Changes in: 

a) gross primary productivity (GPP) b) ecosystem respiration (Reco) and c) leaf area index 

(LAI ) in the final year (2006) in the drought run expressed as a fraction of the value in the 

final year (2006) of the control run, for the Tair -5˚C (grey bars) and Tair +6˚C (White 

bars) simulations.” 

However, if we were to express LAI in the same figure as LAI units this would be 

misleading because of the large variation in LAI across the models. For example, if the 

absolute reductions in LAI from ED2 and CLM3.5 are equivalent in the figure (e.g. they 

both loose 2m
2 
m

-2
 of LAI), the implications are very different. ED2 has a starting LAI of 4 

m
2 

m
-2

 and thus predicts a 50% loss.  Meanwhile, CLM3.5 starts at 11 m
2 

m
-2

 and predicts an 

18% loss. We believe that the reader therefore gets more information from seeing LAI as a 

fraction after having already seen the values of LAI between the models in Figure 2. 

 

 Page 7835 : the text here is very complicated, whereas the figure 4 that it described is very 

clear. I think the manuscript would gain in clarity if the results were described less 

intensively. Same comment applies elsewhere in the manuscript. We agree that this section 



and other results sections were unclear; we have completely re-written the results sections in 

an attempt to simplify them and make them clearer. 

 

 Page 7837 (lines 1-5) and figure 8: why only two models are shown? As stated in the 

Methods the data from Doughty and Goulden is only available for sunlit leaves and SPA and 

CLM3.5 are the only models which simulate an output for sunlit leaves. We have attempted 

to make this  clearer in the Figure legend and in the text in lines 317-319 stating:  “When the 

effect of soil water stress is removed and sunlit leaf level values are compared to the DG 

data for the models which could output separate sunlit leaf values of gs and An (only SPA 

and CLM3.5; Figure 8).” 

 

 Figure 1: unclear. What mean signs + and - ? Is it the response of models? Why temperature 

increase induces an increase in GPP whereas in figure 2 we see the contrary? The + and – 

signs represent the correlation or possible feedbacks between variables. For example An is 

only positively correlated with GPP, it has a +, (i.e. if An goes up GPP cannot go down, 

with all other things being equal). Some variable can have both positive and negative 

feedbacks depending on the magnitude of the change and hence they have both a +/- sign. 

We have now made this clearer in the legend:  

“Figure 1: Schematic diagram showing how droughts, via the combined effects of increased 

air temperature (T) and reductions in precipitation (PPT), affect the carbon cycle of a 

tropical forest, including the effects on: vapour pressure deficit (VPD), evapo-transpiration 

(Et), stomatal conductance (gs), soil water content (SWC), net photosynthesis (An), leaf area 

index (LAI), the maximum rates of RuBP carboxylation and electron transport (Vcmax  and 

Jmax respectively), autotrophic respiration (Ra) heterotrophic respiration (Rh), gross 

primary productivity (GPP), and net ecosystem exchange (NEE). + signs indicates a 

positive feedback effect between variables (i.e. an increase in one variable can only cause 

an increase in another if all else is equal), - signs indicate a negative  feedback effect, and 

+/- indicate the possibility of both a positive and negative effect. Solid arrows represent 

responses which occur over short timescales of minutes to hours, whereas dashes arrows 

represent responses which can occur over longer timescales from days to months.”  

 

 

 Figure 5: should be expressed in the units of Vcmax, not relatively to 25◦C. The key point of 

Figure 5 within our paper is to show the relative responses of Vcmax to temperature change. 

We argue that this is much easier to see if you explore the shapes of the temperature 

response curves on a normalised scale, where the response curve can be directly compared 

across models. Within the models Vcmax is the only variable explored which has a fixed 

temperature response independent of other climate variations, for example VPD. If we were 

to plot the actual values the resulting figure would be very confusing because some of the 

models output Vcmax values for the top canopy only, before canopy integration occurs, and 

other models output an integration of Vcmax across the canopy, or different Vcmax values from 

multiple canopy levels. Consequently the absolute values for Vcmax across the models are not 

comparable whereas the temperature responses on Vcmax are. If necessary we can clarify this 

point in the Figure legend. 

 



 Table 3, caption : unclear. This caption has now been re-written, to what we hope is a much 

clearer format: 

“Table 3: Values show the normalised intrinsic water use efficiency (IWUE) calculated as 

the linear slope of normalised An plotted against normalised gs (Figure 6). The normalised 

IWUE is calculated separately for each models’ control and drought temperature 

simulations (ambient air temperature (Tair) -5˚C, +0 ˚C,+2 ˚C,+4 ˚C, and +6 ˚C).” 

 

 I apologize but interpretation of figures 6 and 7 are unclear to me. Thank you for pointing 

out that the interpretation of Figures 6 and 7 are not 100% clear. The purpose of Figures 6 

and 7 is: firstly to demonstrate that there are clear relationships between An and gs in the 

models, but not between An  and Vcmax. We hope that this is now clearer in lines 299-301: 

“Consequently for each model there are apparent, but variable, relationships between gs 

and An (Figure 6), but no obvious relationships between An and Vcmax (Figure 7).” 

Figure 6 is also used to show the normalised intrinsic water use efficiency: the normalised 

increase in An per unit increase in normalised gs.
 
The purpose of this plot is to show that the 

rate at which normalised An increases per unit increase in normalised gs (i.e. the linear slope) 

increases from the lowest temperature simulation (ambient air temperature -5˚C) to the 

highest temperature simulation (ambient air temperature +6˚C) and this increase is greater in 

the drought than control simulations. The normalised values of intrinsic water use efficiency 

per simulation (the linear slope values) are shown in Table 3 

The results and discussion sections in this manuscript which include the explanation of the 

results from these figures have now all been re-written (see comment above), as have the 

figure captions. We hope now that the figures and results concerning these figures are now 

made much clearer throughout the manuscript. 
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Abstract 1 

Accurately predicting the response of Amazonia to climate change is importantimportant for 2 

predicting climate changes across the globe. However, changes Changes in multiple climatic 3 

factors simultaneously may result in complex non-linear ecosystem responses, which are 4 

difficult to predict using vegetation models. Using leaf- and canopy- scale observations, this 5 

study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and 6 

SPA) to simulate the responses of canopyleaf- and leaf- canopy-scale productivity to changes 7 

in temperature and drought in an Amazonian forest.  8 

The models did not agree as to whether gross primary productivity (GPP) was more sensitive 9 

to changes in temperature or precipitation, but all the models didwere consistent with the 10 

predictioned that GPP would be higher if tropical forests were 5°C cooler than current 11 

ambient temperatures.. There was greater model-data consistency in the response of net 12 

ecosystem exchange (NEE) to changes in temperature, than in the response to temperature of 13 

by leaf area index (LAI), net photosynthesis (An), and stomatal conductance (gs) and leaf area 14 

index (LAI) stomatal conductance (gs). Modelled canopy- scale fluxes are calculated by 15 

scaling leaf- scale fluxes to using LAI, .and therefore i At the leaf-scale, the models did not 16 

agree on the temperature or magnitude of the optimum points of An, Vcmax or gs , and model 17 

variation in these parameters were was compensated for by variations in the absolute 18 

magnitude of simulated LAI, and how it altered with temperature. and temperature response 19 

of LAI 20 

n this study similarities in modelled ecosystem scale responses to drought and temperature 21 

were the result of inconsistent leaf scale and LAI responses among models. 22 

AAcross the models, there was, however, consistency in two leaf-scale the responses: 1) of 23 

changes in An to with temperature wereas more closely linked to stomatal behaviour than 24 



biochemical processes; and 2) intrinsic water use efficiency increased with temperature, 25 

especially with simultaneous when combined with drought. These results suggest that even 26 

up to fairly extreme temperature increases from ambient levels (+6˚C), simulated 27 

photosynthesis becomes increasingly sensitive to gs and remains less sensitive to biochemical 28 

changes.. Consequently all the models predicted that GPP would be higher if tropical forests 29 

were 5°C colder, closer to the model optima for gs. There was however no model consistency 30 

in the response of the An-gs relationship when temperature changes and drought were 31 

introduced simultaneously. The inconsistencies in the An-gs relationships amongst models 32 

were caused by to non-linear model responses induced by simultaneous drought and 33 

temperature change.  To improve the reliability of simulations of the response of Amazonian 34 

rainforest to climate change, the mechanistic underpinnings of vegetation models need more 35 

complete validationto be validated at the scales ofboth the leaf- and canopy-scales to improve 36 

accuracy and consistency in the scaling quantification of ecosystem processes within and 37 

across an ecosystem. from leaf to canopy. 38 
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1 Introduction 39 

Continuing increases in atmospheric CO2 are likely to cause increases in temperature and 40 

changes in precipitation across Amazonia (Good et al., 2013; Jupp et al., 2010; Malhi et al., 41 

2009; Marengo et al., 2012). However, significant uncertainty remains regarding the response 42 

of tropical forests to warming temperatures (Corlett, 2011; Reed et al., 2012; Wood et al., 43 

2012),  and altered precipitation (Meir et al., 2008; Meir and Woodward, 2010) and short-44 

term abrupt changes in both precipitation and temperature (Cox et al., 2008;  Marengo et al., 45 

2011; Reichstein et al., 2013). Such uncertainties are propagated into models, resulting in 46 

substantial variability in modelled responses to changes in temperature and drought 47 

(Friedlingstein et al., 2006; Galbraith et al., 2010; Powell et al., 2013; Sitch et al., 2008). 48 

These responses need to be rigorously assessed to enable further improvement in our current 49 

capability to predict the impacts of climate change on rain forest functioning.   50 

The ecosystem responses of models to multi-factor changes in climate can be difficult to 51 

interpret because of complex nonlinear responses (Zhou et al., 2008), which can vary 52 

substantially between vegetation models with different model structures. Previous modelling 53 

analyses have shown a greater sensitivity of carbon storage in Amazonian forests to increased 54 

temperature than reduced precipitation (Galbraith et al., 2010). However the compound effect 55 

of drought on temperature responses when simulating Amazonian forest processes (Luo et al., 56 

2008), makes evaluating model  model responses to simultaneous changes in precipitation 57 

and temperature complex are difficult to evaluate due to the compound effect of drought and 58 

temperature responses (Luo et al., 2008). There are particular challenges when considering 59 

the short-to-medium term responses (Luo et al., 2008) linked to climatic extremes, such as 60 
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severe drought (Cox et al., 2008; Marengo et al., 2011)..  61 

Concurrent changes in temperature and precipitation can cause a complex chain of positive 62 

and negative feedbacks on different timescales (Figure 1). Increased temperature and reduced 63 

precipitation can directly affect stomatal conductance (gs) through increasing vapour pressure 64 

deficit (VPD), or indirectly affecting gs on longer time-scales through reducing soil water 65 

content (SWC;  (Figure 1). Stomatal conductance, gs gs, limits photosynthesis (An), and 66 

therefore gross primary productivity (GPP). However An can also be limited by changes in 67 

leaf biochemistry (Vcmax and Jmax, Figure 1). How An is limited by temperature increase is 68 

important as changes in leaf biochemistry at very high temperatures are the can result of from 69 

permanent alteration and possible damage to proteins, whereas changes in gs are less 70 

permanent, but result in changes in alter water use, and potentially water use efficiency. 71 

Currently there is no consensus on how An will respond to temperature,: some studies find a 72 

direct impact through leaf biochemistry (Doughty, 2011; Doughty and Goulden, 2008), and 73 

others an indirect effect initiated by changes in gs, because ofthe limitation of increasing VPD 74 

on gs limitation occurring occurs at lower temperatures than those required that cause for 75 

protein damage (Lloyd and Farquhar, 2008). The lack of data for tropical trees means these 76 

responses remain poorly constrained, though drought and warming can be examined using 77 

limited field data from drought and warming experiments (da Costa et al., 2014; da Costa et 78 

al. 20103; Nepstad et al., 2002) and from extreme events within the natural range of the 79 

climate (Marengo et al., 2012).  80 

The response of vegetation models to temperature change or drought occurs through the 81 

aggregated changes in finer scale processes, for example at the leaf level. Correctly 82 



16 

 

 

 

simulating the mechanisms at the leaf -scale is therefore important to maintain confidence in 83 

canopy-scale predictions. Leaf-scale responses in models are scaled using LAI to simulate the 84 

processes at the scale  of the canopy scalecanopy-scale,scale; therefore inaccuracies in both 85 

leaf scale fluxes orboth leaf-scale fluxes and how they are scaled can produce substantial 86 

errors in ecosystem scale fluxes (Bonan et al., 2012). Currently no model-data comparisons 87 

exist that allow for the evaluation of combined temperature and precipitation/drought 88 

sensitivity of ecosystem fluxes in relation to LAI and leaf scaleleaf-scale processes in tropical 89 

forests. However if we are to identify accurately how to improve simulated responses of 90 

Amazonian forests to future climate change it is vital that model output is evaluated against 91 

data from the leaf to the canopy scalecanopy-scale . 92 

At the Tapajós national forest in north east Brazil, Doughty and Goulden (2008) collected 93 

data on the response of net ecosystem exchange (NEE) to change in atmospheric temperature 94 

and the response of An and gs to short-term artificial leaf warming. Doughty and Goulden 95 

(2008) found reductions in forest productivity at air temperatures above 28˚C, which 96 

corresponds to significant reductions in An and gs at leaf temperatures above 30-33˚C. They 97 

suggested that tropical forests may therefore already be close to a temperature threshold, 98 

beyond which productivity will decline.  99 

Here we use the data published by Doughty and Goulden (2008) to evaluate the short-term 100 

temperature responses within models at both the leaf and canopy scalecanopy-scale  and 101 

investigate how the model formulations might impact predicted responses to multiple 102 

climatic factors. Our model simulations represent short-term non-equilibrated ium responses 103 

to changes in temperature to make them comparable to the perturbation data collected by 104 
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Doughty and Goulden (2008). Evaluation of non-equilibrated ium changes in models is 105 

valuable for assessing how models will perform when simulating responses to extreme shifts 106 

in temperature and precipitation which are predicted to increase across Amazonia (Cox et al., 107 

2008; Marengo et al., 2011). If the models were run their equilibrium response to a simulated 108 

climate shift, ,the changes in some of the key variables in the study (An, gs) are more likely to 109 

be dominated by the effect of long-term soil drying rather than direct temperature responses 110 

(e.g. the dashed lines in Fig. 1). This study is part of a wider model inter-comparison project 111 

which aims to explore how well vegetation models simulate drought in the eastern Amazon 112 

(Powell et al., 2013). In this study we evaluate: 1) how the forest productivity of five 113 

vegetation models (CLM3.5, ED2, JULES, SiB3, SPA) responds to changes in temperature, 114 

2) what leaf- scale processes drive canopy- scale changes in productivity and 3) how both 115 

leaf- and canopy- scale temperature sensitivities are influenced by concurrent changes in 116 

precipitation at the Tapajós forest site in eastern Brazil. In all models we simulate first an 117 

ambient and then a 50 % reduction in the incoming precipitation during the wet season from 118 

2000-2006 analogous to the  imposed drought treatment imposed at the Tapajós forest site, 119 

linked to a -5˚C, 0˚C, +2˚C, +4˚C, and +6˚C change to the ambient air temperature (Tair). 120 

These simulations cover a range of likely and possible increases in temperature for the 121 

Amazon region in the coming century (Christensen et al, 2007; Collins et al., 2013; Malhi et 122 

al., 2009) and can be evaluated against existing data from Doughty and Goulden (2008). This 123 

study is the first to evaluate, using data, the inter-model variability in the leaf and canopy 124 

responses to changes in temperature and precipitation at a tropical forest site. 125 

 126 
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2 Materials and Methods  127 

2.1 Model description 128 

The five models used in this study were the Community Land Model version 3.5 coupled to 129 

the Dynamic Global Vegetation model (CLM3.5-DGVM; hereafter CLM3.5), the Ecosystem 130 

Demography model version 2 (ED2) , the Joint UK Land Environment Simulator version 2.1 131 

(JULES), the Simple Biosphere model version 3 (SiB3), and the Soil-Plant-Atmosphere 132 

model (SPA) and. the Joint UK Land Environment Simulator version 2.1 (JULES). A brief 133 

description of each of the models is given here and in Table 1 (also see Powell et al., (2013)). 134 

The simplest canopy structure is in SiIB3. SIB3 SiB3 has a fixed LAI and uses a big-leaf 135 

model which simulates the response of the top canopy and integrates this response throughout 136 

the canopy according to a light and leaf nitrogen (N) extinction coefficient (Baker et al., 137 

2008b; Sellers et al., 1992; Sellers et al., 1996). CLM3.5 is also a big-leaf model, however it 138 

separates the canopy into a sunlit leaf fraction (leaves which receive both direct and diffuse 139 

light) and a shaded leaf fraction (leaves which receive only diffuse light), which change 140 

dynamically with sun angle and canopy light penetration (Oleson et al., 2004; Oleson et al., 141 

2008). The version of JULES used in this study simulates 10 canopy layers with equal leaf 142 

area increments.  Leaf nitrogen decays exponentially through the canopy and radiation 143 

interception is simulated following the two-stream approximation of Sellers (1985). SPA also 144 

has a layered canopy model, and here used three canopy layers, with separate sunlit and 145 

shaded fractions (Williams, 1996; Williams et al., 2005). ED2 mathematically approximates 146 

the properties of an individual-based forest gap model, separately modelling the stems of 147 

three successional stages (pioneer, mid-successional and late-successional)types of , in this 148 
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study, tropical trees (early, mid and late successional) and grasses on a continuum of leaf 149 

light levels from fully shaded to fully sunlit (Kim et al., 2012; Medvigy et al., 2009b; 150 

Moorcroft et al., 2001). SIB3 SiB3 and SPA simulate only 1 plant functional type (PFT), set 151 

to tropical evergreen broadleaf; JULES and CLM3.5 simulate 5 PFT’s, but this site simulated 152 

a fractional cover > 95% evergreen broadleaf trees. As the focus of this study is the responses 153 

within tropical forests, results were not considered if a model simulated a shift in the PFT 154 

away from the dominance of tropical forest. ED2 simulates 3 successional stages (pioneer, 155 

mid-successional and late-successional) of a single PFT, tropical evergreen broadleaf trees. 156 

All of the models use enzyme-kinetic An equations, derived from Farquhar et al. (1980), 157 

Farquhar and Sharkey (1982), Kirschbaum and Farquhar (1984) and Collatz et al. (1991). In 158 

all models temperature can affect An directly through temperature response functions on the 159 

maximum rate of carboxylation of RuBP (Vcmax), the CO2 compensation point, and the 160 

Michaelis-Menten constants (Kc and Ko), and in SPA the maximum rate of electron transport 161 

(Jmax). Temperature can also indirectly change An through changing the VPD at the leaf 162 

surface, which alters gs. CLM3.5, ED2 and SIB3 SiB3 use the Ball-Berry stomatal 163 

conductance model (Collatz et al., 1991). JULES calculates gs by relating the ratio of internal 164 

to external CO2 to the humidity deficit (Cox et al., 1998). SPA is unique in that it models 165 

stomatal conductance by simulating an aqueous continuum between the soil and leaf water: gs 166 

and photosynthesis are maximised using an isohydric assumption that at each time-step leaf 167 

water potential does not drop below a critical level (-2.5 MPa; see Williams et al., 1996, 168 

Fisher et al., 2007). CLM3.5, ED2, SIB3 SiB3 and JULES alter gs using a water stress factor 169 

(β; a value ranging 0-1 where 1 indicates no soil water stress and 0 indicates complete soil 170 

water limitation). A detailed description of the effect of soil water stress on gs and An in these 171 
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models is given by Powell et al., (2013). 172 

 173 

2.2 Site 174 

The throughfall exclusion in the Tapajós National Forest (TNF, 2.897 S, 54.952 W) is located 175 

on an Oxisol soil, and has a mean annual precipitation of approximately 2 m per year; the site 176 

is described in detail by Nepstad et al. (2002). This plot was selected for this experiment 177 

because on the temperature response of canopy level net ecosystem exchange (NEE) was 178 

collected at a nearby site (km83; Doughty and Goulden, 2008). The canopy NEE 179 

measurements were from an eddy covariance tower from July 2000 to July 2001, when light 180 

levels were above 1000 µmol m
-2

 s
-1

 (Doughty and Goulden, 2008). Leaf level responses of 181 

stomata conductance and photosynthesis to increases in leaf temperature in fully sunlit 182 

canopy leaves were from 3 species in 2004 (see Doughty and Goulden, 2008 and Goulden et 183 

al., 2004).  184 

 185 

2.3 Meteorological Data and Soil Properties 186 

The model simulations were driven using hourly meteorological data (precipitation, Tair, 187 

specific humidity, short and long-wave radiation and air pressure) measured above the 188 

canopy at the site from 01/01/2002-31/12/2004. The short-wave radiation was split into 68% 189 

direct and 32% diffuse, and then this was split into 43% visible and 57% near-infrared for 190 

direct, and 52% visible and 48% near-infrared for diffuse (Goudriaan, 1977).   191 
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The soil properties were standardised across all models to create a similar soil physical 192 

environment, thereby testing only for differences in vegetation functioning (see Powell et al., 193 

2013). Only biological properties such as rooting depth, root biomass, as well as the total 194 

number of soil layers were left as model specific soil properties.  195 

 196 

2.4 Experimental design 197 

All of the models went through a standard spin-up procedure prior to simulations (see Powell 198 

et al., 2013). Following the spin-up period, a series of five model simulations, with varying 199 

Tair, were performed for an eight-year period (which was intended to simulate 1999-2006, see 200 

Powell et al., 2013) for ambient precipitation (control simulations) and for simulations with a 201 

50 % reduction in wet season rainfall (drought simulations). The 2002-2004 meteorological 202 

data were recycled over the eight year simulation period. To explore the effects of changes in 203 

Tair on the models we performed five model simulations which consisted of simulations with 204 

the hourly 2000-2006 ambient Tair adjusted by -5˚C, 0 ˚C (ambient Tair), +2˚C, +4˚C and 205 

+6˚C. 1999 was the baseline year for which no changes from ambient temperature and 206 

precipitation were implemented. Our analysis was focused on increases in temperature; 207 

however we included a simulation with temperatures 5 ˚C lower than ambient temperatures, 208 

on the basis that some models may have processes optimised for temperate regions where 209 

average Tair is lower. VPD was adjusted according to the changes in air temperature.  210 

 211 

2.5 Model output and evaluation 212 



22 

 

 

 

All the data in this study was processed to match the collection methods and processing done 213 

by Doughty and Goulden (2008; hereafter referred to as DG), as closely as possible. 214 

Therefore, to compare the models' predictions NEE with the flux data, we extract canopy 215 

level fluxes when photosynthetic photon flux density (PPFD) was > 1000 µmol m
-2

 s
-1

, the 216 

conditions used by DG. PPFD was not available for the whole period; therefore we use the 217 

measured shortwave radiation to estimate PPFD. A conversion factor of 2 is used to convert 218 

from shortwave radiation (W m
-2

) to PPFD (µmol m
-2

 s
-1

) based on an empirical relationship 219 

calculated from the flux tower at the study site (Doughty, unpublished data). The results on 220 

hourly time-steps from each model for the period of (2000-2006) for the five  ambient 221 

temperature simulations (with offset of -5˚C, +0˚C, +2˚C, +4˚C and +6˚C) were pooled. 222 

Model output was then placed into 1 ˚C bins of Tair for the canopy-scale analysis (GPP, NEE, 223 

ecosystem respiration (Reco)) or of leaf temperature (Tleaf), for leaf scaleleaf-scale  analysis, as 224 

done in the DG study. Accounting for non-gaussian distributions in model output the median 225 

and the 15.9
th

 and 84.1
th

 quantiles of the binned model output are plotted to represent the 226 

mean and 1 standard deviation of the temperature response curve of any model variable. The 227 

data from the drought and control simulations are considered separately.  228 

To explore the relative sensitivity of models to changes in temperature and drought a linear 229 

relationship between the temperature increase per control simulation (-5 ˚C, 0 ˚C, 2 ˚C, 4 ˚C, 230 

6 ˚C) and final year (2006) GPP was used to calculate the change in GPP per 1˚C increase Tair 231 

for each model (Table 2). This value was used to calculate the increase in temperature 232 

necessary to produce the same loss of GPP as the ambient Tair drought simulation, where 233 

there is a 50% reduction in wet season rainfall (Table 2).  234 
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DG published data for the temperature response of An and gs of sunlit leaves during the dry 235 

season when PPFD is >1000 µmol m
-2

 s
-1

. CLM3.5 and SPA are the only models which have 236 

separate output for sunlit and shaded leaves. Consequently data from the sunlit leaves of 237 

these models from periods of high PPFD (>1000 µmol m
-2

 s
-1

) during the dry season (July-238 

December) were used for comparison. The effect of increasing Tair reducing modelled soil 239 

water content (via increased VPD and consequent leaf transpiration) had to be removed from 240 

the model outputs to make it comparable to the DG data, where individual leaves were 241 

artificially warmed. Therefore we only selected model outputs from the temperature 242 

simulations if the soil water content in the rooting zone was in the top quartile of the values 243 

from the ambient control simulation, this corresponded to β values of >0.9 in CLM3.5. For 244 

consistency with the sunlit leaf analysis, the analysis of canopy average leaf data from all 245 

models was done using dry season data with PPFD >1000 µmol m
-2

 s
-1

. 246 

The relative sensitivity of the five models to changes in temperature and precipitation is 247 

assessed by comparing the interactive and non-interactive effects of the 50 % reduction in 248 

wet season precipitation (drought simulation) with the -5˚C, 0, and +6˚C change in Tair on 249 

ecosystem fluxes at the end of the 8 year simulation (2006).   250 

 251 

3 Results 252 

3.1  Canopy scaleCanopy-scale  responses  253 

The models have similar responses of NEE and GPP to increasing Tair. DG observed a 254 

reduction in carbon uptake as NEE went from -17.4±0.3 to -7.9±1.1 µmol m
-2

 s
-1

, 255 
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corresponding to an increase in Tair from 28˚C - 32˚C (Figure 2a). The modelled NEE begins 256 

to increase at a lower Tair (22-25˚C) in the models and the 28˚C - 32˚C increase in NEE is 257 

generally substantially less than observed by DG (2.5-3.9 µmol m
-2

 s
-1

), except in SPA which 258 

experiences a similar increase in NEE as DG from 28˚C - 32˚C (8.8 µmol m
-2

 s
-1

), across the 259 

same range of values (-15.8 to -7.0 µmol m
-2

 s
-1

; Figure 2a). The increase in modelled NEE at 260 

high temperatures is caused by a decline in GPP across all models (Figure 2b). As Tair 261 

increases from 16˚C to 38˚C the average decline in GPP from all models is 20.9±3.2 µmol m
-

262 

2 
s

-1
. In contrast the mean model decline in Reco over the same modelled Tair range was 263 

4.2±1.8 µmol m
-2 

s
-1

 (Figure 2c). The decline in modelled ecosystem respiration is low 264 

because in all models a decline in autotrophic respiration with increasing temperature (linked 265 

in the models with reduced GPP) is opposed by an increase in heterotrophic respiration (data 266 

not shown).  267 

Declines in GPP corresponded to declines in LAI. Between 25˚C to 38˚C the decline in GPP 268 

in CLM3.5 (89±38 %), and SPA (82±26 %) was greater than in other models (Figure 2b) and 269 

matched by greater declines in LAI over the same temperature range (4.2±1.0 m
2
 m

-2
, 270 

CLM3.5 and 4.4±0.9 m
2
 m

-2
 in SPA, relative to only 0.6±0.3 m

2
 m

-2
 in ED2 and 0.4±0.1 m

2
 271 

m
-2

 in JULES; Figure 2d). The inter-model variability in LAI is large; at 25 ˚C the median 272 

LAI value in ED2 (3.6±0.3 m
2 

m
-2

) is 3 times smaller than the median values in CLM3.5 273 

(10.7±1.0 m
2 

m
-2

). Observed mean LAI at the TNF under non-drought conditions ranged 274 

from 5.5-6.3 m
2 

m
-2 

from 2000 to 2005 (Brando et al., 2008) and therefore the modelled 275 

values span a range ~70% above and below the measured LAI (Figure 2d).  276 

Combined drought and warming had compound effects on GPP, Reco, and LAI.  In CLM3.5 277 
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GPP remained the same in the Tair -5˚C simulation at the end of the drought and control 278 

simulation, however in the Tair +6˚C simulation the forest which existed at the end of the 279 

control simulation was replaced with grassland in the drought simulation (GPP values for 280 

grassland are not shown, Figure 3a). In JULES, SiB3 and SPA the GPP was the same in the 281 

control and the drought simulation at Tair -5˚C; however GPP is 61%, 58% and 44% lower 282 

respectively at the end of the drought relative to the control simulation (Figure 3a). The 283 

combined effect of temperature and drought on GPP and Reco is lowest in ED2, because it 284 

was the only model to have a strong drought effect on GPP, Reco and LAI in the Tair -5˚C 285 

simulation (Figure 3). In CLM3.5 and SPA, GPP and LAI have the same fractional 286 

reductions with drought, at higher temperatures (Figure 3a and 3c), indicating a tight 287 

coupling between the LAI and canopy productivity; this contrasts the lack of, or low GPP-288 

LAI feedback in SiB3 and JULES. 289 

Amongst the models there is a continuum of temperature versus drought sensitivity. We 290 

express the temperature versus drought sensitivity as the equivalent temperature increase 291 

necessary to produce the same GPP reduction as between the last year of the control to the 292 

drought simulation at ambient Tair (Table 2). A low equivalent temperature would represent a 293 

greater GPP sensitivity to temperature increase and/or a lower GPP sensitivity to drought; a 294 

higher equivalent temperature represents a lower GPP sensitivity to temperature increase 295 

and/or a higher GPP sensitivity to drought. The equivalent temperature increase necessary to 296 

reproduce the same GPP reduction as from the last year of control and droughts simulation at 297 

ambient temperature was lowest in SPA (4.92˚C), moderate in JULES and CLM3.5 (8.61˚C 298 

and 8.83˚C, respectively), and highest in SiB3 and ED2 (15.70˚C and 17.50˚C, respectively; 299 

Table 2). However across all the models a 5˚C reduction in ambient Tair resulted in an 300 
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increase in forest productivity as GPP rose between 3.3-8.7 Mg C ha
-1

 yr
-1

 in all models 301 

(Table 2). 302 

The models have similar responses of NEE and GPP to increasing Tair. DG observed a 303 

reduction in carbon uptake as NEE went from -17.4±0.3 to -7.9±1.1 µmol m
-2

 s
-1

, 304 

corresponding to an increase in Tair from 28˚C - 32˚C (Figure 2a). The modelled NEE begins 305 

to increase at a lower Tair (22-25˚C). The modelled increase in NEE from 28˚C - 32˚C, in all 306 

models except SPA (2.47-3.87 µmol m
-2

 s
-1

), is substantially less than observed by DG; 307 

model increases in NEE in SPA from 28˚C - 32˚C are closer to those observed by DG (-15.8 308 

to -7.0 µmol m
-2

 s
-1

; Figure 2a). The increase in modelled NEE at high temperatures is caused 309 

by a decline in GPP across all models (Figure 2b). As Tair increases from 16˚C to 38˚C the 310 

average decline in GPP from all models is 20.9±3.2 µmol m
-2 

s
-1

. In contrast the mean model 311 

decline in Reco over the same modelled Tair range was 4.2±1.8 µmol m
-2 

s
-1

 (Figure 2c). The 312 

decline in modelled ecosystem respiration is low because in all models a decline in 313 

autotrophic respiration with increasing temperature (linked in the models with reduced GPP) 314 

is opposed by an increase in heterotrophic respiration (data not shown).  315 

Declines in GPP corresponded to declines in LAI. Between 25˚C to 38˚C the decline in GPP 316 

in CLM3.5 (89±38 %), and SPA (82±26 %) was greater than the other models (Figure 2b) 317 

and was matched by greater declines in LAI over the same temperature range (4.2±1.0 m
2
 m

-
318 

2
, CLM3.5 and 4.4±0.9 m

2
 m

-2
 in SPA, relative to only 0.6±0.3 m

2
 m

-2
 in ED2 and 0.4±0.1 m

2
 319 

m
-2

 in JULES; Figure 2d). The inter-model variability in LAI is large; at 25 ˚C the median 320 

LAI value in ED2 (3.6±0.3 m
2 

m
-2

) is 3 times smaller than the median values in CLM3.5 321 

(10.7±1.0 m
2 

m
-2

). Observed mean LAI at the TNF under non-drought conditions ranged 322 
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from 5.5-6.3 m
2 

m
-2 

from 2000 to 2005 (Brando et al., 2008) and therefore the modelled 323 

values span a range ~70% above and below the measured LAI (Figure 2d).  324 

Combined drought and warming had compound effects on GPP, Reco, and LAI. In Figure 3 325 

the change in GPP, Reco, and LAI for the Tair -5˚C and Tair +6˚C simulations relative to the 326 

control simulation in the last year (2006) of the drought simulation is shown as a fraction of 327 

the year of the control simulation. The effect of temperature and drought was strongest in 328 

CLM3.5 where GPP is the same in the drought and control simulation at Tair -5˚C, but where 329 

a complete forest dieback to grassland was observed when drought was combined with a 330 

+6˚C temperature increase (GPP values for grassland are not shown, Figure 3a). In JULES, 331 

SiB3 and SPA the GPP was also the same in the control and the drought simulation at Tair -332 

5˚C; however GPP is 61%, 58% and 44% lower respectively than the control when a +6˚C 333 

increase in Tair occurs simultaneously with drought (Figure 3a). The combined effect of 334 

temperature and drought on GPP and Reco is lowest in ED2, because it was the only model to 335 

have a strong drought effect on GPP, Reco and LAI in the Tair -5˚C simulation (Figure 3). In 336 

CLM3.5 and SPA, GPP and LAI have the same fractional reductions with drought, at higher 337 

temperatures (Figure 3a and 3c), indicating a tight coupling between the LAI and canopy 338 

productivity. JULES, had the smallest GPP-LAI feedback, contrasting ED2 which had greater 339 

fractional reduction in LAI than GPP (Figure 3c), despite low absolute values of LAI (Figure 340 

2). Reductions in LAI in ED2 are strongly related to drought at all temperatures, caused by 341 

greater mortality and leaf shedding in the drought simulations (see Figure 6 in Powell et al., 342 

2013). 343 

We find a continuum of temperature versus drought sensitivity amongst the models. If 344 
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temperature versus drought sensitivity is expressed as the equivalent temperature increase 345 

necessary to produce the same GPP loss as in the ambient Tair drought simulation (50% 346 

reduction in wet season rainfall; Table 2), a low equivalent temperature would represent a 347 

greater GPP sensitivity to temperature increase and/or a lower GPP sensitivity to drought. 348 

Likewise a higher equivalent temperature represents a lower GPP sensitivity to temperature 349 

increase and/or a higher GPP sensitivity to drought. The equivalent temperature increase to 350 

reproduce the GPP loss with drought was lowest in SPA (4.92˚C), moderate in JULES and 351 

CLM3.5 (8.61˚C and 8.83˚C, respectively), and highest in SiB3 and ED2 (15.70˚C and 352 

17.50˚C, respectively; Table 2). However across all the models a 5˚C reduction in ambient 353 

Tair resulted in an increase in forest productivity as GPP rose between 3.3-8.7 Mg C ha
-1

 yr
-1

 354 

in all models (Table 2). 355 

 356 

3.2 Leaf scaleLeaf-scale  responses 357 

Leaf scale An and gs oppose LAI responses; the model with the smallest change in LAI (ED2) 358 

has the highest An and the model with the largest change in LAI (CLM3.5) has the lowest An 359 

(Figures 2 and 4). Similarly the models with no or limited responses of LAI to temperature 360 

change (SiB3 and ED2; Figure 2), showed the strongest responses of An to temperature 361 

change (Figure 4). Such trade-offs result in high model variation in the shape and magnitude 362 

of the temperature responses of An, gs, transpiration (ET) and Vcmax (Figure 4 and 5). As Tleaf 363 

increases from 25˚C to 40˚C the inter-model range of An values increases 1.9 times from 1.65 364 

µmol m
-2

 s
-1

 to 3.16 µmol m
-2

 s
-1

 (Figure 4a), indicating greater uncertainty of An at higher 365 

temperatures. The optimum An in SPA, SiB3, JULES, CLM3.5 and ED2 occurs at Tleaf values 366 
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of 25˚C, 26˚C, 27˚C, 30˚C and 30˚C respectively (Figure 4a) and significantly before the 367 

optimum point on Vcmax (Figure 5). In all models the An optimum is linked to gs and the 368 

decline in canopy average An occurs at, or within, 1˚C of the Tleaf at which gs starts to decline 369 

(Figure 4a-b). At Tleaf >25˚C the variability between the model responses of Vcmax increases 370 

(Figure 5). In CLM3.5, ED2, JULES, SiB3 and SPA the Vcmax optima was set to 35˚C, 40˚C, 371 

32˚C, 36˚C and 30˚C respectively (10˚C of variation). Between the models there is a large 372 

variation in how quickly Vcmax declined following the optima; in CLM3.5 Vcmax declined 50% 373 

at 9˚C over the optimum, contrasting with the same decline only after 17˚C over the optimum 374 

in SPA (Figure 5).  375 

There was high variability in the magnitude and temperature response of gs across the 376 

models. The maximum canopy average gs values in SiB3 (486 mmol m
-2

 s
-1 

at 25˚C) and ED2 377 

(384 mmol m
-2

 s
-1 

at 23˚C) are substantially higher than CLM3.5 (49 mmol m
-2

 s
-1 

at 20˚C), 378 

JULES (70 mmol m
-2

 s
-1 

at 25˚C) and SPA (200 mmol m
-2

 s
-1 

at 24 ˚C; Figure 4b). Declining 379 

gs causes the steepest decline in ET in CLM3.5 and SPA after 35˚C and 30˚C respectively 380 

(Figure 4c). In CLM3.5 a strong constriction in ET is caused by the strong influence of 𝛽 on 381 

gs (Figure 4d). 𝛽 is reduced by 85±31% in CLM3.5 as Tleaf increase from 30-40 ˚C. The 382 

decline in 𝛽 over the same Tleaf range was only 14±1% in ED2, 38±5% in JULES and 7.9±1% 383 

in SiB3 (Figure 4d).  384 

For each model there are apparent, but variable, relationships between gs and An (Figure 6), 385 

but no obvious relationships between An and Vcmax (Figure 7). The slope of An against gs 386 

indicates intrinsic water use efficiency (IWUE); if a linear fit is forced through the gs and An 387 

data for each model temperature simulation, it is apparent that all models simulate increasing 388 
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IWUE with increasing leaf temperature. The increase in IWUE from the lowest to the highest 389 

temperature simulation is higher in the drought than control simulations in all models; 390 

however there is high variability in the gs and An slope when drought and control simulations 391 

of the same temperature are directly compared. Some models have lower IWUE in the 392 

drought simulations at all temperatures (CLM3.5, SPA), others have higher IWUE in the 393 

drought simulations at all temperatures (SiB3) and others (ED2 and JULES) start off with 394 

higher IWUE in the control simulations at the lower temperature simulations but switch to 395 

higher IWUE in the drought simulations at high temperature simulations (Table 3;Figure 6).  396 

When the effect of soil water stress is removed and sunlit leaf level values are compared to 397 

the DG data for the models which could output sunlit leaf only values of gs and An  (SPA and 398 

CLM3.5; Figure 8), the peak An of sunlit leaves in SPA at 25˚C (8.72±0.24 µmol m
-2

 s
-1

) is 399 

similar to the peak in the DG leaf scale data at 30.5˚C (8.44±0.17 µmol m
-2

 s
-1

; Figure 8a). In 400 

CLM3.5 the peak An at 29˚C is considerably higher (13.48±0.20 µmol m
-2

 s
-1

), although it 401 

occurs at a similar temperature to the observed peak, but both CLM3.5 and SPA show a 402 

decline of An with temperature similar to the data. Modelled gs, however, shows a poor match 403 

to the observations (Figure 8b). Peak gs values occur at substantially lower Tleaf values in 404 

CLM3.5 (27˚C) and SPA (25˚C) than observed (33.5˚C; Figure 5b). The peak sunlit gs in 405 

SPA are also significantly higher (434±88 mmol m
-2 

s
-1

) than the observations (123±4 mmol 406 

m
-2 

s
-1

) and show a very sharp decline not observed in the data (Figure 8b).  407 

Leaf-scale An and gs oppose LAI responses; the model with the largest change in LAI in 408 

response to temperature increase (CLM3.5) has the lowest An values and the models with the 409 

smallest change in LAI (ED2, JULES & SiB3) have the greatest An values and the strongest 410 
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responses of An to temperature change (Figure 4). Model uncertainty increases with 411 

temperature for An and Vcmax (Figure 4a & 5). For Vcmax this is caused by substantial variation 412 

in the optima (10˚C; Figure 5) and the rate of decline in Vcmax following the optima; in 413 

CLM3.5 Vcmax declines 50% at 9˚C over the optimum, contrasting with the same decline 17˚C 414 

over the optimum in SPA (Figure 5).  415 

The optimum An in SPA, SiB3, JULES, CLM3.5 and ED2 occurs at Tleaf values of 25˚C, 416 

26˚C, 27˚C, 30˚C and 30˚C respectively (Figure 4a) and significantly before the optimum 417 

point on Vcmax (Figure 5). In all models the An optimum and the initial decline in canopy 418 

average An is linked to declines in gs (Figure 4a-b). Consequently for each model there are 419 

apparent, but variable, relationships between gs and An (Figure 6), but no obvious 420 

relationships between An and Vcmax (Figure 7). 421 

There was high variability in the magnitude and temperature response of gs across the 422 

models. The maximum canopy average gs values in SiB3 (486 mmol m
-2

 s
-1 

at 25˚C) and ED2 423 

(384 mmol m
-2

 s
-1 

at 23˚C) are substantially higher than CLM3.5 (49 mmol m
-2

 s
-1 

at 20˚C), 424 

JULES (70 mmol m
-2

 s
-1 

at 25˚C) and SPA (200 mmol m
-2

 s
-1 

at 24˚C; Figure 4b). In CLM3.5 425 

a strong constriction in ET is caused by the strong influence of 𝛽 on gs (Figure 4c-d). 𝛽 is 426 

reduced by 85±31% in CLM3.5 as Tleaf increase from 30-40 ˚C. The decline in 𝛽 over the 427 

same Tleaf range was only 14±1% in ED2, 38±5% in JULES and 7.9±1% in SiB3 (Figure 4d).  428 

The slope of An against gs indicates intrinsic water use efficiency (IWUE): the rate of increase 429 

of assimilation per unit increase in gs. If An is plotted against gs separately for each model 430 

temperature simulations (-5˚C, 0˚C, +2˚C, +4˚C, +6˚C) and a linear fit is forced through the 431 

gs and An data, it is apparent that all models simulate increasing IWUE (an increase in slope) 432 
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from the -5˚C up to the +6˚C simulations (Figure 6 & Table 3). The increase in slope of An 433 

and gs from the -5˚C to +6˚C temperature simulation is greater in the drought than control 434 

simulations in all models (Figure 6 & Table 3), suggesting that both increasing temperature 435 

and reduced water availability increase IWUE.  436 

When the effect of soil water stress is removed and sunlit leaf level values are compared to 437 

the DG data for the models which could output separate sunlit leaf values of gs and An (only 438 

SPA and CLM3.5; Figure 8), the peak An of sunlit leaves in SPA at 25˚C (8.72±0.24 µmol m
-

439 

2
 s

-1
) is similar to the peak in the DG leaf-scale data at 30.5˚C (8.44±0.17 µmol m

-2
 s

-1
; Figure 440 

8a). In CLM3.5 the peak An at 29˚C is considerably higher (13.48±0.20 µmol m
-2

 s
-1

), 441 

although it occurs at a similar temperature to the observed peak. Both CLM3.5 and SPA 442 

show a decline of An with temperature similar to the data. Modelled gs, however, shows a poor 443 

match to the observations (Figure 8b). Peak gs values occur at substantially lower Tleaf values 444 

in CLM3.5 (27˚C) and SPA (25˚C) than observed (33.5˚C; Figure 5b). The peak sunlit gs in 445 

SPA are also significantly higher (434±88 mmol m
-2 

s
-1

) than the observations (123±4 mmol 446 

m
-2 

s
-1

) and show a very sharp decline not observed in the data (Figure 8b).  447 

 448 

4 Discussion 449 

4.1 Canopy- and leaf-scale feedbacks 450 

The response of NEE and GPP to short-term changes in temperature was demonstrated 451 

substantially greater consistency across models than that offor  LAI (Figure 2). Within 452 

Amongst the models which had dynamic LAI, the change in LAI from the original value 453 
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ranged from 4.5 m
2
 m

-2
 in SPA to 1.0 m

2
 m

-2
 in ED2.  Interestingly, the change of LAI with 454 

Tair in ED2,  and JULES was so low that it and was more comparable to SiB3 SiB3, a model 455 

with fixed LAI. This contrasts CLMA3.5 and SPA, within which LAI declined substantially 456 

as Tair rose above a threshold (Figure 2d). all showed very little change in absolute LAI 457 

values with changes in temperature, despite the fact that ED2 and JULES are dynamic 458 

vegetation models and SiB3 does not have dynamic LAI. This is contrasted with a sharp 459 

decrease in LAI in response to changes in temperature in CLM3.5 and SPA (Figure 2d). The 460 

inter-modelinter- range in LAI values across the 5 models (maximum range 7.5 m
2
 m

-2
) was 461 

however greater than any the decline in LAI with Tair in any model. If leaf -scale fluxes are 462 

scaled using an inaccurate LAI, the simulation of both accurate leaf- and canopy- scale fluxes 463 

is not possible (Bonan et al., 2012; Lloyd et al., 2010; Mercado et al., 2006; Mercado et al., 464 

2009). Given the large variability in LAI responses across the models, it would be expected 465 

that there should be a greater variability in GPP and NEE than was observed. Models 466 

Therefore the models have tomust compensate for variability in canopy structural parameters, 467 

such as LAI, through adjustment in other leaf scaleleaf-scale parameters if the observed 468 

consistency in ecosystem-scale responses is to be maintained (Bonan et al., 2012).  We 469 

therefore suggest that the variability in LAI responses is compensated for by variations in 470 

parameterisation at the leaf-scale, which in turn drive similarly high variation in the leaf-scale 471 

fluxes. 472 

We found substantial variation in the magnitude and temperature responses of leaf- scale 473 

parameters: peak Vcmax
 
had a 10˚C Tleaf range across the models (Figure 5), gs values varied 474 

by over an order of magnitude (Figure 4b), the inter-model range of β and ET values showing 475 

increasingly large disparities with increasingincreased with Tleaf (Figure 4c-d), and there was 476 
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a two-fold increase in the inter-modal model An range of An had a two fold increase 477 

betweenas Tleaf values ofrose from 25-40˚C (Figure 4a). Such variability across the models 478 

suggests that any similarities similarity in the responses of NEE to Tair temperature between 479 

among models are is caused by different processes having differingand feedbacks at the leaf- 480 

scale. Had the models been run to their equilibrium states, it is likely that there would have 481 

been greater divergence of model responses at the both canopy- and leaf- scales. Prolonged 482 

higher temperatures reduce long-term moisture availability and cause more severe changes in 483 

β; in dynamic PFT-models this can result in a substantial shift of PFT away from tropical 484 

forest. Without more data to evaluate which models are producingprodcuedproduced both the 485 

correct Vcmax and gs, responses to temperature, it is hard to have confidence in predictions of 486 

climate change impacts in Amazonian simulated by either one or multiple.  models. 487 

Variability in the control of gs and leaf biochemistry on An and changes in IWUE efficiency 488 

with increasing temperature or drought will have significant consequences on the demand of 489 

water from a forest (Harper et al., 2014). In this study we find gs had a greater control on the 490 

change in An with increasing temperature because: An started to decline at Tleaf values which 491 

were lower than those at which peak Vcmax occurred (Figure 4b and Figure 5) and An 492 

maintained a positive relationship with gs across all models (Table 3; Figure 6), but no clear 493 

relationship with Vcmax (Figure 7). All the models in this study also predicted an increases in 494 

IWUE from the lowest (ambient Tair -5˚C) to the highest (ambient Tair +6˚C) temperature 495 

simulation; this increase in IWUE was also always greater in the drought temperature 496 

simulations relative to the control temperature simulations (Table 3; Figure 6). Increases in 497 

IWUE with increasing temperature suggests that as the ecosystem warms An will become 498 

more sensitive to reductions in gs and gs will maintain a greater control on An than 499 
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biochemical controls, even at very extreme increases in temperature (ambient Tair +6˚C). 500 

These results are consistent with the hypothesis that temperature increases will mainly be 501 

manifested through the effect of increased VPD on stomatal conductance (Lloyd and 502 

Farquhar 2008). They are also consistent  and with leaf warming data from the Tapajos forest 503 

which show that reductions in An start to occur at 4-5°C before the optimum point for Vcmax 504 

and Jmax in sunlit leaves (Tribuzy, 2005). However the responses from longer -term leaf 505 

warming experiments at the same site showed that changes in leaf biochemistry with 506 

increasing leaf temperatures was an important control on An (Doughty 2011), suggesting 507 

more data is are required to effectively test effectively both the short and long term responses 508 

of An to changes in temperature in models. 509 

Comparing the short term direct effect of temperature on the An-gs relationships is 510 

complicated because of the differences in the calculation and implementation of the effect of 511 

water stress amongst models (Powell et al., 2013; Zhou et al., 2013). 𝛽 is altered by changes 512 

in SWC, which can be caused by changes in temperature (via increased VPD altering SWC), 513 

as well as changes in precipitation; in turn 𝛽 alters both gs (Figure S1) and An. The decrease 514 

in 𝛽 with temperature increase was highly variable betweenamong models (Figure 4d). 515 

Consequently, the direct influence of soil water stress on gs, An and ET, versus the indirect 516 

effect of VPD, was inconsistent between models. Resolving these inconsistencies is 517 

important, as water stress functions impact the ratio of modelled latent to sensible heat fluxes 518 

and so when coupled to global climate models they alter climate and vegetation feedbacks 519 

(Harper et al., 2014). Improving how water stress is simulated in models is therefore essential 520 

to improving temperature and drought responses in tropical forests. 521 
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The models did agree that reductions in gs with increasing temperature were the main cause 522 

of reductions in forest productivity (Lloyd and Farquhar, 2008). An decline was related to gs 523 

decline (Table 3; Figure 6), but not Vcmax decline (Figure 7) and the decline in An with 524 

increasing Tleaf occurred prior to the Tleaf peak in Vcmax (Figure 4b and Figure 5). The slope of 525 

An-gs reflects IWUE and our study demonstrates that all the models predict an increase in 526 

IWUE with rising leaf temperatures and an accentuation of this change under drought 527 

conditions (Table 3; Figure 6). Very steep An-gs slopes at higher leaf temperatures suggests 528 

that as the ecosystem warms An becomes more sensitive to reductions in gs, and therefore that 529 

stomatal controls are likely to have greater influence at higher temperatures; this suggests that 530 

even at high temperatures (up to 6˚C above ambient) reductions in An are caused mainly by 531 

stomatal, rather than a biochemical responses. These results reflect patterns found in leaf 532 

warming data from the Tapajos forest which show that reductions in An start to occur at 4-533 

5°C before the optimum point for Vcmax and Jmax in sunlit leaves (Tribuzy, 2005), but not the 534 

responses of other longer term leaf warming experiments at the same site which experienced 535 

changes in leaf biochemistry with increasing leaf temperatures (Doughty 2011). Substantially 536 

more data is therefore required to effectively test such results. 537 

IWUE was highly variable across the models, particularly with the introduction of 538 

precipitation change (Table 3; Figure 6). Variability in the An-gs relationships are related to 539 

differences in how 𝛽 is calculated by models (Powell et al., 2013; Zhou et al., 2013), as 𝛽 540 

alters gs (Figure S1) and An. 𝛽 is altered by changes in SWC which can be caused by changes 541 

in temperature (via increased VPD altering SWC), as well as changes in precipitation. The 542 

decrease in 𝛽 with temperature increase was highly variable between models (Figure 4d). 543 
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Consequently, the direct influence of soil water stress on gs, An and ET, versus the indirect 544 

effect of VPD, as temperature and precipitation changed was inconsistent between models. 545 

Resolving these inconsistencies is important, as water stress functions impact the ratio of 546 

modelled latent to sensible heat fluxes and so when coupled to global climate models they 547 

alter climate and vegetation feedbacks (Harper et al., 2014). Improving how water stress is 548 

simulated in models is therefore essential to improving temperature and drought responses in 549 

tropical forests. 550 

When considering SPA, a model that uses a more mechanistic water stress responseWhen 551 

(and focusing only on periods of high soil water content to and remove therefore removing 552 

the effects of water stress, response of An) and, gs values from fully sunlit leaves still varied 553 

substantially from the response and magnitude of the DG data (Figure 8). Given the DG data 554 

was were averaged from only three top- canopy species, compared to deriving from all sunlit 555 

leaves in CLM3.5 and SPA, some degree of variations between the model and the data is 556 

expected. However, tThe variability between the peak data and peak model gs is was 557 

however > 4 times (Figure 8b) and the modelled temperature optima for gs (25-27˚C) was 558 

substantial lower than observed by DG (33.5˚C). Had the modelled temperature optima for gs 559 

been closer to the observed temperature optima (33.5˚C), Vcmax, may have had a greater 560 

limitation on An, as at the observed gs temperature optima (33.5˚C) some models are past the 561 

Vcmax temperature optimum (Figure 5). Consequently in this study the dominance of the effect 562 

of gs on photosynthesis may be derived from low gs optima in the models. 563 

Given that CLM3.5 and SPA are in the lower range of the total model variability for the gs 564 

and An of an average canopy leaf (aggregated sunlit and shaded leaf; Figure 4a-b), the 565 
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variation from the data is likely to be substantially larger if sunlit leaf data could be extracted 566 

from all models. Considering the importance of gs in controlling leaf productivity, the 567 

suitability of the empirical models of gs used in these models requires further testing (Bonan 568 

et al., 2014).  The use of optimised rather than empirical models may provide an opportunity 569 

to improve the capability to simulate gs responses to temperature and water stress in greater 570 

detail (Heroult et al., 2013; Medlyn et al., 2013; Medlyn et al., 2011; Zhou et al., 2013).  571 

 572 

4.2 Combined drought and temperature sensitivities 573 

Previous modelling studies have shown that there is high variability in how sensitive models 574 

are to temperature and drought (Friedlingstein et al., 2006; Galbraith et al., 2010; Luo et al., 575 

2008; Sitch et al., 2008), but that vegetation models have embedded in them greater 576 

sensitivity to rises in temperature than drought (Galbraith et al., 2010) despite the evidence 577 

for strong drought sensitivity in natural rainforests (Gatti et al. 2014; Meir et al. 2015). The 578 

responses of modelled forest production in this study to combined changes in precipitation 579 

and temperature was were however highly variable. Rising Tair in CLM3.5 and SPA 580 

hadcaused very strong compound effects of temperature on drought- induced reductions in 581 

GPP, Reco and LAI (Figure 3) relative to JULES and SiB3. . In In ED2, the drought effect on 582 

GPP was was always stronger than the other modelstemperature effect (Figure 3) because 583 

ofbecause it has a a strong drought-mortality effect at this site (Powell et al., 2013); da Costa 584 

et al. 2010). Considerable model disparity in the response of An and LAI to drought and 585 

temperature (Figures 2, 4 and 6) resulted in substantial variation in relative sensitivity of 586 

models to temperature and drought. Previous modelling studies have shown that there is high 587 
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variability in how sensitive models are to temperature and drought (Friedlingstein et al., 588 

2006; Galbraith et al., 2010; Luo et al., 2008; Sitch et al., 2008), but that vegetation models 589 

have greater sensitivity to rises in temperature than drought (Galbraith et al., 2010). This 590 

study demonstrates that there is actually a continuum in model responses from models that 591 

require a low increase in ambient Tair to cause the same GPP loss as a 50% reduction in wet 592 

season rainfall (SPA, 4.9 ˚C), to models that have a very strong drought response and 593 

therefore require a substantial increase in ambient Tair to replicate the same GPP loss as a 594 

50% reduction in wet season rainfall (ED2, 17.5 ˚C; Table 2). As a 6˚C rise in temperature 595 

and a 50 % reduction in rainfall are changes which may occur in Amazonia during the 21
st
 596 

century (Christensen et al, 2007; Collins et al., 2013), we suggest that there is currently no 597 

consensus between among vegetation models as to whether there will be a stronger drought 598 

or temperature response to future climate change within tropical forests.  599 

Across all the models, the dominance of stomatal control on productivity resulted in GPP 600 

increasing increased when ambient Tair was reduced by 5˚C; this was occurred because the 601 

and theambient air temperature -5˚C temperature waswas closer to the modelled gs 602 

optimumoptima. This result suggests models are currently predicting that Amazonian forests 603 

are operating beyond a temperature and VPD optimum. Given that the models underestimate 604 

the point at which NEE declines with Tair by 3-6˚C and the point at which gs declines with 605 

Tleaf by 7.5-9.5˚C (Figure 2 and 4), it is seems likely that the models in this study may be 606 

biased towards temperature calibrations for temperate ecosystems. Consequently, as well as 607 

moving towards implementing more mechanistic responses to improve models, more 608 

research to test and adjust their temperature responses in tropical ecosystem is necessary. The 609 

range of model responses in this study is likely to stem from real uncertainty in our 610 
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understanding of the responses by tropical rain forest ecosystems to changes in precipitation 611 

and temperature. Further analysis of the same questions using models that vary in complexity 612 

(eg, statistical or optimised models, as well as purely mechanistic) might provide additional 613 

insight into mechanistic and simulation bias (systematic or random), as well advancing 614 

understanding about climate risk that we derive from them (Meir, Mencuccini and Dewar, 615 

2015) 616 

 617 

5 Conclusion 618 

This is the first study in which canopy and leaf temperature responses from multiple 619 

vegetation models are analysed and compared to existing data on leaf and canopy 620 

temperature responses from a tropical forest site. This study finds models lie along a 621 

continuum of those which have a greater sensitivity of GPP to changes in temperature relative 622 

to drought and those which have a greater sensitivity to drought relative to a change in 623 

temperature. Any consistency in model responses to temperature and drought were however, 624 

the result of inconsistent leaf-scale responses, which were found to compensateing for 625 

substantial inter-model variation in the magnitude and response of LAI to drought and 626 

temperature.  627 

All the models in this study predict that reductions in An are dominated by stomatal rather 628 

than biochemical responses and that tropical forest productivity will become more sensitive 629 

to reductions in gs as temperatures riseIWUE increased with rising temperatures. The 630 

dominance of the effect of gs rather than Vcmax on An results in all the models predicting 631 
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greater forest productivity when temperatures are 5°C below ambient and closer the 632 

temperature of the gs optimum. Despite consistent prediction of increasing IWUE with 633 

temperature rise, there was however no consistency between models in how IWUE will 634 

respond to combined changes in temperature and drought. It seems therefore that the 635 

consistency of model responses is reduced as changes in multiple climate variables are 636 

introduced simultaneously.This suggests that currently models predict that tropical forests are 637 

operating beyond a temperature and VPD optimum, but we note that these predictions may be 638 

influenced by parameterisations derived originally from temperate zone forests.  639 

ToThis study concludes that to effectively simulate effectively the response of the Amazon 640 

forest to changes in multiple climatic factors substantial improvements are needed in how 641 

leaf- scale processes and leaf- to- canopy scaling are simulated. Further measurement 642 

campaigns observational data are also required to generate consistent leaf- and canopy- scale 643 

data for independent model evaluation.  644 
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Table 1: Summary of the characteristics of each of the four five vegetation models (CLM3.5, 891 

ED2, JULES, SiB3, & SPA). 892 

 893 

 CLM3.5 ED2 JULES  SiB3 SPA 

No° of plant 

function types 

5 4 10 1 1 

Canopy 

structure 

Big-leaf Gap model Layered 

Canopy 

Big-leaf Layered canopy 

Leaf Area 

index 

Dynamic Dynamic Dynamic Fixed Dynamic 

Division of 

sunlit and 

shaded leaf 

Y (discrete 

division) 

N  N N Y (discrete 

division) 

Simulation of 

water stress on 

An and gs. 

Water stress 

factor 

Water stress 

factor 

Water stress 

factor 

Water stress 

factor 

Linked soil-leaf 

water 

potential/resista

nce model to gs 

model. 

Origin of 

photosynthesis 

model 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

1(980); 

Farquhar and 

Sharkey (1982) 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Kirschbaum 

and Farquhar 

(1984); 

McMurtrie et 

al. (1992)
  
 

Key model 

references 

Bonan et al., 

(2003); Levis et 

al., (2004); 

Oleson et al. 

(2008). 

Medvigy et al., 

(2009); Kim et 

al 2012.  

Best et al., 

(2011); Clark et 

al., (2011)  

 

 

Sellers et al., 

(1992); Sellers 

et al., (1996); 

Baker et al 

(2008).  

Williams, 

(1996); 

Williams et al., 

(2005); Fisher 

et al., (2006) 
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Table 2: Model values for GPP (Mg C ha
-1

 yr
-1

) for the last year (2006) of the ambient air 898 

temperature control plot simulation (Tair +0°C), the  control plot simulation -5°C (Tair -5°C), 899 

the control plot simulation +6°C (Tair +6°C) and the ambient air temperature drought plot  900 

simulation (Tair +0°C). The equivalent temperature is the elevation in the control plot 901 

simulation temperature needed to replicate the same magnitude reduction in GPP as the 902 

drought simulation, for the year 2006 and at ambient temperatures. The equivalent 903 

temperature is derived from a linear relationship between GPP values in 2006 and the air 904 

temperatures in the 5 temperature simulations per model. 905 

 906 

  907 

 CLM3.5 ED2 JULES SiB3 SPA 

Control  GPP Tair -5°C 40.74 31.74 36.73 35.27 38.23 

Control  GPP Tair +0°C 36.68 28.31 31.16 31.95 29.55 

Control  GPP Tair +6°C 28.03 20.70 20.08 27.50 15.89 

Drought  GPP Tair +0°C 26.47 10.79 18.13 20.86 19.55 

Equivalent  Tair 8.83 17.50 8.61 15.70 4.92 
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Table 3: Values show the normalised intrinsic water use efficiency (IWUE) calculated from 908 

the linear slope of normalised An plotted against normalised gs (Figure 6). The normalised 909 

IWUE is calculated separately for each models’ control and drought temperature simulations 910 

(ambient air temperature (Tair) -5˚C, +0 ˚C, +2 ˚C,+4 ˚C, and +6 ˚C). [Note NA in CLM3.5 911 

drought simulations indicates the model changed from a forest to a grassland] 912 

The slope of the relationships of An with gs (intrinsic water use efficiency; IWUE), shown in 913 

Figure 6 for each temperature run (ambient air temperature (Tair -5˚C, +0 ˚C,+2 ˚C,+4 ˚C, and 914 

+6 ˚C) in the control and drought simulations (panels f-j), for each model. [Note NA in 915 

CLM3.5 drought simulations indicates the model changes to a grassland]. 916 

 917 

 Control Simulations Drought Simulations 

 CLM3.5 ED2 JULES SiB3 SPA CLM3.5 ED2 JULES SiB3 SPA 

Tair -5˚C 0.84 0.42 0.50 0.09 0.49 0.73 0.29 0.50 0.10 0.27 

Tair +0˚C 0.93 0.56 0.83 0.49 0.68 0.93 0.40 0.60 0.93 0.24 

Tair +2˚C 1.01 0.67 1.01 0.58 0.73 1.08 0.53 0.97 1.11 0.41 

Tair +4˚C 1.05 0.79 1.18 0.65 1.00 NA 0.78 1.37 1.20 0.74 

Tair +6˚C 1.11 0.95 1.32 0.69 1.50 NA 1.10 1.73 1.22 1.15 

  918 
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Figure captions: 919 

Figure 1: Schematic diagram showing how droughts, via the combined effects of increased 920 

air temperature (T) and reductions inreduced precipitation (PPT), affect the carbon cycle of a 921 

tropical forest, including the effects on: vapour pressure deficit (VPD), evapo-transpiration 922 

(Et), stomatal conductance (gs), soil water content (SWC), net photosynthesis (An), leaf area 923 

index (LAI), the maximum rates of RuBP carboxylation and electron transport (Vcmax  and 924 

Jmax respectively), autotrophic respiration (Ra) heterotrophic respiration (Rh), gross primary 925 

productivity (GPP), and net ecosystem exchange (NEE). + signs indicates a positive  926 

feedback effect between variables (i.e. an increase in one variable can only cause an increase 927 

in another if all else is equal), - signs indicate a negative feedback effect, and +/- indicate the 928 

possibility of both a positive and negative effect. Solid arrows represent responses which 929 

occur over short timescales of minutes to hours, whereas dashes arrows represent responses 930 

which can occur over longer timescales from days to months.  931 

Figure 2: Comparison of the air temperature (Tair °C) response of a) daytime net ecosystem 932 

exchange (NEE, µmol m
-2

 s
-1

 ; note that negative values of NEE indicate carbon 933 

sequestration), b) gross primary productivity (GPP, µmol m
-2

 s
-1

), c) ecosystem respiration 934 

(Reco (µmol m
-2

 s
-1

), d) leaf area index (LAI, m
2
 m

-2
). The lines show the median model 935 

responses from the five control temperature runs per model pooled and divided into 1 °C 936 

temperature bins. The grey shaded area shows the combined 15.9
th

 and 84.1
th 

quantiles for all 937 

models. The black points and error bars in panel a) show the daytime eddy-flux inferred NEE 938 

(cf. Figure 4 in Doughty and Goulden 2008). 939 

Figure 3: Modelled effect of short-term changes in temperature and drought.  Fractional 940 
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change  inChanges in: a) gross primary productivity (GPP) b) ecosystem respiration (Reco) 941 

and c) leaf area index (LAI ) ion the final year (2006) in the drought run relative to 942 

theexpressed as a fraction of the value in the final year (2006) of the control run,  are shown 943 

for the Tair -5˚C (grey bars) and Tair +6˚C (wWhite bars) simulations. 944 

Figure 4: Comparison of the dry season mean (sunlit + shaded leaves, weighted by their 945 

respective LAIs) leaf-level response to temperature (Tleaf; °C) of a) net photosynthesis (An, 946 

µmol m
-2

 s
-1

), b) stomatal conductance (gs, mmol m
-2

 s
-1

), c) leaf transpiration (Et, mm m
-2

 s
-

947 

1
), and d) the soil water stress factor (β) for average canopy leaves [Note SPA does not 948 

simulate β] . The lines show the median model responses from the control plot for the five 949 

temperature simulations pooled and divided into 1 °C temperature bins for each model. The 950 

grey shaded area shows the combined 15.9
th

 and 84.1
th

 quantiles for all models. [Note JULES 951 

Et data is missing from these runssimulations] 952 

Figure 5: The temperature response of Vcmax for each model shown relative to the Vcmax at 953 

25 °C per model. 954 

Figure 6: The relationship between 30 minute values of modelled dry season stomatal 955 

conductance (gs) and photosynthesis (An) normalised by their respective maximum values;  An  956 

and gs values are taken only from the dry season when PPFD > 1000 µmol m
-2 

s
-1

 when 957 

PPFD > 1000 µmol m
-2 

s
-1

. Values are shown for eachcoloured separately from deep blue to 958 

red (see legend) for each temperature run simulations (ambient air temperature -5˚C, +0 959 

˚C,+2 ˚C,+4 ˚C, and +6 ˚C) and panels inseparate the control (panels a-e) and drought 960 

simulations (panels f-j), for each model. Values are from sunlit and shaded leaves, weighted 961 

by their respective LAIs. A separate linear line is forced plotted through the normalised An , 962 
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gs  data for each temperature run simulations, the slope of which represents the normalised 963 

intrinsic water use efficiency: the normalised increase in An per unit increase in normalised gs.  964 

to indicate the steepness of the slope, which represents intrinsic water use efficiency. LData 965 

and linear lines are also coloured from deep blue to deep red to differentiate the additions to 966 

ambient air temperature (see legend). 967 

Figure 7: The relationship between Vcmax (µmol m
-2

 s
-1

) and photosynthesis (An mmol m
-2 

s
-1

) 968 

for the half hourly output from each model in the dry season of the control runs, with PPFD > 969 

1000 µmol m
-2 

s
-1

. Values are from sunlit and shaded leaves, weighted by their respective 970 

LAIs. Results are shown across all leaf temperatures explored in this study (colour change 971 

from blue to red indicated indicates increasing leaf temperature (see legend). 972 

Figure 8: The sunlit leaf-level response of dry season a) net photosynthesis (An, µmol m
-2

 s
-1

) 973 

and b) stomatal conductance (gs, µmol m
-2

 s
-1

) to leaf temperature (Tleaf; °C) for CLM3.5 974 

(orange) and SPA (red). The lines show the median model responses from the control plot for 975 

the five temperature simulations pooled and divided into 1 °C temperature bins for each 976 

model. The shaded areas around each line show the 15.9
th

 and 84.1
th

 quantiles for each 977 

model. Data from Doughty and Goulden is shown as black points; error bars show the 978 

standard error. [Note only SPA and CLM3.5 output data on sunlit leaf values of An and gs.] 979 

 980 

Figure S1: The relationship between β and stomatal conductance (gs mmol m
-2 

s
-1

) for each 981 

model in the dry season, with PPFD > 1000 µmol m
-2 

s
-1

. Values are from sunlit and shaded 982 

leaves, weighted by their respective LAIs. Results are shown across all leaf temperatures 983 
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explored in this study (colour change from blue to red indicated increasing leaf temperature) 984 

and separately for the drought and control simulation. 985 

 986 


