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Abstract 1 

Accurately predicting the response of Amazonia to climate change is important for predicting 2 

climate change across the globe. Changes in multiple climatic factors simultaneously result in 3 

complex non-linear ecosystem responses, which are difficult to predict using vegetation 4 

models. Using leaf- and canopy-scale observations, this study evaluated the capability of five 5 

vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of leaf- 6 

and canopy-scale productivity to changes in temperature and drought in an Amazonian forest.  7 

The models did not agree as to whether gross primary productivity (GPP) was more sensitive 8 

to changes in temperature or precipitation, but all the models were consistent with the 9 

prediction that GPP would be higher if tropical forests were 5°C cooler than current ambient 10 

temperatures. There was greater model-data consistency in the response of net ecosystem 11 

exchange (NEE) to changes in temperature than in the response to temperature by net 12 

photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-13 

scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the 14 

models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or 15 

gs, and model variation in these parameters was compensated for by variations in the absolute 16 

magnitude of simulated LAI, and how it altered with temperature. 17 

Across the models, there was, however, consistency in two leaf-scale responses: 1) change in 18 

An with temperature were more closely linked to stomatal behaviour than biochemical 19 

processes; and 2) intrinsic water use efficiency increased with temperature, especially when 20 

combined with drought. These results suggest that even up to fairly extreme temperature 21 

increases from ambient levels (+6˚C), simulated photosynthesis becomes increasingly 22 

sensitive to gs and remains less sensitive to biochemical changes. To improve the reliability of 23 

simulations of the response of Amazonian rainforest to climate change, the mechanistic 24 



underpinnings of vegetation models need to be validated at both leaf- and canopy-scales to 25 

improve accuracy and consistency in the quantification of processes within and across an 26 

ecosystem. 27 
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1 Introduction 28 

Continuing increases in atmospheric CO2 are likely to cause increases in temperature and 29 

changes in precipitation across Amazonia (Good et al., 2013; Jupp et al., 2010; Malhi et al., 30 

2009; Marengo et al., 2012). However, significant uncertainty remains regarding the response 31 

of tropical forests to warming (Corlett, 2011; Reed et al., 2012; Wood et al., 2012), altered 32 

precipitation (Meir et al., 2008; Meir and Woodward, 2010) and short-term abrupt changes in 33 

both precipitation and temperature (Cox et al., 2008;  Marengo et al., 2011; Reichstein et al., 34 

2013). Such uncertainties are propagated into models, resulting in substantial variability in 35 

modelled responses to changes in temperature and drought (Friedlingstein et al., 2006; 36 

Galbraith et al., 2010; Powell et al., 2013; Sitch et al., 2008). These responses need to be 37 

rigorously assessed to enable further improvement in our ability to predict the impacts of 38 

climate change on rain forest functioning.   39 

The ecosystem responses of models to multi-factor changes in climate can be difficult to 40 

interpret because of complex nonlinear responses (Zhou et al., 2008), which can vary 41 

substantially between vegetation models with different model structures. Previous modelling 42 

analyses have shown a greater sensitivity of carbon storage in Amazonian forests to increased 43 

temperature than reduced precipitation (Galbraith et al., 2010). However model responses to 44 

simultaneous changes in precipitation and temperature complex are difficult to evaluate due 45 

to the compound effect of drought and temperature responses (Luo et al., 2008). There are 46 

particular challenges when considering short-to-medium term responses (Luo et al., 2008) 47 

linked to climatic extremes, such as severe drought (Cox et al., 2008; Marengo et al., 2011). 48 

Concurrent changes in temperature and precipitation can cause a complex chain of positive 49 
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and negative feedbacks on different timescales (Figure 1). Increased temperature and reduced 50 

precipitation can directly affect stomatal conductance (gs) through increasing vapour pressure 51 

deficit (VPD), or indirectly affect gs on longer time-scales through reducing soil water 52 

content (SWC; Figure 1). Stomatal conductance, gs, limits photosynthesis (An), and therefore 53 

gross primary productivity (GPP). However An can also be limited by changes in leaf 54 

biochemistry (Vcmax and Jmax, Figure 1). How An is limited by temperature increase is 55 

important as changes in leaf biochemistry at very high temperatures can result from 56 

permanent alteration and possible damage to proteins, whereas changes in gs are less 57 

permanent, but alter water use, and potentially water use efficiency. Currently there is no 58 

consensus on how An will respond to temperature: some studies find a direct impact through 59 

leaf biochemistry (Doughty, 2011; Doughty and Goulden, 2008), and others an indirect effect 60 

initiated by changes in gs, because the limitation of increasing VPD on gs occurs at lower 61 

temperatures than those that cause protein damage (Lloyd and Farquhar, 2008). The lack of 62 

data for tropical trees means these responses remain poorly constrained, though drought and 63 

warming can be examined using limited field data from drought and warming experiments 64 

(da Costa et al., 2014; da Costa et al. 2010; Nepstad et al., 2002) and from extreme events 65 

within the natural range of the climate (Marengo et al., 2011).  66 

The response of vegetation models to temperature change or drought occurs through the 67 

aggregated changes in finer scale processes, for example at the leaf level. Correctly 68 

simulating the mechanisms at the leaf scale is therefore important to maintain confidence in 69 

canopy-scale predictions. Leaf-scale responses in models are scaled using LAI to simulate the 70 

processes at the canopy-scale; therefore inaccuracies in both leaf-scale fluxes and how they 71 

are scaled can produce substantial errors in ecosystem scale fluxes (Bonan et al., 2012). 72 
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Currently no model-data comparisons exist that allow for the evaluation of combined 73 

temperature and precipitation/drought sensitivity of ecosystem fluxes in relation to LAI and 74 

leaf-scale processes in tropical forests. However if we are to identify accurately how to 75 

improve simulated responses of Amazonian forests to future climate change it is vital that 76 

model output is evaluated against data from the leaf to the canopy-scale . 77 

At the Tapajós national forest in north east Brazil, Doughty and Goulden (2008) collected 78 

data on the response of net ecosystem exchange (NEE) to change in atmospheric temperature 79 

and the response of An and gs to short-term artificial leaf warming. Doughty and Goulden 80 

(2008) found reductions in forest productivity at air temperatures above 28˚C, which 81 

corresponds to significant reductions in An and gs at leaf temperatures above 30-33˚C. They 82 

suggested that tropical forests may therefore already be close to a temperature threshold, 83 

beyond which productivity will decline.  84 

Here we use the data published by Doughty and Goulden (2008) to evaluate the short-term 85 

temperature responses within models at both the leaf and canopy-scale and investigate how 86 

the model formulations might impact predicted responses to multiple climatic factors. Our 87 

model simulations represent short-term non-equilibrium responses to changes in temperature 88 

to make them comparable to the perturbation data collected by Doughty and Goulden (2008). 89 

Evaluation of non-equilibrium changes in models is valuable for assessing how models will 90 

perform when simulating responses to extreme shifts in temperature and precipitation which 91 

are predicted to increase across Amazonia (Cox et al., 2008; Marengo et al., 2011). If the 92 

models were run their equilibrium response to a simulated climate shift, the changes in some 93 

of the key variables in the study (An, gs) are more likely to be dominated by the effect of long-94 
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term soil drying rather than direct temperature responses (e.g. the dashed lines in Fig. 1). This 95 

study is part of a wider model inter-comparison project which aims to explore how well 96 

vegetation models simulate drought in the eastern Amazon (Powell et al., 2013). In this study 97 

we evaluate: 1) how the forest productivity of five vegetation models (CLM3.5, ED2, 98 

JULES, SiB3, SPA) responds to changes in temperature, 2) what leaf-scale processes drive 99 

canopy-scale changes in productivity and 3) how both leaf- and canopy-scale temperature 100 

sensitivities are influenced by concurrent changes in precipitation at the Tapajós forest site in 101 

eastern Brazil. In all models we simulate first an ambient and then a 50 % reduction in the 102 

incoming precipitation during the wet season from 2000-2006 analogous to the drought 103 

treatment imposed at the Tapajós forest site, linked to a -5˚C, 0˚C, +2˚C, +4˚C, and +6˚C 104 

change to the ambient air temperature (Tair). These simulations cover a range of likely and 105 

possible increases in temperature for the Amazon region in the coming century (Christensen 106 

et al, 2007; Collins et al., 2013; Malhi et al., 2009) and can be evaluated against existing data 107 

from Doughty and Goulden (2008). This study is the first to evaluate, using data, the inter-108 

model variability in the leaf and canopy responses to changes in temperature and 109 

precipitation at a tropical forest site. 110 

 111 

2 Materials and Methods  112 

2.1 Model description 113 

The five models used in this study were the Community Land Model version 3.5 coupled to 114 

the Dynamic Global Vegetation model (CLM3.5-DGVM; hereafter CLM3.5), the Ecosystem 115 
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Demography model version 2 (ED2) , the Joint UK Land Environment Simulator version 2.1 116 

(JULES), the Simple Biosphere model version 3 (SiB3), and the Soil-Plant-Atmosphere 117 

model (SPA). A brief description of each of the models is given here and in Table 1 (also see 118 

Powell et al., (2013)). The simplest canopy structure is in SiB3. SiB3 has a fixed LAI and 119 

uses a big-leaf model which simulates the response of the top canopy and integrates this 120 

response throughout the canopy according to a light and leaf nitrogen (N) extinction 121 

coefficient (Baker et al., 2008; Sellers et al., 1992; Sellers et al., 1996). CLM3.5 is also a big-122 

leaf model, however it separates the canopy into a sunlit leaf fraction (leaves which receive 123 

both direct and diffuse light) and a shaded leaf fraction (leaves which receive only diffuse 124 

light), which change dynamically with sun angle and canopy light penetration (Oleson et al., 125 

2004; Oleson et al., 2008). The version of JULES used in this study simulates 10 canopy 126 

layers with equal leaf area increments. Leaf nitrogen decays exponentially through the 127 

canopy and radiation interception is simulated following the two-stream approximation of 128 

Sellers (1985). SPA also has a layered canopy model, and here used three canopy layers, with 129 

separate sunlit and shaded fractions (Williams, 1996; Williams et al., 2005). ED2 130 

mathematically approximates the properties of an individual-based forest gap model, 131 

separately modelling the stems of three successional stages (pioneer, mid-successional and 132 

late-successional) of, in this study, tropical trees and grasses on a continuum of leaf light 133 

levels from fully shaded to fully sunlit (Kim et al., 2012; Medvigy et al., 2009b; Moorcroft et 134 

al., 2001). SiB3 and SPA simulate only 1 plant functional type (PFT), set to tropical 135 

evergreen broadleaf; JULES and CLM3.5 simulate 5 PFT’s, but this site simulated a 136 

fractional cover > 95% evergreen broadleaf trees. As the focus of this study is the responses 137 

within tropical forests, results were not considered if a model simulated a shift in the PFT 138 
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away from the dominance of tropical forest. 139 

All of the models use enzyme-kinetic An equations, derived from Farquhar et al. (1980), 140 

Farquhar and Sharkey (1982), Kirschbaum and Farquhar (1984) and Collatz et al. (1991). In 141 

all models temperature can affect An directly through temperature response functions on the 142 

maximum rate of carboxylation of RuBP (Vcmax), the CO2 compensation point, and the 143 

Michaelis-Menten constants (Kc and Ko), and in SPA the maximum rate of electron transport 144 

(Jmax). Temperature can also indirectly change An through changing the VPD at the leaf 145 

surface, which alters gs. CLM3.5, ED2 and SiB3 use the Ball-Berry stomatal conductance 146 

model (Collatz et al., 1991). JULES calculates gs by relating the ratio of internal to external 147 

CO2 to the humidity deficit (Cox et al., 1998). SPA is unique in that it models stomatal 148 

conductance by simulating an aqueous continuum between the soil and leaf water: gs and 149 

photosynthesis are maximised using an isohydric assumption that at each time-step leaf water 150 

potential does not drop below a critical level (-2.5 MPa; see Williams et al., 1996, Fisher et 151 

al., 2007). CLM3.5, ED2, SiB3 and JULES alter gs using a water stress factor (β; a value 152 

ranging 0-1 where 1 indicates no soil water stress and 0 indicates complete soil water 153 

limitation). A detailed description of the effect of soil water stress on gs and An in these 154 

models is given by Powell et al., (2013). 155 

 156 

2.2 Site 157 

The throughfall exclusion in the Tapajós National Forest (TNF, 2.897 S, 54.952 W) is located 158 

on an Oxisol soil, and has a mean annual precipitation of approximately 2 m per year; the site 159 
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is described in detail by Nepstad et al. (2002). This plot was selected for this experiment 160 

because on the temperature response of canopy level net ecosystem exchange (NEE) was 161 

collected at a nearby site (km83; Doughty and Goulden, 2008). The canopy NEE 162 

measurements were from an eddy covariance tower from July 2000 to July 2001, when light 163 

levels were above 1000 µmol m
-2

 s
-1

 (Doughty and Goulden, 2008). Leaf level responses of 164 

stomata conductance and photosynthesis to increases in leaf temperature in fully sunlit 165 

canopy leaves were from 3 species in 2004 (see Doughty and Goulden, 2008 and Goulden et 166 

al., 2004).  167 

 168 

2.3 Meteorological Data and Soil Properties 169 

The model simulations were driven using hourly meteorological data (precipitation, Tair, 170 

specific humidity, short and long-wave radiation and air pressure) measured above the 171 

canopy at the site from 01/01/2002-31/12/2004. The short-wave radiation was split into 68% 172 

direct and 32% diffuse, and then this was split into 43% visible and 57% near-infrared for 173 

direct, and 52% visible and 48% near-infrared for diffuse (Goudriaan, 1977).   174 

The soil properties were standardised across all models to create a similar soil physical 175 

environment, thereby testing only for differences in vegetation functioning (see Powell et al., 176 

2013). Only biological properties such as rooting depth, root biomass, as well as the total 177 

number of soil layers were left as model specific soil properties.  178 

 179 
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2.4 Experimental design 180 

All of the models went through a standard spin-up procedure prior to simulations (see Powell 181 

et al., 2013). Following the spin-up period, a series of five model simulations, with varying 182 

Tair, were performed for an eight-year period (which was intended to simulate 1999-2006, see 183 

Powell et al., 2013) for ambient precipitation (control simulations) and for simulations with a 184 

50 % reduction in wet season rainfall (drought simulations). The 2002-2004 meteorological 185 

data were recycled over the eight year simulation period. To explore the effects of changes in 186 

Tair on the models we performed five model simulations which consisted of simulations with 187 

the hourly 2000-2006 ambient Tair adjusted by -5˚C, 0 ˚C (ambient Tair), +2˚C, +4˚C and 188 

+6˚C. 1999 was the baseline year for which no changes from ambient temperature and 189 

precipitation were implemented. Our analysis was focused on increases in temperature; 190 

however we included a simulation with temperatures 5 ˚C lower than ambient temperatures, 191 

on the basis that some models may have processes optimised for temperate regions where 192 

average Tair is lower. VPD was adjusted according to the changes in air temperature.  193 

 194 

2.5 Model output and evaluation 195 

All the data in this study was processed to match the collection methods and processing done 196 

by Doughty and Goulden (2008; hereafter referred to as DG), as closely as possible. 197 

Therefore, to compare the models' predictions NEE with the flux data, we extract canopy 198 

level fluxes when photosynthetic photon flux density (PPFD) was > 1000 µmol m
-2

 s
-1

, the 199 

conditions used by DG. PPFD was not available for the whole period; therefore we use the 200 
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measured shortwave radiation to estimate PPFD. A conversion factor of 2 is used to convert 201 

from shortwave radiation (W m
-2

) to PPFD (µmol m
-2

 s
-1

) based on an empirical relationship 202 

calculated from the flux tower at the study site (Doughty, unpublished data). The results on 203 

hourly time-steps from each model for the period of (2000-2006) for the five temperature 204 

simulations (with offset of -5˚C, +0˚C, +2˚C, +4˚C and +6˚C) were pooled. Model output was 205 

then placed into 1 ˚C bins of Tair for the canopy-scale analysis (GPP, NEE, ecosystem 206 

respiration (Reco)) or of leaf temperature (Tleaf), for leaf-scale analysis, as done in the DG 207 

study. Accounting for non-gaussian distributions in model output the median and the 15.9
th

 208 

and 84.1
th

 quantiles of the binned model output are plotted to represent the mean and 1 209 

standard deviation of the temperature response curve of any model variable. The data from 210 

the drought and control simulations are considered separately.  211 

To explore the relative sensitivity of models to changes in temperature and drought a linear 212 

relationship between the temperature increase per control simulation (-5 ˚C, 0 ˚C, 2 ˚C, 4 ˚C, 213 

6 ˚C) and final year (2006) GPP was used to calculate the change in GPP per 1˚C increase Tair 214 

for each model (Table 2). This value was used to calculate the increase in temperature 215 

necessary to produce the same loss of GPP as the ambient Tair drought simulation, where 216 

there is a 50% reduction in wet season rainfall (Table 2).  217 

DG published data for the temperature response of An and gs of sunlit leaves during the dry 218 

season when PPFD is >1000 µmol m
-2

 s
-1

. CLM3.5 and SPA are the only models which have 219 

separate output for sunlit and shaded leaves. Consequently data from the sunlit leaves of 220 

these models from periods of high PPFD (>1000 µmol m
-2

 s
-1

) during the dry season (July-221 

December) were used for comparison. The effect of increasing Tair reducing modelled soil 222 
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water content (via increased VPD and consequent leaf transpiration) had to be removed from 223 

the model outputs to make it comparable to the DG data, where individual leaves were 224 

artificially warmed. Therefore we only selected model outputs from the temperature 225 

simulations if the soil water content in the rooting zone was in the top quartile of the values 226 

from the ambient control simulation, this corresponded to β values of >0.9 in CLM3.5. For 227 

consistency with the sunlit leaf analysis, the analysis of canopy average leaf data from all 228 

models was done using dry season data with PPFD >1000 µmol m
-2

 s
-1

. 229 

The relative sensitivity of the five models to changes in temperature and precipitation is 230 

assessed by comparing the interactive and non-interactive effects of the 50 % reduction in 231 

wet season precipitation (drought simulation) with the -5˚C, 0, and +6˚C change in Tair on 232 

ecosystem fluxes at the end of the 8 year simulation (2006).   233 

 234 

3 Results 235 

3.1 Canopy-scale responses  236 

The models have similar responses of NEE and GPP to increasing Tair. DG observed a 237 

reduction in carbon uptake as NEE went from -17.4±0.3 to -7.9±1.1 µmol m
-2

 s
-1

, 238 

corresponding to an increase in Tair from 28˚C - 32˚C (Figure 2a). The modelled NEE begins 239 

to increase at a lower Tair (22-25˚C) in the models and the 28˚C - 32˚C increase in NEE is 240 

generally substantially less than observed by DG (2.5-3.9 µmol m
-2

 s
-1

), except in SPA which 241 

experiences a similar increase in NEE as DG from 28˚C - 32˚C (8.8 µmol m
-2

 s
-1

), across the 242 

same range of values (-15.8 to -7.0 µmol m
-2

 s
-1

; Figure 2a). The increase in modelled NEE at 243 
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high temperatures is caused by a decline in GPP across all models (Figure 2b). As Tair 244 

increases from 16˚C to 38˚C the average decline in GPP from all models is 20.9±3.2 µmol m
-

245 

2 
s

-1
. In contrast the mean model decline in Reco over the same modelled Tair range was 246 

4.2±1.8 µmol m
-2 

s
-1

 (Figure 2c). The decline in modelled ecosystem respiration is low 247 

because in all models a decline in autotrophic respiration with increasing temperature (linked 248 

in the models with reduced GPP) is opposed by an increase in heterotrophic respiration (data 249 

not shown).  250 

Declines in GPP corresponded to declines in LAI. Between 25˚C to 38˚C the decline in GPP 251 

in CLM3.5 (89±38 %), and SPA (82±26 %) was greater than in other models (Figure 2b) and 252 

matched by greater declines in LAI over the same temperature range (4.2±1.0 m
2
 m

-2
, 253 

CLM3.5 and 4.4±0.9 m
2
 m

-2
 in SPA, relative to only 0.6±0.3 m

2
 m

-2
 in ED2 and 0.4±0.1 m

2
 254 

m
-2

 in JULES; Figure 2d). The inter-model variability in LAI is large; at 25 ˚C the median 255 

LAI value in ED2 (3.6±0.3 m
2 

m
-2

) is 3 times smaller than the median values in CLM3.5 256 

(10.7±1.0 m
2 

m
-2

). Observed mean LAI at the TNF under non-drought conditions ranged 257 

from 5.5-6.3 m
2 

m
-2 

from 2000 to 2005 (Brando et al., 2008) and therefore the modelled 258 

values span a range ~70% above and below the measured LAI (Figure 2d).  259 

Combined drought and warming had compound effects on GPP, Reco, and LAI.  In CLM3.5 260 

GPP remained the same in the Tair -5˚C simulation at the end of the drought and control 261 

simulation, however in the Tair +6˚C simulation the forest which existed at the end of the 262 

control simulation was replaced with grassland in the drought simulation (GPP values for 263 

grassland are not shown, Figure 3a). In JULES, SiB3 and SPA the GPP was the same in the 264 

control and the drought simulation at Tair -5˚C; however GPP is 61%, 58% and 44% lower 265 
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respectively at the end of the drought relative to the control simulation (Figure 3a). The 266 

combined effect of temperature and drought on GPP and Reco is lowest in ED2, because it 267 

was the only model to have a strong drought effect on GPP, Reco and LAI in the Tair -5˚C 268 

simulation (Figure 3). In CLM3.5 and SPA, GPP and LAI have the same fractional 269 

reductions with drought, at higher temperatures (Figure 3a and 3c), indicating a tight 270 

coupling between the LAI and canopy productivity; this contrasts the lack of, or low GPP-271 

LAI feedback in SiB3 and JULES. 272 

Amongst the models there is a continuum of temperature versus drought sensitivity. We 273 

express the temperature versus drought sensitivity as the equivalent temperature increase 274 

necessary to produce the same GPP reduction as between the last year of the control to the 275 

drought simulation at ambient Tair (Table 2). A low equivalent temperature would represent a 276 

greater GPP sensitivity to temperature increase and/or a lower GPP sensitivity to drought; a 277 

higher equivalent temperature represents a lower GPP sensitivity to temperature increase 278 

and/or a higher GPP sensitivity to drought. The equivalent temperature increase necessary to 279 

reproduce the same GPP reduction as from the last year of control and droughts simulation at 280 

ambient temperature was lowest in SPA (4.92˚C), moderate in JULES and CLM3.5 (8.61˚C 281 

and 8.83˚C, respectively), and highest in SiB3 and ED2 (15.70˚C and 17.50˚C, respectively; 282 

Table 2). However across all the models a 5˚C reduction in ambient Tair resulted in an 283 

increase in forest productivity as GPP rose between 3.3-8.7 Mg C ha
-1

 yr
-1

 in all models 284 

(Table 2). 285 

 286 

3.2 Leaf-scale responses 287 
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Leaf-scale An and gs oppose LAI responses; the model with the largest change in LAI in 288 

response to temperature increase (CLM3.5) has the lowest An values and the models with the 289 

smallest change in LAI (ED2, JULES & SiB3) have the greatest An values and the strongest 290 

responses of An to temperature change (Figure 4). Model uncertainty increases with 291 

temperature for An and Vcmax (Figure 4a & 5). For Vcmax this is caused by substantial variation 292 

in the optima (10˚C; Figure 5) and the rate of decline in Vcmax following the optima; in 293 

CLM3.5 Vcmax declines 50% at 9˚C over the optimum, contrasting with the same decline 17˚C 294 

over the optimum in SPA (Figure 5).  295 

The optimum An in SPA, SiB3, JULES, CLM3.5 and ED2 occurs at Tleaf values of 25˚C, 296 

26˚C, 27˚C, 30˚C and 30˚C respectively (Figure 4a) and significantly before the optimum 297 

point on Vcmax (Figure 5). In all models the An optimum and the initial decline in canopy 298 

average An is linked to declines in gs (Figure 4a-b). Consequently for each model there are 299 

apparent, but variable, relationships between gs and An (Figure 6), but no obvious 300 

relationships between An and Vcmax (Figure 7). 301 

There was high variability in the magnitude and temperature response of gs across the 302 

models. The maximum canopy average gs values in SiB3 (486 mmol m
-2

 s
-1 

at 25˚C) and ED2 303 

(384 mmol m
-2

 s
-1 

at 23˚C) are substantially higher than CLM3.5 (49 mmol m
-2

 s
-1 

at 20˚C), 304 

JULES (70 mmol m
-2

 s
-1 

at 25˚C) and SPA (200 mmol m
-2

 s
-1 

at 24˚C; Figure 4b). In CLM3.5 305 

a strong constriction in ET is caused by the strong influence of   on gs (Figure 4c-d).   is 306 

reduced by 85±31% in CLM3.5 as Tleaf increase from 30-40 ˚C. The decline in   over the 307 

same Tleaf range was only 14±1% in ED2, 38±5% in JULES and 7.9±1% in SiB3 (Figure 4d).  308 

The slope of An against gs indicates intrinsic water use efficiency (IWUE): the rate of increase 309 
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of assimilation per unit increase in gs. If An is plotted against gs separately for each model 310 

temperature simulations (-5˚C, 0˚C, +2˚C, +4˚C, +6˚C) and a linear fit is forced through the 311 

gs and An data, it is apparent that all models simulate increasing IWUE (an increase in slope) 312 

from the -5˚C up to the +6˚C simulations (Figure 6 & Table 3). The increase in slope of An 313 

and gs from the -5˚C to +6˚C temperature simulation is greater in the drought than control 314 

simulations in all models (Figure 6 & Table 3), suggesting that both increasing temperature 315 

and reduced water availability increase IWUE.  316 

When the effect of soil water stress is removed and sunlit leaf level values are compared to 317 

the DG data for the models which could output separate sunlit leaf values of gs and An (only 318 

SPA and CLM3.5; Figure 8), the peak An of sunlit leaves in SPA at 25˚C (8.72±0.24 µmol m
-

319 

2
 s

-1
) is similar to the peak in the DG leaf-scale data at 30.5˚C (8.44±0.17 µmol m

-2
 s

-1
; Figure 320 

8a). In CLM3.5 the peak An at 29˚C is considerably higher (13.48±0.20 µmol m
-2

 s
-1

), 321 

although it occurs at a similar temperature to the observed peak. Both CLM3.5 and SPA 322 

show a decline of An with temperature similar to the data. Modelled gs, however, shows a poor 323 

match to the observations (Figure 8b). Peak gs values occur at substantially lower Tleaf values 324 

in CLM3.5 (27˚C) and SPA (25˚C) than observed (33.5˚C; Figure 5b). The peak sunlit gs in 325 

SPA are also significantly higher (434±88 mmol m
-2 

s
-1

) than the observations (123±4 mmol 326 

m
-2 

s
-1

) and show a very sharp decline not observed in the data (Figure 8b).  327 

 328 

4 Discussion 329 

4.1 Canopy- and leaf-scale feedbacks 330 
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The response of NEE and GPP to short-term changes in temperature demonstrated 331 

substantially greater consistency across models than for LAI (Figure 2). Amongst the models 332 

which had dynamic LAI, the change in LAI from the original value ranged from 4.5 m
2
 m

-2
 in 333 

SPA to 1.0 m
2
 m

-2
 in ED2.  Interestingly, the change of LAI with Tair in ED2 and JULES was 334 

so low that it was more comparable to SiB3, a model with fixed LAI. This contrasts 335 

CLMA3.5 and SPA, within which LAI declined substantially as Tair rose above a threshold 336 

(Figure 2d). The inter-model range in LAI (maximum range 7.5 m
2
 m

-2
) was greater than the 337 

decline in LAI with Tair in any model. If leaf-scale fluxes are scaled using an inaccurate LAI, 338 

the simulation of both accurate leaf- and canopy-scale fluxes is not possible (Bonan et al., 339 

2012; Lloyd et al., 2010; Mercado et al., 2006; Mercado et al., 2009). Given the large 340 

variability in LAI responses across the models, it would be expected that there should be a 341 

greater variability in GPP and NEE than was observed. Therefore the models must 342 

compensate for variability in canopy structural parameters, such as LAI, through adjustment 343 

in other leaf-scale parameters if the observed consistency in ecosystem-scale responses is to 344 

be maintained (Bonan et al., 2012). We found substantial variation in the magnitude and 345 

temperature responses of leaf-scale parameters: peak Vcmax
 
had a 10˚C Tleaf range across the 346 

models (Figure 5), gs values varied by over an order of magnitude (Figure 4b), the inter-347 

model range of β and ET increased with Tleaf (Figure 4c-d), and there was a two-fold increase 348 

in the inter-model range of An as Tleaf rose from 25-40˚C (Figure 4a). Such variability across 349 

the models suggests that any similarity in the response of NEE to Tair among models is caused 350 

by different processes and feedbacks at the leaf scale. Had the models been run to their 351 

equilibrium states, it is likely that there would have been greater divergence of model 352 

responses at both canopy- and leaf-scales. Prolonged higher temperatures reduce long-term 353 
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moisture availability and cause more severe changes in β; in dynamic PFT-models this can 354 

result in a substantial shift of PFT away from tropical forest. Without more data to evaluate 355 

which models produced the correct responses to temperature, it is hard to have confidence in 356 

predictions of climate change impacts in Amazonian. Variability in the control of gs and leaf 357 

biochemistry on An and changes in IWUE efficiency with increasing temperature or drought 358 

will have significant consequences on the demand of water from a forest (Harper et al., 359 

2014). In this study we find gs had a greater control on the change in An with increasing 360 

temperature because: An started to decline at Tleaf values which were lower than those at 361 

which peak Vcmax occurred (Figure 4b and Figure 5) and An maintained a positive relationship 362 

with gs across all models (Table 3; Figure 6), but no clear relationship with Vcmax (Figure 7). 363 

All the models in this study also predicted an increases in IWUE from the lowest (ambient 364 

Tair -5˚C) to the highest (ambient Tair +6˚C) temperature simulation; this increase in IWUE 365 

was also always greater in the drought temperature simulations relative to the control 366 

temperature simulations (Table 3; Figure 6). Increases in IWUE with increasing temperature 367 

suggests that as the ecosystem warms An will become more sensitive to reductions in gs and 368 

gs will maintain a greater control on An than biochemical controls, even at very extreme 369 

increases in temperature (ambient Tair +6˚C). 370 

These results are consistent with the hypothesis that temperature increases will mainly be 371 

manifest through the effect of increased VPD on stomatal conductance (Lloyd and Farquhar 372 

2008). They are also consistent with leaf warming data from the Tapajos forest which show 373 

that reductions in An start to occur at 4-5°C before the optimum point for Vcmax and Jmax in 374 

sunlit leaves (Tribuzy, 2005). However the responses from longer-term leaf warming 375 

experiments at the same site showed that changes in leaf biochemistry with increasing leaf 376 
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temperatures was an important control on An (Doughty 2011), suggesting more data are 377 

required to test effectively both the short and long term responses of An to changes in 378 

temperature in models. 379 

Comparing the short term direct effect of temperature on the An-gs relationships is 380 

complicated because of the differences in the calculation and implementation of the effect of 381 

water stress amongst models (Powell et al., 2013; Zhou et al., 2013).   is altered by changes 382 

in SWC, which can be caused by changes in temperature (via increased VPD altering SWC), 383 

as well as changes in precipitation; in turn   alters both gs (Figure S1) and An. The decrease 384 

in   with temperature increase was highly variable among models (Figure 4d). Consequently, 385 

the direct influence of soil water stress on gs, An and ET, versus the indirect effect of VPD, 386 

was inconsistent between models. Resolving these inconsistencies is important, as water 387 

stress functions impact the ratio of modelled latent to sensible heat fluxes and so when 388 

coupled to global climate models they alter climate and vegetation feedbacks (Harper et al., 389 

2014). Improving how water stress is simulated in models is therefore essential to improving 390 

temperature and drought responses in tropical forests. 391 

When focusing only on periods of high soil water content and therefore removing the effects 392 

of water stress,  An and gs values from fully sunlit leaves still varied substantially from the 393 

response and magnitude of the DG data (Figure 8). Given the DG data were averaged from 394 

only three top-canopy species, some degree of variation between the model and the data is 395 

expected. The variability between the peak data and peak model gs was however > 4 times 396 

(Figure 8b) and the modelled temperature optima for gs (25-27˚C) was substantial lower than 397 

observed by DG (33.5˚C).Given that CLM3.5 and SPA are in the lower range of the total 398 
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model variability for the gs and An of an average canopy leaf (aggregated sunlit and shaded 399 

leaf; Figure 4a-b), the variation from the data is likely to be substantially larger if sunlit leaf 400 

data could be extracted from all models. Considering the importance of gs in controlling leaf 401 

productivity, the suitability of the empirical models of gs used in these models requires 402 

further testing (Bonan et al., 2014).  The use of optimised rather than empirical models may 403 

provide an opportunity to improve the capability to simulate gs responses to temperature and 404 

water stress in greater detail (Heroult et al., 2013; Medlyn et al., 2013; Medlyn et al., 2011; 405 

Zhou et al., 2013).  406 

 407 

4.2 Combined drought and temperature sensitivities 408 

Previous modelling studies have shown that there is high variability in how sensitive models 409 

are to temperature and drought (Friedlingstein et al., 2006; Galbraith et al., 2010; Luo et al., 410 

2008; Sitch et al., 2008), but that vegetation models have embedded in them greater 411 

sensitivity to rises in temperature than drought (Galbraith et al., 2010) despite the evidence 412 

for strong drought sensitivity in natural rainforests (Gatti et al. 2014). The responses of 413 

modelled forest production in this study to combined changes in precipitation and 414 

temperature were however highly variable. CLM3.5 and SPA had very strong compound 415 

effects of temperature on drought-induced reductions in GPP, Reco and LAI (Figure 3) 416 

relative to JULES and SiB3. In ED2, the drought effect on GPP was always stronger than the 417 

temperature effect (Figure 3) because it has a strong drought-mortality effect at this site 418 

(Powell et al., 2013). This study demonstrates that there is a continuum in model responses 419 

from models that require a low increase in ambient Tair to cause the same GPP loss as a 50% 420 
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reduction in wet season rainfall (SPA, 4.9 ˚C), to models that have a very strong drought 421 

response and therefore require a substantial increase in ambient Tair to replicate the same GPP 422 

loss as a 50% reduction in wet season rainfall (ED2, 17.5 ˚C; Table 2). As a 6˚C rise in 423 

temperature and a 50 % reduction in rainfall are changes which may occur in Amazonia 424 

during the 21
st
 century (Christensen et al, 2007; Collins et al., 2013), we suggest that there is 425 

currently no consensus among vegetation models as to whether there will be a stronger 426 

drought or temperature response to future climate change within tropical forests.  427 

Across all the models GPP increased when ambient Tair was reduced by 5˚C; this occurred 428 

because the ambient air temperature -5˚C was closer to the modelled gs optima. This result 429 

suggests models are currently predicting that Amazonian forests are operating beyond a 430 

temperature and VPD optimum. Given that the models underestimate the point at which NEE 431 

declines with Tair by 3-6˚C and the point at which gs declines with Tleaf by 7.5-9.5˚C (Figure 2 432 

and 4), it seems likely that the models in this study may be biased towards temperature 433 

calibrations for temperate ecosystems. Consequently, as well as moving towards 434 

implementing more mechanistic responses to improve models, more research to test and 435 

adjust their temperature responses in tropical ecosystem is necessary. The range of model 436 

responses in this study is likely to stem from real uncertainty in our understanding of the 437 

responses by tropical rain forest ecosystems to changes in precipitation and temperature. 438 

Further analysis of the same questions using models that vary in complexity (eg, statistical or 439 

optimised models, as well as purely mechanistic) might provide additional insight into 440 

mechanistic and simulation bias (systematic or random), as well advancing understanding 441 

about climate risk that we derive from them (Meir, Mencuccini and Dewar, 2015) 442 
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5 Conclusion 443 

This is the first study in which canopy and leaf temperature responses from multiple 444 

vegetation models are analysed and compared to existing data on leaf and canopy 445 

temperature responses from a tropical forest site. This study finds models lie along a 446 

continuum of those which have a greater sensitivity of GPP to changes in temperature relative 447 

to drought and those which have a greater sensitivity to drought relative to a change in 448 

temperature. Any consistency in model responses to temperature and drought were however, 449 

the result of inconsistent leaf-scale responses, which were found to compensate for 450 

substantial inter-model variation in the magnitude and response of LAI to drought and 451 

temperature.  452 

All the models in this study predict that reductions in An are dominated by stomatal rather 453 

than biochemical responses and that IWUE increased with rising temperatures. The 454 

dominance of the effect of gs rather than Vcmax on An results in all the models predicting 455 

greater forest productivity when temperatures are 5°C below ambient and closer the 456 

temperature of the gs optimum. This suggests that currently models predict that tropical 457 

forests are operating beyond a temperature and VPD optimum, but we note that these 458 

predictions may be influenced by parameterisations derived originally from temperate zone 459 

forests.  460 

This study concludes that to simulate effectively the response of the Amazon forest to 461 

changes in multiple climatic factors substantial improvements are needed in how leaf-scale 462 

processes and leaf-to-canopy scaling are simulated. Further observational data are also 463 

required to generate consistent leaf- and canopy-scale data for independent model evaluation.  464 
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Table 1: Summary of the characteristics of each of the five vegetation models (CLM3.5, 708 

ED2, JULES, SiB3, & SPA). 709 

 710 

 CLM3.5 ED2 JULES  SiB3 SPA 

No° of plant 

function types 

5 4 10 1 1 

Canopy 

structure 

Big-leaf Gap model Layered 

Canopy 

Big-leaf Layered canopy 

Leaf Area 

index 

Dynamic Dynamic Dynamic Fixed Dynamic 

Division of 

sunlit and 

shaded leaf 

Y (discrete 

division) 

N  N N Y (discrete 

division) 

Simulation of 

water stress on 

An and gs. 

Water stress 

factor 

Water stress 

factor 

Water stress 

factor 

Water stress 

factor 

Linked soil-leaf 

water 

potential/resista

nce model to gs 

model. 

Origin of 

photosynthesis 

model 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Farquhar and 

Sharkey (1982); 

Collatz et al. 

(1991) 

Farquhar et al., 

1(980); 

Farquhar and 

Sharkey (1982) 

Collatz et al. 

(1991) 

Farquhar et al., 

(1980); 

Kirschbaum 

and Farquhar 

(1984); 

McMurtrie et 

al. (1992)
  
 

Key model 

references 

Bonan et al., 

(2003); Levis et 

al., (2004); 

Oleson et al. 

(2008). 

Medvigy et al., 

(2009); Kim et 

al 2012.  

Best et al., 

(2011); Clark et 

al., (2011)  

 

 

Sellers et al., 

(1992); Sellers 

et al., (1996); 

Baker et al 

(2008).  

Williams, 

(1996); 

Williams et al., 

(2005); Fisher 

et al., (2006) 
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 712 

 713 
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Table 2: Model values for GPP (Mg C ha
-1

 yr
-1

) for the last year (2006) of the ambient air 715 

temperature control plot simulation (Tair +0°C), the  control plot simulation -5°C (Tair -5°C), 716 

the control plot simulation +6°C (Tair +6°C) and the ambient air temperature drought plot  717 

simulation (Tair +0°C). The equivalent temperature is the elevation in the control plot 718 

simulation temperature needed to replicate the same magnitude reduction in GPP as the 719 

drought simulation, for the year 2006 and at ambient temperatures. The equivalent 720 

temperature is derived from a linear relationship between GPP values in 2006 and the air 721 

temperatures in the 5 temperature simulations per model. 722 

 723 

  724 

 CLM3.5 ED2 JULES SiB3 SPA 

Control  GPP Tair -5°C 40.74 31.74 36.73 35.27 38.23 

Control  GPP Tair +0°C 36.68 28.31 31.16 31.95 29.55 

Control  GPP Tair +6°C 28.03 20.70 20.08 27.50 15.89 

Drought  GPP Tair +0°C 26.47 10.79 18.13 20.86 19.55 

Equivalent  Tair 8.83 17.50 8.61 15.70 4.92 
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Table 3: Values show the normalised intrinsic water use efficiency (IWUE) calculated from 725 

the linear slope of normalised An plotted against normalised gs (Figure 6). The normalised 726 

IWUE is calculated separately for each models’ control and drought temperature simulations 727 

(ambient air temperature (Tair) -5˚C, +0 ˚C, +2 ˚C,+4 ˚C, and +6 ˚C). [Note NA in CLM3.5 728 

drought simulations indicates the model changed from a forest to a grassland] 729 

 730 

 Control Simulations Drought Simulations 

 CLM3.5 ED2 JULES SiB3 SPA CLM3.5 ED2 JULES SiB3 SPA 

Tair -5˚C 0.84 0.42 0.50 0.09 0.49 0.73 0.29 0.50 0.10 0.27 

Tair +0˚C 0.93 0.56 0.83 0.49 0.68 0.93 0.40 0.60 0.93 0.24 

Tair +2˚C 1.01 0.67 1.01 0.58 0.73 1.08 0.53 0.97 1.11 0.41 

Tair +4˚C 1.05 0.79 1.18 0.65 1.00 NA 0.78 1.37 1.20 0.74 

Tair +6˚C 1.11 0.95 1.32 0.69 1.50 NA 1.10 1.73 1.22 1.15 

  731 
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Figure captions: 732 

Figure 1: Schematic diagram showing how droughts, via the combined effects of increased 733 

air temperature (T) and reduced precipitation (PPT), affect the carbon cycle of a tropical 734 

forest, including the effects on: vapour pressure deficit (VPD), evapo-transpiration (Et), 735 

stomatal conductance (gs), soil water content (SWC), net photosynthesis (An), leaf area index 736 

(LAI), the maximum rates of RuBP carboxylation and electron transport (Vcmax  and Jmax 737 

respectively), autotrophic respiration (Ra) heterotrophic respiration (Rh), gross primary 738 

productivity (GPP), and net ecosystem exchange (NEE). + signs indicates a positive feedback 739 

effect between variables (i.e. an increase in one variable can only cause an increase in another 740 

if all else is equal), - signs indicate a negative feedback effect, and +/- indicate the possibility 741 

of both a positive and negative effect. Solid arrows represent responses which occur over 742 

short timescales of minutes to hours, whereas dashes arrows represent responses which can 743 

occur over longer timescales from days to months.  744 

Figure 2: Comparison of the air temperature (Tair °C) response of a) daytime net ecosystem 745 

exchange (NEE, µmol m
-2

 s
-1

 ; note that negative values of NEE indicate carbon 746 

sequestration), b) gross primary productivity (GPP, µmol m
-2

 s
-1

), c) ecosystem respiration 747 

(Reco (µmol m
-2

 s
-1

), d) leaf area index (LAI, m
2
 m

-2
). The lines show the median model 748 

responses from the five control temperature runs per model pooled and divided into 1°C 749 

temperature bins. The grey shaded area shows the combined 15.9
th

 and 84.1
th 

quantiles for all 750 

models. The black points and error bars in panel a) show the daytime eddy-flux inferred NEE 751 

(cf. Figure 4 in Doughty and Goulden 2008). 752 

Figure 3: Modelled effect of short-term variations in temperature and drought expressed as 753 
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one minus the changes in: a) gross primary productivity (GPP) b) ecosystem respiration 754 

(Reco) and c) leaf area index (LAI ) in the final year (2006) in the drought run, as a fraction of 755 

the value in the final year (2006) of the control run, for the Tair -5˚C (grey bars) and Tair +6˚C 756 

(white bars) simulations. 757 

Figure 4: Comparison of the dry season mean (sunlit + shaded leaves, weighted by their 758 

respective LAIs) leaf-level response to temperature (Tleaf; °C) of a) net photosynthesis (An, 759 

µmol m
-2

 s
-1

), b) stomatal conductance (gs, mmol m
-2

 s
-1

), c) leaf transpiration (Et, mm m
-2

 s
-

760 

1
), and d) the soil water stress factor (β) for average canopy leaves [Note SPA does not 761 

simulate β] . The lines show the median model responses from the control plot for the five 762 

temperature simulations pooled and divided into 1 °C temperature bins for each model. The 763 

grey shaded area shows the combined 15.9
th

 and 84.1
th

 quantiles for all models. [Note JULES 764 

Et data is missing from these simulations] 765 

Figure 5: The temperature response of Vcmax for each model shown relative to the Vcmax at 25 766 

°C per model. 767 

Figure 6: The relationship between 30 minute values of modelled stomatal conductance (gs) 768 

and photosynthesis (An) normalised by their respective maximum values; An and gs values are 769 

taken only from the dry season when PPFD > 1000 µmol m
-2 

s
-1

 . Values are coloured 770 

separately from deep blue to red (see legend) for each temperature simulations (ambient air 771 

temperature -5˚C, +0 ˚C,+2 ˚C,+4 ˚C, and +6 ˚C) and panels separate the control (panels a-e) 772 

and drought simulations (panels f-j), for each model. Values are from sunlit and shaded 773 

leaves, weighted by their respective LAIs. A separate linear line is plotted through the 774 

normalised An, gs data for each temperature simulations, the slope of which represents the 775 
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normalised intrinsic water use efficiency: the normalised increase in An per unit increase in 776 

normalised gs.   Linear lines are also coloured from deep blue to deep red to differentiate the 777 

additions to ambient air temperature (see legend). 778 

Figure 7: The relationship between Vcmax (µmol m
-2

 s
-1

) and photosynthesis (An mmol m
-2 

s
-1

) 779 

for the half hourly output from each model in the dry season of the control runs, with PPFD > 780 

1000 µmol m
-2 

s
-1

. Values are from sunlit and shaded leaves, weighted by their respective 781 

LAIs. Results are shown across all leaf temperatures explored in this study (colour change 782 

from blue to red indicates increasing leaf temperature (see legend). 783 

Figure 8: The sunlit leaf-level response of dry season a) net photosynthesis (An, µmol m
-2

 s
-1

) 784 

and b) stomatal conductance (gs, µmol m
-2

 s
-1

) to leaf temperature (Tleaf; °C) for CLM3.5 785 

(orange) and SPA (red). The lines show the median model responses from the control plot for 786 

the five temperature simulations pooled and divided into 1 °C temperature bins for each 787 

model. The shaded areas around each line show the 15.9
th

 and 84.1
th

 quantiles for each 788 

model. Data from Doughty and Goulden is shown as black points; error bars show the 789 

standard error. [Note only SPA and CLM3.5 output data on sunlit leaf values of An and gs.] 790 

 791 

Figure S1: The relationship between β and stomatal conductance (gs mmol m
-2 

s
-1

) for each 792 

model in the dry season, with PPFD > 1000 µmol m
-2 

s
-1

. Values are from sunlit and shaded 793 

leaves, weighted by their respective LAIs. Results are shown across all leaf temperatures 794 

explored in this study (colour change from blue to red indicated increasing leaf temperature) 795 

and separately for the drought and control simulation. 796 
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