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Abstract 12 

Comparisons of amplitudes of wave variations of atmospheric characteristics obtained using 13 

direct numerical simulation models with polarization relations given by conventional theories 14 

of linear acoustic-gravity waves (AGWs) could be helpful for testing these numerical models. 15 

In this study, we performed high-resolution numerical simulations of nonlinear AGW 16 

propagation at altitudes 0 – 500 km from a plane wave forcing at the Earth’s surface and 17 

compared them with analytical polarization relations of linear AGW theory. After some 18 

transition time te (increasing with altitude) subsequent to triggering the wave source, initial 19 

wave pulse disappear and the main spectral components of the wave source dominate. The 20 

numbers of numerically simulated and analytical pairs of AGW parameters, which are equal 21 

with confidence 95%, are largest at altitudes 30 - 60 km at t > te.  At low and high altitudes 22 

and at t < te numbers of equal pairs are smaller, because of influence of the lower boundary 23 

conditions, strong dissipation and AGW transience making substantial inclinations from 24 

conditions, assumed in conventional theories of linear nondissipative stationary AGWs in the 25 

free atmosphere. Reasonable agreements between simulated and analytical wave parameters 26 

satisfying the scope the limitations of the AGW theory proof adequacy of the used wave 27 

numerical model. Significant differences between numerical and analytical AGW parameters 28 

reveal circumstances, when analytical theories give substantial errors and numerical 29 
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simulations of wave fields are required. In addition, direct numerical AGW simulations may 1 

be useful tools for testing simplified parameterizations of wave effects in the atmosphere. 2 

1 Introduction 3 

Observations show frequent presence of acoustic-gravity waves (AGWs) generating at 4 

tropospheric heights and propagating to the middle and upper atmosphere (e.g., Fritts and 5 

Alexander, 2003). These AGWs can break and produce turbulence and perturbations in the 6 

atmosphere. For example, sources of AGWs could be mesoscale turbulence and convection in 7 

the troposphere (e.g., Fritts and Alexander, 2003; Fritts et al., 2006). Turbulent AGW 8 

generation may have maxima at altitudes 9–12 km in the regions of tropospheric jet streams 9 

(Medvedev and Gavrilov, 1995; Gavrilov and Fukao, 1999; Gavrilov, 2007).  10 

Non-hydrostatic models are useful for direct numerical simulations of wave and turbulence in 11 

the atmosphere. For example, Baker and Schubert (2000) simulated nonlinear AGWs in the 12 

atmosphere of Venus. They modeled waves in the atmospheric region having horizontal and 13 

vertical dimensions of 120 and 48 km, respectively. Fritts and Garten (1996), also Andreassen 14 

et al. (1998) and Fritts et al. (2009, 2011) simulated instabilities of Kelvin-Helmholtz and 15 

turbulence produced by breaking atmospheric waves. These models simulate turbulence and 16 

waves in atmospheric regions with limited vertical and horizontal dimensions. The models 17 

exploited spectral methods and Galerkin-type series for converting partial differential 18 

equations (versus time) into the ordinary differential equations for the spectral series 19 

components. Yu and Hickey (2007) and Liu et al. (2008) developed two-dimensional 20 

numerical models of atmospheric AGWs. 21 

Gavrilov and Kshevetskii (2013) developed a two-dimensional model for high-resolution 22 

numerical simulating nonlinear AGWs using a finite-difference scheme taking into account 23 

hydrodynamic conservation laws as described by Kshevetskii and Gavrilov (2005). This 24 

scheme increases the stability of numerical scheme and allows us obtaining non-smooth 25 

solutions of nonlinear wave equations. This permitted getting generalized physically 26 

acceptable solutions to the equations (Lax, 1957; Richtmayer and Morton, 1967). Gavrilov 27 

and Kshevetskii (2014a) created a three-dimensional version of this algorithm for simulating 28 

nonlinear AGWs in the atmosphere. They modeled waves produced by sinusoidal horizontally 29 

homogeneous wave forcing at the Earth’s surface. 30 

Karpov and Kshevetskii (2014) used similar numerical three-dimensional model to study 31 

AGW propagation from local non-stationary wave excitation at the Earth’s surface. They 32 



 3

showed that infrasound going from tropospheric sources could provide substantial mean 1 

heating in the upper atmosphere. Dissipating nonlinear AGWs can also create accelerations of 2 

the mean flows in the middle atmosphere (e.g., Fritts and Alexander, 2003). However, details 3 

of the mean heating and mean flows created by non-stationary nonlinear AGWs in the 4 

atmosphere need further studies. 5 

Numerical models of atmospheric AGWs require verifications. For plane stationary wave 6 

components with small amplitudes conventional linear theories (e.g., Gossard and Hooke, 7 

1975) give the dispersion equation and polarization relations, which connect wave frequency, 8 

vertical and horizontal wave numbers and ratios of amplitudes of different wave field 9 

variations. One can expect that such relations could exist between corresponding parameters 10 

of the numerical model solutions. Therefore, theoretical polarization relations could be useful 11 

for verifications of direct simulation models of atmospheric AGWs. 12 

In this paper, using the high-resolution numerical three-dimensional model by Gavrilov and 13 

Kshevetskii (2014a,b), we made comparisons of calculated ratios of amplitudes of different 14 

wave fields with polarization relations given by the conventional linear AGW theory. We 15 

considered simple AGW forcing by plane wave oscillations of vertical velocity at the surface, 16 

which is similar to the assumptions made in analytical wave theory. We found height regions 17 

of the atmosphere, where numerical results agree with analytical ones, and regions of their 18 

substantial disagreement. 19 

Theoretical dispersion equation and polarization relations are widely used for developing 20 

simplified parameterizations of AGW dynamical and thermal effects in the general circulation 21 

models of the middle atmosphere. Therefore, comparisons of numerically modeled and 22 

analytical polarization relations are useful for both verifications of numerical models, and 23 

obtaining limits of analytical relation applicability and for verifications of AGW 24 

parameterizations.  25 

2 Numerical model. 26 

The three-dimensional numerical AGW model calculates velocity components u, v, and w 27 

along horizontal (x, y) and vertical, z, axes, respectively. The model also calculates departures 28 

of pressure p’, temperature T’, and density ρ’ from background hydrostatic stationary fields 29 

p0, T0 and ρ0, respectively. Gavrilov and Kshevetskii (2014a) described the set of 30 

hydrodynamic nonlinear equations used in the model. The set includes equations of 31 
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continuity, momentum and heat balance. At the upper boundary z = 500 km, the conditions 1 

involve zero vertical gradients of perturbations of temperature, pressure, density and 2 

horizontal velocity, also zero vertical velocity. At the Earth’s surface, the lower boundary 3 

conditions consist of zero perturbations of temperature, pressure, density and horizontal 4 

velocity (see Gavrilov and Kshevetskii, 2013; 2014a,b). In this study, we assume horizontal 5 

periodicity of wave solutions:  6 

                                      ( , , , ) ( , , , ),x yr x y z t r x L y L z t= + +                                             (1) 7 

where r denotes any of the calculated variables, and Lx = mλx, Ly = nλy are the horizontal 8 

dimensions of the considered atmospheric region,  m and n are integer constants,  λx and λy 9 

are wavelengths along horizontal axes x and y, respectively. Variations of vertical velocity w0 10 

= w(x,y) at the ground z = 0 generate AGWs in the model. 11 

The used numerical scheme is analogous to the two-dimensional algorithm described by 12 

Kshevetskii and Gavrilov (2005). It is a modification of the method by Lax and Wendroff 13 

(1960). This algorithm involves the conservation laws of momentum, mass and energy. The 14 

main difference of our scheme from the classical Lax and Wendroff (1960) algorithm is the 15 

implicit approximating equations of hydrodynamic at first half step in time, which diminish 16 

errors of description of acoustic waves (Kshevetskii, 2001a, b, c).  17 

     We use numerical scheme similar to the two-dimensional algorithm developed by 18 

Kshevetskii and Gavrilov (2005). Used hydrodynamic equations (see Gavrilov and 19 

Kshevetskii, 2013b, 2014a) can be presented in the conservation law forms      20 
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where s represents any of momentum, energy or mass per unit volume, X, Y, Z denote 22 

components of  respective quantity fluxes along axes x, y, z. Additionally to the model by 23 

Kshevetskii and Gavrilov (2005), the current energy balance equation contains terms 24 

describing heating caused by viscosity. Used numerical method exploits the Lax and 25 

Wendroff (1960) scheme, which approximates Eq. (2) with the second-order finite-difference 26 

analog 27 
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where n, i, j, k and ∆t,  ∆x, ∆y, ∆z, are the grid node numbers and grid spacing in t, x, y, z, 29 

respectively.  This algorithm gives possibilities to select physically appropriate solutions of 30 
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the equations (Lax, 1957; Richtmayer and Morton, 1967). It keeps the numerical scheme 1 

stability and allows us consideration of non-smooth solutions of nonlinear AGW equations. In 2 

addition we exploit a staggered grid, where temperature, pressure and density are specified at 3 

the same nodes, but for the velocity components u, v, w the mesh points are half grid spacing 4 

shifted along axes x, y, z, respectively. To compute sn+1/2 at the first time half step we apply 5 

the implicit equation 6 
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This substantially complicates simulations, but Kshevetskii (2001a, b, c) found that such 8 

structures of finite-difference schemes do not accumulate errors caused by acoustic waves.      9 

In this study, we employ vertical profiles of background T0, ρ0, and p0 given by the model of 10 

standard atmosphere MSIS-90 (Hedin, 1991) for average geomagnetic activity in January. 11 

The average spacing of height grid is about 170 m, but it is varying from 12 m near the 12 

ground (because of high gradients in the boundary layer) to about 1.2 km at altitudes of about 13 

500 km depending on inhomogeneities of vertical temperature profiles.  The horizontal grids 14 

spacing is 1/60 of horizontal wavelengths taken in the wave source Eq. (2). Time spacing is 15 

automatically determined to guarantee stability of the numerical algorithm and is equal to  16 

0.14 s and 0.24 s for analyzed in this study AGWs having period τ = 2×103 s and horizontal 17 

phase speeds 30 m/s and 100 m/s, respectively.  18 

The numerical model involves kinematic molecular heat conductivity and viscosity increasing 19 

versus altitude inversely proportional to the background density. We also include background 20 

turbulent heat conductivity and viscosity taking their vertical profiles with the maxima of 10 21 

m2/s near the ground and at altitude of 100 km and the minimum of ~ 0.1 m2/s in the 22 

stratosphere. The model does not include some effects, for example, wave dissipation caused 23 

by ion drag and radiative heat exchange, which are less important for modeling high 24 

frequency AGWs. 25 

3. AGW polarization relations. 26 

 The comparisons considered in this paper used relations obtained from a theoretical model of 27 

monochromatic AGWs in the plain rotating atmosphere.  Conventional linear theories 28 

suppose that wave components v’, p’, ρ’, and T’ are small deviations from stationary 29 

background values v0, p0, ρ0, and T0. In agreement with Hines (1960), Beer (1974), and 30 
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Matsuno and Shimazaki (1981), we can look for solutions to atmospheric wave equations for 1 

AGW spectral components in the following form     2 
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 3 

where p0s is the surface pressure; axis x is directed along horizontal wave phase velocity; σ, k 4 

and m are  frequency, horizontal and vertical wave numbers; U, V, W, P, R and Θ are complex 5 

amplitudes of respective values. Assuming homogeneity of v0 and T0, one can obtain (see 6 

Hines,1960; Beer, 1974) a dispersion equation relating frequency and wave numbers, which 7 

can be written in the form of: 8 
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9 

where f is the Coriolis parameter, N is the isothermal Brunt-Vaisala frequency, c is the sound 10 

speed, ωa is highest frequency of acoustic waves, ω = σ - ku0. Beer (1974) found that Eq. (6) 11 

could be appropriate approximation for slowly varying background temperature and wind if 12 

one use the following expressions:  13 
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 14 

where γa = g/cp, g is the acceleration by gravity, H is the atmospheric scale height, cp is the 15 

heat capacity at constant pressure. Applying technique by Beer (1974) we can get the 16 

following polarization relations 17 

                

2 2 2 2 2
( ), ( )

2 2 2
( ) ( )( )

U kc m i W f k c

V ifkc m i P f m i

ω ω ω

γ ω

∝ − Γ ∝ − −

∝ − Γ ∝ − − Γ ,

,

,
                                     18 

                             
2 2 2 2 2

( )( )R f m i ik c N gω α∝ − − + / ,                        (8) 19 

                             
2 2 2 2 2

( 1)( )( )f m i ik c N gγ ω αΘ ∝ − − + − / ,
 20 

where α = 1/(2H); Γ = (2-γ)/(2γH), γ = cp/cv. Eq. (8) does not allow calculating wave 21 

amplitudes, but give opportunity to find their ratios. At f = 0 Eq. (8) are equivalent to the 22 
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polarization relations obtained by Hines (1960). In nondissipative atmosphere, according Eq. 1 

(5), AGW amplitudes should grow with altitude, so that 2 

                                                           000 ppWW s=                                                            (9) 3 

An important AGW characteristic is the wave momentum flux, vertical component of which, 4 

Fmz, is as follows 5 

                                                       ,2/*)Re('' 00 UWwuFmz ρρ ==                                    (10) 6 

where sign <> denotes averaging over the wave period.  7 

4. Comparisons of the numerical model and polarization relations. 8 

In this study, using the high-resolution nonlinear numerical model described in sect. 2, we 9 

simulated hydrodynamic fields produced by spectral AGW components and compared ratios 10 

of their amplitudes with those predicted by the analytical polarization relations Eqs. (7), (8). 11 

To make simulations matching the linear AGW theory (see Eq.(5)), we used nonlinear AGWs 12 

having forms of plane waves and suppose horizontally periodical distributions of vertical 13 

velocity at the Earth’s surface moving along axis x of the form of 14 

                                           (w)z=0 = W0 cos[k(x – cxt)],                                             (11) 15 

where k = 2π/λx and cx are horizontal wavenumber and phase speed along the horizontal axis x 16 

in the direction of the wave propagation; W0 is the amplitude. Eq. (11) represents plane wave 17 

of vertical velocity at the lower boundary, which may correspond to spectral components of 18 

convective and turbulent AGW sources (Townsend, 1965, 1966).  Medvedev and Gavrilov 19 

(1995) studied AGW generation caused by nonlinear interactions in meteorological and 20 

turbulent atmospheric processes. They found variety of wavelengths, amplitudes and other 21 

parameters of created AGWs. In this paper, we describe simulations for wave modes having 22 

cx = 30 m/s and cx = 100 m/s with unchanged period τ = 2×103 s and amplitudes W0 = 0.3 23 

cm/s. The modeling was performed beginning from the MSIS initial state (zero wave fields) 24 

and the windless background flow at t = 0, when the wave source Eq. (11) was triggered at 25 

the lower boundary. 26 

Gavrilov and Kshevetskii (2014a, b) demonstrated that after triggering the wave source at t = 27 

0, fast acoustic and very long gravity wave modes would quickly reach very high altitudes. 28 

Simulations demonstrate that in the horizontally periodic approximation of Eq. (1), these 29 

initial pulses can reach altitudes of 100 km and higher in a few minutes and form quasi-30 
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vertical wave fronts analogous to those in Fig. 1a,b,c of the paper by Gavrilov and 1 

Kshevetskii (2013, 2014a). These initial waves dissipate because of molecular viscosity and 2 

heat conduction. When time increases, more and more of the waves with longer vertical 3 

wavelengths are taken away by dissipation, therefore vertical wavelengths should decrease in 4 

time at a given height in the middle atmosphere (Heale et al., 2014). After some transition 5 

time, initial AGW wave modes disappear and wave vertical structure matches to the main 6 

spectral component of the wave source (11) having horizontal wave number k and phase 7 

speed cx. 8 

To estimate AGW amplitudes in the numerical model solution we calculated standard 9 

deviations of corresponding wave fields over all nodes of the horizontal grid at considered 10 

altitude. For sinusoidal wave component, this standard deviation is equal to a half AGW 11 

amplitude. Therefore, ratios of amplitudes of horizontally homogeneous stationary sinusoidal 12 

AGWs should be equal to the ratios of corresponding standard deviations. Simulated standard 13 

deviations of wave fields in horizontal planes located at different heights grow in time 14 

throughout transition intervals after activating the wave forcing and then tend to constant 15 

values different at each height (see Gavrilov and Kshevetskii, 2014b). In the horizontally 16 

periodical approximation of Eq. (1), these standard deviations are approximately equal to a 17 

half wave amplitudes at large t, when the AGW process tends to become quasi-stationary. For 18 

a plane spectral AGW component with vertical wavelength λz, the vertical group velocity is 19 

cgz ≈ λz/τ, and the time of its energy arriving to altitude z is te= z/cgz. For considered main 20 

spectral components of the wave source (8) with τ = 2 × 103 s and average λz ~ 10 km for cx = 21 

30 ms−1, and λz ~ 35 km for cx = 100 ms−1. Therefore, one can get te/τ = z/λz ~ 1, 6, 10 and te/τ 22 

~ 0.3, 1.7, 2.9 at heights 10, 60, and 100 km, respectively, for both cx. Thus, lengths of the 23 

transition intervals are longer for smaller cx. These intervals grow with altitude and may be 24 

longer than ten wave periods at height of 100 km. 25 

Table 1 represents standard deviations at different altitudes calculated with the numerical 26 

model and with analytical polarization relations and their ratios for AGW with cx = 30 m/s. 27 

The Table 1 contains simulated SDs at each altitude averaged over n model outputs during the 28 

initial transient interval t < te (bottom part of Table 1) and for quasi-stationary waves t > te 29 

(upper part of Table 1). Respective data numbers n for each altitude are presented in Table 1. 30 

Respective values obtained from analytical linear AGW theory (see section 3) are calculated 31 

using average background values and are placed to the columns labeled as “Lin” at each 32 
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altitude in Table 1. Consideration of Fig. 5 of the paper by Gavrilov and Kshevetskii (2014b) 1 

shows that standard deviations of wave fields simulated with the numerical model vary in 2 

time due to definite variations and irregular perturbations. Standard deviations of each 3 

average numerically simulated parameter are given in Table 1.  4 

For comparisons of numerically simulated values with analytical ones in Table 1, we use 5 

standard t-test giving probability of the null hypothesis about equity of averages of two 6 

irregular quantities (Rice, 2006). Approximately, the probability of equity of two respective 7 

average values in Table 1 is larger 95%, if difference between them is less than 1.96 8 

multiplied by the standard deviation of the average value (Rice, 2006). In this study, we 9 

considered only cases, when the standard deviations in Table 1 are smaller than 0.15 of 10 

respective average values. Pairs of AGW parameters, which we can consider equal with 11 

confidence larger than 95%, are marked with bold font in Table 1. The numbers of those pairs 12 

are largest in the upper part of Table 1 at altitudes 30 and 60 km, which correspond to quasi-13 

stationary AGWs in the free atmosphere considered in conventional AGW theory described in 14 

sect. 3. Reasonable agreements between simulated and analytical wave parameters in 15 

atmospheric regions, which correspond to the scope the limitations of the nondissipative 16 

linear AGW theory, may be considered as evidences of adequate descriptions of wave 17 

processes by the used nonlinear numerical model. 18 

Many numerically simulated AGW parameters do not match to the respective analytical 19 

values in Table 1. No matches are in the bottom part of Table 1, which corresponds to the 20 

initial transition time interval. Gavrilov and Kshevetskii (2014b) showed that vertical 21 

structures of transient waves are different from those predicted by the linear AGW theory 22 

during the transition interval after activating the surface wave source Eq. (11). Bottom part of 23 

Table 1 shows that numerically simulated wave amplitude W is smaller than that predicted by 24 

AGW theory at high altitudes, because these values refer to small t < te, when energy of the 25 

main wave component does not yet reach considered altitude. Numerical and analytical 26 

amplitude ratios are also substantially different in the bottom part of Table 1 for t < te. 27 

In the upper part of Table 1 for quasi-stationary AGWs at t > te, the numerically simulated 28 

AGW amplitudes W are slightly smaller than the analytical values at altitudes up to 60 km. 29 

This can be caused by small AGW dissipation at low altitudes and by partial reflections of the 30 

wave energy from inhomogeneities of background atmospheric fields in the numerical model. 31 

Wave dissipation becomes larger at altitude 100 km due to grows in cinematic viscosity and 32 
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heat conductivity, therefore simulated amplitude W in the upper part of Table 1 become much 1 

smaller than that predicted by nondissipative AGW theory. In addition, one can see 2 

substantial differences in numerically simulated and analytical ratios of some AGW 3 

amplitudes, which can be due to influences of dissipative effects. At low altitudes, differences 4 

in simulated and analytical ratios of AGW amplitudes can reflect the influence of lower 5 

boundary conditions. In particular, the condition u = 0 at the Earth’s surface makes AGW 6 

amplitudes of horizontal velocity at low altitudes smaller than that predicted by the AGW 7 

theory for free atmosphere. The upper part of Table 1 for t > te, shows that the best 8 

agreements exists between numerical and analytical values of the ratio R/Θ ≈ 1 at all altitudes. 9 

Table 1 reveals numerically simulated AGW momentum fluxes Fmz Eq. (10) calculated as 10 

ρ0<u‘w‘> averaged over horizontal planes at fixed altitudes and over respective time 11 

intervals. For comparisons, Table 1 contains also momentum fluxes Fmz given by Eq. (10) and 12 

calculated from numerically simulated amplitudes W and U. The upper part of Table 1 shows 13 

that at t > te wave momentum flux Fmz is almost constant at altitudes 10 – 60 km due to 14 

relatively small dissipation and reflection of wave energy. At altitude of 100 km wave 15 

dissipation increases and Fmz decreases producing strong wave accelerations of the mean 16 

flow, which are proportional to the vertical gradient of Fmz. In the bottom part of Table 1 for t 17 

< te, values of Fmz are much smaller than respective Fmz values for t > te, because during 18 

initial transition interval, energy of the main AGW modes of the wave source (11) does not 19 

yet reach high altitudes. 20 

Table 2 is the same as Table 1, but for AGW components with cx = 100 ms-1, which has 21 

longer vertical wavelength. In the upper part of Table 2 for t > te, we have smaller number of 22 

pairs equal with confidence 95% (marked with bold font), than that in the upper part of Table 23 

1. This may be connected with stronger influence of vertical inhomogeneities of background 24 

temperature profile on faster AGW with longer vertical wavenumber and with larger partial 25 

reflection of faster AGW energy. Stronger reflections lead to smaller amplitudes W at 26 

altitudes below 100 km in the upper part of Table 2 compared to that in Table 1. On the other 27 

hand, W at altitude 100 km in the upper part of Table 2 is larger than that in Table 1 due to 28 

smaller dissipation of longer AGWs. Therefore, waves with longer vertical wavelengths can 29 

faster propagate from the surface to the upper layers and less dissipate in the middle 30 

atmosphere, where they can have larger amplitudes than those with shorter vertical 31 

wavelengths (see Gavrilov and Kshevetskii, 2014b). Similar to Table 1, we have larger 32 
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amounts of equal (with 95% confidence) numerically simulated and analytical AGW 1 

parameters at altitudes 30 and 60 km. At low and high altitudes and at t < te (in the bottom 2 

part of Table 2) numbers of equal pairs are smaller due to influence of the lower boundary 3 

conditions, larger dissipation and AGW transience, respectively. 4 

Tables 1 and 2 contains comparisons of the numerical results and linear polarization relations 5 

at altitudes below 100 km, where considered AGW modes are quasi-linear and almost 6 

nondissipative. At higher altitudes growing wave amplitudes and molecular viscosity and heat 7 

conduction lead to fast growing wave-induced mean flows, which violate assumptions of 8 

conventional AGW theories and change ratios of wave amplitudes of different hydrodynamic 9 

fields. Therefore, we found poor agreement between numerical and analytical wave results 10 

above altitude 100 km and do not include them into Tables 1 and 2. These disagreements 11 

become larger with increases in amplitudes of the lower boundary wave sources due to higher 12 

nonlinear effects and faster grows in the wave-induced jet streams above 100 km. To get 13 

better agreements, improved analytical AGW theories taking into account transient processes, 14 

high wave dissipation and fast changes in background fields are required.  15 

In the areas of Tables 1 and 2, where numerical and analytical parameters are close, one can 16 

use analytical formulae for descriptions and estimations of the wave fields. Opposite to that, 17 

areas of substantial differences between numerical and analytical AGW parameters in Tables 18 

1 and 2 reveal regions, where numerical simulations are required.  19 

Relations of linear AGW theory are frequently used for simplified parameterizations of AGW 20 

dynamical and thermal effects for their use in the numerical models of atmospheric general 21 

circulations (e.g., Lindzen, 1981; Holton, 1983; Gavrilov, 1997; etc.). Similar 22 

parameterizations are also developing for highly dissipative AGWs in the upper atmosphere 23 

(e.g., Vadas and Fritts, 2005; Yigit et al., 2008). Sometimes, different parameterizations give 24 

different results. Direct numerical simulation models of atmospheric AGWs may be useful 25 

tools for testing and verifications of simplified parameterizations of wave effects. 26 

5. Conclusions  27 

 In this study, we performed high-resolution numerical simulations of nonlinear AGW 28 

propagation to the middle and upper atmosphere from a plane wave forcing at the Earth’s 29 

surface and compared them with analytical polarization relations of linear AGW theory. Such 30 

comparisons may be used for verifications of numerical models of atmospheric AGWs. 31 

Numerical simulations show that after triggering the wave source Eq. (11) at t = 0, fast 32 
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acoustic and very long gravity wave modes would quickly reach very high heights. After 1 

some transition time te (increasing with altitude), initial AGW wave modes disappear and 2 

wave vertical structure matches to the main spectral component of the wave source Eq. (11) 3 

having horizontal wave number k and phase speed cx. The numbers of numerically simulated 4 

and analytical pairs of AGW parameters, which are equal with confidence 95%, are largest at 5 

altitudes 30 and 60 km at t > te.  At low and high altitudes and at t < te numbers of equal pairs 6 

are smaller, because of influence of the lower boundary conditions, larger dissipation and 7 

AGW transience, which can produce substantial inclinations from conditions, assumed in 8 

conventional theories of linear nondissipative stationary AGWs in the free atmosphere.  9 

Reasonable agreements between numerically simulated and analytical wave parameters in 10 

atmospheric regions, which correspond to the scope the limitations of the AGW theory, may 11 

be considered as evidences of adequate descriptions of wave processes by the used nonlinear 12 

numerical model. Areas of substantial differences between numerical and analytical AGW 13 

parameters reveal atmospheric regions, where analytical theories give substantial errors and 14 

numerical simulation of wave fields is required. Direct numerical simulation models of 15 

atmospheric AGWs may be useful tools for testing and verifications of simplified 16 

parameterizations of wave effects. 17 
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Table 1. Standard deviations and their ratios for AGW with cx = 30 m/s calculated with the 1 

numerical model and with analytical polarization relations (labeled as Lin) at different 2 

altitudes averaged over the initial transient interval t < te and for quasi-stationary waves t > te. 3 

Bold font shows the data pairs equal with probabilities larger than 95%. 4 

 5 

Altitude 0.012 km 10 km 30 km 60 km 100 km 

t > 0.25τ Lin t > te Lin t > te Lin t > te Lin t > te Lin 

n 51 

 

28 

 

23 

 

16 

 

8 

 

W, 10-3m/s 2.982±0.001 3.00 4.7±0.1 5.18 18.4±0.5 24.4 170±6 190 1730±140 4470 

U/W 0.78±0.02 3.17 5.1±0.1 4.48 7.1±0.2 6.83 5.0±0.1 5.04 10.3±1.3 7.51 

Θ/W, 10-3s/m 5.1±0.2 3.56 7.2±0.1 6.78 15.7±0.2 15.4 8.4±0.1 8.56 26.2±3.3 18.9 

R/W, 10-3s/m 5.2±0.3 3.55 7.2±0.1 6.77 15.4±0.2 15.4 8.6±0.2 8.56 27.0±3.4 18.8 

P/W, 10-3s/m 1.8±0.1 1.15 2.6±0.2 2.10 3.5±0.2 3.16 2.3±0.1 2.13 4.0±0.1 4.03 

R/Θ 1.01±0.03 1.00 1.00±0.02 1.00 0.98±0.01 1.00 1.03±0.02 1.00 1.03±0.02 1.00 

R/P 3.4±0.4 3.08 3.0±0.2 3.23 4.7±0.2 4.86 3.9±0.1 4.01 7.0±1.2 4.68 

R/U, 10-3s/m 6.7±0.4 1.12 1.41±0.03 1.51 2.16±0.03 2.22 1.71±0.02 1.7 2.63±0.03 2.51 

P/U, 10-3s/m 2.4±0.1 0.36 0.51±0.03 0.47 0.48±0.02 0.46 0.45±0.02 0.42 0.42±0.05 0.536 

Fmz, 10-5kg/m2/s 0.29±0.02 0.42 2.2±0.1 2.29 2.2±0.1 2.20 2.2±0.2 2.17 0.8±0.1 0.84 

          
t < 0.25τ Lin t < te Lin t < te Lin t < te Lin t < te Lin 

n 7 

 

16 

 

20 

 

26 

 

32 

 

W, 10-3m/s 2.983±0.001 3.00 1.3±0.2 5.18 2.9±0.4 24.4 24±4 190 512±60 4470 

U/W 0.60±0.07 3.17 4.1±0.5 4.48 4.3±0.7 6.83 2.9±0.4 5.04 3.8±0.5 7.51 

Θ/W, 10-3s/m 3.0±0.7 3.56 5.5±0.8 6.78 7.8±1.3 15.4 4.1±0.7 8.56 9.1±1.5 18.9 

R/W, 10-3s/m 3.9±0.7 3.55 6.6±0.8 6.77 10.3±1.6 15.4 6.8±1.2 8.56 11.4±1.9 18.8 

P/W, 10-3s/m 1.8±0.3 1.15 7.1±1.0 2.1 8.9±1.7 3.16 6.6±1.5 2.13 8.3±1.9 4.03 

R/Θ 3.1±2.0 1.00 2.0±0.5 1.00 1.97±0.5 1.00 4.4±2.0 1.00 3.5±1.3 1.00 

R/P 2.5±0.5 3.08 1.1±0.1 3.23 2.1±0.6 4.86 1.7±0.2 4.01 2.0±0.3 4.68 

R/U, 10-3s/m 6.6±1.0 1.12 1.9±0.3 1.51 3.6±0.7 2.22 7.1±3.9 1.7 10.1±5.1 2.51 

P/U, 10-3s/m 3.1±0.4 0.36 2.0±0.3 0.47 3.6±0.9 0.46 9.0±5.4 0.42 12.6±7.0 0.536 

Fmz, 10-5kg/m2/s 0.07±0.04 0.32 0.12±0.03 0.14 0.03±0.01 0.03 0.05±0.02 0.03 0.04±0.01 0.03 
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Table 2. Same as Table 1, but for AGW with cx = 100 m/s.  1 

 2 

Altitude 0.012 km 10 km 30 km 60 km 100 km 

t > 0.25τ Lin t > te Lin t > te Lin t > te Lin t > te Lin 

n 51 28 23 16 8 

W, 10-3m/s 2.982±0.001 3.00 3.7±0.3 5.18 18.2±1.7 24.4 161±14 190 3000±120 4470 

U/W 0.79±0.05 2.96 6.4±0.5 4.42 5.8±0.4 7.22 3.9±0.3 5.25 7.1±0.3 12 

Θ/W, 10-3s/m 6.4±0.3 3.34 8.4±0.5 6.69 13.6±0.7 16.3 8.5±0.4 8.78 19.0±0.3 30 

R/W, 10-3s/m 5.9±0.4 3.24 9.4±0.9 6.6 12.4±0.9 16.2 7.9±0.4 8.77 15.0±0.8 30 

P/W, 10-3s/m 7.0±0.5 3.59 13.1±1.4 6.89 8.5±0.5 11.1 6.5±0.9 7.4 11.9±0.4 13.8 

R/Θ 1.1±0.1 0.97 1.2±0.1 0.99 0.91±0.04 1.00 0.93±0.04 1.00 0.78±0.04 1.00 

R/P 1.2±0.2 0.9 0.94±0.1 0.96 1.6±0.2 1.46 1.5±0.1 1.19 1.3±0.1 2.17 

R/U, 10-3s/m 11.1±2.6 1.09 1.6±0.1 1.49 2.2±0.1 2.25 2.2±0.1 1.67 2.2±0.1 2.5 

P/U, 10-3s/m 10.4±1.4 1.21 2.0±0.1 1.56 1.6±0.1 1.54 1.6±0.2 1.41 1.7±0.1 1.15 

Fmz, 10-5kg/m2/s 0.01±0.04 0.43 1.03±0.05 1.78 1.03±0.1 1.76 0.90±0.09 1.52 0.79±0.09 1.74 

          
t < 0.25τ Lin t < te Lin t < te Lin t < te Lin t < te Lin 

n 7 16 20 26 32 

W, 10-3m/s 2.983±0.001 3.00 2.3±0.4 5.18 5.9±0.7 24.4 112±4 190 600±110 4470 

U/W 1.0±0.1 2.96 7.0±1.5 4.42 5.8±0.7 7.22 4.5±1.0 5.25 4.1±1.1 12 

Θ/W, 10-3s/m 3.6±1.1 3.34 5.9±1.8 6.69 9.5±1.3 16.3 7.3±1.0 8.78 8.8±1.7 30 

R/W, 10-3s/m 8.6±0.6 3.24 17.9±2.4 6.6 17.5±1.5 16.2 9.8±1.7 8.77 15.5±3 30 

P/W, 10-3s/m 10.5±0.8 3.59 21.2±2.9 6.89 16.7±1.7 11.1 10.1±2 7.4 14.3±2.8 13.8 

R/Θ 4.5±1.4 0.97 6.2±2.1 0.99 3.3±0.9 1.00 2.2±0.8 1.00 2.8±0.7 1.00 

R/P 0.84±0.05 0.9 0.86±0.06 0.96 1.2±0.1 1.46 1.3±0.1 1.19 1.2±0.2 2.17 

R/U, 10-3s/m 9.6±1.7 1.09 4.6±1.8 1.49 4.3±0.8 2.25 9.4±14 1.67 39±22 2.5 

P/U, 10-3s/m 11.8±2.1 1.21 5.5±2.1 1.56 4.4±0.9 1.54 11.8±19 1.41 45±29 1.15 

Fmz, 10-5kg/m2/s 0.12±0.06 0.54 0.44±0.11 0.75 0.31±0.09 0.15 0.59±0.01 0.85 0.06±0.03 0.04 


