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Abstract. Various mass fixer algorithms (MFAs) have been implemented in the Integrated Fore-

casting System (IFS) of ECMWF to ensure mass conservation of atmospheric tracers within the

Semi-Lagrangian (SL) advection scheme. Emphasis has been placed in implementing schemes that

despite being primarily global in nature adjust the solution mostly in regions where the advected

field has large gradients and therefore interpolation (transport) error is assumed larger.5

The MFAs have been tested in weather forecast, idealised and atmospheric dispersion cases. Ap-

plying these fixers to specific humidity and cloud fields did not change the accuracy of 10-day fore-

casts. In other words, global mass tracer conservation is achieved without deteriorating the solution

accuracy. However, for longer forecast timescales or for forecasts in which correlated species are

transported, experiments suggest that MFAs may improve IFS forecasts.10
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1 Introduction

A drawback of semi-Lagrangian (SL) transport schemes, such as the one used by IFS (Ritchie et al.,

1995) is that they do not formally conserve mass as the pointwise nature of the SL method does not

take into account gridbox size and fluxes. Between the beginning and the end of each timestep, the

total model mass can differ by a very small amount. This difference, although not significant for15

the timescales of Numerical Weather Prediction (NWP), may accumulate in a long run. A system-

atic drift in the total mass of air (or a tracer field) will eventually affect the quality of the forecast

(Thuburn, 2008).

As NWP models become more complex, the number of tracers increases and therefore the require-

ment for conservative schemes becomes more important. Furthermore, as the resolution increases20

towards cloud resolving scales it becomes increasingly desirable from the parametrization point of

view to have a mass conserving advection scheme as this may improve further the simulation of

cloud processes.

SL advection (SLA) consists of two steps which do not -in principle - ensure conservation of

mass: (i) finding departure points and (ii) interpolating the advected field to the departure point25

location. However, the choice of method for (i) and (ii) has a considerable impact for the amount of

the mass-non-conservation.

There is a class of SL-schemes, the so called inherently conserving schemes, which are able to

achieve global, local and consistent mass conservation for tracer and air-mass fields. Two examples

are SLICE (Semi-Lagrangian Inherently Conserving and Efficient) transport scheme (see Zerroukat30

and Allen, 2012) and CSLAM (Conservative Semi-LAgrangian Multi-tracer) transport scheme (see

Lauritzen et al., 2010). These schemes are an application of a finite-volume type discretization

approach on the semi-Lagrangian continuity equation. In general, they are complex algorithms

difficult to implement efficiently in an existing operational model which uses a “traditional” SL

method. Although inherently conserving SL methods are not currently used in weather forecasting35

operations there are schemes in this family which are competitive or even more efficient than their

Eulerian finite-volume conservative counterparts for applications where a large number of tracers is

advected (multi-tracer simulations). CSLAM is an example of such method while another example

of a recent development based on LMCSL by Kaas (2008) scheme (Locally Mass Conserving semi-

Lagrangian) is given by Sørensen et al. (2013).40

An alternative low computational cost approach to ensure global mass conservation which can be

easily applied on traditional SL methods is the Mass Fixer Algorithm (MFA). The task of a MFA is

to change the tracer concentrations after SLA in such way that the mass before and after advection is

the same. A general problem of MFAs is to identify regions where it is most appropriate to change

the solution of the SL scheme.45

Different MFAs implement different strategies for distributing the global mass loss or gain. The

simplest ones correct the solution uniformly by simply scaling each grid-point value with the ratio
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of the global mass before and after advection. This approach is currently used in IFS when long time

integrations take place in order to correct the total model mass and of long-lived tracers (Flemming

and Huijnen, 2011).50

More sophisticated MFAs attempt to compute a correction which is proportional to the smoothness

of the solution. A larger correction is applied in areas where the solution has large gradients and

therefore the error is larger and a very small correction where the solution is smooth and the error is

small.

The aim of the paper is to present tracer MFA that were recently implemented in IFS in model55

cycle 39r1. Using this model cycle as the base for our experiments we shall discuss results from

NWP forecasts, long range forecasts where the mass fixers are applied to humidity and cloud fields

as well as idealised tracer and volcanic plume forecasts. Availability of globally mass conserving

schemes for tracers can be an important addition to IFS based prediction systems such as the EC-

Earth (Hazeleger et al., 2012) climate model or atmospheric composition forecast systems where60

aerosols, greenhouse and reactive gases are transported (Hollingsworth et al., 2008).

The paper is structured as follows. The amount of the non-conservation by the SL advection

scheme of IFS is demonstrated in Section 2. Section 3 describes the implemented MFA. Their

impact on the simulated fields in different applications is discussed in section 4. Conclusions are

presented in section 5.65

2 Air and tracer global mass conservation in IFS

In a 10-day IFS forecast, at the current operational resolution T1279L137 (approximately 16km

in grid-point space on 137 levels) using a 10 min timestep, the total model air mass increases by

less than 0.01% of its initial value. The formulation of the continuity equation, based on Ritchie

and Tanguay (1996) scheme (see also ECMWF, 2012, section 3.6.2), plays an important role into70

achieving this accuracy. Orography is removed from the advected mass field resulting in a much

smoother field which can be accurately interpolated to the Lagrangian-grid (departure points).

Global conservation errors in tracer advection are larger and depend on the smoothness of the field.

For example, smoother fields such as ozone and specific humidity have smaller conservation errors

than fields with sharp features such as cloud fields. This is demonstrated in Fig. 1 where the global75

mass conservation error is displayed for ozone, specific humidity (Q), liquid cloud water content

(CLWC), cloud ice water content (CIWC) for the same number of timesteps (1440) at different

resolutions using two approaches for the interpolation to the departure point. Mass conservation is

represented in Fig. 1 by a line identical to the horizontal 0-axis. The global mass conservation error

for a tracer φ is expressed as a percentage of its initial mass:80

Eφ = 100×Mφ
t −M

φ
0

Mφ
0
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where, Mφ
0 , Mφ

t is the initial and current step global tracer mass.

In the forecast experiments of Fig. 1 all parametrizations of sink and source terms have been

switched off. This allows to test the performance of the advection scheme using real orography.

In addition, the following two interpolation methods have been used: (i) the quasi-cubic ECMWF85

interpolation, Ritchie et al. (1995), with a quasi-monotone limiter and (ii) a linear interpolation

(indicated with LIN in plots). Method (i) is used in IFS operationally for Q and ozone while method

(ii) is used operationally for the rougher cloud fields. The experiments are run at the following

horizontal and vertical resolutions: (i) T159 L60 i.e. T159 in the horizontal (approximately equal

to 125 km) with 60 levels in the vertical (ii) T159 L91 (iii) T1279 L91 (approximately 16km in the90

horizontal) and (iv) T1279 L137. To allow direct comparisons of the mass conservation error per

timestep, the four forecasts in Fig. 1 have been run for the same number of timesteps. At coarse

horizontal resolution (T159) the timestep is 6 times longer (60 mins) than the corresponding timestep

for high resolution (T1279).

The results shown in Fig.1 indicate that the global mass conservation error per timestep tends to95

decrease as the resolution increases. However, when horizontal resolution is increased from T159

to T1279, the accumulated error at t= 10 days decreases only for CLWC, CIWC with cubic inter-

polation while remains roughly the same for the remaining fields. It seems that the opposite is true

when vertical resolution increases, the accumulated error at t= 10 days decreases except for CLWC,

CIWC with cubic interpolation. So there are differences between interpolation schemes and between100

fields of different smoothness but the overall indication is that in the IFS system mass conservation

of tracers tends to improve globally as resolution increases and the best way to demonstrate this is

by comparing Fig. 1(a) with 1(d).

3 Description of the MFAs

The transport problem we consider here is the advection of a scalar field φχ which represents the105

mass mixing ratio of a tracer:

Dφχ
Dt

= S, φχ = ρχ/ρ (1)

where ρχ, ρ are the tracer and air density respectively and S represents sources or sinks that may

be present. Consider SL time-stepping from t to t+ ∆t:

φt+∆t
χ = φtχ,d + ∆t S110

where d denotes the departure point computed by the trajectory algorithm and φtχ,d is obtained by

interpolating the known field φtχ at the computed departure point. If S = 0 then the global volume

integral of ρφχ at t and t+ ∆t (on the model grid) should not change as this represents the total
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mass of χ and the only process operating is advection (transport). However, in practice, as the

interpolation scheme generates errors this global conservation law is violated.115

Global MFAs of different sophistication are described in the published literature for SL transport

models. In general, any MFA will compute the global tracer mass immediately before and after

the advection step. Then a small correction is computed for each grid-point in such a way that this

global error is eliminated. In the simplest version of the proportional or multiplicative fixer of Rasch

and Williamson (1990), each grid-point value is multiplied by the ratio of the mass before and after120

advection. Here, we will focus on the more local algorithms. In particular, the following algorithms

will be discussed: (i) the quasi-monotone Bermejo and Conde (2002) cheme (ii) Zerroukat (2010)

scheme (iii) the quasi-monotone Priestley (1993) scheme and (iv) McGregor (2005) scheme. These

algorithms have been implemented in IFS and will be summarised in the following paragraphs. It

should be noted that their implementation is three-dimensional given that semi-Lagrangian advection125

in IFS is fully three-dimensional.

To describe these different fixers, as implemented in IFS, we use the following notation: K is the

number of model levels, starting from the top of the atmosphere and ending on the surface. Each

model level hasN grid-points. Each grid-box has horizontal surface areaAj and height ∆zjk where

zjk denotes the height of the jth model grid-point of the kth level. The total mass of a tracer χ with130

mass mixing ratio φ= ρχ/ρ where ρ is the air-density field is:

M =

N∑
j=1

Aj

K∑
k=1

ρχ,jk(−∆zjk) =

N∑
j=1

Aj

K∑
k=1

φjk
∆pjk
g

, ∆zjk = zjk − zj,k−1 < 0, (2)

∆pjk = pjk − pj,k−1 > 0.

The hydrostatic approximation (valid in IFS) ∆p=−ρg∆z has been used in (2) to eliminate ∆z.

During the advection step, a tracer field φ0 (i.e. the field before the advection step takes place)135

is interpolated to the departure point field (Lagrangian grid) and changes to φ∗ while its total mass

changes from M0 to M∗:

M0 =

N∑
j=1

Aj

K∑
k=1

φ0
jk

∆p0
jk

g
, M∗ =

N∑
j=1

Aj

K∑
k=1

φ∗jk
∆p∗jk
g

. (3)

Use of ∆p∗jk in (3) reflects the change of the surface pressure field due to advection. MFAs aim

to correct φ∗ so that a new field is derived which has a total mass equal to M0.140

3.1 Bermejo and Conde (BC) scheme

Bermejo and Conde (2002) algorithm is derived by a variational principle. It computes a new quasi-

monotone field minimizing its distance from the original one subject to the constraint of global mass

conservation. The correction added at each grid point depends on an estimate of the interpolation
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error. The global norm of this correction field has the smallest possible magnitude that can give145

mass conservation and monotonicity. In the original publication, the scheme was tested on idealised

2-dimensional cases of advection. Here it has been implemented in IFS in 3D mode and has been

tested on active meteorological fields.

Let φ1 be the field which minimizes the square of the weighted norm:

min
φ1
‖φ1−φ∗‖2w =

1

2

N∑
j=1

Aj

K∑
k=1

(
φ1
jk −φ∗jk

)2

wjk

∆p∗jk
g

(4)150

subject to

N∑
j=1

Aj

K∑
k=1

φ1
jk

∆p∗jk
g

=M0

where wjk is a non-negative weighting factor. Having wjk = 0 means that the corresponding grid-

point value is not altered and is not included in the cost function. A solution to (4) is found using a

Lagrange multiplier approach. The cost function155

E(φ1,λ) =
1

2

N∑
j=1

Aj

K∑
k=1

(
φ1
jk −φ∗jk

)
wjk

2

∆p∗jk
g
−λ

 N∑
j=1

Aj

K∑
k=1

φ1
jk

∆p∗jk
g
−M0

 ,
is defined seeking a pair of values

(
φ1,λ

)
such that:

∂E

∂φ1
jk

= 0,
∂E

∂λ
= 0.

Solving these two equations we obtain:

φ1
jk = φ∗jk −λwjk, λ=

δM
N∑
j=1

Aj

K∑
k=1

wjk
∆p∗jk
g

, δM =M∗−M0 (5)160

where the weight wjk depends on the solution smoothness. We choose it to be proportional to the

difference between the quasi-cubic, quasi-monotone interpolated field φ∗ and the linear one φL:

wjk = max
[
0,sgn(δM)

(
φ∗jk −φLjk

)β]
. (6)

The above weights are used to compute a “local correction”, i.e. the global mass surplus or deficit

is distributed unevenly to different grid-points depending on the smoothness of the solution which is165

measured by the difference between a high and a low order interpolant. For the IFS implementation,

β was set to 1 as tests showed no benefit from using the recommended value β = 3. In fact, higher

values led to sharper, bigger size increments which may not be desirable for the model stability.

In sections that follow for convenience this scheme will be called BC fixer.
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3.2 Zerroukat’s (ZE) scheme170

The BC fixer in IFS can also be run in a mode that corresponds to a version of the Zerroukat (2010)

fixer. This leads to smoother correction fields. The drawback is that quasi-monotonicity or positive-

definiteness cannot be guaranteed. Here an implementation of this scheme is presented which uses

the same measure to assess the solution smoothness as the BC scheme, i.e. the difference between

a high order scheme (cubic Lagrange interpolation) and a low order scheme (linear interpolation).175

Here, this scheme will be called ZE fixer. It corrects each grid-point value as follows:

φ1
jk = φ∗jk − γjkδM, δM =M∗−M0, γjk =

|φ∗jk −φLjk|β
N∑
j=1

Aj

K∑
k=1

|φ∗jk −φLjk|β
∆p∗jk
g

(7)

where M0, M∗ are defined by (3) and again β = 1 is sufficient for practical purposes. If

N∑
j=1

Aj

K∑
k=1

γjk
∆p∗jk
g

= 1

holds then global mass conservation is guaranteed:180

N∑
j=1

Aj

K∑
k=1

φ1
jk

∆p∗jk
g

=M0.

It is worth noticing that equation (7) can be re-written in a form that resembles (5):

φ1
jk = φ∗jk −λwjk, λ=

δM
N∑
j=1

Aj

K∑
k=1

wjk
∆p∗jk
g

, δM =M −M0, wjk = |φ∗jk −φLjk|β . (8)

This implies that the derived field φ1 is also a solution of the minimization problem (4). One dif-

ference between (5) and (8) is the construction of the weights wjk. Using the unlimited wjk =185

|φ∗jk −φLjk|β means that all grid-points will be corrected. The sign of the increment is determined

by the sign of δM (which determines the sign of λ): for δM > 0 (surplus) φ1
jk ≤ φjk ∀j,k and for

δM < 0 (deficit) φ1
jk ≥ φjk ∀j,k. However, as this one-directional correction is not limited as in

the BC case, it is possible that a new minimum or maximum value may be generated. In practice,

if a quasi-monotone scheme was used for advection this happened in less than 0.5% for humidity190

grid-points but sometimes can go up to 5% of grid-points for a non-smooth field.

3.3 Priestley’s (PR) scheme

Priestley (1993) produced a well known mass fixing scheme. Its objective is to compute a globally

conserving monotone solution by blending the original high order with a low order solution thereby

departing as little as possible from the high order one. This is equivalent to finding the highest195
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possible values for the weights αjk such that the “blended” field:

φ1
jk = αjk

(
φ∗jk −φLjk

)
+φLjk, 0≤ αjk ≤ 1

satisfies:

min
({
φ0, j,k

}
,φL

)
≤ φ1

jk ≤max
({
φ0, j,k

}
,φL
)
,
∑
j

ANj=1

K∑
k=1

φ1
jk

∆p∗jk
g

=M0 (9)

where
{
φ0, j,k

}
denotes the set of φ-field values before advection at grid-points surrounding the200

(j,k) departure point and φ∗, φL the cubically and linearly interpolated field at the departure point

respectively. The two conditions in (9) ensure conservation and monotonicity. The requirement for

“highest possible” α-values is an accuracy requirement. It ensures that the final solution is as close

as possible to the original high order interpolation field. In regions where the solution is smooth the

blended scheme is weighted towards the higher order solution while in regions with low degree of205

smoothness it is blended towards the linear solution.

A more detailed step-by-step algorithmic description of Priestley’s algorithm is given in the ap-

pendix of Gravel and Staniforth (1994). Priestley’s scheme is an iterative scheme. Two options

have been implemented: the standard algorithm which will be called here PR and a variant of it,

namely PRqm. The latter is essentially the same algorithm, the only difference here is that a quasi-210

monotone filter (Bermejo and Staniforth, 1992) has been applied immediately before the application

of the fixer. The result of this modification is that the algorithm converges faster. Regardless which

variant is used the solution will be always quasi-monotone, the difference is only in the starting

values.

3.4 Mc Gregor’s (MG) scheme215

McGregor (2005) scheme which shall be called here MG fixer, is a MFA used in the climate model

C-CAM (Conformal-Cubic Atmospheric Model). This is a model using a SL scheme for horizontal

advection and a total variation diminishing (TVD) scheme for the vertical advection. MG fixer can

be applied to any interpolation technique including linear as opposed to the fixers considered so far

which both require that the field is advected using a high order interpolant. An additional advantage220

of this scheme is that it is computationally very cheap. However, it does not guarantee monotonicity

but only positive definiteness. Furthermore, it differs from the other algorithms presented here, as it

does not use a local smoothness criterion to assess how much to correct at each grid-point. At each

timestep it computes a global diagnostic which judges the overall ability of the advection scheme to

accurately advect fields. Nevertheless it does not correct by the same proportion each grid-point but225

is using instead two different scaling factors: one for points that have positive advective increments

and one for points that have negative advective increments. It tends to amplify the solution when

there is damping and suppress when there is amplification.

The algorithm can be described as follows:
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Step 1 Compute total mass before and after advection M0, M∗ as in (3).230

Step 2 Let a minimum allowed value φmin. Scan each grid point, compute and store:

∆φ+
jk = max(0,∆φjk) , ∆φ−jk = min(0,∆φjk)

where

∆φjk = max
(
φ∗jk,φ

min
jk

)
−

∆p0
jk

∆p∗jk
φ0
jk

Step 3 Compute total positive and negative increments and their ratio :235

∆M+ =

N∑
j=1

Aj

K∑
k=1

∆p∗jk
g

∆φ+
jk, ∆M− =

N∑
j=1

Aj

K∑
k=1

∆p∗jk
g

∆φ−jk,

r =−∆M−

∆M+

Step 4 Set αφ = min(r,
√
r) and update:

φ1
jk =

∆p0
jk

∆p∗jk
φ0
jk +αφ∆φ+

jk +
1

max(1,αφ)
∆φ−jk

The last step is equivalent to:240

φ1
jk =


∆p0jk
∆p∗jk

φ0
jk +αφ∆φ+

jk + ∆φ−jk, r ≤ 1

∆p0jk
∆p∗jk

φ0
jk +αφ∆φ+

jk + 1
αφ

∆φ−jk, r > 1

and implies that the increment is scaled by a factor αφ which reduces positive increments when their

total mass exceeds the total mass of the negative increments. When the opposite is true then positive

increments will be amplified and negatives will reduce in magnitude. The new field satisfies the

global mass conservation constraint:245

N∑
j=1

Aj

K∑
k=1

φ1
jk

∆p∗jk
g

=M0.

3.5 The quasi-monotone limiter

The quasi-monotone limiter renders the interpolation locally monotone, i.e. in the vicinity of the

departure point the interpolation curve (or multidimensional surface) passing from the departure

point field value and the field values of points surrounding the departure point does not generate new250

minima or maxima. For the tests presented in the following section two forms of the quasi-monotone

Bermejo and Staniforth (1992) mini-max limiter for cubic interpolation will be used:
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(i) “the default” limiter or filter used operationally in IFS: the scheme is applied immediately

after each 1D cubic interpolation (in longitude, latitude, height) takes place. So, the steps

taken are: interpolate in longitude and then apply 1D limiter on the interpolated field. Repeat255

this action for each of the remaining two interpolations (in latitude, height). For brevity this

scheme will be called DEF limiter or filter.

(ii) the standard Bermejo and Staniforth (1992) limiter: this shall be called BS limiter or filter. In

this case the limiter is applied after all three interpolations have finished, i.e. this is limiting

in 3D at once.260

We should also clarify that the term “cubic interpolation” will imply here the quasi-tri-cubic in-

terpolation scheme used by IFS (linear interpolation along the edges of the stencil, fully cubic in the

interior, see Ritchie et al., 1995).

4 Testing of MFAs in IFS

In Fig. 2 the global conservation error during the advection of Q and CLWC with and without MFA265

is displayed. It is shown there that application of a MFA eliminates this error. This forecast run

has the operational resolution (T1279 horizontal with 137 levels) and is identical to the one that

corresponds to the results of Fig. 1 i.e. there are no sources or sinks of tracer mass. For brevity

we display only results from BC and PR schemes but also the other MFAs give a globally mass

conserving solution. The mass conservation error before and after the advection was always close to270

machine precision.

The impact of the BC MFA on Q is demonstrated in Fig. 3. Cubic interpolation is used for

the advection of this field. Here, physical parametrizations have been switched on and the setup is

the same as in an operational forecast. A single timestep increment from the fixer, at t= 24 hrs

and at a model level which over flat terrain is near the 700 hPa pressure level, is compared with275

the field itself. The figure shows that the computed increments are at least 3 orders of magnitude

smaller than their corresponding field magnitude. The sign is negative due to the fact that at this

stage of the forecast, advection increases mass and the fixer has to remove a global surplus. The

fixer is acting mainly on areas where large gradients are present where interpolation is expected to

be less accurate. In areas where the field is smooth the correction is very small regardless of the field280

magnitude. Similar results have been produced from runs with the remaining MFAs. For brevity

these will not be displayed here but they are publically available (see Fig. 5 in Diamantakis and

Flemming, 2013, section 4).

A zonally and 24 hrs time-averaged vertical cross section for Q is compared with corresponding

cross-sections of increment diagnostics in Fig. 4. The average increment is 4-5 orders of magnitude285

smaller than the magnitude of the field itself. It is concentrated in areas where large amounts of

humidity are present. It is interesting to notice how similar the zonally and time averaged increments
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are for BC, ZE and PRqm. The fact that their difference is small means that the different algorithms

converge roughly to the same solution. Larger differences can be noticed when any of the previous

three fixers is compared with MG and even larger with PR.290

Usually, increments computed by PR differ in sign and magnitude from the other fixers (see also

Figs. 4, 5). This is because this algorithm computes a quasi-monotone and conservative solution

iteratively starting from a cubic interpolated field. In the tests presented here it usually takes 3-4

iterations for PR to converge. During this iterative process both positive and negative increments

will be computed to derive a locally monotone solution. Mass has to be removed from overshooting295

points (negative increment) and added at undershooting points (positive increment). This is not the

case with PRqm which starts with a quasi-monotone field having no undershooting or overshoot-

ing points and therefore the only action that the algorithm needs to take is to restore global mass

conservation. Regarding the remaining fixers it is worth mentioning that: (i) ZE produces the small-

est, in magnitude, increments but these are slightly more widespread (ii) BC and PRqm are similar300

and (iii) MG produces slightly different patterns than the previous two fixers. As expected, the

quasi-monotone schemes did not produce any overshoots or undershoots. A very small percentage

of undershoots (< 0.01% of total points) was found with MG but no negative values were created.

This percentage was larger in the ZE fixer for the cloud fields, exceeding slightly 1.5%, while it was

of similar magnitude for Q (≈ 0.01%). Most of these undershoots generated negative values.305

In the plots presented here specific humidity was chosen to examine the local behaviour of MFAs.

This choice was made due to the meteorological importance of this tracer field and given that it

includes regions that are relatively smooth as well as regions with large gradients. The MFA applied

to the rougher cloud fields CLWC and CLIC resulted in similar local patterns as shown for Q. The

CLWC increments were used as a diagnostic for demonstrating the step by step behaviour of the310

MFAs. This is shown in Fig. 5 where the scaled global rms and max norms of the of CLWC

fixer (absolute) increments are displayed. These are scaled to be the fraction (percentage) of the

rms global norm of the advected CLWC field which is representative to its mean value. The plot

shows that the smallest increments are computed by ZE fixer, followed by BC and PRqm while

as expected and explained before PR computes the largest increments. MG increments are in the315

middle between PR and ZE.

Finally, to assess the computational cost of the fixers, 10-day forecast tests with the high resolution

control (T1279 L137) have been done applying the fixers on Q, CLWC, CIWC, CRWC (cloud rain

water content) and CSWC (cloud snow water content). The extra CPU time consumed by these

algorithms is: (i) BC: 1% (ii) PRqm: 2% (iii) PR: 3.5% (iv) MG: 0.75% (v) ZE: 0.85% .320

As expected PR is the most expensive and MG the cheapest. All algorithms have been parallelized

using MPI and openMP directives.
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4.1 Impact of humidity MFAs on temperature fields in long runs

As there is a strong interaction between humidity and temperature, typically because of radiative

effects and cloud microphysics, we shall test in this section to what extent the mass fixer increments325

on humidity and cloud fields alter the temperature field. To show the impact we carried out four

12-month forecasts with full physics at T159 L137 resolution. This is a standard test of IFS which

is done to evaluate whether a new scheme impacts on model climate. The experiments run are

described in Table 1.

In Fig.6a the temperature bias is plotted, i.e. the difference of the vertical cross section of a zonally330

averaged annual mean temperature field (averaged across the four forecasts) from its corresponding

field from ERA-Interim run. This Figure displays a common problem in semi-Lagrangian models,

the extra-tropical tropopause/lower stratosphere cold bias (see Stenke et al., 2008). For the remaining

plots, the difference of the same field (zonally averaged annual mean temperature) from the control

run is used. This is done to clearly demonstrate the impact of the changes. As a general rule,335

warming around the extra-tropical tropopause (in the region where the blue area in Fig. 6a appears)

would indicate an improvement while cooling would indicate further deterioration.

Results show that none of these fixers deteriorates the existing cold bias. When the fixers are

combined with the DEF limiter the difference is small (results show a marginal improvement and

have not been included here). On the contrary a noticeable improvement, i.e. a reduction of the cold340

bias, can be noticed when they are combined with the BS limiter. This shows in Fig. 6b to 6f. Good

results are obtained with the quasi-monotone algorithms PR and BC. As condition in equation (9)

shows, PR fixer is limiting the solution using a similar scheme to BS limiter. Bigger positive impact

is obtained by fixers that do not guarantee quasi-monotonicity: ZE followed by MG. However, the

former generates negatives especially in the cloud fields which are rougher (3-5% of grid-points345

become negative after correction is applied). This is not the case for the latter where a negative fixer

is built in.

4.2 Impact on NWP scores in 10-day forecasts

The accuracy of 10-day forecasts is typically assessed using measures that describe the realism of

the global geopotential or temperature fields. The forecast fields are compared against the Analysis350

of the fields and expressed as Root Mean Square Error (RMSE) or Anomaly Correlation Coefficient

(ACC) (Wilks, 2011).

In general, it is not expected that a global MFA will improve forecasting skill in the short or

medium range but neither it should deteriorate the skill. To investigate this the MFAs have been

tested running 37 forecast cases, each starting 10 days apart from 1/12/2011 until 25/11/2012. The355

resolution used is T511 L137 and each forecast is run for 10 days using operational options for

the model dynamics and physics. All fixers were activated on Q, CLWC, CIWC, CRWC, CSWC.
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Although these tests are specific on moist physics tracers, they do have a general value. We can

indirectly measure the impact a fixer has on advection by measuring the overall forecast skill of

the experiment: forecast skill deterioration would imply that the tested algorithm deteriorates the360

accuracy of the advection scheme and therefore is deemed not suitable for tracer advection. Neu-

tral scores should indicate that the fixer is making the interpolation conservative without damaging

solution accuracy at least on the large scale.

Overall, geopotential, wind, temperature verification scores in the three global regions (NH, TR,

SH) from runs with MFAs are neutral and there is no forecast that is better in terms of ACC and365

RMSE. An exception is the temperature RMSE in the tropics at upper tropospheric levels which

increases up to 0.07K (from approximately 1.26K to 1.33K) at t= 10 days when any MFA is applied

for humidity and cloud fields with cubic interpolation options. The fixer contributes further (by

a small amount) to the existing cold bias. This happens because a small amount of humidity is

removed from the atmosphere as a small humidity surplus is detected by the fixer. Reducing the370

humidity content of the troposphere has in general a cooling effect while the opposite is true for the

stratosphere due to reduction of radiative cooling. However, there is no impact on the corresponding

ACC scores which remain neutral.

4.3 Simulation of correlated tracers

Mass conservation is an important property for atmospheric applications where chemical species are375

transported. It is also important that existing functional relationships in their concentration are main-

tained by the advection scheme (see Lauritzen and Thuburn, 2012). The ability of IFS and the newly

developed fixers to preserve such relationships has been tested using case 11 from DCMIP (Dy-

namical Core Model Intercomparison Project, see Ulrich et al., 2012). This is a three-dimensional

passive advection deformational flow idealised test case in which four tracers are transported. The380

initial concentration of the first two tracer fields q1, q2 obeys the nonlinear relationship:

q2(λ,θ,z) = 0.9− 0.8q2
1(λ,θ,z)

where λ, θ, z is the longitude, latitude and height of a tracer. The first one (q1) is represented by two

cosine bells placed at the same height and latitude but at different longitudes.

Results for this test case from IFS runs at T159 horizontal resolution and 137 levels in the vertical385

(this is close to the recommended resolution for this problem) are plotted in Fig. 7. These plots are

correlation plots for the pair (q1, q2) at t= 6 days after the initial time. This is half the time required

for the tracers to return to their original position i.e. complete one full rotation around the earth.

The initial concentration of these tracers is given by the parabolic dash-dotted black curve. Pairs

(q1, q2) (red dots) that fall outside the region marked by the dashed-dotted convex shape correspond390

to unphysical mixing ratios. Real mixing in the atmosphere can only move scatter points to the

concave side of the pre-existing functional curve along mixing lines (Lauritzen and Thuburn, 2012).
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Lack of spread indicates that the scheme is over-diffusive as peak values are damped.

The plots show that semi-Lagrangian transport with linear interpolation is excessively diffusive but

does not produce any unphysical mixing. The opposite is true when cubic Lagrange is used. It results395

in relatively large amount of unphysical mixing and overshoots/undershoots (new maxima/minima

are created corresponding to values above 1 and below 0). Significant improvements can be noticed

when a quasi-monotone limiter is used. The DEF limiter, being more strict (and damping) has bigger

impact as all points stay inside the convex shape. However, maximum field values are damped. The

BS limiter reduces but does not eliminate completely the unphysical mixing occurring with cubic400

interpolation. However, it preserves better the maxima.

When a MFA is combined with the DEF limiter it does not change further the mixing: it pre-

serves equally well existing tracer correlations as shown in Fig. 7 (compare c and d). It also results

in a small further reduction of maximum field values (result not included here). When the fixers

are combined with the BS limiter we obtain very similar results with respect to tracer correlations405

compared with corresponding results from DEF limiter but slightly improved results in terms of ac-

curacy (preservation of maxima). In this case BC and PR give the best results. They both preserve

reasonably well the initial correlation (better than the corresponding run without fixer) and maxi-

mum field values are not too far from the analytical values. ZE and MG fixers are not as effective

in preserving the functional relationship (especially the latter) as a small proportion of points are410

outside the bounded sector. The former can produce small negatives values in some regions. But

they are both better in preserving maxima.

In conclusion, applying any of the MFAs did not deteriorate the mixing properties of the advection

scheme and in some occasions improved them (e.g. compare Fig. 7 (e) and (f)). This is a desirable

result and suggests that MFAs can be a beneficial addition for a semi-Lagrangian scheme used for415

transport of chemical tracers. Combination of a MFA with the BS limiter works better and BC, PR

seem to give the best results.

4.4 Volcanic plume case study

MFAs have also been tested on volcanic plume advection cases. Here a test case is presented where

a tracer (SO2) is emitted into the atmosphere by a single point source and then transported by the420

winds. This case resembles the Grı́msvötn volcanic eruption (see Flemming and Inness, 2013). Due

to the highly localised nature of the advected plume, this case is a good test for assessing the local

behaviour of a global MFA. The striking fact in this simulation is that the plume total mass is largely

overestimated. A conservation error of almost 20% of the total mass of the field occurs during the

first timesteps which eventually results to more than 50% gain. This is shown in Fig. 8. The greatly425

improved performance in terms of conservation of the non-limited cubic Lagrange without MFA

shown in this plot is due to the presence of large negative undershoots which offset the overshoots

when the global integral is computed and is therefore misleading.

14



Applying a MFA results in a globally conserving solution as shown by the 0 residual line in Fig.

8. The MFA applied there is BC but the same result is obtained by any of the other algorithms. It430

also results in some reduction of the peak values of the field which is evident in Fig. 9. This can be

explained if we consider that a MFA diagnoses that the total mass has been largely overestimated by

cubic interpolation and has to remove mass to enforce conservation. As the mass is concentrated in a

small area, few grid-points across, peak values will be inevitably reduced when the MFA is applied.

Large interpolation errors as a result of large gradients and insufficient resolution near the source is435

the main reason for this mass overestimation. The sensitivity with respect to the specific mass fixer

or quasi-monotone filter used was relatively small and all algorithms tested behave in a similar way.

The biggest difference was found between MG fixer and the remaining ones and this shows in Fig.9.

Although it is difficult to obtain accurate results in test cases of advection of small scale point

sources with coarse (global) resolution semi-Lagrangian models, useful qualitative results can still440

be obtained. The MFA may reduce the amplitude of the field but it will correct its total mass which

is necessary for emission parameter estimation.

5 Conclusions

A MFA is a technique to correct the global mass conservation error that a non-formally conserving

advection scheme introduces. It acts a-posteriori to correct the solution after the field has been445

advected. In the context of a semi-Lagrangian scheme this means to correct the field after it has

been interpolated to the departure point and before other source terms due to physical processes are

added.

Different MFAs have been implemented (cf. section 3) in IFS based on different strategies for

correcting the global mass conservation error. They all follow a weighted approach, i.e. weights are450

computed which determine how much to adjust each grid-point value. The aim is to correct the ad-

vected field in regions where the interpolation error is large. Results show that indeed these methods

act in areas of steep gradients where the solution is not smooth while they apply very small correc-

tions elsewhere. They achieve globally mass conserving solutions without deteriorating accuracy at

large scales. This has been demonstrated here by a set of 12-month forecast tests verified against455

ERA-Interim and standard 10 day forecasts at T511 L137 resolution verified against ECMWF oper-

ational analysis. A small local degradation of existing biases cannot be completely ruled out since

the sign of the global mass error determines the sign of the corrections everywhere. The key results

from this work are:

1. No significant differences have been found between the approaches at the hydrostatic scales460

tested. But there are small differences in cost.

2. Global conservation is achieved without deteriorating the solution. An exception is the vol-

canic plume case in which peak values are reduced. However, this side-effect is also related
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to the lack of sufficient resolution. Despite this, global mass conservation is important for

emission parametric estimates because the mass conservation error can reach up to half of the465

emitted mass.

3. The impact on forecast skill was neutral.

4. Noticeable impact was found from the type of quasi-monotone limiter applied. In long inte-

grations BS improves on the standard quasi-monotone scheme used in IFS.

Based on the above findings the recommendations on the use of the newly implemented MFAs in470

IFS are:

1. For quasi-monotone cubic advection of moist quantities BC is the preferred option as it is

shape preserving and one of the cheapest.

2. If quasi-monotonicity is not essential and positive-definiteness is sufficient, the cheapest fixer

MG is sufficient. It is also the only one that can be applied for advection with linear interpo-475

lation and would be recommended for any model using such mixed-approach.

3. ZE fixer results in an accurate advection scheme and generates small increments. If quasi-

monotonicity is not essential should be the best option for fields having background values

away from zero.

4. Currently the BC fixer is recommended for simulations with chemical tracers because it is one480

of the cheapest and performs well in advecting correlated tracers (cf. Fig. 7).

5. For volcanic plumes, BC is also sufficient.

MFAs may be inappropriate at non-hydrostatic, cloud-resolving scales. Future tests will include

these regimes. On going developments in the PantaRhei project (ECMWF, 2013) will provide op-

portunities towards a strictly mass-conserving scheme for these regimes. Until such developments485

materialise, MFAs can provide a practical alternative for the applications supported by IFS and are

attractive due to their low computational cost.
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Experiment Description

control operational setup: cubic interpolation on Q with DEF limiter, linear

interpolation on CLWC, CIWC, CRWC, CSWC (no fixer)

[control, MG] operational setup adding MG fixer

[cubic qm] cubic on Q with DEF limiter, CLWC, CIWC, CRWC, CSWC (no fixer)

[cubic qm, BC] cubic qm setup adding BC fixer on above moist fields

[cubic BSqm] cubic qm setup using BS limiter instead of DEF

[unfiltered cubic, PR] pure cubic Lagrange for moist fields, quasi-monotone advection by

PR algorithm on moist fields.

[cubic BSqm, BC] cubic BSqm setup adding BC fixer on moist fields

[cubic BSqm, MG] cubic BSqm setup adding MG fixer on moist fields

[cubic BSqm, ZE] cubic BSqm setup adding ZE fixer on moist fields
Table 1. List of 12-month forecast experiments.
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(a) T159 L60 (b) T159 L91

(c) T1279 L91 (d) T1279 L137

Fig. 1. Mass conservation error of the IFS SL advection scheme as a percent of initial global mass for ozone,

Q, CLWC, CIWC at different horizontal and vertical resolutions using a quasi-monotonic bi-cubic or a linear

(LIN, CLWC and CLIC only) interpolation scheme.
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Fig. 2. Mass conservation errors as a percentage of initial global mass for Q, CLWC at T1279 L137 resolution

forecast with/without PR and BC MFAs.
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(a) Q field

(b) BC fixer

Fig. 3. Specific humidity (Q) and BC fixer increment for Q (in kg/kg) at t+24 hrs and 700 hPa height from a

T1279 L137 forecast.
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(a) Q (b) BC fixer

(c) PRqm fixer (d) PR fixer

(e) Ze fixer (f) MG fixer

Fig. 4. Zonally-averaged and time-averaged (24 hrs) vertical cross sections for Q (plot a) and different MFA

increments (in kg/kg) for Q (plots b-f). Vertical axis: model level number.
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(a) 100×‖δφ‖rms/‖φ‖rms (%) (b) 100×max
j
{|δφj |}/‖φ‖rms (%)

Fig. 5. 48 hrs timeseries of global rms-norms (left) and max-norms (right) of MFAs increments for CLWC

expressed as a percentage of the rms-norm of the field.
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(b) [cubic BSqm] - control
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(c) [unfiltered cubic, PR] - control
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(d) [cubic BSqm, BC] - control
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(e) [cubic BSqm, MG] - control
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(f) [cubic BSqm, ZE] - control

Fig. 6. Experiments with BS limiter described in Table 1. Difference of vertical cross-sections of zonally

averaged annual mean temperature fields. Plot (a): difference (in Kelvin) of control forecast from ERA-Interim.

Plots (b-f): difference (in Kelvin) of experiments from control forecast.
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(a) linear (b) cubic (c) cubic with DEF limiter

(d) BC fixer with DEF limiter (e) cubic with BS limiter (f) BC fixer with BS limiter

(g) ZE fixer with BS limiter (h) PR fixer with BS limiter (i) MG fixer with BS limiter

Fig. 7. q1-q2 (xy-axis) scatter plots for correlated tracers at t= 6 days. Scatter points (q1,q2) at t= 0 follow

the upper (parabolic) black dashed-dotted curve.
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Fig. 8. Relative mass residual in volcanic plume simulations (SO2) for different schemes
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(a) [cubic qm] at t= 24 hrs (b) [cubic qm] at t= 150 hrs

(c) [cubic qm, BC] at t= 24 hrs (d) [cubic qm, BC] at t= 150 hrs

(e) [cubic qm, MG] at t= 24 hrs (f) [cubic qm, MG] at t= 150 hrs

Fig. 9. Comparison of volcanic plume simulation with and without mass fixer using quasi-monotone cubic

Lagrange at T1279 L91 resolution. The plotted quantity is the total SO2 content (in kg/m2) per model grid-

point column. Experiments defined as in Table 1.
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