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Abstract

Rapid advances in the performance of the graphics processing unit (GPU) have made
the GPU a compelling solution for a series of scientific applications. However, most ex-
isting GPU acceleration works for climate models are doing partial code porting for cer-
tain hot spots, and can only achieve limited speedup for the entire model. In this work,5

we take the mpiPOM (a parallel version of the Princeton Ocean Model) as our starting
point, design and implement a GPU-based Princeton Ocean Model. By carefully con-
sidering the architectural features of the state-of-the-art GPU devices, we rewrite the
full mpiPOM model from the original Fortran version into a new Compute Unified De-
vice Architecture C (CUDA-C) version. We take several accelerating methods to further10

improve the performance of gpuPOM, including optimizing memory access in a single
GPU, overlapping communication and boundary operations among multiple GPUs, and
overlapping input/output (I/O) between the hybrid Central Processing Unit (CPU) and
the GPU. Our experimental results indicate that the performance of the gpuPOM on
a workstation containing 4 GPUs is comparable to a powerful cluster with 408 CPU15

cores and it reduces the energy consumption by 6.8 times.

1 Introduction

High-resolution atmospheric, oceanic and/or climate modeling remains a significant
scientific and engineering challenge because of the enormous computing, communi-
cation, and storage requirements. With the rapid development of computer architec-20

ture, in particular multi-core and many-core techniques, the computing power that can
be applied to scientific problems has increased exponentially in recent decades. Some
parallel computing techniques, such as the Message Passing Interface (MPI, Gropp
et al., 1999) and Open Multi-Processing (OpenMP, Chapman et al., 2008) have been
widely used to support the parallelization of numerous climate models. Moreover, as25

modern massive supercomputers become more and more heterogeneous because
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of the increasing number of different accelerating devices such as the GPU, the Intel
many integrated core (Intel MIC) and reconfigurable computing based on field pro-
grammable gate array (FPGA), new approaches are required to more effectively uti-
lize the emerging novel architecture, communication and input/output (I/O) to achieve
order-of-magnitude acceleration required for climate models.5

In recent years, a number of scientific codes have been ported to the GPU. Differ-
ent levels of speedup were achieved for climate models using GPUs. Michalakes and
Vachharajani (2008) accelerated a computationally intensive microphysics process of
the Weather Research and Forecast (WRF) model with a speedup of nearly 25×; but
the entire WRF model is sped up by only 1.23×. Shimokawabe et al. (2010) fully ac-10

celerated the ASUCA model – a non-hydrostatic weather model – on 528 Nvidia Tesla
GT200 GPUs and achieved a speedup of 80×. Linford et al. (2009) accelerated a com-
putationally intensive chemical kinetics kernel from the WRF model with Chemistry on
an Nvidia Tesla C1060 and achieved a speedup of 8×. Leutwyler et al. (2014) accel-
erated a full huge operational weather forecasting model COSMO and achieved 2.8×15

speedup for its dynamic core. Carpenter et al. (2013) accelerated the spectral ele-
ment dynamical core of the Community Earth System Model (CESM) using the GPU
by 3×. Govett et al. (2010) ported the dynamics portion of the Non-hydrostatic Icosa-
hedral (NIM) model to the GPU and achieved a speedup of 34×. Zhenya et al. (2010)
adopted OpenACC Application Programming Interface (OpenACC API), which used20

simple compiler directives to accelerate some hot-spot functions, to accelerate the par-
allel ocean program (POP) by 2.2×.

Most existing GPU acceleration projects for climate models are only working on cer-
tain hot spots of the program, leaving a significant part of the program still running on
CPUs. Therefore, there are usually frequent data exchange between CPUs and GPUs,25

which significantly reduces the overall performance.
The objective of our study is to shorten the high computation time of high-resolution

ocean models by parallelizing their existing model structures using the GPU. Tak-
ing the parallel version of the Princeton Ocean Model (mpiPOM) as an example, we
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demonstrate how to parallelize an ocean model to make it run efficiently on a GPU
architecture. Using the state-of-the-art GPU architecture, we first convert the mpiPOM
from its original Fortran version into a new Compute Unified Device Architecture C
(CUDA-C) version. CUDA-C is the dominant programming language for GPUs. We call
the new version gpuPOM. Then, we design and implement several optimizing methods:5

(i) computation optimization in a single GPU; (ii) communication optimization among
multiple GPUs, and (iii) I/O optimization between a hybrid GPU and CPU.

In terms of computing, we concentrate on memory access optimization and making
better use of caches in GPU memory hierarchy. We improve memory usage by using
read-only data cache, local memory blocking, loop fusion, function fusion and that dis-10

ables error-correcting code memory (Error Checking & Correction, ECC memory). The
experimental results demonstrate that high memory access optimization can achieve
a speedup of approximately 100× when comparing a single GPU against a single CPU
core.

In terms of communication, we concentrate on the overlapping between the inner-15

region computation and the outer-region communication and update. With the GPUDi-
rect communication technology, multiple GPUs in one node can communicate directly
and bypass the CPU. In addition, with the fine-grained control of the CUDA streams and
its priority, inner-region computation can be executed concurrently with outer-region
communication and updating.20

In terms of I/O, we choose to split the MPI communicator into computation and I/O
processes. One individual computation process and one individual I/O process are
attached to one GPU. The computation process is responsible for launching kernels on
the GPU and the I/O process is responsible for data copy back from the GPU and to
write on disk. The computing process and the I/O process execute concurrently.25

To understand the accuracy, performance and scalability of the gpuPOM, we build
a customized workstation with four GPU K20X devices inside. The experimental results
show that the performance of the gpuPOM running on this workstation is comparable
to a powerful cluster with 408 CPU cores.
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The paper is organized as follows. In Sect. 2, we review the mpiPOM model. In
Sect. 3, we present detailed techniques about computation optimization in a single
GPU, communication optimization among multiple GPUs, and I/O optimization between
a hybrid GPU and CPU. We provide the corresponding experimental results about
correctness, performance and scalability in Sect. 4 and conclude our work in Sect. 5.5

2 The mpiPOM

The mpiPOM is a parallel version of the Princeton Ocean Model (POM) that is based
on MPI. It retains most of the physics package of the original POM (Blumberg and
Mellor, 1983, 1987; Oey et al., 1985a, b, c; Oey and Chen, 1992a, b), but includes also
satellite and drifter assimilation schemes from the Princeton Regional Ocean Forecast10

System (Oey, 2005; Lin et al., 2006; Yin and Oey, 2007), as well as more recently
advanced features such as wind-wave induced Stokes drift, wave-enhanced mixing
and Localized Ensemble Transform Kalman Filter (Oey et al., 2013; Xu et al., 2013).
The POM code was reorganized and MPI was implemented by Jordi and Wang (2012)
using a two-dimensional data decomposition of the horizontal domain with a halo of15

ghost cells. The POM is a powerful ocean model that has been used in a wide range
of applications: circulation and mixing processes in rivers, estuaries, shelf and slope,
lakes, semi-enclosed seas and open and global oceans. It is also at the core of various
real-time ocean and hurricane forecasting systems, for examples: Japan coastal ocean
and Kuroshio (Isobe et al., 2012); Adiratic Sea Forecasting System (Zavatarelli and20

Pinardi, 2003); the Mediterranean Sea forecasting system (Korres et al., 2007); the
GFDL Hurricane Prediction system (Kurihara et al., 1995, 1998), the US’ Hurricane
Forecasting System (Gopalakrishnan et al., 2010, 2011) and the Advanced Taiwan
Ocean Prediction system (Oey et al., 2013). Additionally, the model has been used to
study various geophysical fluid dynamical processes (e.g. Allen and Newberger, 1997;25

Newberger and Allen, 2007a, b; Kagimoto and Yamagata, 1997; Guo et al., 2006; Oey
et al., 2003; Zavatarelli and Mellor, 1995; Ezer and Mellor, 1992; Oey, 2005; Xu and
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Oey, 2011. For a more complete list please visit the POM website (http://www.ccpo.
odu.edu/POMWEB).

The mpiPOM experiment that is used in this paper is one of the two designed and
tested by Professor Oey and students; the codes and results are freely available at the
FTP site (ftp://profs.princeton.edu/leo/mpipom/atop/tests/). The reader can see Chap-5

ter 3 of the Lecture Notes (Oey, 2014) for more detail. The test case is a dam-break
problem in which warm and cold waters are initially separated in the middle of a zonally
periodic channel 200km×50km×50m on an f-plane, with walls at the northern and
southern boundaries. Geostrophic adjustment then ensues and baroclinic instability
waves amplify and develop into finite-amplitude eddies in 10 ∼ 20 days. The horizon-10

tal grid sizes are 1 km and there are 50 vertical sigma levels. Although the problem is
a test case, the code is the full mpiPOM version that is used in the ATOP forecasting
system.

The model solves the primitive equation under hydrostatic and boussinesq approx-
imations. In the horizontal, spatial derivatives are computed either using centered-15

space differencing or Smolarkiewicz’s positive definite advection transport algorithm
(Smolarkiewicz, 1984) on a staggered Arakawa C-grid; both schemes have been
tested, but the latter is reported here. In the vertical, the mpiPOM supports terrain-
following sigma coordinates and a fourth-order scheme option to reduce the inter-
nal pressure-gradient errors (Berntsen and Oey, 2010). The mpiPOM uses the time-20

splitting technique to separate the vertically integrated equations (external mode) from
the vertical structure equations (internal mode). The external mode calculation is re-
sponsible for updating surface elevation and the vertically averaged velocities. The
internal mode calculation results in updates for velocity, temperature and salinity, as
well as the turbulence quantities. The three-dimensional internal mode and the two-25

dimensional external mode are both integrated explicitly using a second-order leapfrog
scheme. These two modules are the most computationally intensive kernels of the
mpiPOM model.
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3 Full GPU acceleration of the mpiPOM

The flowchart of the gpuPOM is illustrated in Fig. 1. The main difference between
mpiPOM and gpuPOM is that the CPU in gpuPOM is only responsible for the initial-
izing work and the outputting work. The gpuPOM begins with initializing the relevant
arrays on the CPU host and then copies data from the CPU host to the GPU. The5

GPU does all the computations, including the external mode, the internal mode, and
their interactions. In the 2-D external mode loop, the depth-averaged velocity UA, VA
and sea surface height are calculated. In the 3-D internal model loop, the fields such
as velocities (U ,V ), temperature (T ), salinity (S), and various turbulence variables are
time-stepped forward. Outputs such as velocity and sea surface height, are copied10

back to the CPU host and then written to disk at a user-specified time interval.
In the following sections, we introduce the general optimizations of the gpuPOM

in a single GPU and the special optimizations of the gpuPOM according to state-of-
the-art GPU architecture. Then, we present the design of communications for various
processes and multiple GPUs within a node instead of using regular MPI functions.15

Finally, we describe the design of I/O overlapping for hybrid CPU and GPU architecture.

3.1 Computational optimizations in a single GPU

For current computers, GPU device can be connected to a host through a high-speed
PCI-express interface. The Nvidia GPU has a number of multiprocessors which exe-
cute in parallel, and has its own device memory up to several gigabytes. The code is20

executed in groups of 32 threads, what Nvidia calls a warp.
In our implementation, the 3-D arrays of variables are stored sequentially in the or-

der of x, y , z and the 2-D arrays are stored in the order of x, y , which is the same as
the original code. The vertical diffusion is solved by the tridiagonal solver (the Thomas
Algorithm) which is calculated sequentially in the z direction. For the sake of simplicity,25

the grid is divided along x and y directions (2-D block decomposition) in all kernel func-
tions. Each GPU thread specifies a (x,y) point in the horizontal direction and performs
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all the calculations from surface to bottom. The thread blocks are divided as (32,4).
In the x direction, the block number should be a multiple of 32 threads to perform
coalesced memory access within a warp. In the y direction, we tested many thread
numbers, such as 4 and 8, and obtained similar performances. We finally choose 4
because we attempt to obtain more blocks to distribute the workload among stream5

multiprocessors (SM) more uniformly, and also to obtain enough occupancy (Volkov,
2010). Occupancy is the percentage of threads active per multiprocessor.

Because the high-resolution mpiPOM is memory intensive, the importance of ef-
ficiently using GPU memory cannot be overstated. The memory hierarchy of Nvidia
Tesla K20X GPU is illustrated in Fig. 2. In the current K20X GPU, each SM owns 64K10

32 bit registers; these registers are the fastest memory in the GPU memory hierarchy.
At the same time, the shared memory and the L1 cache share a 64 KB on-chip fast
memory and can be configured with artificial options such as 16/48 KB, 32/32 KB or
48/16 KB. A 48 KB read-only data cache can be directly accessed and is newly de-
signed in each SM and L2 cache with 1.5 MB size that is shared by all SMs.15

Managing the significant performance difference between off-chip and on-chip mem-
ory is the primary concern of a GPU programmer. As shown on the right side of Fig. 2,
we propose five key optimizations to fully utilize the faster on-chip memory of the GPU
and describe the relationships between the GPU memory hierarchy and each optimiza-
tion in the following.20

3.1.1 Read-only data cache utilization

Effective use of the new 48 KB directly-access and read-only data cache in the K20X
GPU can improve the performance of memory intensive kernels. This feature will be
automatically enabled and utilized as long as certain conditions are met. We add “const
__restrict__” qualifiers to the parameter pointers in gpuPOM to explicitly allocate the25

read-only data cache for our program. The “LDG.E” instruction will then appear in the
disassembling code, and Nvidia Visual Profiler(NVVP) software will show that the read-
only data cache is actually being utilized.
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As an example, consider the calculations of advection and the horizontal diffusion
terms. Because mpiPOM adopts the Arakawa C-grid, the update of T (i , j ,k) requires
the value of u(i , j ,k), u(i +1, j ,k), v(i , j ,k) and v(i , j +1,k), in addition to the value of
horizontal kinematic viscosity, aam, from four neighboring grid points. In one time step,
the arrays of u and v must be accessed twice, and the aam array must be accessed5

four times. Therefore it is natural to use the read-only data cache to improve the data
locality of gpuPOM. This optimization improves the performance of this part by 18.8 %.

3.1.2 Local memory blocking

Cache blocking is a common method to improve data reuse in parallel computing. In
this method, a small subset of a dataset is loaded into the on-chip faster memory10

(e.g., the L1/L2 cache in the GPU and the CPU) and then the small data block is
repeatedly accessed by the program. It is helpful to reduce the need to access the
off-chip with high latency memory (e.g., global memory on the GPU). Because regular
global memory access cannot be cached in L1 cache for K20X GPU, the method used
here is to pull the data from local memory to the L1 cache.15

For the subroutines about vertical diffusion and source/sink terms, the chasing
method is used to solve a tridiagonal matrix along the vertical direction for each grid
point individually. As shown in Algorithm 1, the 3-D temporary arrays in the original
code, such as ee, gg, that store row transformation coefficients are streamed from
memory. However, these arrays are too large to reside in the cache entirely; code effi-20

ciency is therefore decreased. We find that each thread performs a column calculation
from surface to bottom and there is no communication. Thus, we declare 1-D arrays
ee_new,gg_new in local memory to replace the original 3-D global arrays. Their size is
equal to the level of ocean, nz−1, which is typically a very small value.

In the chasing method, these local arrays are accessed twice within one thread, one25

from k = 0 to k = nz−1 and another from k = nz−1 to k = 0. After blocking the vertical
direction arrays in local memory, L1 cache is fully utilized although some of them may
be spilled to global memory. The performance of the subroutines about vertical diffusion
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and source/sink terms is improved by 35.3 % when using the local memory blocking
technique.

Algorithm 1 A simple example of local memory blocking.

/********************
* Origin CUDA-C code
********************/
//ee, gg are parameter pointers of the function
//that represent the use of global memory
for (k = 1; k < nz-2; k++){
ee[k][j][i] = ee[k-1][j][i]*A[k][j][i];
gg[k][j][i] = ee[k-1][j][i]*gg[k-1][j][i]-B[k][j][i];

}
for (k = nz-3; k >= 0; k++){
uf[k][j][i] = (ee[k][j][i]*uf[k+1][j][i]+gg[k])*C[k][j][i];

}
/*******************
* After local memory blocking
*******************/
//ee_new, gg_new are 1-D array declared in function
//that represent the use of local memory
for (k = 1; k < kbm1; k++){
ee_new[k] = ee_new[k-1]*A[k][j][i]
gg_new[k] = ee_new[k-1]*gg_new[k-1]-B[k][j][i];

}
for (k = nz-3; k >= 0; k++){
uf[k][j][i] = (ee_new[k]*uf[k+1][j][i]+gg_new[k])*C[k][j][i];
}
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3.1.3 Loop fusion

Loop fusion is an effective method to store scalar variables in registers for data reuse.
Registers are the fastest memory in the GPU memory hierarchy. For example, as
shown in Algorithm 2, if the variable drhox(k, j , i ) must be read several times in multiple
loops, we can fuse these loops into one. Therefore, the drhox(k, j , i ) will be read from5

the global memory the first time and then repeatedly read from a register. This method
can also be applied in a number of the mpiPOM subroutines.

Take the kernel profq as an example. After rewriting part of source code with loop
fusion, the device memory transactions decrease by 57 %, while the registers used per
thread increase from 46 to 72, as reported in NVVP. Although the occupancy achieved10

decrease from 61.1 to 42.7 %, the performance of this kernel is improved by 28.6 %.

3.1.4 Function fusion

Because we can fuse the loops in which the same arrays are accessed, we can also
fuse functions in which similar formulas are calculated and the same arrays are ac-
cessed. For example, the advv and advu functions of the mpiPOM calculate advection15

in longitude and latitude, respectively, and they can be fused into one subroutine. This
optimization benefits from the elimination of the redundancy calculations.

This optimization is also useful for the situation in which one function is called several
times to calculate different tracers. For example, the proft functions of the mpiPOM is
called twice – once for temperature and once for salinity. Their computing formulas20

are similar and certain common arrays are accessed; these functions were modified
to calculate temperature and salinity simultaneously. The method of Function fusion
improves the performance of these functions by 28.8 %.
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Algorithm 2 A simple example of loop fusion.

/********************
* Origin cuda-c code
********************/
for (k = 1; k < kbm1; k++){
drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

}
for (k = 0; k < kbm1; k++){
drhox[k][j][i] = drhox[k][j][i] * B[k][j][i];

}
/*******************
* After loop fusion
*******************/
for (k = 1; k < kbm1; k++){
drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];
drhox[k-1][j][i] = drhox[k-1][j][i] * B[k][j][i];

}
drhox[0][j][i] = drhox[0][j][i] + B[k][j][i];

3.1.5 ECC-off and GPU boost

Because ECC memory consumes some amount of memory bandwidth, we can im-
prove the GPU global memory bandwidth by disabling the error checking and memory
correcting features. Also, the memory bandwidth that can be achieved is improved by
enhancing the clock of SM core. In our implementation, we overclock the default clock5

of K20X GPU from 732 to 784 MHz. The methods of ECC-off and GPU boost improves
the performance of the whole application by 13.8 %.
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We divide all the gpuPOM subroutines into different categories based on their dif-
ferent computation patterns. As shown in Table 1, in gpuPOM, we deploy different
optimizations in different categories to achieve improved performance; these cate-
gories are now described.

1. Category 1: advection and horizontal diffusion(adv)5

This category has 6 subroutines, and calculates the advection and horizontal dif-
fusion and in the case of velocity, the pressure gradient and Coriolis terms. Here it
is possible to reuse data among adjacent threads, and the subroutines therefore
benefit from using read-only data cache and shared-memory. Also, the variables
are calculated in different loops of one function or in different functions, so the10

loop fusion and function fusion optimizations apply to this part.

2. Category 2: vertical diffusion(ver)

This category has 4 subroutines, and calculates the vertical diffusion. In this part,
chasing method is used in the tridiagonal solver in the k-direction. The main fea-
ture is that data is reused twice within one thread, while data is accessed once15

from k = 0 to k = nz−1 and once from k = nz−1 to k = 0. The subroutines are
significantly sped up after grouping the k-direction variable in local memories.

3. Category 3: vorticity(vort), baroclinic(baro), continuity equation(cont) and equa-
tion of state(state)

This category is less time consuming than the two categories above, but it also20

benefits from our optimizations. Because there exists data reuse with adjacent
threads, the use of read-only data cache improves efficiency. For vort, there is
data reuse within one thread, and loop fusion improves the efficiency.

3.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategies used to harness the computing25

power of multiple GPUs. With multiple GPUs, the computing domain is divided into
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smaller blocks than with a single GPU. The performance of GPU computing is faster
and the memory requirement for each GPU is reduced. To utilize multiple GPUs, an
effective domain decomposition method and communication method should be em-
ployed. We split the domain along the x and y directions (2-D decomposition) and
assign each MPI process for one subdomain, following Jordi and Wang (2012). Then,5

we attach the MPI process to one GPU and send messages from one GPU to another.
Shimokawabe et al. (2010) and Yang et al. (2013) proposed some fine-grained overlap-
ping methods of GPU computation and CPU communication to improve the simulation
performance. An important common issue is that the communications between multiple
GPUs explicitly require the participation of the CPU. In our work, we hope to implement10

the communication to bypass the CPU to fully employ the capability of the GPU.
State-of-the-art MPI libraries, such as OpenMPI and MVAPICH2, have announced

their support for MPI communication directly from GPU memory, which is known as
CUDA-aware MPI. We tried MVAPICH2 to implement direct communication among
multiple GPUs at first. However, we found that the boundary operation and MPI com-15

munication occupied nearly 15 % of the total runtime after GPU porting.
To fully overlap the boundary operations and MPI communications with compu-

tation, we adopt the data decomposition method shown in Fig. 3. The data region
is decomposed into three parts: the inner part, the outer part, and the halo part.
The outer part includes east/west/north/south part, and the halo part also includes20

east/west/north/south halos to exchange data with neighbors. In CUDA, a stream is
a sequence of commands that execute in order; different streams can also execute
concurrently with different priorities. In our design, the inner part, which is the most
time-consuming part with the largest workload is allocated to stream 1 in which to ex-
ecute. The east/west outer part is allocated to stream 2 and the north/south outer part25

is allocated to stream 3. In the east/west outer part, the width is set to 32 to ensure
coalesced memory access in a warp to improve performance. The halo part is also
allocated to stream 2.
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The workflow of multiple streams on the GPU is shown in Fig. 4. The
east/west/north/south parts are normal kernel functions that can run in parallel with
the inner part through different streams. The communication operations are imple-
mented by cudaMemcpyAsync, which is an asynchronous CUDA memory copy func-
tion. The corresponding synchronization operation between the CPU and the GPU5

or among MPI processes are implemented with cudaStreamSynchronize function and
MPI_barrier function. To hide the subsequent communication by the inner part, stream
2 and stream 3 for the outer part have higher priority to preempt the computing re-
source from stream 1 at any time.

Current CUDA-aware MPI implementation such as MVAPICH2 is not suitable for the10

“Comm.” part in Fig. 3. We found the two-sided MPI functions MPI_Send and MPI_Recv
will block the current stream so that the concurrency pipeline is broken. The probable
cause is synchronous cudaMemcpy function is called in the current implementation
of MPI_Send and MPI_Recv, according to Potluri et al. (2012). Moreover, the imple-
mentation of non-contiguous MPI datatype for communication between GPUs is not15

efficient enough for the gpuPOM. The computation time of many kernels is about a few
hundred microseconds to a few milliseconds while MPI latency for our message size
is about the same, which means the outer part update and communication can not be
fully overlapped.

From CUDA 4.1, the Inter-Process Communication (IPC) feature has been intro-20

duced to facilitate direct data copy among multiple GPU buffers that are allocated by
different processes. The IPC is implemented by creating and exchanging memory han-
dles among processes and obtaining the device buffer pointers of others. This fea-
ture has been utilised in CUDA-aware MPI libraries to optimise communications within
a node. Therefore, we decided to implement the communication among multiple GPUs25

by calling the low-level IPC functions and asynchronous CUDA memory copy functions
directly, instead of using high-level CUDA-aware MPI functions. Our communication
optimizations among multiple GPUs are mainly implemented with the following two op-
timizations.
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First, we put the phases of creating, exchanging and opening relevant memory han-
dles into the initialization phase of the gpuPOM, which is executed only once. This
method can remove the overhead of IPC memory handle operations during each MPI
communication operation. The cudaMemcpyAsync function with the corresponding de-
vice buffer pointers of neighbor processes replaces the original MPI functions.5

Second, we take full consideration of the architecture of our platform in which 4
GPUs are connected with two I/O Hubs (IOHs). As illustrated in Fig. 5, there are two
Intel SandyBridge CPUs that connect two GPUs. Both the CPUs are themselves con-
nected through Intel QuickPath Interconnect (QPI). Notation ➀ means that the com-
munications between GPUs are connected with the same IOH support Peer-to-Peer10

(P2P) access. Notation ➁ represents the communications in which P2P access is not
supported. If MPI_Rank 0 (context on GPU-0) sends data to MPI_Rank 2 (context on
GPU-2), rank 0 must switch its context to GPU-2 temporally and opens the correspond-
ing memory handles to obtain the device buffer pointers of rank 2. For those GPUs that
do not support P2P access between one another, we must switch context to the same15

GPU before opening the corresponding memory handles. We then call regular cud-
aMemcpyAsync functions to fulfill data communications. For communications between
GPUs on the same IOH, the switching context is not necessary. Although the function
cudaMemcpyAsync is used in the communication of both ➀ and ➁, the NVVP software
shows that ➀ does a device-to-device memory copy that bypasses the CPU, whereas20

➁ does a device-to-host and a host-to-device memory copy that involves the CPU. The
2-D decomposition introduced in Fig. 5 is an example to demonstrate our design can
easily extend to 8 or more GPUs within one node.

3.3 I/O optimizations between hybrid GPU and CPU

The time consumed for I/O in the original mpiPOM is not significant because the output25

frequency is relatively low. However, after we fully accelerate the model by GPU, the I/O
overhead, which is approximately 30 % of the total runtime, cannot be ignored. As de-
scribed in Sect. 3.2, each MPI process sets its context on one GPU and is responsible
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for launching kernel functions on this GPU, and the CPU is used to collect and output
data. In fact, in most climate models, including the mpiPOM, the computing phase and
I/O phase run alternately. In a sense, the computing phase and the I/O phase are se-
rial, which means that the GPU will remain idle until the CPU finishes I/O operations.
Huang et al. (2014) designed a fast I/O library for climate models and provided auto-5

matic overlapping of I/O and computing. Motivated by their work, we design a method
so that computations on GPU and I/O operations on CPU can run in parallel.

Because MPI processes are blocked during the output phase and cannot launch
kernels to GPUs, we choose to launch more MPI processes. We divide all the MPI pro-
cesses into computing processes and I/O processes with different MPI communicators.10

The computing processes are responsible for launching kernel functions as usual, and
the I/O processes are responsible for output. One I/O process attaches to one com-
puting process and these two processes set their contexts on one single GPU through
cudaSetDevice function. The total number of MPI processes are twice the size they
were before.15

Since the I/O processes must fetch data from the GPU, where the data are allo-
cated by the computing processes, communication is necessary between them. Here,
we again utilize the feature of CUDA IPC, as introduced in Sect. 3.2. Through CUDA
IPC, the I/O processes obtain the device buffer pointers from the computing processes
during the initialization phase. When there is a need to output data, the computing20

processes are blocked and kept idle for a short time while waiting for I/O processes
to fetch data. Then, the computing processes continue their computation, and the I/O
processes complete their output in the background, as illustrated in Fig. 6.

The advantage of this method is that it overlaps the I/O on the CPU with compu-
tation on the GPU. In the serial I/O, the computing processes are blocked while data25

are brought to the host and written to disk. In the overlapping I/O, the computing pro-
cesses wait for the data to be brought to the host. In addition, the bandwidth of data
brought to the host through the PCI-express bus is approximately 6 GBps, but the out-
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put bandwidth is approximately 100 MBps, as determined by the disk. Thus, the over-
lapping method significantly accelerates the entire application.

4 Experiments

In this section, we first describe the specification of our platform and comparison meth-
ods used to validate the correctness of the gpuPOM. Furthermore, we present the5

performance and scalability of the gpuPOM on the GPU platform in comparison with
the mpiPOM on the CPU platform.

4.1 Platform setup

The GPU platform used in our experiments is a super workstation computer consisting
of two CPUs and 4 GPUs, as illustrated in Fig. 5. The CPUs are 2.6 GHz 8-core Intel10

E5-2670 (architecture code-named SandyBridge), which can turbo to 3.0 GHz when all
8 cores are utilized. The peak single-precision performance of the Intel SandyBridge
CPU is 384 GFlops and the peak memory bandwidth is 51.2 GBps. The GPUs are
Nvidia Telsa K20X, equipped with 2688 GPU-cores and 6 GB GDDR5 fast on-board
memory. The peak single-precision performance of K20X GPU is 3.95 TFlops and the15

peak memory bandwidth is 250 GBps. Therefore, the aggregated performance pro-
vided with 4 GPUs can reach 16 TFlops and 1 TBps memory bandwidth, which is suf-
ficient to execute the general simulation research for regional ocean models thus far.
The operating system is RedHat Enterprise Linux 6.3 x86_64. The programs on this
platform are complied with Intel compiler v14.0.1, Intel MPI Library v4.1.3 and CUDA20

5.5 Toolkit.
For the purposes of comparison, the CPU platform used in our experiments is the

Tansuo100 supercomputer at Tsinghua University, which consists of 740 nodes, each
of which has two 2.93 GHz 6-core Intel Xeon X5670 processors and 32 GB memory.
The nodes are connected through an Infiniband network, which provides a maximum25
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bandwidth of 40 Gbps. The node operating system is RedHat Enterprise Linux 5.5
x86_64. All the programs on this platform are compiled with Intel compiler v11.1, and
the MPI environment is Intel MPI v4.0.2. The Original mpiPOM code is benchmarked
with its initial compiler flags(i.e., -O3 -precise) and also with the same Intel compiler. We
also use the GPUDirect technology within MVAPICH2 v1.9 to test the communication5

effects among multiple GPUs, and compare the results with our implementation.

4.2 The test case and the verification of accuracy

The “dam break” simulation (Oey, 2014) is conducted to verify the correctness and test
the performance and the scalability of the gpuPOM. It is a baroclinic instability problem
which simulates flows produced by horizontal temperature gradients. The model do-10

main is configured as a straight channel with uniform depth of 50 m. Periodic boundary
conditions are used in the east–west direction, and the channel is closed in the north
and south. Its horizontal resolution is 1km×1km. To test large computational grid,
the domain size of this test case is increased to 962×722 horizontal grid points and
51 vertical sigma levels, which is limited by the capacity of on-board memory. Initially,15

temperature in the southern half of the channel is 15 and 25 ◦C in the northern half.
The salinity is fixed at 35 psu. The fluid is then allowed to adjust. In the first 3–5 days,
geostrophic adjustments occurs. Then unstable wave develops due to baroclinic insta-
bility. Eventually, eddies are generated. Figure 7 shows the sea-surface height (SSH),
sea-surface temperature (SST), and currents after 39 days. The development of a grav-20

ity wave is manifest. Noticeably, the gravity wave is confined in the middle of the channel
by Rossby radius deformation.

To verify accuracy, we check the binary output files output from the original mpiPOM
and the gpuPOM. This testing method is also used in the GPU-porting of ROMs (Mak
et al., 2011). As introduced in Whitehead and Fit-Florea (2011), the same inputs will25

give identical results for individual IEEE-754 operations except in a few special cases.
These cases can be classified into three categories: different operations orders, dif-
ferent instructions and different implementations of math libraries. For the first in our
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study, the parallelization of the mpiPOM does not change the order of each floating
point operation and we benefit from this. For the second case in our study, the GPUs
have fused multiply-add (FMA) instruction while the CPU does not in our CPU platform.
Because this instruction might cause a difference in the numerical results, we disable
FMA instructions with the “-fmad=false” compiler flag for the GPUs. For the third case5

in our study, the value of exponent used in the GPU has a maximum of 2 rounding er-
rors NVIDIA (2014). Fortunately, in the execution path of our dam break simulation, the
power of the exponent functions remains unchanged over the entire simulation. There-
fore, we accomplish this function on the CPU during the initialization phase and copy
the results to the GPU for later data reuse. The experimental results demonstrate that10

the output variables regarding velocity, temperature, salinity and sea surface height are
identical.

4.3 Performance

To understand the advantages of the optimizing methods introduced in Sect. 3, we
test the dam break case with different experiments. The current dam break case uses15

single-precision format. The metrics of seconds per simulation day, which is the wall-
time it requires to obtain 24 h in the simulation, is measured and used to compare the
performance.

In the first experiment, we compare the gpuPOM with the mpiPOM on different hard-
ware platforms, including K20X GPU, the Intel Westmere 6-cores X5670 CPU and20

the Intel SandyBridge E5-2670 CPU. Figure 8 shows that one K20X GPU can com-
pete with approximately 55 Intel SandyBridge CPU cores or 95 Intel Westmere CPU
cores. Obtaining such a speedup on a pure CPU platform is reasonable. Taking the
Sandybridge CPU platform as an example, the theoretical memory bandwidth of one
8-core E5-2670 CPU is 51.2 GBps, and the peak single-precision floating point perfor-25

mance is 384 GFlops with all 8 cores turbo to 3.0 GHz. However, for K20X GPU, the
memory bandwidth and peak single-precision floating point performance are 250 GBps
and 3.95 TFlops, respectively. The approximate ratio of memory bandwidth is 1 : 5 and
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the ratio of floating points performance is 1 : 10. Therefore, if an application is strictly
memory intensive, one K20X GPU can compete with 5 CPUs (approximately 40 Sandy-
Bridge CPU cores). In addition, if an application is strictly computing bound, it can com-
pete with 10 CPUs (approximately 80 Sandybridge CPU cores). Our results are more
than 50× because the mpiPOM is mostly memory intensive and we have performed5

several memory optimizations to improve the data locality.
The performance API tool (PAPI) shows that the performance of the gpuPOM on

single K20X is 107.3 Gflops in single-precision for the 962×722×51 grid size. The low
performance in Gflops reflects the memory-bound problem in climate models. Previous
work such as time skewing (McCalpin and Wonnacott, 1999; Wonnacott, 2000) can10

make a stencil computation compute bound by making use of data locality between
different time-steps. However, for real-world climate models including mpiPOM, the
code is usually tens to hundreds of thousands lines and analyzing the dependency
manually is tough. Designing an automated tool to further analyze and optimize the
mpiPOM and the gpuPOM is a part of our future work.15

In the second experiment, we test the communication overlapping method used
in the gpuPOM and compare it with the MVAPICH2. In the current MVAPICH2, the
communication and boundary operations are not overlapping with computing. Figure 9
shows the weak scaling performance of the gpuPOM on multiple GPUs. To maximize
performance, the grid size for each GPU is set to 962×722×51. When using 4 GPUs20

with the implementation of MVAPICH2, 18 % of the total runtime is consumed in execut-
ing the communication and boundary operations. This overhead does not exist in our
communication overlapping method. Figure 9 shows that it spends almost the same
time when using different GPUs because the communication and boundary operations
are almost fully overlapped with the inner part of the computation.25

In the third experiment, we test the efficiency of the gpuPOM on multiple GPUs. Ta-
ble 2 shows the strong scaling result of the gpuPOM on multiple GPUs. We fix the
global grid size at 962×722×51 and increase the amount of GPUs gradually. The re-
sults show that the strong scaling efficiency is 99 % on 2 GPUs and 92 % on 4 GPUs.
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A smaller subdomain will decrease the performance of the gpuPOM in two aspects.
First, communication time can easily exceed the computation time in the inner part
and cannot be overlapped. As the subdomain size decreases, the inner part compu-
tation time decreases, but the communication time will not decrease because latency
is the dominant factor. Second, the latency of kernel launching and overhead of im-5

plicit synchronization after kernel execution will not decrease. There are a series of
small kernels in the gpuPOM, and the execution time is close to launching latency and
synchronization overhead. When the subdomain size decreases, the impact of these
delays expands.

In the fourth experiment, we test the performance of the I/O overlapping method and10

compare it with the default parallel NetCDF (PnetCDF) method and NO-I/O method.
NO-I/O means that all I/O operations are disabled in the program and the time mea-
sured is the pure computing time. We simulated the experiment for 20 days and out-
put the history files daily in the netCDF format. The variables included in the output
netCDF files are 2-dimensional arrays of size 722×482 and 3-dimensional arrays of15

size 722×482×51. The final history files are approximately 12 GB. Figure 10 shows
that the I/O overlapping method outperforms the default PnetCDF method. For 1 GPU
and 2 GPUs, the overall runtime decreases from 1694/1142 to 1239/688 s, which is
close to the NO-I/O method. The small difference between our design and NO-I/O is
that the computing processes must be blocked until I/O processes bring data from20

the GPU. For the case of 4 GPUs, the output time is longer than computational time
because the latter is fast and the I/O time is relatively large such that the I/O phase
cannot fully overlap with the computing phase. The overall runtime equals the sum of
the computation time and the non-overlapped I/O time.

In the last experiment, we test different workloads with the gpuPOM and compare25

the results with the mpiPOM on Tansuo100 platform. The available global grid size
are choosen from the three different high-resolution sets (Grid-1: 962×722×51, Grid-
2: 1922×722×51, Grid-3: 1922×1442×51). Figure 11 shows that our workstation
with 4 GPUs is comparable to a powerful cluster with 408 CPU cores (34 nodes×12
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cores/node) for the simulation of mpiPOM. Since the Thermal Design Power(TDP) of
one X5670 CPU(6-cores) is 95 W and that of one K20X GPU is 235 W, it means using 4
GPUs brings 6.8 times less energy consumption compared with 408 CPU cores. Small
subdomains will decrease the performance of the gpuPOM as discussed in the strong
scaling test, but it may greatly benefit the mpiPOM on the CPU. The last level cache5

of one SandyBridge CPU in our platform is 20 MB, whereas that of K20X GPU is only
1.5 MB. As the subdomain size for each MPI process decreases, the cache hit ratio will
increase on a pure CPU platform, which can surely improve the performance especially
for the memory-bound problem. However, for the simulation on 408 CPU cores, the
MPI communication time may occupy more than 40 % of total execution time. With10

the number of cores increasing to over 450, the execution time may increase instead,
as shown in Fig. 11. As a result, our GPU solution has an overwhelming advantage
compared to the CPU because the communication overhead is less expensive and
overlapped.

5 Conclusions15

In this paper, we provide a full GPU accelerated solution of POM. Unlike partial GPU
porting, such as WRF and ROMs, the gpuPOM does all the computations on the GPU.
The main contribution of our work includes a better use of state-of-the-art GPU archi-
tecture, particularly regarding the memory subsystem, a new design of a communica-
tion and boundary operations overlapping approach and a new design of an I/O over-20

lapping approach. With the workstation with 4 GPUs, we achieve over 400× speedup
against a single CPU core, and provide equivalent performance to a powerful CPU
cluster with 34 nodes and reduce the energy consumption by 6.8 times. This work
provides cost-effective and efficient ways in ocean modeling.
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Table 1. Different subroutines adopt different optimizations in gpuPOM.

Subroutines A B C D E Speedup

Adv and Hor diff
√ √ √ √

2.05×
Ver diff

√ √ √ √
2.82×

Baroclinic
√ √ √

2.08×
Continuity equ

√ √
1.39×

Vorticity
√ √ √

3.19×
State equ

√ √
1.35×
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Table 2. The strong scaling result of gpuPOM.

Number of GPUs 1 GPU 2 GPUs 4 GPUs

Time (s) 97.2 48.7 26.3
Efficiency 1.00 0.99 0.92
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Figure 1. gpuPOM flowchart.
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cation between processes, which implies synchronization.
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Figure 6. One computing process and one I/O process both set their contexts on the same
GPU. During the data copy phase, the computing process remains idle and the I/O process will
copy data from the GPU to the CPU host through the cudaMemcpy function.
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Figure 7. The sea-surface height (SSH), sea-surface temperature (SST), and currents after
39 days simulation.
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Figure 8. Performance comparison with different hardware platform

are more than 50x because the mpiPOM is mostly memory intensive and we have performed several420

memory optimizations to improve the data locality.

The performance API tool (PAPI) shows that the performance of the gpuPOM on single K20X is

107.3Gflops in single-precision for the 962*722*51 grid size. The low performance in Gflops reflects

the memory-bound problem in climate models. Previous work such as time skewing (McCalpin and

Wonnacott (1999); Wonnacott (2000)) can make a stencil computation compute bound by making425

use of data locality between different time-steps. However, for real-world climate models including

mpiPOM, the code is usually tens to hundreds of thousands lines and analyzing the dependency

manually is tough. Designing an automated tool to further analyze and optimize the mpiPOM and

the gpuPOM is a part of our future work.

In the second experiment, we test the communication overlapping method used in the gpuPOM430

and compare it with the MVAPICH2. In the current MVAPICH2, the communication and boundary

operations are not overlapping with computing. Fig. 9 shows the weak scaling performance of the

gpuPOM on multiple GPUs. To maximize performance, the grid size for each GPU is set to 962×
722× 51. When using 4 GPUs with the implementation of MVAPICH2, 18% of the total runtime is

consumed in executing the communication and boundary operations. This overhead does not exist in435

our communication overlapping method. Fig. 9 shows that it spends almost the same time when using

different GPUs because the communication and boundary operations are almost fully overlapped

with the inner part of the computation.

In the third experiment, we test the efficiency of the gpuPOM on multiple GPUs. Table 2 shows the

strong scaling result of the gpuPOM on multiple GPUs. We fix the global grid size at 962×722×51440

and increase the amount of GPUs gradually. The results show that the strong scaling efficiency is

18

Figure 8. Performance comparison with different hardware platform.
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Figure 9. The weak scaling test between our communication overlapping method and the MVAPICH2 subrou-

tines.

Table 2. The strong scaling result of gpuPOM

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time(s) 97.2 48.7 26.3

Efficiency 1.00 0.99 0.92

99% on 2 GPUs and 92% on 4 GPUs. A smaller subdomain will decrease the performance of the

gpuPOM in two aspects. First, communication time can easily exceed the computation time in the

inner part and cannot be overlapped. As the subdomain size decreases, the inner part computation

time decreases, but the communication time will not decrease because latency is the dominant factor.445

Second, the latency of kernel launching and overhead of implicit synchronization after kernel exe-

cution will not decrease. There are a series of small kernels in the gpuPOM, and the execution time

is close to launching latency and synchronization overhead. When the subdomain size decreases, the

impact of these delays expands.

In the fourth experiment, we test the performance of the I/O overlapping method and compare450

it with the default parallel NetCDF (PnetCDF) method and NO-I/O method. NO-I/O means that

all I/O operations are disabled in the program and the time measured is the pure computing time.

We simulated the experiment for 20 days and output the history files daily in the netCDF format.

The variables included in the output netCDF files are 2-dimensional arrays of size 722× 482 and

3-dimensional arrays of size 722× 482× 51. The final history files are approximately 12 GB. Fig.455

10 shows that the I/O overlapping method outperforms the default PnetCDF method. For 1 GPU and

19

Figure 9. The weak scaling test between our communication overlapping method and the MVA-
PICH2 subroutines.
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Figure 10. I/O Test for gpuPOM

2 GPUs, the overall runtime decreases from1694/1142 seconds to 1239/688 seconds, which is close

to the NO-I/O method. The small difference between our design and NO-I/O is that the computing

processes must be blocked until I/O processes bring data from the GPU. For the case of 4 GPUs, the

output time is longer than computational time because the latter is fast and the I/O time is relatively460

large such that the I/O phase cannot fully overlap with the computing phase. The overall runtime

equals the sum of the computation time and the non-overlapped I/O time.

In the last experiment, we test different workloads with the gpuPOM and compare the results

with the mpiPOM on Tansuo100 platform. The available global grid size are choosen from the

three different high-resolution sets (Grid-1: 962×722×51, Grid-2: 1922×722×51, Grid-3: 1922×465

1442× 51). Fig. 11 shows that our workstation with 4 GPUs is comparable to a powerful cluster

with 408 CPU cores (34 nodes * 12 cores/node) for the simulation of mpiPOM. Since the Thermal

Design Power(TDP) of one X5670 CPU(6-cores) is 95W and that of one K20X GPU is 235W, it

means using 4 GPUs brings 6.8 times less energy consumption compared with 408 CPU cores. Small

subdomains will decrease the performance of the gpuPOM as discussed in the strong scaling test,470

but it may greatly benefit the mpiPOM on the CPU. The last level cache of one SandyBridge CPU in

our platform is 20 MB, whereas that of K20X GPU is only 1.5 MB. As the subdomain size for each

MPI process decreases, the cache hit ratio will increase on a pure CPU platform, which can surely

improve the performance especially for the memory-bound problem. However, for the simulation on

408 CPU cores, the MPI communication time may occupy more than 40% of total execution time.475

With the number of cores increasing to over 450, the execution time may increase instead, as shown

in Fig. 11. As a result, our GPU solution has an overwhelming advantage compared to the CPU

because the communication overhead is less expensive and overlapped.

20

Figure 10. I/O Test for gpuPOM.
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Figure 11. Four GPUs performance test compared with Tansuo100 clusters(Intel Westmere CPUs)

5 Conclusions

In this paper, we provide a full GPU accelerated solution of POM. Unlike partial GPU porting, such480

as WRF and ROMs, the gpuPOM does all the computations on the GPU. The main contribution of

our work includes a better use of state-of-the-art GPU architecture, particularly regarding the mem-

ory subsystem, a new design of a communication and boundary operations overlapping approach

and a new design of an I/O overlapping approach. With the workstation with 4 GPUs, we achieve

over 400x speedup against a single CPU core, and provide equivalent performance to a powerful485

CPU cluster with 34 nodes and reduce the energy consumption by 6.8 times. This work provides

cost-effective and efficient ways in ocean modeling.
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Figure 11. Four GPUs performance test compared with Tansuo100 clusters (Intel Westmere
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