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Abstract. Rapid advances in the performance of the graphics processing unit (GPU) have made the

GPU a compelling solution for a series of scientific applications. However, most existing GPU ac-

celeration works for climate models are doing partial code porting for certain hot spots, and can only

achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version

of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton5

Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices,

we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified

Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve

the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping

communication and boundary operations among multiple GPUs, and overlapping input/output (I/O)10

between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indi-

cate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a

powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.

1 Introduction

High-resolution atmospheric, oceanic and/or climate modeling remains a significant scientific and15

engineering challenge because of the enormous computing, communication, and storage require-

ments. With the rapid development of computer architecture, in particular multi-core and many-core

techniques, the computing power that can be applied to scientific problems has increased exponen-

tially in recent decades. Some parallel computing techniques, such as the Message Passing Interface

(MPI, Gropp et al. (1999)) and Open Multi-Processing (OpenMP, Chapman et al. (2008)) have been20

widely used to support the parallelization of numerous climate models. Moreover, as modern massive

supercomputers become more and more heterogeneous because of the increasing number of different

accelerating devices such as the GPU, the Intel many integrated core (Intel MIC) and reconfigurable
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Abstract. Rapid advances in the performance of the graphics processing unit (GPU) have made the

GPU a compelling solution for a series of scientific applications. However, most existing GPU ac-

celeration works for climate models are doing partial code porting for certain hot spots, and can only

achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version

of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton5

Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices,

we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified

Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve

the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping

communication and boundary operations among multiple GPUs, and overlapping input/output (I/O)10

between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indi-

cate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a

powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.

1 Introduction

High-resolution atmospheric, oceanic and/or climate modeling remains a significant scientific and15

engineering challenge because of the enormous computing, communication, and storage require-

ments. With the rapid development of computer architecture, in particular multi-core and many-core

techniques, the computing power that can be applied to scientific problems has increased exponen-

tially in recent decades. Some parallel computing techniques, such as the Message Passing Interface

(MPI, Gropp et al. (1999)) and Open Multi-Processing (OpenMP, Chapman et al. (2008)) have been20

widely used to support the parallelization of numerous climate models. Moreover, as modern massive

supercomputers become more and more heterogeneous because of the increasing number of different

accelerating devices such as the GPU, the Intel many integrated core (Intel MIC) and reconfigurable
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computing based on field programmable gate array (FPGA), new approaches are required to more

effectively utilize the emerging novel architecture, communication and input/output (I/O) to achieve25

order-of-magnitude acceleration required for climate models.

In recent years, a number of scientific codes have been ported to the GPU. Different levels of

speedup were achieved for climate models using GPUs. Michalakes and Vachharajani (2008) ac-

celerated a computationally intensive microphysics process of the Weather Research and Forecast

(WRF) model with a speedup of nearly 25x; but the entire WRF model is sped up by only 1.23x.30

Shimokawabe et al. (2010) fully accelerated the ASUCA model – a non-hydrostatic weather model –

on 528 Nvidia Tesla GT200 GPUs and achieved a speedup of 80x. Linford et al. (2009) accelerated

a computationally intensive chemical kinetics kernel from the WRF model with Chemistry on an

Nvidia Tesla C1060 and achieved a speedup of 8x. Leutwyler et al. (2014) accelerated a full huge

operational weather forecasting model COSMO and achieved 2.8X speedup for its dynamic core.35

Carpenter et al. (2013) accelerated the spectral element dynamical core of the Community Earth

System Model (CESM) using the GPU by 3x. Govett et al. (2010) ported the dynamics portion of

the Non-hydrostatic Icosahedral (NIM) model to the GPU and achieved a speedup of 34x.Zhenya

et al. (2010) adopted OpenACC Application Programming Interface (OpenACC API), which used

simple compiler directives to accelerate some hot-spot functions, to accelerate the parallel ocean40

program (POP) by 2.2x.

Most existing GPU acceleration projects for climate models are only working on certain hot spots

of the program, leaving a significant part of the program still running on CPUs. Therefore, there are

usually frequent data exchange between CPUs and GPUs, which significantly reduces the overall

performance.45

The objective of our study is to shorten the high computation time of high-resolution ocean models

by parallelizing their existing model structures using the GPU. Taking the parallel version of the

Princeton Ocean Model (mpiPOM) as an example, we demonstrate how to parallelize an ocean

model to make it run efficiently on a GPU architecture. Using the state-of-the-art GPU architecture,

we first convert the mpiPOM from its original Fortran version into a new Compute Unified Device50

Architecture C (CUDA-C) version. CUDA-C is the dominant programming language for GPUs. We

call the new version gpuPOM1.0. Then, we design and implement several optimizing methods: (i)

computation optimization in a single GPU; (ii) communication optimization among multiple GPUs,

and (iii) I/O optimization between a hybrid GPU and CPU.

In terms of computing, we concentrate on memory access optimization and making better use of55

caches in GPU memory hierarchy. We improve memory usage by using read-only data cache, local

memory blocking, loop fusion, function fusion and that disables error-correcting code memory (Er-

ror Checking & Correction, ECC memory). The experimental results demonstrate that high memory

access optimization can achieve a speedup of approximately 100x when comparing a single GPU

against a single CPU core.60
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In terms of communication, we concentrate on the overlapping between the inner-region computa-

tion and the outer-region communication and update. With the GPUDirect communication technol-

ogy, multiple GPUs in one node can communicate directly and bypass the CPU. In addition, with the

fine-grained control of the CUDA streams and its priority, inner-region computation can be executed

concurrently with outer-region communication and updating.65

In terms of I/O, we choose to split the MPI communicator into computation and I/O processes.

One individual computation process and one individual I/O process are attached to one GPU. The

computation process is responsible for launching kernels on the GPU and the I/O process is respon-

sible for data copy back from the GPU and to write on disk. The computing process and the I/O

process execute concurrently.70

To understand the accuracy, performance and scalability of the gpuPOM, we build a customized

workstation with four GPU K20X devices inside. The experimental results show that the perfor-

mance of the gpuPOM running on this workstation is comparable to a powerful cluster with 408

CPU cores.

The paper is organized as follows. In Section 2, we review the mpiPOM model. In Section 4,75

we present detailed techniques about computation optimization in a single GPU, communication

optimization among multiple GPUs, and I/O optimization between a hybrid GPU and CPU. We

provide the corresponding experimental results about correctness, performance and scalability in

Section 5 and conclude our work in Section 7.

2 The mpiPOM80

The mpiPOM is a parallel version of the Princeton Ocean Model (POM) that is based on MPI.

It retains most of the physics package of the original POM (Blumberg and Mellor, 1983, 1987;

Oey et al., 1985a, b, c; Oey and Chen, 1992a, b), but includes also satellite and drifter assimilation

schemes from the Princeton Regional Ocean Forecast System (Oey, 2005; Lin et al., 2006; Yin and

Oey, 2007), as well as more recently advanced features such as wind-wave induced Stokes drift,85

wave-enhanced mixing and Localized Ensemble Transform Kalman Filter (Oey et al., 2013; Xu

et al., 2013). The POM code was reorganized and MPI was implemented by Jordi and Wang (2012)

using a two-dimensional data decomposition of the horizontal domain with a halo of ghost cells.

The POM is a powerful ocean model that has been used in a wide range of applications: circulation

and mixing processes in rivers, estuaries, shelf and slope, lakes, semi-enclosed seas and open and90

global oceans. It is also at the core of various real-time ocean and hurricane forecasting systems,

for examples: Japan coastal ocean and Kuroshio (Isobe et al., 2012); Adiratic Sea Forecasting Sys-

tem (Zavatarelli and Pinardi, 2003); the Mediterranean Sea forecasting system (Korres et al., 2007);

the GFDL Hurricane Prediction system (Kurihara et al., 1995, 1998), the US’ Hurricane Forecast-

ing System (Gopalakrishnan et al., 2010, 2011) and the Advanced Taiwan Ocean Prediction system95
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(Oey et al., 2013). Additionally, the model has been used to study various geophysical fluid dy-

namical processes (e.g. Allen and Newberger, 1996; Newberger and Allen, 2007a, b; Kagimoto and

Yamagata, 1997; Guo et al., 2006; Oey et al., 2003; Zavatarelli and Mellor, 1995; Ezer and Mel-

lor, 1992; Oey, 2005; Xu and Oey, 2011. For a more complete list please visit the POM website

(http://www.ccpo.odu.edu/POMWEB).100

The mpiPOM experiment that is used in this paper is one of the two designed and tested by Profes-

sor Oey and students; the codes and results are freely available at the FTP site (ftp://profs.princeton.

edu/leo/mpipom/atop/tests/). The reader can see Chapter 3 of the Lecture Notes (Oey, 2014) for

more detail. The test case is a dam-break problem in which warm and cold waters are initially sepa-

rated in the middle of a zonally periodic channel 200km×50km×50m on an f-plane, with walls at105

the northern and southern boundaries. Geostrophic adjustment then ensues and baroclinic instability

waves amplify and develop into finite-amplitude eddies in 10∼20 days. The horizontal grid sizes are

1 km and there are 50 vertical sigma levels. Although the problem is a test case, the code is the full

mpiPOM version that is used in the ATOP forecasting system.

The model solves the primitive equation under hydrostatic and boussinesq approximations. In110

the horizontal, spatial derivatives are computed either using centered-space differencing or Smo-

larkiewicz’s positive definite advection transport algorithm (Smolarkiewicz, 1984) on a staggered

Arakawa C-grid; both schemes have been tested, but the latter is reported here. In the vertical, the

mpiPOM supports terrain-following sigma coordinates and a fourth-order scheme option to reduce

the internal pressure-gradient errors (Berntsen and Oey, 2010). The mpiPOM uses the time-splitting115

technique to separate the vertically integrated equations (external mode) from the vertical structure

equations (internal mode). The external mode calculation is responsible for updating surface ele-

vation and the vertically averaged velocities. The internal mode calculation results in updates for

velocity, temperature and salinity, as well as the turbulence quantities. The three-dimensional inter-

nal mode and the two-dimensional external mode are both integrated explicitly using a second-order120

leapfrog scheme. These two modules are the most computationally intensive kernels of the mpiPOM

model.

3 GPU programming model overview

In this section, we describe the basic GPU architecture in a programmer’s perspective and focus on

how to harness the power of the GPU with NVIDIA’s Compute Unified Device Architecture(CUDA),125

a programming model and computing platform that makes GPU program elegant and simple.

In the GPU hardware design, there are numerous stream multiprocessors (SMs) grouped by large

numbers of CUDA cores. As an example, the Nvidia’s K20X GPU we used has 14 SMs and each

SM has 192 CUDA cores for single precision operation. One K20X GPU can achieve 3.93TFlops

theoretical peak performance with single-precision floating point and 250GB/s memory bandwidth.130
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Figure 2 illustrates the memory hierarchy of K20X GPU. Each SM has its own execution units

(CUDA cores, load/store units, special function units), warp-schedulers, and various on-chip faster

memories such as registers, L1 cache/shared memory and texture cache. Various on-chip caches

provides more opportunities to implement memory optimizations on GPU platform. Each SM owns

64K 32 bit registers which are the fastest memory in the GPU memory hierarchy. The shared memory135

and the L1 cache share a 64KB on-chip fast memory and can be configured with artificial options

such as 16/48KB, 32/32KB or 48/16 KB. In addition, there are 48 KB read-only data cache which

add the feature for read-only data in global memory to be loaded through the same cache.

There are three common methods to port a program from CPU to GPU. The first method uses

drop-in libraries provided by CUDA to replace the existing code, such as the work implemented by140

Siewertsen et al. (2012). The second method uses simple OpenACC directive as hints in the original

CPU code, such as the work implemented by Zhenya et al. (2010). The last method, is the most

complex but the most effective, rewrites the whole program with CUDA subroutines.

In CUDA, a kernel is a subroutine running on the GPU. Each kernel launch consists of a large

number of threads and these threads are grouped into equal size blocks which can be executed145

independently. Each thread block is further divided into warps, which consist of 32 consecutive

threads. Threads in a warp execute the same instruction simultaneously and can be scheduled as

a whole unit. Kernel function and data transfer commands in CUDA has an optional parameter

"stream ID". If "stream ID" is declared, commands belonging to different streams can be executed

concurrently. It is usually used to alleviate the kernel launch overhead of subsequent independent150

kernels.

At present, there are two CUDA platforms to support C and Fortran respectively, which are

CUDA-C and CUDA-Fortran. Although CUDA-Fortran compiler has been available since 2009

and that can bring about less modification to the mpiPOM code, we still choose CUDA-C at the

gpuPOM1.0 because: 1)CUDA-C is free of charge while CUDA-Fortran for one workstation costs155

more than $1000. 2)Previous work (Henderson et al., 2011) show that, during the porting of Nondy-

drostatic Icosahedral Model(NIM), the commercial CUDA-Fortran compiler does not perform as

well as the manually converted CUDA-C version in some kernels. 3)The read-only data cache uti-

lization is not supported in CUDA-Fortran, which is the key optimization of Section 4.1(A). 4) We

have already had a lot of previous experiences for deep optimizations with CUDA-C.160

4 Full GPU acceleration of the mpiPOM

Figure 1 illustrates the flowchart of the gpuPOM. The main difference between mpiPOM and gpuPOM

is that the CPU in gpuPOM is only responsible for the initializing work and the outputting work. The

gpuPOM begins with initializing the relevant arrays on the CPU host and then copies data from the

CPU host to the GPU. The GPU does all the computations, including the external mode, the internal165
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Figure 2 illustrates the memory hierarchy of K20X GPU. Each SM has its own execution units
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provides more opportunities to implement memory optimizations on GPU platform. Each SM owns

64K 32 bit registers which are the fastest memory in the GPU memory hierarchy. The shared memory135

and the L1 cache share a 64KB on-chip fast memory and can be configured with artificial options

such as 16/48KB, 32/32KB or 48/16 KB. In addition, there are 48 KB read-only data cache which

add the feature for read-only data in global memory to be loaded through the same cache.

There are three common methods to port a program from CPU to GPU. The first method uses

drop-in libraries provided by CUDA to replace the existing code, such as the work implemented by140

Siewertsen et al. (2012). The second method uses simple OpenACC directive as hints in the original

CPU code, such as the work implemented by Zhenya et al. (2010). The last method, is the most

complex but the most effective, rewrites the whole program with CUDA subroutines.

In CUDA, a kernel is a subroutine running on the GPU. Each kernel launch consists of a large

number of threads and these threads are grouped into equal size blocks which can be executed145

independently. Each thread block is further divided into warps, which consist of 32 consecutive

threads. Threads in a warp execute the same instruction simultaneously and can be scheduled as

a whole unit. Kernel function and data transfer commands in CUDA has an optional parameter

"stream ID". If "stream ID" is declared, commands belonging to different streams can be executed

concurrently. It is usually used to alleviate the kernel launch overhead of subsequent independent150

kernels.

At present, there are two CUDA platforms to support C and Fortran respectively, which are

CUDA-C and CUDA-Fortran. Although CUDA-Fortran compiler has been available since 2009

and that can bring about less modification to the mpiPOM code, we still choose CUDA-C at the

gpuPOM1.0 because: 1)CUDA-C is free of charge while CUDA-Fortran for one workstation costs155

more than $1000. 2)Previous work (Henderson et al., 2011) show that, during the porting of Nondy-

drostatic Icosahedral Model(NIM), the commercial CUDA-Fortran compiler does not perform as

well as the manually converted CUDA-C version in some kernels. 3)The read-only data cache uti-

lization is not supported in CUDA-Fortran, which is the key optimization of Section 4.1(A). 4) We

have already had a lot of previous experiences for deep optimizations with CUDA-C.160

4 Full GPU acceleration of the mpiPOM

Figure 1 illustrates the flowchart of the gpuPOM. The main difference between mpiPOM and gpuPOM

is that the CPU in gpuPOM is only responsible for the initializing work and the outputting work. The

gpuPOM begins with initializing the relevant arrays on the CPU host and then copies data from the

CPU host to the GPU. The GPU does all the computations, including the external mode, the internal165
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mode, and their interactions. In the 2D external mode loop, the depth-averaged velocity UA, V A

and sea surface height are calculated. In the 3D internal model loop, the fields such as velocities

(U,V ), temperature (T ), salinity (S), and various turbulence variables are time-stepped forward.

Outputs such as velocity and sea surface height, are copied back to the CPU host and then written to

disk at a user-specified time interval.170

In our implementation, the 3D arrays of variables are stored sequentially in the order of x, y,

z and the 2D arrays are stored in the order of x, y, which is the same as the original code. The

vertical diffusion is solved by the tridiagonal solver (the Thomas Algorithm) which is calculated

sequentially in the z direction. For simplicity, the grid is divided along x and y directions (2D block

decomposition) in all kernel functions. Each GPU thread specifies a (x,y) point in the horizontal175

direction and performs all the calculations from surface to bottom. The thread blocks are divided as

(32,4). In the x direction, the block number should be a multiple of 32 threads to perform coalesced

memory access within a warp. In the y direction, we tested many thread numbers, such as 4 and 8,

and obtained similar performances. We finally choose 4 because we attempt to obtain more blocks

to distribute the workload among stream multiprocessors (SM) more uniformly, and also to obtain180

enough occupancy (Volkov, 2010). Occupancy is the percentage of threads active per multiprocessor.

In the following sections, we introduce the general optimizations of the gpuPOM in a single GPU

and the special optimizations of the gpuPOM following the state-of-the-art GPU architecture. Then,

we present the design of communications for various processes and multiple GPUs within a node.

Finally, we describe the design of I/O overlapping for hybrid CPU and GPU architecture.185

4.1 Computational optimizations in a single GPU

Managing the significant performance difference between off-chip and on-chip memory is the pri-

mary concern of a GPU programmer. As shown on the right side of Fig. 2, we propose five key

optimizations to fully utilize the faster on-chip memory of the GPU and describe the relationships

between the GPU memory hierarchy and each optimization in the following.190

(A) Read-only data cache utilization. Effective use of the new 48KB directly-access and read-

only data cache in the K20X GPU can improve the performance of memory intensive kernels. This

feature will be automatically enabled and utilized as long as certain conditions are met. We add

“const __restrict__" qualifiers to the parameter pointers in gpuPOM to explicitly allocate the read-

only data cache for our program. The “LDG.E” instruction will then appear in the disassembling195

code, and Nvidia Visual Profiler(NVVP) software will show that the read-only data cache is actually

being utilized.

As an example, consider the calculations of advection and the horizontal diffusion terms. Because

mpiPOM adopts the Arakawa C-grid, the update of T (i, j,k) requires the value of u(i, j,k), u(i+

1, j,k), v(i, j,k) and v(i, j+1,k), in addition to the value of horizontal kinematic viscosity, aam,200

from four neighboring grid points. In one time step, the arrays of u and v must be accessed twice,
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mode, and their interactions. In the 2D external mode loop, the depth-averaged velocity UA, V A

and sea surface height are calculated. In the 3D internal model loop, the fields such as velocities

(U,V ), temperature (T ), salinity (S), and various turbulence variables are time-stepped forward.

Outputs such as velocity and sea surface height, are copied back to the CPU host and then written to

disk at a user-specified time interval.170

In our implementation, the 3D arrays of variables are stored sequentially in the order of x, y,

z and the 2D arrays are stored in the order of x, y, which is the same as the original code. The

vertical diffusion is solved by the tridiagonal solver (the Thomas Algorithm) which is calculated

sequentially in the z direction. For simplicity, the grid is divided along x and y directions (2D block

decomposition) in all kernel functions. Each GPU thread specifies a (x,y) point in the horizontal175

direction and performs all the calculations from surface to bottom. The thread blocks are divided as

(32,4). In the x direction, the block number should be a multiple of 32 threads to perform coalesced

memory access within a warp. In the y direction, we tested many thread numbers, such as 4 and 8,

and obtained similar performances. We finally choose 4 because we attempt to obtain more blocks

to distribute the workload among stream multiprocessors (SM) more uniformly, and also to obtain180

enough occupancy (Volkov, 2010). Occupancy is the percentage of threads active per multiprocessor.

In the following sections, we introduce the general optimizations of the gpuPOM in a single GPU

and the special optimizations of the gpuPOM following the state-of-the-art GPU architecture. Then,

we present the design of communications for various processes and multiple GPUs within a node.

Finally, we describe the design of I/O overlapping for hybrid CPU and GPU architecture.185

4.1 Computational optimizations in a single GPU

Managing the significant performance difference between off-chip and on-chip memory is the pri-

mary concern of a GPU programmer. As shown on the right side of Fig. 2, we propose five key

optimizations to fully utilize the faster on-chip memory of the GPU and describe the relationships

between the GPU memory hierarchy and each optimization in the following.190

(A) Read-only data cache utilization. Effective use of the new 48KB directly-access and read-

only data cache in the K20X GPU can improve the performance of memory intensive kernels. This

feature will be automatically enabled and utilized as long as certain conditions are met. We add

“const __restrict__" qualifiers to the parameter pointers in gpuPOM to explicitly allocate the read-

only data cache for our program. The “LDG.E” instruction will then appear in the disassembling195

code, and Nvidia Visual Profiler(NVVP) software will show that the read-only data cache is actually

being utilized.

As an example, consider the calculations of advection and the horizontal diffusion terms. Because

mpiPOM adopts the Arakawa C-grid, the update of T (i, j,k) requires the value of u(i, j,k), u(i+

1, j,k), v(i, j,k) and v(i, j+1,k), in addition to the value of horizontal kinematic viscosity, aam,200

from four neighboring grid points. In one time step, the arrays of u and v must be accessed twice,
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Figure 1. gpuPOM flowchart

and the aam array must be accessed four times. Therefore it is natural to use the read-only data

cache to improve the data locality of gpuPOM. This optimization improves the performance of this

part by 18.8%.

(B) Local memory blocking. Cache blocking is a common method to improve data reuse in205

parallel computing. In this method, a small subset of a dataset is loaded into the on-chip faster

memory (e.g., the L1/L2 cache in the GPU and the CPU) and then the small data block is repeatedly

accessed by the program. It is helpful to reduce the need to access the off-chip with high latency

memory (e.g., global memory on the GPU). Because regular global memory access cannot be cached
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Figure 2. The memory hierarchy of K20X GPU and the relationships with each optimizations

in L1 cache for K20X GPU, the method used here is to pull the data from local memory to the L1210

cache.

For the subroutines about vertical diffusion and source/sink terms, the chasing method is used

to solve a tridiagonal matrix along the vertical direction for each grid point individually. As shown

in Algorithm 1, the 3D temporary arrays in the original code, such as ee, gg, that store row trans-

formation coefficients are streamed from memory. However, these arrays are too large to reside in215

the cache entirely; code efficiency is therefore decreased. We find that each thread performs a col-

umn calculation from surface to bottom and there is no communication. Thus, we declare 1D arrays

ee_new,gg_new in local memory to replace the original 3D global arrays. Their size is equal to the

level of ocean, nz− 1, which is typically a very small value.

In the chasing method, these local arrays are accessed twice within one thread, one from k = 0220

to k = nz− 1 and another from k = nz− 1 to k = 0. After blocking the vertical direction arrays in

local memory, L1 cache is fully utilized although some of them may be spilled to global memory.

The performance of the subroutines about vertical diffusion and source/sink terms is improved by

35.3% when using the local memory blocking technique.

(C) Loop fusion. Loop fusion is an effective method to store scalar variables in registers for data225

reuse. Registers are the fastest memory in the GPU memory hierarchy. For example, as shown in

Algorithm 2, if the variable drhox(k, j, i) must be read several times in multiple loops, we can fuse

these loops into one. Therefore, the drhox(k, j, i) will be read from the global memory the first
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Algorithm 1 A simple example of local memory blocking

/********************

* Origin CUDA-C code

********************/

//ee, gg are parameter pointers of the function

//that represent the use of global memory

for (k = 1; k < nz-2; k++){

ee[k][j][i] = ee[k-1][j][i]*A[k][j][i];

gg[k][j][i] = ee[k-1][j][i]*gg[k-1][j][i]-B[k][j][i];

}

for (k = nz-3; k >= 0; k++){

uf[k][j][i] = (ee[k][j][i]*uf[k+1][j][i]+gg[k])*C[k][j][i];

}

/*******************

* After local memory blocking

*******************/

//ee_new, gg_new are 1-D array declared in function

//that represent the use of local memory

for (k = 1; k < kbm1; k++){

ee_new[k] = ee_new[k-1]*A[k][j][i]

gg_new[k] = ee_new[k-1]*gg_new[k-1]-B[k][j][i];

}

for (k = nz-3; k >= 0; k++){

uf[k][j][i] = (ee_new[k]*uf[k+1][j][i]+gg_new[k])*C[k][j][i];

}
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time and then repeatedly read from a register. This method can also be applied in a number of the

mpiPOM subroutines.230

Take the kernel profq as an example. After rewriting part of source code with loop fusion, the

device memory transactions decrease by 57%, while the registers used per thread increase from 46

to 72, as reported in NVVP. Although the occupancy achieved decrease from 61.1% to 42.7%, the

performance of this kernel is improved by 28.6%.

Algorithm 2 A simple example of loop fusion

/********************

* Origin cuda-c code

********************/

for (k = 1; k < kbm1; k++){

drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

}

for (k = 0; k < kbm1; k++){

drhox[k][j][i] = drhox[k][j][i] * B[k][j][i];

}

/*******************

* After loop fusion

*******************/

for (k = 1; k < kbm1; k++){

drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

drhox[k-1][j][i] = drhox[k-1][j][i] * B[k][j][i];

}

drhox[0][j][i] = drhox[0][j][i] + B[k][j][i];

(D) Function fusion. Because we can fuse the loops in which the same arrays are accessed, we235

can also fuse functions in which similar formulas are calculated and the same arrays are accessed.

For example, the advv and advu functions of the mpiPOM calculate advection in longitude and

latitude, respectively, and they can be fused into one subroutine. This optimization benefits from the

elimination of the redundancy calculations.

This optimization is also useful for the situation in which one function is called several times to240

calculate different tracers. For example, the proft functions of the mpiPOM is called twice – once

for temperature and once for salinity. Their computing formulas are similar and certain common

arrays are accessed; these functions were modified to calculate temperature and salinity simultane-

ously. The method of Function fusion improves the performance of these functions by 28.8%.
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Table 1. Different subroutines adopt different optimizations in gpuPOM

Subroutines A B C D E Speedup

Adv & Hor diff
√ √ √ √

2.05X

Ver diff
√ √ √ √

2.82X

Baroclinic
√ √ √

2.08X

Continuity equ
√ √

1.39X

Vorticity
√ √ √

3.19X

State equ
√ √

1.35X

(E)ECC-off and GPU boost. Because ECC memory consumes some amount of memory band-245

width, we can improve the GPU global memory bandwidth by disabling the error checking and

memory correcting features. Also, the memory bandwidth that can be achieved is improved by en-

hancing the clock of SM core. In our implementation, we overclock the default clock of K20X GPU

from 732 MHz to 784 MHz. The methods of ECC-off and GPU boost improves the performance of

the whole application by 13.8%.250

We divide all the gpuPOM subroutines into different categories based on their different compu-

tation patterns. As shown in Table 1, in gpuPOM, we deploy different optimizations in different

categories to achieve improved performance; these categories are now described.

(1)Category 1: Advection and horizontal diffusion(adv)

This category has 6 subroutines, and calculates the advection and horizontal diffusion and in the255

case of velocity, the pressure gradient and Coriolis terms. Here it is possible to reuse data among

adjacent threads, and the subroutines therefore benefit from using read-only data cache and shared-

memory. Also, the variables are calculated in different loops of one function or in different functions,

so the loop fusion and function fusion optimizations apply to this part.

(2)Category 2: vertical diffusion(ver)260

This category has 4 subroutines, and calculates the vertical diffusion. In this part, chasing method

is used in the tridiagonal solver in the k-direction. The main feature is that data is reused twice within

one thread, while data is accessed once from k = 0 to k = nz−1 and once from k = nz−1 to k = 0.

The subroutines are significantly sped up after grouping the k-direction variable in local memories.

(3)Category 3: vorticity(vort), baroclinic(baro), continuity equation(cont) and equation of state(state)265

This category is less time consuming than the two categories above, but it also benefits from our

optimizations. Because there exists data reuse with adjacent threads, the use of read-only data cache

improves efficiency. For vort, there is data reuse within one thread, and loop fusion improves the

efficiency.

The main bottleneck of the mpiPOM is memory-bound problem. To confirm this issue, we use the270

Performance API(Browne et al., 2000) to estimate floating point operation count and the memory
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access(store/load) instruction count. Results reveal that the computational intensity(flops/byte) of

the mpiPOM is around 1:3.3, while the computational intensity provided by SandyBridge E5-2670

CPUs is 7.5:1, and large arrays are mostly streamed from memory and shows little locality. Accord-

ing to the roofline model(Williams et al., 2009), the whole mpiPOM is mainly memory-bounded.275

In addition, the mpiPOM suffers from a flat profiling results, with even the most time-consuming

subroutine just occupying 20% of the total execution time. Namely, there are no obvious hot spot

functions in the mpiPOM and porting a handful of subroutines to GPU is not helpful to improve the

model efficiency. That is the reason that we need to port the whole program from CPU to GPU.

To alleviate the memory bound problem, an optimization method that is frequently used is cache280

blocking. It is usually cache beneficial to use vertical index as the innermost array index(z,x,y order-

ing). For the mpiPOM with 962×722×51 test case, one array has 962×722×4bytes= 2.6MBytes in

the x-y plane, while one CPU has a 32KB per-core L1 cache, 256KB per-core L2 cache and 20MB

shared L3 caches. Take the chasing method in vertical diffusion terms as an extreme case. If x,y,z

ordering is used, in terms of calculation along z-axis, each x-y plane is blocked in L3 cache for285

reuse. When traversing backwards along z, the data needed are all evicted. If z,x,y ordering is used,

in terms of calculation along z-axis, each k column data is blocked in L1 cache for reuse. When

traversing backwards along z, the data remains valid in L1 cache. Unfortunately, the mpiPOM uses

east-west index as the innermost array index. However, for gpuPOM, z,x,y ordering has to be avoided

to satisfy GPU memory coalescing, which is also demonstrated in Shimokawabe et al. (2010). We290

make east-west (x) as innermost index(x,y,z ordering). A big difference for memory optimizations

between GPU and CPU is that, in GPU, programmers can artificially choose which array to store

in cache. Moreover, GPU provides various on-chip caches, such as L1/L2 cache, shared memory,

texture cache. Thus, according to how the arrays are used, we can put different arrays in different

caches. In the gpuPOM, we have explored a better data placement on different caches for different295

terms, besides conventional cache blocking optimizations.

4.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategies used to harness the computing power of multiple

GPUs. With multiple GPUs, the computing domain is divided into smaller blocks than with a single

GPU. The performance of GPU computing is faster and the memory requirement for each GPU is300

reduced. To utilize multiple GPUs, an effective domain decomposition method and communication

method should be employed. We split the domain along the x and y directions (2-D decomposition)

and assign each MPI process for one subdomain, following Jordi and Wang (2012). Then, we attach

the MPI process to one GPU and send messages from one GPU to another. Shimokawabe et al.

(2010) and Yang et al. (2013) proposed some fine-grained overlapping methods of GPU computation305

and CPU communication to improve the simulation performance. An important common issue is that

the communications between multiple GPUs explicitly require the participation of the CPU. In our

12

1

2

3

4

5

6

7

8

9

10

11

12 13 14
15

16

17

18 19

20

21



 
Page: 12

Number: 1 Author: djw Subject: Sticky Note Date: 01/07/2015 10:00:20 
Expand for the audience (i.e. floating point operations per byte transferred to or from memory).
 
Number: 2 Author: djw Subject: Sticky Note Date: 01/07/2015 10:02:18 
You need a context, possibly: 
"... provide by a modern high performance CPU (the Intel Sandy ...) ..." 
 
Number: 3 Author: djw Subject: Sticky Note Date: 01/07/2015 10:03:16 
For the audience - what do you mean by locality?
 
Number: 4 Author: djw Subject: Sticky Note Date: 01/07/2015 10:04:16 
For the audience explain briefly what the roofline model is - many will not have easy access to your references.
 
Number: 5 Author: djw Subject: Sticky Note Date: 01/07/2015 10:04:59 
Again for the audience - what does flat profiling mean? 

 
Number: 6 Author: djw Subject: Sticky Note Date: 01/07/2015 10:06:34 
Poor use of the word.  Better would be - this means - or - as a result.
 
Number: 7 Author: djw Subject: Sticky Note Date: 01/07/2015 10:08:47 
This has already been covered once.  I suggest you move this discussion there to save repetition of many of your statements.
 
Number: 8 Author: djw Subject: Sticky Note Date: 01/07/2015 10:09:40 
In POM it may be true but not with every code.
 
Number: 9 Author: djw Subject: Sticky Note Date: 01/07/2015 10:15:06 
This needs more explanation.  As L3 cache is large enough to hold the whole model I presume you mean L1 and/or L2 cache. 
 
For the audience you also need to explain why it needs to be evicted.  Maybe the work overwritten would be more accurate and better for this audience.
 
Number: 10 Author: djw Subject: Sticky Note Date: 01/07/2015 10:16:23 
'blocked' is a specialist work.  'kept' might be better.
 
Number: 11 Author: djw Subject: Sticky Note Date: 01/07/2015 10:16:59 
remove 'valid'?  Why is it needed?
 
Number: 12 Author: djw Subject: Sticky Note Date: 01/07/2015 10:20:47 
What is GPU memory coalescing?  
Why does it need to be satisfied?  
 
You say it is also demonstrated by Shimokawabe so  
"Where have you demonstrated it here?".   
What did you do?  
Where are the results?
 
Number: 13 Author: djw Subject: Inserted Text Date: 01/07/2015 10:17:38 
 the
 
Number: 14 Author: djw Subject: Inserted Text Date: 01/07/2015 10:17:50 
 code
 
Number: 15 Author: djw Subject: Sticky Note Date: 01/07/2015 10:21:53 
'make' - surely you decided to keep the basic POM ordering.
 
Number: 16 Author: djw Subject: Sticky Note Date: 01/07/2015 10:25:17 
Do not use 'various' in a scientific paper to escape being more specific. 
 
You have already stated that there are L1, l2 and L3.  Do not repeat. 
 
It is not obvious here what you mean by shared memory in addition to the caches.   
 
Texture cache is new.  presumably you mean the read-only cache discussed earlier.
 
Number: 17 Author: djw Subject: Sticky Note Date: 01/07/2015 10:26:58 
This is all too long.  There are lots of caches.  You can optimize their use.   
 
Anything more should be about how they are best optimized.
 
Number: 18 Author: djw Subject: Sticky Note Date: 01/07/2015 10:35:20 
Why is it divided into smaller blocks.  Is this you decision or is it an essential requirement due to some reason I have missed?
 
Number: 19 Author: djw Subject: Replacement Text Date: 01/07/2015 10:33:25 
when coupling 
 
Number: 20 Author: djw Subject: Sticky Note Date: 01/07/2015 10:36:27 
Is this because there are smaller blocks or because more GPUs are involved?
 
Number: 21 Author: djw Subject: Sticky Note Date: 01/07/2015 10:37:28 
What do you mean by an effective domain decomposition method.  How do you measure effectiveness?
 

 
Comments from page 12 continued on next page



access(store/load) instruction count. Results reveal that the computational intensity(flops/byte) of

the mpiPOM is around 1:3.3, while the computational intensity provided by SandyBridge E5-2670

CPUs is 7.5:1, and large arrays are mostly streamed from memory and shows little locality. Accord-

ing to the roofline model(Williams et al., 2009), the whole mpiPOM is mainly memory-bounded.275

In addition, the mpiPOM suffers from a flat profiling results, with even the most time-consuming

subroutine just occupying 20% of the total execution time. Namely, there are no obvious hot spot

functions in the mpiPOM and porting a handful of subroutines to GPU is not helpful to improve the

model efficiency. That is the reason that we need to port the whole program from CPU to GPU.

To alleviate the memory bound problem, an optimization method that is frequently used is cache280

blocking. It is usually cache beneficial to use vertical index as the innermost array index(z,x,y order-

ing). For the mpiPOM with 962×722×51 test case, one array has 962×722×4bytes= 2.6MBytes in

the x-y plane, while one CPU has a 32KB per-core L1 cache, 256KB per-core L2 cache and 20MB

shared L3 caches. Take the chasing method in vertical diffusion terms as an extreme case. If x,y,z

ordering is used, in terms of calculation along z-axis, each x-y plane is blocked in L3 cache for285

reuse. When traversing backwards along z, the data needed are all evicted. If z,x,y ordering is used,

in terms of calculation along z-axis, each k column data is blocked in L1 cache for reuse. When

traversing backwards along z, the data remains valid in L1 cache. Unfortunately, the mpiPOM uses

east-west index as the innermost array index. However, for gpuPOM, z,x,y ordering has to be avoided

to satisfy GPU memory coalescing, which is also demonstrated in Shimokawabe et al. (2010). We290

make east-west (x) as innermost index(x,y,z ordering). A big difference for memory optimizations

between GPU and CPU is that, in GPU, programmers can artificially choose which array to store

in cache. Moreover, GPU provides various on-chip caches, such as L1/L2 cache, shared memory,

texture cache. Thus, according to how the arrays are used, we can put different arrays in different

caches. In the gpuPOM, we have explored a better data placement on different caches for different295

terms, besides conventional cache blocking optimizations.

4.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategies used to harness the computing power of multiple

GPUs. With multiple GPUs, the computing domain is divided into smaller blocks than with a single

GPU. The performance of GPU computing is faster and the memory requirement for each GPU is300

reduced. To utilize multiple GPUs, an effective domain decomposition method and communication

method should be employed. We split the domain along the x and y directions (2-D decomposition)

and assign each MPI process for one subdomain, following Jordi and Wang (2012). Then, we attach

the MPI process to one GPU and send messages from one GPU to another. Shimokawabe et al.

(2010) and Yang et al. (2013) proposed some fine-grained overlapping methods of GPU computation305

and CPU communication to improve the simulation performance. An important common issue is that

the communications between multiple GPUs explicitly require the participation of the CPU. In our
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Figure 3. Data decomposition in gpuPOM
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Figure 4. The workflow of multiple streams on the GPU. The “inner/east/west/north/south part" and “Halo"

refer to computation and update of corresponding part. “Comm." refers to communication between processes,

which implies synchronization.

work, we hope to implement the communication to bypass the CPU to fully employ the capability

of the GPU.

State-of-the-art MPI libraries, such as OpenMPI and MVAPICH2, have announced their support310

for MPI communication directly from GPU memory, which is known as CUDA-aware MPI. We tried

MVAPICH2 to implement direct communication among multiple GPUs at first. However, we found

that the boundary operation and MPI communication occupied nearly 15% of the total runtime after

GPU porting.

To fully overlap the boundary operations and MPI communications with computation, we adopt315

the data decomposition method shown in Fig. 3. The data region is decomposed into three parts: the

inner part, the outer part, and the halo part. The outer part includes east/west/north/south part, and
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the halo part also includes east/west/north/south halos to exchange data with neighbors. In CUDA,

a stream is a sequence of commands that execute in order; different streams can also execute con-

currently with different priorities. In our design, the inner part, which is the most time-consuming320

part with the largest workload is allocated to stream 1 in which to execute. The east/west outer part

is allocated to stream 2 and the north/south outer part is allocated to stream 3. In the east/west outer

part, the width is set to 32 to ensure coalesced memory access in a warp to improve performance.

The halo part is also allocated to stream 2.

The workflow of multiple streams on the GPU is shown in Fig. 4. The east/west/north/south parts325

are normal kernel functions that can run in parallel with the inner part through different streams. The

communication operations are implemented by cudaMemcpyAsync, which is an asynchronous

CUDA memory copy function. The corresponding synchronization operation between the CPU and

the GPU or among MPI processes are implemented with cudaStreamSynchronize function and

MPI_barrier function. To hide the subsequent communication by the inner part, stream 2 and330

stream 3 for the outer part have higher priority to preempt the computing resource from stream 1 at

any time.

Current CUDA-aware MPI implementation such as MVAPICH2 is not suitable for the “Comm."

part in Fig. 3. We found the two-sided MPI functions MPI_Send and MPI_Recv will block

the current stream so that the concurrency pipeline is broken. The probable cause is synchronous335

cudaMemcpy function is called in the current implementation of MPI_Send and MPI_Recv,

according to Potluri et al. (2012). Moreover, the implementation of non-contiguous MPI datatype

for communication between GPUs is not efficient enough for the gpuPOM. The computation time

of many kernels is about a few hundred microseconds to a few milliseconds while MPI latency for

our message size is about the same, which means the outer part update and communication can not340

be fully overlapped.

From CUDA 4.1, the Inter-Process Communication (IPC) feature has been introduced to facilitate

direct data copy among multiple GPU buffers that are allocated by different processes. The IPC is

implemented by creating and exchanging memory handles among processes and obtaining the device

buffer pointers of others. This feature has been utilised in CUDA-aware MPI libraries to optimise345

communications within a node. Therefore, we decided to implement the communication among mul-

tiple GPUs by calling the low-level IPC functions and asynchronous CUDA memory copy functions

directly, instead of using high-level CUDA-aware MPI functions. Our communication optimizations

among multiple GPUs are mainly implemented with the following two optimizations..

First, we put the phases of creating, exchanging and opening relevant memory handles into the ini-350

tialization phase of the gpuPOM, which is executed only once. This method can remove the overhead

of IPC memory handle operations during each MPI communication operation. The cudaMemcpyAsync

function with the corresponding device buffer pointers of neighbor processes replaces the original

MPI functions.
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the halo part also includes east/west/north/south halos to exchange data with neighbors. In CUDA,

a stream is a sequence of commands that execute in order; different streams can also execute con-

currently with different priorities. In our design, the inner part, which is the most time-consuming320

part with the largest workload is allocated to stream 1 in which to execute. The east/west outer part

is allocated to stream 2 and the north/south outer part is allocated to stream 3. In the east/west outer

part, the width is set to 32 to ensure coalesced memory access in a warp to improve performance.

The halo part is also allocated to stream 2.

The workflow of multiple streams on the GPU is shown in Fig. 4. The east/west/north/south parts325

are normal kernel functions that can run in parallel with the inner part through different streams. The

communication operations are implemented by cudaMemcpyAsync, which is an asynchronous

CUDA memory copy function. The corresponding synchronization operation between the CPU and

the GPU or among MPI processes are implemented with cudaStreamSynchronize function and

MPI_barrier function. To hide the subsequent communication by the inner part, stream 2 and330

stream 3 for the outer part have higher priority to preempt the computing resource from stream 1 at

any time.

Current CUDA-aware MPI implementation such as MVAPICH2 is not suitable for the “Comm."

part in Fig. 3. We found the two-sided MPI functions MPI_Send and MPI_Recv will block

the current stream so that the concurrency pipeline is broken. The probable cause is synchronous335

cudaMemcpy function is called in the current implementation of MPI_Send and MPI_Recv,

according to Potluri et al. (2012). Moreover, the implementation of non-contiguous MPI datatype

for communication between GPUs is not efficient enough for the gpuPOM. The computation time

of many kernels is about a few hundred microseconds to a few milliseconds while MPI latency for

our message size is about the same, which means the outer part update and communication can not340

be fully overlapped.

From CUDA 4.1, the Inter-Process Communication (IPC) feature has been introduced to facilitate

direct data copy among multiple GPU buffers that are allocated by different processes. The IPC is

implemented by creating and exchanging memory handles among processes and obtaining the device

buffer pointers of others. This feature has been utilised in CUDA-aware MPI libraries to optimise345

communications within a node. Therefore, we decided to implement the communication among mul-

tiple GPUs by calling the low-level IPC functions and asynchronous CUDA memory copy functions

directly, instead of using high-level CUDA-aware MPI functions. Our communication optimizations

among multiple GPUs are mainly implemented with the following two optimizations..

First, we put the phases of creating, exchanging and opening relevant memory handles into the ini-350

tialization phase of the gpuPOM, which is executed only once. This method can remove the overhead

of IPC memory handle operations during each MPI communication operation. The cudaMemcpyAsync

function with the corresponding device buffer pointers of neighbor processes replaces the original

MPI functions.
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Figure 5. Communications pattern among multiple GPUs in one node

Second, we take full consideration of the architecture of our platform in which 4 GPUs are con-355

nected with two I/O Hubs (IOHs). As illustrated in Fig. 5, there are two Intel SandyBridge CPUs that

connect two GPUs. Both the CPUs are themselves connected through Intel QuickPath Interconnect

(QPI). Notation 1© means that the communications between GPUs are connected with the same IOH

support Peer-to-Peer (P2P) access. Notation 2© represents the communications in which P2P access

is not supported. If MPI_Rank 0 (context on GPU-0) sends data to MPI_Rank 2 (context on GPU-2),360

rank 0 must switch its context to GPU-2 temporally and opens the corresponding memory handles to

obtain the device buffer pointers of rank 2. For those GPUs that do not support P2P access between

one another, we must switch context to the same GPU before opening the corresponding memory

handles. We then call regular cudaMemcpyAsync functions to fulfill data communications. For

communications between GPUs on the same IOH, the switching context is not necessary. Although365

the function cudaMemcpyAsync is used in the communication of both 1© and 2©, the NVVP soft-

ware shows that 1© does a device-to-device memory copy that bypasses the CPU, whereas 2© does

a device-to-host and a host-to-device memory copy that involves the CPU. The 2-D decomposition

introduced in Fig. 5 is an example to demonstrate our design can easily extend to 8 or more GPUs

within one node.370
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Compute
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data

copy
I/O
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Time

Figure 6. One computing process and one I/O process both set their contexts on the same GPU. During the data

copy phase, the computing process remains idle and the I/O process will copy data from the GPU to the CPU

host through the cudaMemcpy function.

4.3 I/O optimizations between hybrid GPU and CPU

The time consumed for I/O in the original mpiPOM is not significant because the output frequency is

relatively low. However, after we fully accelerate the model by GPU, the I/O overhead, which is ap-

proximately 30% of the total runtime, cannot be ignored. As described in Sec. 4.2, each MPI process

sets its context on one GPU and is responsible for launching kernel functions on this GPU, and the375

CPU is used to collect and output data. In fact, in most climate models, including the mpiPOM, the

computing phase and I/O phase run alternately. In a sense, the computing phase and the I/O phase

are serial, which means that the GPU will remain idle until the CPU finishes I/O operations. Huang

et al. (2014) designed a fast I/O library for climate models and provided automatic overlapping of

I/O and computing. Motivated by their work, we design a method so that computations on GPU and380

I/O operations on CPU can run in parallel.

Because MPI processes are blocked during the output phase and cannot launch kernels to GPUs,

we choose to launch more MPI processes. We divide all the MPI processes into computing processes

and I/O processes with different MPI communicators. The computing processes are responsible for

launching kernel functions as usual, and the I/O processes are responsible for output. One I/O process385

attaches to one computing process and these two processes set their contexts on one single GPU

through cudaSetDevice function. The total number of MPI processes are twice the size they were

before.

Since the I/O processes must fetch data from the GPU, where the data are allocated by the com-

puting processes, communication is necessary between them. Here, we again utilize the feature of390

CUDA IPC, as introduced in Sec. 4.2. Through CUDA IPC, the I/O processes obtain the device

buffer pointers from the computing processes during the initialization phase. When there is a need

to output data, the computing processes are blocked and kept idle for a short time while waiting for

I/O processes to fetch data. Then, the computing processes continue their computation, and the I/O

processes complete their output in the background, as illustrated in Fig. 6.395
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The advantage of this method is that it overlaps the I/O on the CPU with computation on the GPU.

In the serial I/O, the computing processes are blocked while data are brought to the host and written

to disk. In the overlapping I/O, the computing processes wait for the data to be brought to the host.

In addition, the bandwidth of data brought to the host through the PCI-express bus is approximately

6 GBps, but the output bandwidth is approximately 100 MBps, as determined by the disk. Therefore,400

the overlapping method significantly accelerates the entire application.

Note that there are more than 50 kernel functions in the current version of gpuPOM. The main

reason that we have a large number of kernels in gpuPOM is that there exist numerous subroutines

in mpiPOM. Since we port the entire model one subroutine by one subroutine, which is a convenient

way to debug the gpuPOM and to guarantee its bit-by-bit identical results to mpiPOM, we need to405

write a large number of GPU kernels. Further more, we break several subroutines of mpiPOM into

several GPU kernels of gpuPOM in 3 cases: when subroutine B is invoked in subroutine A(illustrated

in Fig. 7(a)), when a MPI function call is invoked in subroutine A(illustrated in Fig. 7(b)), and when

interior array is first written by one thread and later read by adjacent threads, in the mean while

caching this array in shared memory makes no sense(illustrated in Fig. 7(c)). Although function410

fusion has been done as described in Section 4.1 (D), aggressive function fusion to make use of data

locality between functions is a promising optimization(Wahib and Maruyama, 2014). But, a redesign

of the code structure of mpiPOM is needed and it is a part of our future work.

5 Experiments

In this section, we first describe the specification of our platform and comparison methods used to415

validate the correctness of the gpuPOM. Furthermore, we present the performance and scalability of

the gpuPOM on the GPU platform in comparison with the mpiPOM on the CPU platform.

5.1 Platform Setup

The GPU platform used in our experiments is a super workstation computer consisting of two CPUs

and 4 GPUs, as illustrated in Fig. 5. The CPUs are 2.6 GHz 8-core Intel E5-2670 (architecture code-420

named SandyBridge), which can turbo to 3.0 GHz when all 8 cores are utilized. The peak single-

precision performance of the Intel SandyBridge CPU is 384 GFlops and the peak memory bandwidth

is 51.2 GBps. The GPUs are Nvidia Telsa K20X, equipped with 2,688 GPU-cores and 6 GB GDDR5

fast on-board memory. The peak single-precision performance of K20X GPU is 3.95 TFlops and

the peak memory bandwidth is 250 GBps. Therefore, the aggregated performance provided with 4425

GPUs can reach 16 TFlops and 1 TBps memory bandwidth, which is sufficient to execute the general

simulation research for regional ocean models thus far. The operating system is RedHat Enterprise

Linux 6.3 x86_64. The programs on this platform are complied with Intel compiler v14.0.1, Intel

MPI Library v4.1.3 and CUDA 5.5 Toolkit. For the purposes of comparison, the CPU platform used
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CPU code

subroutine A

    statements block A1

    call subroutine B

    statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function  A{

    gpu_kernel_A1<<<grid,block>>>;

    function B();

    gpu_kernel_A2<<<grid,block>>>;

}

CPU code

subroutine A

    statements block A1

    call MPI_function B

    statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function  A{

    gpu_kernel_A1<<<grid,block>>>;

    MPI_function B();

    gpu_kernel_A2<<<grid,block>>>;

}

CPU code

subroutine A

    statements block A1

    statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function  A{

    gpu_kernel_A1<<<grid,block>>>;

    gpu_kernel_A2<<<grid,block>>>;

}

(a)when subroutine B is invoked in subroutine A, A is broken into 

2 small kernels.

(b)when a MPI function call is invoked in subroutine A, A is broken 

into 2 small kernels.

(c)when interior array is first written by one thread and later read 

by adjacent threads, in the mean while caching this array in shared 

memory makes no sense, A is broken into 2 small kernels.

Figure 7. The 3 cases when a subroutine is broken into small kernels.

in our experiments is the Tansuo100 supercomputer at Tsinghua University, which consists of 740430

nodes, each of which has two 2.93 GHz 6-core Intel Xeon X5670 processors and 32 GB memory.

The nodes are connected through an Infiniband network, which provides a maximum bandwidth of

40 Gbps. The node operating system is RedHat Enterprise Linux 5.5 x86_64. All the programs on

this platform are compiled with Intel compiler v11.1, and the MPI environment is Intel MPI v4.0.2.
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The Original mpiPOM code is benchmarked with its initial compiler flags(i.e., -O3 -precise) and also435

with the same Intel compiler. We also use the GPUDirect technology within MVAPICH2 v1.9 to test

the communication effects among multiple GPUs, and compare the results with our implementation.

5.2 The test case and the verification of accuracy

The "dam break" simulation (Oey, 2014) is conducted to verify the correctness and test the per-

formance and the scalability of the gpuPOM. It is a baroclinic instability problem which simulates440

flows produced by horizontal temperature gradients. The model domain is configured as a straight

channel with uniform depth of 50 m. Periodic boundary conditions are used in the east-west direc-

tion, and the channel is closed in the north and south. Its horizontal resolution is 1km×1km. To test

large computational grid, the domain size of this test case is increased to 962× 722 horizontal grid

points and 51 vertical sigma levels, which is limited by the capacity of on-board memory. Initially,445

temperature in the southern half of the channel is 15oC and 25oC in the northern half. The salinity

is fixed at 35 psu. The fluid is then allowed to adjust. In the first 3-5 days, geostrophic adjustments

occurs. Then unstable wave develops due to baroclinic instability. Eventually, eddies are generated.

Figure 8 shows the sea-surface height (SSH), sea-surface temperature (SST), and currents after 39

days. The development of a gravity wave is manifest. Noticeably, The gravity wave is confined in450

the middle of the channel by Rossby radius deformation.

To verify accuracy, we check the binary output files output from the original mpiPOM and the

gpuPOM. This testing method is also used in the GPU-porting of ROMs (Mak et al., 2011). As

introduced in Whitehead and Fit-Florea (2011), the same inputs will give identical results for indi-

vidual IEEE-754 operations except in a few special cases. These cases can be classified into three455

categories: different operations orders, different instructions and different implementations of math

libraries. For the first in our study, the parallelization of the mpiPOM does not change the order of

each floating point operation and we benefit from this. For the second case in our study, the GPUs

have fused multiply-add (FMA) instruction while the CPU does not in our CPU platform. Because

this instruction might cause a difference in the numerical results, we disable FMA instructions with460

the “-fmad=false” compiler flag for the GPUs. For the third case in our study, the value of exponent

used in the GPU has a maximum of 2 rounding errors NVIDIA (2014). Fortunately, in the execution

path of our dam break simulation, the power of the exponent functions remains unchanged over the

entire simulation. Therefore, we accomplish this function on the CPU during the initialization phase

and copy the results to the GPU for later data reuse. The experimental results demonstrate that the465

output variables regarding velocity, temperature, salinity and sea surface height are identical.

5.3 Performance

To understand the advantages of the optimizing methods introduced in Sec. 4, we test the dam break

case with different experiments . The current dam break case uses single-precision format. The
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Figure 8. The model results after 39 days simulation. For the up figure, color shading is the Sea Surface

Height (SSH). Vectors are ocean current. For the low figure, color shading is the Sea Surface Temperature

(SST). Several warm and cold eddies are generated in the middle of the domain where SST gradient is largest.

Noticeably, the gravity wave is confined in the middle of the channel by Rossby radius deformation.
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metrics of seconds per simulation day, which is the walltime it requires to obtain 24 hours in the470

simulation, is measured and used to compare the performance.

In the first experiment, we compare the gpuPOM with the mpiPOM on different hardware plat-

forms, including K20X GPU, the Intel Westmere 6-cores X5670 CPU and the Intel SandyBridge E5-

2670 CPU. Fig. 9 shows that one K20X GPU can compete with approximately 55 Intel SandyBridge

CPU cores or 95 Intel Westmere CPU cores. Obtaining such a speedup on a pure CPU platform is475

reasonable. Taking the SandyBridge CPU platform as an example, the theoretical memory bandwidth

of one 8-core E5-2670 CPU is 51.2 GBps, and the peak single-precision floating point performance

is 384 GFlops with all 8 cores turbo to 3.0 GHz. However, for K20X GPU, the memory bandwidth

and peak single-precision floating point performance are 250 GBps and 3.95 TFlops, respectively.

The approximate ratio of memory bandwidth between one SandyBridge CPU and one K20X GPU480

is 1 : 5, and the ratio of floating points performance between one SandyBridge CPU and one K20X

GPU is 1 : 10. Namely, if an application is strictly memory bound, one K20X GPU can compete

with 5 SandyBridge CPUs. In addition, if an application is strictly computing bound, it can compete

with 10 SandyBridge CPUs. As the mpiPOM is memory bound, according to the memory bandwidth

ratio between the CPU and the GPU, our gpuPOM should provide equivalent performance to 5x8485

= 40 CPU cores. Combining our careful memory optimizations, our final design achieves another

performance boost of 25%, and one GPU provides similar performance to more than 50 Intel 8-core

SandyBridge CPU cores. Compared with Intel Westmere 6-cores CPU, our results provide similar

performance to more than 95 CPU cores.

The performance API tool (PAPI) shows that the performance of the gpuPOM on single K20X is490

107.3Gflops in single-precision for the 962*722*51 grid size. The low performance in Gflops reflects

the memory-bound problem in climate models. Previous work such as time skewing (McCalpin and

Wonnacott (1999); Wonnacott (2000)) can make a stencil computation compute bound by making

use of data locality between different time-steps. However, for real-world climate models including

mpiPOM, the code is usually tens to hundreds of thousands lines and analyzing the dependency495

manually is tough. Designing an automated tool to further analyze and optimize the mpiPOM and

the gpuPOM is a part of our future work.

In the second experiment, we test the communication overlapping method used in the gpuPOM

and compare it with the MVAPICH2. In the current MVAPICH2, the communication and boundary

operations are not overlapping with computing. Fig. 10 shows the weak scaling performance of500

the gpuPOM on multiple GPUs. To maximize performance, the grid size for each GPU is set to

962× 722× 51. When using 4 GPUs with the implementation of MVAPICH2, 18% of the total

runtime is consumed in executing the communication and boundary operations. This overhead does

not exist in our communication overlapping method. Fig. 10 shows that it spends almost the same

time when using different GPUs because the communication and boundary operations are almost505

fully overlapped with the inner part of the computation.
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Figure 10. The weak scaling test between our communication overlapping method and the MVAPICH2 sub-

routines.

In the third experiment, we test the efficiency of the gpuPOM on multiple GPUs. Table 2 shows the

strong scaling result of the gpuPOM on multiple GPUs. We fix the global grid size at 962×722×51

and increase the amount of GPUs gradually. The results show that the strong scaling efficiency is

99% on 2 GPUs and 92% on 4 GPUs. A smaller subdomain will decrease the performance of the510

gpuPOM in two aspects. First, communication time can easily exceed the computation time in the

inner part and cannot be overlapped. As the subdomain size decreases, the inner part computation
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time decreases, but the communication time will not decrease because latency is the dominant factor.

Second, the latency of kernel launching and overhead of implicit synchronization after kernel exe-

cution will not decrease. There are a series of small kernels in the gpuPOM, and the execution time515

is close to launching latency and synchronization overhead. When the subdomain size decreases, the

impact of these delays expands.

Table 2. The strong scaling result of gpuPOM

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time(s) 97.2 48.7 26.3

Efficiency 1.00 0.99 0.92

In the fourth experiment, we test the performance of the I/O overlapping method and compare

it with the default parallel NetCDF (PnetCDF) method and NO-I/O method. NO-I/O means that

all I/O operations are disabled in the program and the time measured is the pure computing time.520

We simulated the experiment for 20 days and output the history files daily in the netCDF format.

The variables included in the output netCDF files are 2-dimensional arrays of size 722× 482 and

3-dimensional arrays of size 722× 482× 51. The final history files are approximately 12 GB. Fig.

11 shows that the I/O overlapping method outperforms the default PnetCDF method. For 1 GPU and

2 GPUs, the overall runtime decreases from1694/1142 seconds to 1239/688 seconds, which is close525

to the NO-I/O method. The small difference between our design and NO-I/O is that the computing

processes must be blocked until I/O processes bring data from the GPU. For the case of 4 GPUs, the

output time is longer than computational time because the latter is fast and the I/O time is relatively

large such that the I/O phase cannot fully overlap with the computing phase. The overall runtime

equals the sum of the computation time and the non-overlapped I/O time.530

In the last experiment, we test different workloads with the gpuPOM and compare the results

with the mpiPOM on Tansuo100 platform. The available global grid size are choosen from the

three different high-resolution sets (Grid-1: 962×722×51, Grid-2: 1922×722×51, Grid-3: 1922×
1442× 51). Fig. 12 shows that our workstation with 4 GPUs is comparable to a powerful cluster

with 408 CPU cores (34 nodes * 12 cores/node) for the simulation of mpiPOM. Since the Thermal535

Design Power(TDP) of one X5670 CPU(6-cores) is 95W and that of one K20X GPU is 235W, it

means using 4 GPUs brings 6.8 times less energy consumption compared with 408 CPU cores. Small

subdomains will decrease the performance of the gpuPOM as discussed in the strong scaling test,

but it may greatly benefit the mpiPOM on the CPU. The last level cache of one SandyBridge CPU in

our platform is 20 MB, whereas that of K20X GPU is only 1.5 MB. As the subdomain size for each540

MPI process decreases, the cache hit ratio will increase on a pure CPU platform, which can surely

improve the performance especially for the memory-bound problem. However, for the simulation on

408 CPU cores, the MPI communication time may occupy more than 40% of total execution time.
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Figure 11. I/O Test for gpuPOM

With the number of cores increasing to over 450, the execution time may increase instead, as shown

in Fig. 12. As a result, our GPU solution has an overwhelming advantage compared to the CPU545

because the communication overhead is less expensive and overlapped.
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6 Code availablity

The gpuPOM used to simulate the regional ocean dynamic and physical process releases with the

version 1.0 series, which is freely available at https://github.com/hxmhuang/gpuPOM. Note that

the testing script "run_exp002.sh" can be downloaded to compile and execute the codes, and to550

reproduce the test case.

7 Conclusions

In this paper, we provide a full GPU accelerated solution of POM. Unlike partial GPU porting, such

as WRF and ROMs, the gpuPOM does all the computations on the GPU. The main contribution of

our work includes a better use of state-of-the-art GPU architecture, particularly regarding the mem-555

ory subsystem, a new design of a communication and boundary operations overlapping approach

and a new design of an I/O overlapping approach. With the workstation with 4 GPUs, we achieve

over 400x speedup against a single CPU core, and provide equivalent performance to a powerful

CPU cluster with more than 400 cores and reduce the energy consumption by 6.8 times. This work

provides cost-effective and efficient ways in ocean modeling.560

Acknowledgements. This work is supported in part by a grant from the Natural Science Foundation of China(41375102),

the National Grand Fundamental Research 973 Program of China (No. 2014CB347800), and the National High

Technology Development Program of China (2011AA01A203).

25



This page contains no comments



References

Allen, J. S. and Newberger, P. A.: Downwelling Circulation on the Oregon Continental Shelf. Part I:565

Response to Idealized Forcing, Journal of Physical Oceanography, 26, 2011–2035, doi:10.1175/1520-

0485(1996)026<2011:DCOTOC>2.0.CO;2, 1996.

Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure gradient in σ-coordinate ocean models: compar-

ison of second-, fourth-, and sixth-order schemes, Ocean dynamics, 60, 317–330, 2010.

Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic numerical circulation studies of the South Atlantic570

Bight, Journal of Geophysical Research: Oceans (1978–2012), 88, 4579–4592, 1983.

Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean circulation model, Coastal

and estuarine sciences, 4, 1–16, 1987.

Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P.: A portable programming interface for performance

evaluation on modern processors, International Journal of High Performance Computing Applications, 14,575

189–204, 2000.

Carpenter, I., Archibald, R., Evans, K. J., Larkin, J., Micikevicius, P., Norman, M., Rosinski, J., Schwarzmeier,

J., and Taylor, M. A.: Progress towards accelerating HOMME on hybrid multi-core systems, International

Journal of High Performance Computing Applications, 27, 335–347, 2013.

Chapman, B., Jost, G., and Van Der Pas, R.: Using OpenMP: portable shared memory parallel programming,580

vol. 10, The MIT Press, 2008.

Ezer, T. and Mellor, G. L.: A numerical study of the variability and the separation of the Gulf Stream, induced

by surface atmospheric forcing and lateral boundary flows, Journal of physical oceanography, 22, 660–682,

1992.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tuleya, R., Yablonsky, R., and Zhang, X.:585

Hurricane Weather Research and Forecasting (HWRF) model scientific documentation, L Bernardet Ed, 75,

2010.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tong, M., Tallapragada, V., Tuleya, R., Yablon-

sky, R., and Zhang, X.: Hurricane Weather Research and Forecasting (HWRF) model: 2011 scientific docu-

mentation, L. Bernardet, Ed, 2011.590

Govett, M., Middlecoff, J., and Henderson, T.: Running the NIM next-generation weather model on GPUs,

in: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.

792–796, IEEE, 2010.

Gropp, W. D., Lusk, E. L., and Thakur, R.: Using MPI-2: Advanced features of the message-passing interface,

vol. 2, Globe Pequot, 1999.595

Guo, X., Miyazawa, Y., and Yamagata, T.: The Kuroshio Onshore Intrusion along the Shelf Break of the East

China Sea: The Origin of the Tsushima Warm Current., Journal of Physical Oceanography, 36, 2006.

Henderson, T., Middlecoff, J., Rosinski, J., Govett, M., and Madden, P.: Experience applying Fortran GPU

compilers to numerical weather prediction, in: Application Accelerators in High-Performance Computing

(SAAHPC), 2011 Symposium on, pp. 34–41, IEEE, 2011.600

Huang, X., Wang, W., Fu, H., Yang, G., Wang, B., and Zhang, C.: A fast input/output library for high-resolution

climate models, Geoscientific Model Development, 7, 93–103, 2014.

26



This page contains no comments



Isobe, A., Kako, S., Guo, X., and Takeoka, H.: Ensemble numerical forecasts of the sporadic Kuroshio water

intrusion (kyucho) into shelf and coastal waters, Ocean Dynamics, 62, 633–644, 2012.

Jordi, A. and Wang, D.-P.: sbPOM: A parallel implementation of Princenton Ocean Model, Environmental605

Modelling & Software, 38, 59–61, 2012.

Kagimoto, T. and Yamagata, T.: Seasonal transport variations of the Kuroshio: An OGCM simulation, Journal

of physical oceanography, 27, 403–418, 1997.

Korres, G., Hoteit, I., and Triantafyllou, G.: Data assimilation into a Princeton Ocean Model of the Mediter-

ranean Sea using advanced Kalman filters, Journal of Marine Systems, 65, 84–104, 2007.610

Kurihara, Y., Bender, M. A., Tuleya, R. E., and Ross, R. J.: Improvements in the GFDL hurricane prediction

system, Monthly Weather Review, 123, 2791–2801, 1995.

Kurihara, Y., Tuleya, R. E., and Bender, M. A.: The GFDL hurricane prediction system and its performance in

the 1995 hurricane season., Monthly weather review, 126, 1998.

Leutwyler, D., Fuhrer, O., Cumming, B., Lapillonne, X., Gysi, T., Lüthi, D., Osuna, C., and Schär, C.: Towards615

Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO

Regional Model, in: EGU General Assembly Conference Abstracts, vol. 16, p. 11914, 2014.

Lin, X., Xie, S.-P., Chen, X., and Xu, L.: A well-mixed warm water column in the central Bohai Sea in summer:

Effects of tidal and surface wave mixing, Journal of Geophysical Research: Oceans (1978–2012), 111, 2006.

Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core acceleration of chemical kinetics for620

simulation and prediction, in: Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis, p. 7, ACM, 2009.

Mak, J., Choboter, P., and Lupo, C.: Numerical ocean modeling and simulation with CUDA, in: OCEANS 2011,

pp. 1–6, IEEE, 2011.

McCalpin, J. and Wonnacott, D.: Time skewing: A value-based approach to optimizing for memory locality,625

Tech. rep., Technical Report DCS-TR-379, Department of Computer Science, Rugers University, 1999.

Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather prediction, Parallel Processing

Letters, 18, 531–548, 2008.

Newberger, P. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for applica-

tion in the surf zone: 1. Formulation, Journal of Geophysical Research: Oceans (1978–2012), 112, 2007a.630

Newberger, P. A. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for appli-

cation in the surf zone: 2. Application to DUCK94, Journal of Geophysical Research-Oceans, 112, 2007b.

NVIDIA: CUDA C Programming Guide Version 5.5, available at http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html, 2014.

Oey, L., Chang, Y.-L., Lin, Y.-C., Chang, M.-C., Xu, F.-H., and Lu, H.-F.: ATOP-the Advanced Taiwan Ocean635

Prediction System based on the mpiPOM Part 1: model descriptions, analyses and results, Terr Atmos Ocean

Sci, 24, 2013.

Oey, L.-Y.: A wetting and drying scheme for POM, Ocean Modelling, 9, 133–150, 2005.

Oey, L.-Y.: Geophysical Fluid Modeling with the mpi version of the Princeton Ocean Model

(mpiPOM). Lecture Notes, 70 pp, ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/640

GFModellingUsingMpiPOM.pdf, 2014.

27



This page contains no comments



Oey, L.-Y. and Chen, P.: A model simulation of circulation in the northeast Atlantic shelves and seas, Journal

of Geophysical Research: Oceans (1978–2012), 97, 20 087–20 115, 1992a.

Oey, L.-Y. and Chen, P.: A nested-grid ocean model: With application to the simulation of meanders and ed-

dies in the Norwegian Coastal Current, Journal of Geophysical Research: Oceans (1978–2012), 97, 20 063–645

20 086, 1992b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part I:

Description of the model and model simulations, Journal of Physical Oceanography, 15, 1676–1692, 1985a.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part

II: Comparison with observation, Journal of Physical Oceanography, 15, 1693–1709, 1985b.650

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part

III: Salt flux analyses, Journal of physical oceanography, 15, 1711–1720, 1985c.

Oey, L.-Y., Lee, H.-C., and Schmitz, W. J.: Effects of winds and Caribbean eddies on the frequency of Loop

Current eddy shedding: A numerical model study, Journal of Geophysical Research: Oceans (1978–2012),

108, 2003.655

Potluri, S., Wang, H., Bureddy, D., Singh, A. K., Rosales, C., and Panda, D. K.: Optimizing MPI Communi-

cation on Multi-GPU Systems Using CUDA Inter-Process Communication, in: Parallel and Distributed Pro-

cessing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pp. 1848–1857,

IEEE, 2012.

Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., Nukada, A., Maruyama, N., and Mat-660

suoka, S.: An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather model ASUCA

production code, in: High Performance Computing, Networking, Storage and Analysis (SC), 2010 Interna-

tional Conference for, pp. 1–11, IEEE, 2010.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosystem model spin-up using transport matrices

to GPUs, Geoscientific Model Development Discussions, 5, 2179–2214, 2012.665

Smolarkiewicz, P. K.: A fully multidimensional positive definite advection transport algorithm with small im-

plicit diffusion, Journal of Computational Physics, 54, 325–362, 1984.

Volkov, V.: Better performance at lower occupancy, in: Proceedings of the GPU Technology Conference, GTC,

vol. 10, 2010.

Wahib, M. and Maruyama, N.: Scalable kernel fusion for memory-bound GPU applications, in: Proceedings670

of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp.

191–202, IEEE Press, 2014.

Whitehead, N. and Fit-Florea, A.: Precision & performance: Floating point and IEEE 754 compliance for

NVIDIA GPUs, rn (A+ B), 21, 1–1874919 424, 2011.

Williams, S., Waterman, A., and Patterson, D.: Roofline: an insightful visual performance model for multicore675

architectures, Communications of the ACM, 52, 65–76, 2009.

Wonnacott, D.: Using time skewing to eliminate idle time due to memory bandwidth and network limitations,

in: Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pp.

171–180, IEEE, 2000.

Xu, F.-H. and Oey, L.-Y.: The origin of along-shelf pressure gradient in the Middle Atlantic Bight, Journal of680

Physical Oceanography, 41, 1720–1740, 2011.

28



This page contains no comments



Xu, F.-H., Oey, L.-Y., Miyazawa, Y., and Hamilton, P.: Hindcasts and forecasts of Loop Current and eddies in

the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation

schemes, Ocean Modelling, 69, 22–38, 2013.

Yang, C., Xue, W., Fu, H., Gan, L., Li, L., Xu, Y., Lu, Y., Sun, J., Yang, G., and Zheng, W.: A peta-scalable CPU-685

GPU algorithm for global atmospheric simulations, in: Proceedings of the 18th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pp. 1–12, ACM, 2013.

Yin, X.-Q. and Oey, L.-Y.: Bred-ensemble ocean forecast of Loop Current and rings, Ocean Modelling, 17,

300–326, 2007.

Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean Sea circulation, Journal of Physical690

Oceanography, 25, 1384–1414, 1995.

Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling system: a nested approach, Annales Geophysicae,

21, 345–364, 10.5194/angeo-21-345-2003, 2003.

Zhenya, S., Haixing, L., Xiaoyan, L., et al.: The Applica tion of GPU in Ocean General Circulation Mode POP,

Computer Applications and Software, 27, 27–29, 2010.695

(R1)

29



This page contains no comments




