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and tried to make every computer term clear and simple.
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Abstract. Rapi e nth man he oranhics ssing -
the-GPU-a—compellingselutionfor—a—series—ofscientificapplieations—Graphics Processing Units

GPUs) is an attractive solution in many scientific applications due to its high performance. How-

ever, most existing GPU a

conversions of climate models use GPUs for only a few computationally intensive regions. In the
resent study, we redesign the mpiPOM (a parallel version of the Princeton Ocean Model) as-our

NOTR decion ndi1mplemen b, h ad Princatan (Yonan N/

from—the—original-Fortran—verston—into-with GPUs. Specifically, we first convert the model from
its original Fortran form to a new Compute Unified Device Architecture C (CUDA-C) version:

T P ha Mmprove—the—performance—e o PON A dino

ameng-multiple-code, then we optimise the code on each of the GPUs, the communications between
the GPUs, and overlapping—input/ontput<the I/O )-betweenthe-hybridCentral ProcessingUnit

(CPWand-the GPU-Ourexperimentalresults-indieate-between the GPUs and the Central Processin

Units (CPUs). We show that the performance of the gpuPOM-new model on a workstation contain-
ing 4 GPUs is comparable to that on a powerful cluster with 408 €PU-eores-standard CPU cores

ARARAANARARAARARAR I

and it reduces the energy consumption by a factor of 6.8times.

1 Introduction

High-resolution atmospheric, oceanic and forelimate-medelingremains-a—climate modelling remain
significant scientific and engineering challenge-challenges because of the enormous computing, com-
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Table 1. Existing GPU porting work in climate fields. The speedups are normalized to one CPU core.

WRE Weather research and forecasting WSMS microphysics 8
FOP, Parallel ocean program Loop structures 22
COSMO_ Consortium for small-scale modelling Dynamical core 227,
NIM Non-hydrostatic icosahedral model Dynamical core 34
ASUCA Non-hydrostatic weather model  Dynamical core & physical 80

munication, and storage requirements —With-involved. Due to the rapid development of computer ar-
chitecture, in particular the development of multi-core and many-core technigueshardware, the com-
puting power that can be applied to scientific problems has increased exponentially in recent decades.
Seme-parallel-computing-techniquesParallel computing methods, such as the Message Passing Inter-
face (MPI, [Gropp et al] (1999)) and Open Multi-Processing (OpenMP, [Chapman et al.| (2008)) have

been widely used to support the parallelization of numereus-climate models. Moreover;-as-modern

different-aceelerating-However, supercomputers are becoming increasingly heterogeneous involvin
devices such as the GPU %he%mmmwﬂﬁegfateekeef&and the Intel Many Integrated Core (In-

,.and new

hardware.

In recent years, a number of scientific codes have been ported to the GPU —Different-levels-of

speeelup—wefe—aehieveéﬁas shown in Table [Il Most existing GPU acceleration codes for climate

significant portion of the program still running on CPUs. The speed of some subroutines reported in
the Weather Research and Forecast (WRF) model-with-a-speedup-of-nearly25x;-but-the-entire- WRE
modelis-sped-up-by—(Michalakes and Vachharajanil 2008) and WRF-Chem(Linford et al., 2009) is
improved by a factor of approximately 8 whereas the whole model achieves limited speedup because
WMMWMM only +23x%
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2.2 because the model only accelerated a number of loop structures using the OpenACC Application
Programming Interface (OpenACC API);-whichused-simple-compiler-directivesto-aceelerate-some
I A netHon o ale atha na o aqn o " (POP

everall-performance. The speed of COSMO(Leutwyler et all 2014) . NIM(Govett et al., 2010) and
ASUCA (Shimokawabe et all, 2010) are greatly improved by multiple GPUs. We believe that the
elaborate optimization of the memory access of each GPU and the communication between GPUs
can further accelerate these models.

The objective of our study is-was to shorten the high-computation time of high-resolution-ocean
modelsby-paratielizing their the Princeton Ocean Model (POM) by parallelizing its existing model
structures using the GPU. Taking the parallel version of the Princeton Ocean Model (mpiPOM)as
anexample, we demonstrate how to parattelize-code an ocean model to-make-itrun-efficientty ona
so that it runs efficiently on GPU architecture. Using-the-state-of-the-art- GPU-architeeture;-we-We.

first convert the mpiPOM from its original Fortran version into a new Compute Unified Device Ar-

chitecture C (CUDA-C) version, POM.gpu-v1.0. CUDA-C is the dominant programming language
for GPUs. We cal-the-new-verstonepuPOMI-0-Thenwe-desten-andimplement-several-optimizi
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execute-coneurrently-between GPUs and the CPUs to further improve the performance of POM.gpu.

To understand the accuracy, performance and scalability of the epuPOM;-we-build-a-customized
POM.gpu code, we customized a workstation with four GPU-Nvidia K20X deviees—inside—TFhe

experimental-GPUs. The results show that the performance of the-gpuPOM-POM.gpu running on
this workstation is comparable to that on a powerful cluster with 408 standard CPU cores.

Fhe-This paper is organized as follows. In Section 2] we review the mpiPOM model. In Section[3]

we briefly introduce the GPU computing model. In Section (4] we present defaﬂeé«teehmqﬂes—abeu{

results-abeut-the detailed optimization techniques. In Section [5| we report on the correctness, per-
formance and scalability in-SeetionfBlof the model. We present the code availability in Section [6]and

conclude our work in Section [7]

2 The mpiPOM

The mpiPOM is a parallel version of the Princeton-Ocean-ModeHPOM)-thatis-based-on-MPIPOM.
It retains most of the physics package-of the original POM (Blumberg and Mellor, 1983} [1987; Oey

et al}[1985al bl /c;[Oey and Chen| [19924, b), butinetudesatso-and includes satellite and drifter assim-

ilation schemes from the Princeton Regional Ocean Forecast System (]Oey|, 2003} |L1n et all, 2006}

Yin and Oey},[2007), «
drift——stokes drift and wave-enhanced mixingand-tecalized-Ensemble-TransformKalmanFilter

{Oey-etal; 203 Xa-etal2613)-(Oey et all 2013} Xu et al 2013} [Xu and Oey}, 2014) . The POM

code was reorganized and MPkthe parallel MPI version was implemented by Jordi and Wang|(2012)
using a two-dimensional data decomposition of the horizontal domainwith-a-hale-of-ghesteells. The

MPI is a standard library for message passing and it is widely used to develop parallel programs.The

POM is a powerful ocean model that has been used in a wide range of applications: circulation and

mixing processes in rivers, estuaries, shelf-and-slope;-shelves, slopes, lakes, semi-enclosed seas and
open and global oceans. It is also at the core of various real-time ocean and hurricane forecasting
systems, for-examples:Japan-e.g., the Japanese coastal ocean and Kuroshio {fsebe-et-al 2012
Adiratie-current (Miyazawa et al.| 2009} [sobe et al.l 2012; [Varlamov et al.,[2013)) ; the Adriatic Sea
[Forecasting System (Zavatarelli and Pinardi, 2003); the Mediterranean Sea forecasting system (Kor-|
2007); the GFDL Hurricane Prediction system (Kurihara et al.,[1995][1998), the US’ Hur-
ricane Forecasting System (Gopalakrishnan et al.}[2010,[2011)) and the Advanced Taiwan Ocean Pre-
diction system 2013). Additionally, the model has been used to study various geophysical

fluid dynamical processes (e.g




[Allen and Newberger} [1996; Newberger and Allenl [2007al [b; Kagimoto and Yamagatal [1997;Guo et al.} 2006} [Oey et al.l 2003} [Za
For a more complete list, please visit the POM website (http://www.ccpo.odu.edu/POMWEB).

125 The mpiPOM experiment that-is-used in this paper is one of the-twe-two that were designed
and tested by Professor Oey and students; the codes and results are freely available at the FTP
site (ftp://profs.princeton.edu/leo/mpipom/atop/tests/). The reader can see-refer to Chapter 3 of the
EeetureNotes-lecture notes (Oey} for more detail. The test case is a dam-break problem
in which warm and cold waters are initially separated in the middle of a zonally periodic chan-

130 nel 200km-<-50km=-50m-(200km x 50km x 50m) on an f-plane, with walls at the northern and
southern boundaries. Geostrophic adjustment then ensues and baroclinic instability waves amplify
and develop into finite-amplitude eddies in 10~20 days. The horizontal grid sizes are 1 km and there
are 50 vertical sigma levels. Although the problem is a test case, the code is the full mpiPOM version
thatis-used in the ATOP forecasting system.

135 The model solves the primitive equation under hydrostatic and beussinesg-Boussinesq approxima-
tions. In the horizontal, spatial derivatives are computed either using eentered-spaee-centred-space
differencing or Smolarkiewicz’s positive definite advection transport algorithm (Smolarkiewicz,
on a staggered Arakawa C-grid; both schemes have been tested, but the latter is reported here.

In the vertical, the mpiPOM supports terrain-following sigma coordinates and a fourth-order scheme

140 option to reduce the internal pressure-gradient errors (Berntsen and Oeyl, [2010). The mpiPOM uses

the time-splitting technique to separate the vertically integrated equations (external mode) from the
vertical structure equations (internal mode). The external mode calculation is responsible for updat-
ing the surface elevation and the-vertically averaged velocities. The internal mode calculation results
in-updates—for-updates the velocity, temperature and salinity, as well as the turbulence quantities.
145 The three-dimensional internal mode and the two-dimensional external mode are both integrated
explicitly using a second-order leapfrog scheme. These two modules are the most computationally

intensive kernels of the mpiPOM model.

150

main computational problem of the mpiPOM is memory bandwidth limited. To confirm this issue, we
use the runtime performance API tool to estimate the floating point operation count and the memor
access instruction count, as in[Browne et al. (2000) . The results reveal that the computational intensity,

155 defined as floating point operations per byte transferred to or from memory, of the mpiPOM is
approximately 1:3.3, whereas the computational intensity provided by a modern high-performance
CPU (an Intel SandyBridge E5-2670) is 7.5:1. Many large arrays are mostly pulled from main


http://www.ccpo.odu.edu/POMWEB
ftp://profs.princeton.edu/leo/mpipom/atop/tests/

memory and there is poor data reuse in the mpiPOM. In addition, there are no obvious hot spot
functions in the mpiPOM., and even the most time-consuming subroutine occupies only 20% of

160  the total execution time. Therefore, porting a handful of subroutines to the GPU is not helpful in
improving the model efficiency. This explains why we must port the entire program from the CPU
to the GPU.

Trthe-GPU-hardware-design;-there-are numereus-

3 GPU computing model overview

165 Modern GPUs employ a stream-processing model with parallelism. Each GPU contains a number

of stream multiprocessors (SMs)g

this work, we carried out the conversion using four Nvidia’s K20X GPU-we-used-has-GPUs. Each

K20X GPU contains 14 SMs and each SM has 192 €EGDA-ceresforsingle-precision-operation—One
K20X-GPU-ean-achieve 3.93TFlops single precision processors and 64 additional processors for
170 double precision. Although the computational capability of each processor is low, one GPU with
thousands of processors can greatly boost the performance compared to the CPU. In computing,
FLOPS (FLoating-point Operations Per Second) is a measure of computer performance. The the-
oretical peak performance with-single-precisionfloating-point-and-250GBof each K20X GPU is
3.93 teraFLOPS (TFLOPS, one trillion floating-point operations per second) for the single precision
175 floating-point calculations. In contrast, a single Intel SandyBridge E5-2670 CPU is only capable of
0.384 TELOPS.
Each pair of GPUs shares 6 Gigabytes (GB) of memory, with the interface having a potential
Mﬁlﬁ/smm@ryb&&d%&%h Flgureﬁl illustrates the memory hlerarchy of the K20X
GPU. Each SM has- § e § i

180 Wafp-sehedtﬁef&—&ﬂd—vaﬂeuﬁmmon -chip faster-memoriessuch-asregistersmemory
W L1 cache/, shared memory and te*mfeedehe%ﬁeuseﬂ-ehme&ehes—pfewdes—mefe

registers-which-are-the fastestmemory-in-the GPU-memeory-hierarehyread-only data cache. In GPUs
the register is the fastest memory, of which the size is 256 Kilobytes (KB) for each SM. The shared

185 memory and the L1 cache sha

options-such-use the common 64 KB space which can be partitioned as 16/48KB48 KB, 32/32KB
32 KB or 48/16 KB. In-addition-there-are-The 48 KB read-only data cache which-add-thefeature
i he—is useful for holdin

frequently used values that remain unchanged during each stage of the processing.
190 There are three common-methods 3 oram M Ywidely used methods for

porting a program to GPUs. The first method uses drop-in libraries provided by CUDA to replace the
existing code, such-as-the-work-implemented-by-as in Siewertsen et al.| (2012). The second method
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Figure 1. The hierarchy of stream, kernel, block, warp and thread.

uses simple-OpenACC directive as hints in the original CPU code ;such-as-the-work-implemented
by-as in [Zhenya et al.| (2010). The last method +-is the most complex but also the most effective;

rewrites-the-whele-program-with— it involves rewriting the entire program using low level CUDA
subroutines.

In CUDA terminology, a kernel is a single section of code or subroutine running on the GPU.
Each-kerneHaunch-econsists-of-a-large number-of-threads-and-these-The underlying code in a kernel

is split into a series of threads each of which deals with different data. These threads are grouped into
equal size blecks-whieh-thread blocks that can be executed independently. Each-A thread block is

further divided into warps ;-which-eonsistas basic scheduled units. A warp consists of 32 consecutive
threads —Fhreads-in-a-warp-that execute the same instruction simultaneouslyand-ean-be-scheduled
as-a-whele-unit—KerneHunetion-, Each kernel and data transfer eemmands-command in CUDA has
an optional parameter “stream-ID-~H-"stream-1D"is-declared “stream ID”. If the “stream ID” is set
in code, commands belonging to different streams can be executed concurrently. His-tsuatty—used

elsA stream in CUDA is a

sequence of commands executed in order. Different streams can execute concurrently with different
priorities. Figure [illustrates the hierarchy of these terms.

At present, there-are-two-CHUDAplatferms-to-sappert CUDA compilers are available for C and
Fortranrespeetively,—which-are - CUDA-C-and-CUDA-Fertran. Although CUDA-Fortran eempiler
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has been available since 2009 and that-ecanbring-aboutless—modification—to-would involve less
modification of the mpiPOM code, we stitt-choose-chose CUDA-C at-the-gpuPOM}to convert the

POM.gpu-v1.0 because of the following reasons: 1) CUDA-C is free of chargewhile-CUDA-Fortran
for-one-workstation-costs-more-than-$1000—; 2) Previeus-work(Hendersonetall20H)-show-that
(Henderson et al.l 2011) has shown that the CUDA-Fortran compiler dees-did not perform as well

as the manually—eenverted-CUDA-C version in—semekernels—for some of the kernels during the
orting of NIM; 3) The-the read-only data cache utilization-is not supported in-by CUDA-Fortran,

which is the key optimization of Section d-HA)-4.1.2 and 4) We-have-already-had-alotofprevious
experiencesfor deep-optimizations we have many previous optimisation experiences with CUDA-C.

4 Full GPU acceleration of the mpiPOM

Figure'f}}ustfafes—the—ﬂewehaft—ef—megpuPQMis a flowchart illustrating the structure of POM.gpu.
The main difference between mpiPOM-and-gpuPOM-the mpiPOM and the POM.gpu is that the
CPU in gpuPOM-the POM.gpu is only responsible for the initializing work-and-the-outputting-and

the output work. The gpuPOM-begins-with-POM.gpu begins by initializing the relevant arrays on
the CPU hest-and then copies data from the-CPU-hest-CPU to the GPU. The GPU dees-all-the

~then performs all of the model computations,
Outputs such as velocity and sea surface height, are copied back to the CPU hest-and-and are then

written to the disk at a user-specified time interval.

multiprecessorthe following sections, we introduce the optimizations of the POM.gpu by computation,
communication and I/O aspects individually.
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For the individual GPUs, we concentrate on memory access optimization by making better use
of caches in the GPU memory hierarchy. This involves using read-only data cache, local memory.
blocking, loop fusion, function fusion, and disabling error-correcting code memory. The test results
demonstrate that a single GPU can run the model almost one hundred times faster than a single CPU

Finalty,we deseribe-the design-of terms of communication, we overlapped the sending of boundary
data between the GPUs with the main computation. Data is also sent directly between the GPUs,
bypassing the CPU.

In terms of /O, we launched extra MPI processes on the main CPU to output the data. These MPL
processes are divided into two categories, the computation processes and the I/O processes. The
computation processes are responsible for launching kernels into GPUs and the I/O evertapping for
hybrid-CPU-and-GPU-arehiteeture-processes are responsible for copying data back from the GPUs
and for writing to disks. The computation processes and the I/O processes can execute simultaneously
to saye output time.

4.1 Computational optimizations in a single GPU

Managing the significant performance difference between eff-chip-global memory and on-chip fast
memory is the primary concern ef-a-GPY-programmer—for GPU computing. The ratio of bandwidth
between global memory and shared memory is approximately 1:10. Therefore, data reuse in on-chip
cache always needs to be seriously considered. As shown on the right side of Fig. @ We propose
five-key-optimizations—to—fullyutilize-the faster-on-chip-memeory—of-two classes of optimization,
including the standard optimization of fusion and the GPU-and-deseribe-therelationships-between-the

and caches.

4.1.1 Standard optimizations of fusion

Fusion optimization in the foHowing:POM.gpu code includes loop fusion and function fusion. The

loop fusion merges several loops into one loop and the function fusion merges several subroutines
into one subroutine.

fusion is an effective method to store scalar variables in registers for data reuse. As shown in Fig.
Bl if the variable drhox(k, j, i) is read several times in multiple loops, we can fuse these loops into
one. Therefore, drhox(k, j, i) will first be read from the global memory and then repeatedly read
from a register. For instance, for the profg kernel optimized with loop fusion, the device memory
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Figure 2. gpuPOM-POM . gpu flowchart

transactions decrease by 57%, and the running speed of this kernel is improved by 28.6%. The loo

fusion optimization can also be applied in a number of mpiPOM subroutines.

Similar to loop fusion, we can also merge functions in which the same arrays are accessed. For

example, the advv and advu functions in the mpiPOM code are used to calculate the advection

terms in horizontal directions, respectively. After merging them into one subroutine, the redundant
memory access is avoided. The function fusion can also be applied in which one function is called
several times to calculate different tracers. The proft function in the mpiPOM code is called twice
~ one for temperature and one for salinity. Their computing formulas are similar and some common

10
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Figure 3. The memory hierarchy of the K20X GPU and the relationships with each eptimizationsoptimization

/ /
*There exist two loops. *These loops can be fused into one
*drhox is visited twice in these loops. *to reduce global memory access.
/ /

for (k =1; k < nz-1; k++){ for (k=1; k < nz-1; k++){

drhox[K][j][i] = drhox[k-1]101[i] + AIKIGILT; drhox[K][][i] = drhox[k-1]G][i] + AKIGI[T;
} drhox[k-1][j][i] = drhox[k-1][i][i] * B[k-1]1G][];

}

for (k = 0; k< nz-1; k++){

drhox[K][j][i] = drhox[K][1[i] * BLKIGI[T; drhox[k-1][j][i] = drhox[k-1][j][i] * B[k-1][I[il;
}

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 4. A simple example of loop fusion.

290 arrays are accessed. After function fusion, the running speed of the proft kernel is improved b

4.1.2 Special optimizations of the GPU

Our special optimizations mainly focus on the improved utilization of the read-only data cache

295  be-automaticalty-enabled-andutilized-and the L1 cache on the GPU. It is useful to alleviate the
bottleneck of memory bandwidth that is limited by using these fast on-chip caches.

11
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There is a 48KB read-only data cache in the K20X GPU. We can automatically use this as long
as certatn-conditions—are-met—We-the read-only condition is met. In the POM.gpu, we simply add

“const __restrict__"—qualifiers-te-"_qualifiers into the parameter pomters wgpuPGM%&e*phelﬂy

to explicitly direct the compiler to implement the optimization. As an example, consider the cal-
culations of advection and the horizontal diffusion terms. Because mpiPOM adopts the Arakawa

the - . . . : . )

additionto-the-value-of-velocity of latitude(v) and the horizontal kinematic viscositys(aam;—from
four-neighboring-) on the neighbouring grid points. In one time-step;-the-arrays-of-kernel, the u and
v must-be-arrays are accessed twice, and the aam array must-be-is accessed four times. Therefore-it
is-natural-to-use-the-After using read-only data cache to improve the data localityef-gpuPOM-—This

optimization-improves-the-performanee-of-thispart, the running speed of this kernel is improved by
18.8%.

parallel-computingTo reuse the data in each thread, we use local memory blocking to pull the data
from global memory to the L1 cache. In this method, a small subset of a dataset is loaded into the

fast on-chip faster-memory-te-g-the LHA-2-eache-in-the- GPU-and-the- €CPY)-and-memory and then
the small data block is repeatedly accessed by the program.ttis-helpful-to-reduee-This method is

helpful in reducing the need to access the off-chip with high latency memoryfe—g-—global-memery

For-the-subroutines—abeut-. In the subroutines of the vertical diffusion and source/sink terms,
the chasing method is used to solve a tridiagonal matrix along the vertical direction for each grid

point individually.

as—ee;—gg;-that-stere-Each thread only accesses its own tiles of row transformation coefficientsare

In-the-chasing-method;—theselocal-arrays—are accessed twice within one thread, one from the
surface(k = Oto-) to_the bottom(k = nz — 1) and another from the bottom(k = nz —1te-) to the
surface(k = 0). After blocking the vertical direction arrays in local memory, the L1 cache is fully uti-

lized

12
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/
/ *Each thread pulls its own tile of ee,gg to

*3D arrays ee and gg represent row transformation *1D new arrays ee_new, gg_new(local memory).
*coefficients of the chasing method. *There two new arrays can be cached in L1 for reuse.
/ /
for (k=1; k <nz-2; k++){ for (k =1; k <nz-2; k++){
ee[KI[j][i] = ee[k-1]GI[I*ALKI[1L; ee_new[k] = ee_new[k-1]*A[K][1[];
) 9g[K]01[] = ee[k-1][j1[iT*gglk-11G10] - BIKIGILT; 99_new[K] = ee_new[k-1]*gg[k-1] - BIK][][I;
}
for (k = nz-3; k>=0; k++){ for (k = nz-3; k>=0; k++){

uffk]01( = (eelK]0IM*ufk+1][](i1+9glk]) * CIKIGIL; ) uf[K][]LT = (ee_new[K]*uf[k+1]+gg_new[k])*C[K][1[il;

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 5. A simple example of local memory blocking.

aboutvertical-diffuston-and-seuree/sinkterms-and the running speed of these subroutines is improved
by 35.3%whenusing-the localmemeory-blockingtechnique.

In current implementation
as in the original mpiPOM code, the 3D arrays of variables are stored sequentially as east-west(x)

north-south( i ordering. The vertical

simplicity, in our kernel functions the grid is divided along x and y. Each GPU thread then specifies
an (x oint in the horizontal direction and performs all of the calculations from the surface to the
block number must be a multiple of 32 threads to perform consecutive and aligned memory access

vertical(z), i.e. i,k ordering. 2D arrays are stored in i

8, and obtained similar performances. We ultimately choose 4 because this value produced more
blocks and allowed us to distribute the workload more uniformly amongst the SMs. In addition

128(=+:

32 x 4) threads are enough to maintain the full
occupancy, which is the number of active threads in each multiprocessor.

In GPU computing, one is free to choose which arrays will be stored in an on-chip cache. Our
experience involves putting the data along the horizontal direction into the read-only cache to reuse
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among threads, and putting the data along with vertical direction into the local memory for reuse
within one thread.

weeaﬁﬁmpfeve%h&%global memory bandwidth by dlsabhng the effeﬁeheekmgaﬁdrmemefy

v-Error Checkin
and memory Correcting(ECC-off), as well as enhancing the clockefSMeefe%eﬂﬁmp}emeﬂfaﬁefr

and-GPU-beeston the GPU(GPU boost). This method improves the performance of the whele
apphieation POM.gpu by 13.8%.
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4.1.3 Results of the computational optimizations

We divide all the-gpuPOM-subroutines-into-different-of the POM.gpu subroutines into three cate-
gories based on their different eomputation-computational patterns. As shown in Table in gpuPOMthe

395 POM.gpu, we deploy different optimizations in differenteategoriesto-achieve-improved-performanee
these categories to improve the performance of POM.gpu; these categories are now-deseribed-described

as follows.
(1) Category 1: Advection and horizontal diffusion (advadv)
This category has 6 subroutines, and calculates the advectionand-, horizontal diffusion and in-the
400 ease-of-velocitythe-the pressure gradient and Coriolis terms —Here-in the case of velocity. Here, it
is possible to reuse data among adjacent threads, and the subroutines therefore benefit from using
the read-only data cacheand-shared-memory—Also. At the same time, the variables are calculated in
different loops of-ene-funetion-or in different functions -se-such that the loop fusion and function
fusion optimizations apply-are applied to this part as well.
405 (2) Category 2: vertical diffusion (verver)

This category has 4 subroutines, and calculates the vertical diffusion. In this part, the chasing
method is used in the tridiagonal solver in the k-direction. The main feature is that data-isreused-the
data are accessed twice within one thread, while-data-is-aceessed-oncefromk—=0-to-k—=nz—1l-and

410 surface. The subroutines are significantly sped up after grouping the k-direction variable in the local
memories.

(3) Category 3: vorticity (vert;—bareehnietbarovort), baroclinicity (baro), continuity equation

(eentcont) and equation of state (statestate)

This category is less time consuming than the two categories described above, but it also bene-

415 fits from our optimizations. Because there-exists-datareuse-with-adjacent-data exists reuse among
threads, the use of a read-only data cache improves efficieney—For-vortdata locality. For the vort

subroutine, there is data reuse within one thread, and thus the loop fusion improves the efficieneydata

locality.

420

425




Table 2. Different subroutines adopt different optimizations in gpuPOMthe POM.gpu

Subroutines ALoop  BFunction €Read-only B-Local memory EECC-off & Speedup
Adv & Hor diff v v v v 2.05X
Ver diff v v v v 2.82X
Barockinie Baroclinicity v/ v v 2.08X
Continuity equequation W -+ 4 1.39X
Vorticity 4 4 4 3.19X
State eqtequation - e 4 1.35X

430

435

440

445 _besid conal he-blocki izations.

4.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategi

es used-to-harness—the-computing-power-of-for

multiple GPUs. With-multiple-G

450

ommunication-method should be employed. We sp In the mpiPOM
the entire domain is split along the horizontal directions and 4-directions{2-D-decomposition)-and

assign-each MPI process foris responsible for the model’s computation of one subdomain, following
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Figure 6. Data decomposition in gpaPOMthe POM.gpu

Jordi and Wang|(2012). Fhenln the POM.gpu, we attach the-one MPI process to one GPU and send
messagesfrom-one-GPU-to-anether—move the complete computation to the GPU. The MPI process
is in charge of the computation within each subdomain and of the data transfer between the GPU and

ain memory. The data transfer between subdomains is handled by the GPUs directly. Shimokawabe’
et al| (2010) and [Yang et al.| (2013)) proposed seme-fine-grained overlapping methods of GPU com-

putation and CPU communication to improve the simulatior-computing performance. An important

common-isste-issue in their work is that the communications between multiple GPUs explicitly re-

quire the participation of the CPU. In our current work, we hepe-to-implement-the communication

to-simply bypass the CPU to-fully-employ-in implementing the communication to fully exploit the
capability of the GPUGPUs.

State-of-the-art-At present, two MPI libraries, sueh-as-OpenMPI and MVAPICH2, have-announced

apportforMPEcommunication dircetty front GPE-memoryowhich-is known provided support
for the direct communication from the GPU to the main memory. This capability is referred as
CUDA-aware MPI. We tried-attempted to use MVAPICH2 to implement direct communication
among multiple GPUsat-first. However, we found that the-boundary-operation-and-MPHnter-domain
communication occupied nearly +518% of the total runtimeafter-GPU-perting.

TFe-Instead, to fully overlap the boundary operations and MPI communications with computation,

we adopt the data decomposition method shown in Fig. |6l The data region is decomposed into
three partsregions: the inner partregion, the outer part-and-the-halo-part—The-outer part-includes

5 v

17



475

480

485

490

495

Rank0: GPUO

stream1 Inner region

stream2 East/West region Halo Comm. Halo Comm.
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------- cudaStreamSynchronize Operation

Figure 7. The workflow of multiple streams on the GPU. The “inner/east/west/north/south partregion” and

" s

“Halo™” refer to the computation and update of the corresponding partregion. “Comm.*” refers to the commu-

D A~

nication between processes, which implies synchronization.

streams-can-also-execute-coneurrently-with-different-priorities—In-region, and a halo region which

exchanges data with its neighbours. In our design, the inner patrtregion, which is the most time-
consuming part-with-thelargest-workloads allocated to “‘stream lin-whichto-exeeute”. The east/west

outer partregion is allocated to “stream 2” and the north/south outer partregion is allocated to stream
3-"stream 3”. In the east/west outer partregion, the width is set to 32 to ensure eoaleseed-consecutive
and aligned memory access in a warpto-improve-performanee—The-halo-partis—, All of the halo
regions are also allocated to stream2—"‘stream 2",

The workflow of multiple streams on the GPU is shown in Fig.[7] The east/west/north/south pasts
are-normalregions are common kernel functions that can run in parallel with the inner partregion
through different streams. The communication operations between domains are implemented by

eundaM-emepyAsyre-whiehis-an asynchronous CUDA memory copyfanetion. The corresponding
synchronization eperation-operations between the CPU and the GPU or among the MPI processes

are implemented with-cudeaStreamSynchronizefunctionand-M-PI-barrier-by a synchronization
CUDA function and a MPI barrier function. To hide-overlap the subsequent communication by-the

inner-part-with the inner region, “stream 2and-" and “stream 3” for the outer partregion have higher
priority te-preemptin preempting the computing resource from “stream 17 at any time.

an DA a NMP mlemen R 2 N AP
P Wy v VI
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e-Based on this workflow.

the inter-domain communication is overlapped with the computation. The experimental results show
that our design can easily-extend-to-8-or-mere-GPUs-within-one-nederemove the communication
overhead taken by MVAPICH2.

4.3 1/0 optimizations between hybrid-GPU-the GPUs and €PUthe CPUs

The time consumed for I/O in the eriginal-mpiPOM is not significantbecause-the-outputfrequeney
isrelatively-tow. However, after we fully accelerate the model by GPU, the1/O-overhead;—which-is
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Figure 8. One computing process and one 1/0 process both set their contexts on the same GPU. During the data

copy phase, the computing process remains idle and the I/O process will copy data from the GPU to the CPU

hestthrough the cuda M emcpy function.

the-mpiPOM;-the-, The computing phase and the I/0-phaserun-alternately—tn-asense-the-computing
phase-and-the /O phase are serial, which means that the GPU will remain idle until the CPU finishes

the 1/O operations. WAWMOUVMM by previous work on I/O hbfafy

WM@WWW@WW 011) . we designed a
similar method following computations on a GPU and /O operations on €Pb-ean-a CPU to run in

parallel.

we-cheoseIn the POM.gpu, we chose to launch more MPI processes. We-divide-all-the MPIprocesses
The MPI processes are divided into computing processes and I/O processes with different MPI com-

municators. The computing processes are responsible for launching kernel functions as usual, and
the I/O processes are responsible for output. One I/O process attaches to one computing process and
these two processes set their contexts on enesingle-GPUthrough-endaSetPevicefunetion—The-total
number-of MPIprocesses-are-twice-the-size-they-were-before—the same GPU.

Sinee-Because the I/0 processes must fetch data from the GPU, where-the-data-are-altocated-by-the
computing-processes,communication is necessary between them. Here;-we-againutilize-the featare
of CUDAIPC —as-introducedin-See - Through-CUDAIPC—the-The I/0 processes obtain the
device buffer pointers from the computing processes during the initialization phase. When there-isa
need-to-output-datawriting history files, the computing processes are blocked and keptremain idle for
a short timewhile-, waiting for I/O processes to fetch data. Then, the computing processes continue

their computation, and the I/O processes complete their output in the background, as illustrated in

Fig. |§| This method can be further optimized by placing the archive data into a set-aside buffer and

C on the main calculation. However, the method requires more memory, which is not abundant
in current K20X GPUs.
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The advantage of this method is that it overlaps the I/O on the CPU with eemputation-the model
calculation on the GPU. In the-serial I/O, the GPU computing processes are blocked while data
are brought-te-the-host-sent to the CPU and written to disk. In the-overlapping I/O, the computing
processes only wait for the data to be brought-sent to the host. In-addition;—the-The bandwidth of

data brought to the host through-the PCl-express-bus-is approximately 6 GBpsGB/s, but the output
bandwidth to the disk is approximately 100 MBpsMB/s, as determined by the speed of the disk.

Therefore, the overlapping method significantly accelerates the entire application.

5 Experiments

In this section, we first describe the specification of our platform and comparison methods—used

methodology to validate the correctness of the gpuPOM-POM.gpu. Furthermore, we present the per-

formance and scalability of the gpuPOM-on-the-GPUplatferm-in-comparisonr- POM.gpu comparied
with the mpiPOMen-the-CPU-platform.

5.1 Platform Setup

The POM.gpu runs in a
workstation consisting of two CPUs and MWM The CPUs
are 2.6 GHz 8-core Intel E

e-SandyBridge E5-2670.
The GPUs are Nvidia Telsa-Tesla KZOqumﬁpedwfh%%&GPU-eefes—aﬂeké{}%GDDRéﬁﬁast
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research-for regional-ocean-models-thusfar-The-, The operating system is RedHat Enterprlse Linux
6.3 x86_064. The-programs-on-this-platferm-All programs are complied with Intel compiler v14.0.1,
CUDA 5.5 Toolkit, Intel MPI Library v4.1.3 and CUDA-5-5-Teelkit-For the-purpesesof MVAPICH2
v1.9.

For comparison, the CPU-platform-used-in-our-experiments-is- mpiPOM runs on the T'ansuol00
supercomputer—cluster at Tsinghua University s—which-eensists—consisting of 740 nodes;-each-of

whieh-has-, Each node is equipped with two 2.93 GHz 6-core Intel Xeon X5670 processers-CPUs

and 32 GB of memory. The nodes are connected through an Infintband-network—which-provides

a-maximum-bandwidth-of 40-Gbps—The-node-infiniband network. The operating system is Red-

Hat Enterprise Linux 5.5 x86_64. Al-the-programs-Programs on this platform are compiled with
Intel compiler v11.1 ;-and-the-MPl-environmentis-and Intel MPI v4.0.2. The Original-mpiPOM
code is e i ompiled with its original compiler flags, i.e.,

“-03 -preeise)

with-our-implementation—fp-model precise”.

5.2 The test case and the verification of accuracy

The “dam-break™‘dam break” simulation 2014) is conducted to verify the correctness and test
the performance and the-scalability of the gpaPOM:POM.gpu. It is a baroclinic instability problem
whieh-that simulates flows produced by horizontal temperature gradients. The model domain is
configured as a straight channel with a uniform depth of 50 m. Periodic boundary conditions are used
in the east-west direction, and the channel is closed in the north and south. Its horizontal resolution
is thm—xtem—To-testlarge-computational-grid—the-1kmx 1km. The domain size of this test case
is inereasedt0-962 x 722 horizontal grid points and 51 vertical sigma levels, which is limited by
the capacity of en-beard-one GPU’s memory. Initially, the temperature in the southern half of the
channel is 15°C and 25°C in the northern half. The salinity is fixed at 35 psu. The fluid is then
allowed to adjust. In the first 3-5 days, geostrophic adjustments oeeurs—Fhenoccur, Then, an unstable

wave develops due to baroclinic instability. Eventually, eddies are generated. Figure[9]shows the sea-

surface height (SSH), sea-surface temperature (SST), and currents after 39 days. The development

byLRe%byfadm%defeﬂﬂaﬂefhscales of the frontal wave and eddies are determined by the Rossb
radius of deformation. This dam break case uses a single-precision format.
To verify the accuracy, we check the binary output files Oﬂfpﬂ%ffeiﬁfhe—eﬂgmﬂ}ﬂiptPGMﬂﬂé
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Figure 9. The model results after 39 days of simulation. For the #p-top figure, eotor-the colour shading is
the Sea-Surface-Hetght-sea-surface height (SSH)-—Veetors-, and vectors are ocean eurrentcurrents. For the tow
bottom figure, eotor-the colour shading is the Sea-Surface-Femperature-sea surface temperature (SST). Several
warm and cold eddies are generated in the middle of the domain where the SST gradient is largest-—Noticeably;

the-gravity-wave-is-confined-in-the-middle-of-the-channel; their scales are determined by the Rossby radius of

deformation.
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variables velocity, temperature, salinity and sea surface height are all identical.

5.3 Model Performance

To understand the advantages of the eptimizing-methods-introdueed-optimizations in Sec. E we test

format—TFhe—conducted different tests. The metrics of seconds per simulation day ;—which—is-the

are measured to

compare the model performance.
In-the-firstexperiment

5.3.1 Single GPU performance

In our first test, we compare the ¢

inchading K20X-GPU;the Intel-Westmere-6-ecores-performance of the mpiPOM using two different

CPUs, the Intel X5670 CPU (6 cores) and the Intel SandyBridge-E5-2670 CPU —(8 cores), with

that obtained from the POM.gpu using one single GPU. Fig. |10 shows that one K20X GPU can
compete with approx1mately 55 Me}—SaﬁdyBﬁdg&GPUWMQM 95 Intel

that, the ratio of memory bandwidth befweefreﬂe—SmidyBﬂdg&GPU—aﬂdﬁeﬂe—KZOXGPU—f&{—
S;-and-and the ratio of floating points performance between-one-SandyBridge-CPU-and-one K20X

GPU-is-are approximately 1:10-Namely;-5 and 1:10, respectively. This means, if an application is
strictly memory beund;-one-K20X-bandwidth limited, one GPU can compete with 5 SandyBridge

CPUs—In-addition;-CPUs; if an application is strictly eemputing-boundcomputation limited, it can
compete with 10 S&ndyBﬁdge‘GPUs—A&m the mpiPOM is memory bound;-acecordingto

spPOM-bandwidth limited, the

AAAANAANAARARARNAANNANAR
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Figure 10. Performance comparison with different hardware platfermplatforms

5.3.2 Multiple GPUs performance

In the second experiment;-we-test-the-test, we compare our communication overlapping method used
m—the*gpuPQM—aﬁdfempafe—wanh the MVAPICH2 —1n-theeurrent MVAPICH2 the communieation

ing-library. Fig. [TT] shews-presents the
weak scaling performance ef—fhe«gpﬂPGM—on multiple GPUs—TFo-maximize performanee;, where the

grid size for each GPU is setto-kept at 962 x 722 x 51. When using4 GPUs with-the-implementation
of-are used with MVAPICH2, approximately 18% of the total runtime is consumed in-executing
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Figure 11. The weak scaling test between our communication overlapping method and the MVAPICH2 sub-

routines.

In the third W ’ f .
the-strong-sealingresult-of the-gpuPOM-on—multiple-GPUs—We-test, we fix the global grid size
at 962 x 722 x 5land-inerease-the-amount-of-GPYUs-gradualty-The resuttsshow-, and measure the

strong scaling performance of POM.gpu. Table 3] shows that the strong scaling efficiency is 99% on
2 GPUs and 92% on 4 GPUs. A-smaler-subdomain-will-deerease-When more GPUs are used, the

size of each subdomain becomes smaller. This decreases the performance of the-gpuPOM-POM.gpu

in two aspects. First, communication-time-can-eastty-the communication overhead may exceed the

computation time in-the-inner-part-and-cannot-be-overlapped-—As-the subdomain-size-deereases;th

is-the-dominant-faetorof the inner region as the size of each subdomain decreases. As a result, the
overlapping method in Section are not effective. Second, the-lateney-of-kernel-Haunching-and

OV ac—o P Y ohtZattoh—a B tHo—W ROt a a a O

smalithere are many “small” kernels in the gpuPOM;-and-the-execution-time-is-—close-to-launching

delays-expandsPOM.gpu code, in which the calculation is simple and less time consuming. With
fewer inner region computations, the overhead of kernel launching and implicit synchronization

with kernel execution must be counted.
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Table 3. The strong scaling result of gpaPOMPOM.gpu

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time(s) 97.2 48.7 26.3
Efficiency 100-100%  0:9999%  ©6:9292%

5.3.3 I/Q performance

In the fourth experiment-we-testthe-performanee-of the test, we compare our I/0 overlapping method
and-compare-it-with-the-default-with the parallel NetCDF (PnetCDF) method and NO-I/Omethod.

NO-I/O means that all I/O operations are disabled in the program and that the time measured is the

pure computing time. We%rmu}a{eekfh&e*peﬂmeﬂfll%(mmnmfor 20 daysand-eutput
. and the history files dai

The-are output daily. The final history files in NetCDF format are approximately 12 GB. Fig. @
shows that the I/O overlapping method outperforms the defautt-PnetCDF method. For 1 GPU and 2
GPUgs, the overall runtime decreases from1694from 1694/1142 seconds to 1239/688 seconds, which
is close to the NO-I/Omethod—The-small-difference-between-our-design-and-, The extra overhead
of our method compared with NO-I/O is-that-involves the computing processes must-that need to
be blocked until the I/O processes bring-obtain data from the GPY-—For-the-ecase-of-GPUs. When
running with 4 GPUs, the output time islonger-than-computational-time-because-the Jatter-isfast-and
the-/O-timeis-relatively-large-such-that-exceeds the computation time. Then, the I/O phase cannot
fully-overlap-with-the computing be fully overlapped with the model computation phase. The overall

runtime equals the sum of the computation time and the non-overlapped I/O time.

5.3.4 Comparison with a cluster

In the last €

the-mpPOM-en-test, we compare the performance of POM.gpu on a workstation containing 4 GPUs
with that on the T'ansuol00

cluster. Three different high-resolution sets-grids (Gnd 1: 962 x 722 x 51, Grid-2: 1922 x 722 x 51,
Grid-3: 1922x 1442 x51) are used. Fig.[T3]shows that our workstation with 4 GPUs is comparable to
apowerful-etasterwith-408 standard CPU cores (= 34 nodes *-x 12 cores/node) for-the stmutationef

mpiPOM-—Since-the Thermal-DesignPewer(TDP)-in the simulation. Because the thermal design
Wf one X5670 CPU (6-661%9«1&95%15 95 W and that of one K20X GPU is 235W;-it-means
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Figure 12. I/O Testtest for gpuPOMthe POM.gpu

235
W, we reduce the energy consumption by a factor of 6.8. Theoretically, as the subdomain of each
MPI process deereasesbecomes smaller, the cache hit ratio witk-inerease-on-a-pure-CPU-platform;
will increase. This will greatly alleviate the memory bandwidth-limited problem. However, for-in the
simulation on 408 standard CPU cores, the MPI communication time-may occupy more than 40%
of the total execution time. With-the-number-of cores-inereasing-When scaling to over 450 cores, the
mpiPOM simulation may instead become slower, the-execution-time may inerease instead-as shown
in Fig. B As-aresult-our-GPU-solution-has-an-overwhelming-Therefore, for high-resolution ocean
modelling, our POM.gpu has a clear advantage compared to the €EPU-beecatise-the-communication

overhead-isless-expensive-and-overlappedoriginal mpiPOM.

6 Code availablityavailability

The POM.gpu version 1.0 series;—which-is—{reely—available-at—Note-that-thetestingseript-"is
available at https://github.com/hxmhuang/POM.gpu, To reproduce the test case in Section |5| the
script “run_exp002.sh*ean-be-downloaded-" is provided to compile and execute the eodes;-and-to

reproduce-the-testease:POM.gpu code.
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Figure 13. Four-GPYs-performanece-Performance test of four GPUs compared with T'ansuo100 etusterstintet
Westmere-CPUs)cluster

7 Conclusions and future work

In this paper, we provide—develop POM.gpu, a full GPU aeeelerated—selution—of POM—Unlike

partial-solution based on the mpiPOM. Unlike previous GPU porting, such-as—WRF-and-ROMs;
the-gpuPOM-does—all-the-the POM.gpu code distributes the model computations on the GPU. The

approach-and-a-new design-of-an-Qur main contributions include: optimizing the code on each of
the GPUs, the communications between GPUs, and the /O overlapping approach—With-the-process
between the GPUs and the CPUs. Using a workstation with 4 GPUs, we achieve ever400x-speedup
against-a—single-CPU-core,—and-provide-equivalent-performanee—to-the performance of a power-
ful CPU cluster with more-than—400-coresand-reduee-408 standard CPU cores. Our model also
reduces the energy consumption by a factor of 6.8times—This-workprevides-. It is a cost-effective
and effieient-ways-in-ocean-modeling-energy-efficient strategy for high-resolution ocean modelling.
We have described the method and tests in details and, with the availability of the POM.gpu code.
our experiences may hopefully be useful to developers and designers of other general circulation
models.

In our current POM.gpu, we design a large number of kernel functions because we port the entire.
mpiPOM one subroutine at a time. This was done to simplify the debugging of POM.gpu and to
check that the results are consistent with the mpiPOM. In our future work, we will adjust the code
structure of POM.gpu and adopt aggressive function fusion to further improve the performance.
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780 (McCalpin and Wonnacott, [1999 Wonnacott, [2000) , thus transforming the problem of memory bandwidth
into the problem of computation. However, the real-world ocean models, including the mpiPOM,
POM.gpu.
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