
Dear%editor%and%reviewers,%
%
First%of%all,%we%would% like% to%express%our% sincere%appreciation% to%your%valuable%
feedback.% Your% comments% are% highly% insightful% and% enable% us% to% significantly%
improve%both% the%quality%of%our%manuscript%and%our%code.%The% following%pages%
are%our%point@by@point%responses%to%each%of%your%comments.%
%

Responses'to'the'comments'of'Executive'editor:' '
%��% The%paper%must%be%accompanied%by% the%code,%or%means%of%accessing% the%
code,%for%the%purpose%of%peer@review.%If%the%code%is%normally%distributed%in%a%way%
which%could%compromise% the%anonymity%of% the%referees,% then%the%code%must%be%
made% available% to% the% editor.% The% referee/editor% is% not% required% to% review% the%
code%in%any%way,%but%they%may%do%so%if%they%so%wish.%“%
��% All% papers%must% include% a% section% at% the% end% of% the% paper% entitled% "Code%
availability".% In% this% section,% instructions% for% obtaining% the% code% (e.g.% from% a%
supplement,% or% from% a% website)% should% be% included;% alternatively,% contact%
information%should%be%given%where%the%code%can%be%obtained%on%request,%or%the%
reasons%why%the%code%is%not%available%should%be%clearly%stated.%”%
��% All%papers%must% include%a%model%name%**and%version%number**% (or%other%
unique%identifier)%in%the%title.%
%
[Response]:'
%
% % We% have% renamed% gpuPOM% as% gpuPOM1.0,% as% identified% in% the% title% of% the%
revised%manuscript.%
% % We%have%added%a%section,%“code%availability”,%as%Section%6%Line%550.%
% % “The% gpuPOM% used% to% simulate% the% regional% ocean% dynamic% and% physical%
process% releases% with% the% version% 1.0% series,% which% is% freely% available% at%
https://github.com/hxmhuang/gpuPOM.% Note% that% the% testing% script%
"run_exp002.sh"% can% be% downloaded% to% compile% and% execute% the% codes,% and% to%
reproduce%the%test%case.”%
%
%

Responses'to'the'comments'of'referee'#1:' '
(1)%“After%a%fairly%standard%introduction,%the%key%description%of%the%Nvidia%K20X%
unit%and%the%CUDA%low%level%programming%model,%involving%warps%and%streaming%
multiprocessors,%is%poorly%written%and%confusing.%There%is%also%very%little%on%the%
K20X% memory% and% cache% hardware% although% these% will% always% have% a% major%
impact%on%the%structure%of%the%optimum%code.”%
% % % “The%authors%need%to%improve%their%description%of%the%hardware%and%software%
models.”%
%

[Response]:'
% % In% Section% 3% Line% 125~150% of% the% revised% manuscript,% we% have% added% a%
paragraph% to% describe% the%GPU% architecture% overview,% the% CUDA%programming%
model% involving% the% warp% and% streams,% and% the% hardware% execution% model%
involving% the% stream% multiprocessors(SM).% We% have% also% introduced% the% 3%
common%methods%to%make%use%of%the%GPU.%In%particular,%we%have%described%the%
memory% hierarchy% of% the% K20% GPU% we% used.% The% following% optimizations% are%
based%on%the%memory%hierarchy%of%K20X.%
%
%
(2)% “I% am%also% concerned% that% there% is%no%proper%discussion%about%how%best% to%
deal% with% the% large% ocean% model% arrays% in% a% cache% based% system.% The% code%
continues%to%use%the%east@west%index%as%the%innermost%array%index,%although%with%
a% cache% it% may% be% more% efficient% to% use% the% vertical% index.% Although% not%
mentioned%in%the%paper,%the%code%shows%that%many%of%the%innermost%loops%have%
been%changed%to%vectorise%in%the%vertical.%“%
% % “They% also%need%a%proper%quantitative%discussion%of% how% the%ocean%model% is%
fitted%into%memory%and%cache,%and%where%the%bottlenecks%are%when%running%the%
model.”%
%
[Response]:'
%
% % In%Section%4.1%Line%270~275%of%the%revised%manuscript,%we%have%demonstrated%
the%memory@bound%bottleneck%of%mpiPOM.%We%believe%the%main%bottleneck%is%the%
memory@bound%problem%for%mpiPOM%running%on%tens% to%hundreds%of%cores.%To%
demonstrate% the%memory@bound% problem,% the% PAPI% is% used.% From% the% roofline%
model,%we%can%conclude%that%the%memory@bound%problem%is%main%bottleneck%of%
mpiPOM.%
% % “The%main%bottleneck%of% the%mpiPOM%is%memory@bound%problem.%To%confirm%
this%issue,%we%use%the%Performance%API(Browne%et%al.,%2000)%to%estimate%floating%
point% operation% count% and% the% memory% access(store/load)% instruction% count.%
Results% reveal% that% the% computational% intensity(flops/byte)% of% the% mpiPOM% is%
around% 1:3.3,% while% the% computational% intensity% provided% by% SandyBridge% E5@%
2670% CPUs% is% 7.5:1,% and% large% arrays% are% mostly% streamed% from% memory% and%
shows% little% locality.%According% to% the%roofline%model(Williams%et%al.,%2009),% the%
whole% mpiPOM% is% mainly% memory@bounded.% In% addition,% the% mpiPOM% suffers%
from%a%flat%profiling%results,%with%even%the%most%time@consuming%subroutine%just%
occupying%20%%of%the%total%execution%time.%Namely,%there%are%no%obvious%hot%spot%
functions% in% the% mpiPOM% and% porting% a% handful% of% subroutines% to% GPU% is% not%
helpful%to%improve%the%model%efficiency.%That%is%the%reason%that%we%need%to%port%
the%whole%program%from%CPU%to%GPU.”%
%
% % In% Section%4.1%Line%280~295,%we%have%added%a%paragraph%and%discussed% the%
choice%of%innermost%array%index%and%a%proper%way%to%fit%large%arrays%in%the%cache%

based% system.%Meanwhile,%we% have% discussed% the% choice% of% innermost% array% in%
gpuPOM%and%the%difference%of%memory%optimizations%between%GPU%and%CPU.%
% % “To%alleviate%the%memory%bound%problem,%an%optimization%method%that%is%
frequently%used%is%cache%blocking.%It%is%usually%cache%beneficial%to%use%vertical%
index%as%the%innermost%array%index(z,x,y%ordering).%For%the%mpiPOM%with%
962×722×51%test%case,%one%array%has%962×722×4bytes=%2.6MBytes%in%the%x@y%
plane,%while%one%CPU%has%a%32KB%per@core%L1%cache,%256KB%per@core%L2%cache%
and%20MB%shared%L3%caches.%Take%the%chasing%method%in%vertical%diffusion%terms%
as%an%extreme%case.%If%x,y,z%ordering is used, in terms of calculation along z-axis,
each x-y plane is blocked in L3 cache for reuse. When traversing backwards
along z, the data needed are all evicted. If z,x,y ordering is used, in terms of
calculation along z-axis, each k column data is blocked in L1 cache for reuse.
When traversing backwards along z, the data remains valid in L1 cache.
Unfortunately, the mpiPOM uses east-west index as the innermost array index.
However, for gpuPOM, z,x,y ordering has to be avoided to satisfy GPU
memory coalescing, which is also demonstrated in Shimokawabe et al. (2010).
We make east-west (x) as innermost index(x,y,z ordering). A big difference for
memory optimizations between GPU and CPU is that, in GPU, programmers
can artificially choose which array to store in cache. Moreover, GPU provides
various on-chip caches, such as L1/L2 cache, shared memory, texture cache.
Thus, according to how the arrays are used, we can put different arrays in
different caches. In the gpuPOM, we have explored a better data placement on
different caches for different terms, besides conventional cache blocking
optimizations.”

%
(3)”The%amount%of%effort%spent%converting%a%Fortran%code%to%C%and%CUDA@C%is%also%
odd,%given%that%a%CUDA@Fortan%compiler%has%been%available%since%2009%and%that%
in% future%POM% is% likely% to% stay%a%Fortran% code% @% if% for%no%other% reason% than% the%
simplicity%of%loop%optimisation%with%this%compiler.”%
%
[Response]:'
%
% % In%Section%3%Line%155~160%of%the%revised%manuscript,%we%have%explained%our%
choice%of%CUDA@C%compared%with%CUDA@Fortran%in%gpuPOM.%We%agree%that%using%
PGI%CUDA%Fortran%is%indeed%the%most%convenient%way%for%model%porting%as%a%lot%
of%efforts%can%be%saved.%Actually%exploring%the%performance%potential%using%CUDA%
Fortran%is%also%part%of%our%plans%after%this%work%based%on%CUDA@C.%
% % “At% present,% there% are% two% CUDA% platforms% to% support% C% and% Fortran%
respectively,% which% are% CUDA@C% and% CUDA@Fortran.% Although% CUDA@Fortran%
compiler% has% been% available% since% 2009% and% that% can% bring% about% less%
modification% to% the% mpiPOM% code,% we% still% choose% CUDA@C% at% the% gpuPOM1.0%
because:% 1)CUDA@C% is% free% of% charge% while% CUDA@Fortran% for% one% workstation%
costs% more% than% $1000.% 2)Previous% work% (Henderson% et% al.,% 2011)% show% that,%
during% the% porting% of%Nondydrostatic% Icosahedral%Model(NIM),% the% commercial%

CUDA@Fortran% compiler% does% not% perform% as% well% as% the% manually% converted%
CUDA@C% version% in% some% kernels.% 3)The% read@only% data% cache% utilization% is% not%
supported% in%CUDA@Fortran,%which% is% the%key%optimization%of%Section%4.1(A).%4)%
We%have%already%had%a% lot%of%previous%experiences% for%deep%optimizations%with%
CUDA@C.”%
%
%
(4)% “However% because% the% main% subroutines% updating% the% tracer% and% velocity%
fields%have%been%split%into%a%number%of%small%GPL%kernels,%many%opportunities%to%
make%better%use%of%the%cache%and%to%reduce%cache%loads%have%been%missed.”%
% % % “Finally% I% think% the% code% needs% to% be% rewritten% to% drastically% reduce% the%
number% of% independent% kernels.% This% is% because% once% a% cache% contains% the%
temperature,% salinity,% velocity% and% grid% arrays% for% a% small% region% of% ocean,% it%
appears%senseless%not%to%update%the%values%of%all%of%these%variables.”%
%
[Response]:'
% % In% Section% 4% Line% 405~410% of% the% revised% manuscript,% we% have% added% a%
paragraph%to%explain%why%there%are%so%many%kernels%in%gpuPOM.%We%agree%that%
there%are% lots%of%GPU%kernels% in%gpuPOM%and%kernel% fusion%can%surely% improve%
data% locality% usually.% In% fact,% we% have% adopted% kernel% fusion% in% the% current%
gpuPOM,%as%described%in%Section%4.1.4.%More%aggressive%kernel%fusion%is%a%part%of%
future%work.%
%
% % “Note% that% there%are%more% than%50%kernel% functions% in% the%current%version%of%
gpuPOM.%The%main%reason%that%we%have%a%large%number%of%kernels%in%gpuPOM%is%
that% there% exist% numerous% subroutines% in% mpiPOM.% Since% we% port% the% entire%
model%one%subroutine%by%one%subroutine,%which%is%a%convenient%way%to%debug%the%
gpuPOM%and%to%guarantee%its%bit@by@bit%identical%results%to%mpiPOM,%we%need%to%
write% a% large% number% of% GPU% kernels.% Further% more,% we% break% several%
subroutines% of%mpiPOM% into% several% GPU% kernels% of% gpuPOM% in% 3% cases:%when%
subroutine% B% is% invoked% in% subroutine% A(illustrated% in% Fig.% 7(a)),% when% a% MPI%
function%call%is%invoked%in%subroutine%A(illustrated%in%Fig.%7(b)),%and%when%
interior%array%is%first%written%by%one%thread%and%later%read%by%adjacent%threads,%in%
the%mean%while%caching%this%array%in%shared%memory%makes%no%sense(illustrated%
in%Fig.%7(c)).%Although%function%fusion%has%been%done%as%described%in%Section%4.1%
(D),%aggressive%function%fusion%to%make%use%of%data%locality%between%functions%is%a%
promising%optimization(Wahib%and%Maruyama,%2014).%But,%a%redesign%of%the%
code%structure%of%mpiPOM%is%needed%and%it%is%a%part%of%our%future%work.”%
%
To% explain% the% 3% cases% in% details% in% this% letter,% 3% figures% are% illustrated% for% the%
three%cases%in%the%revised%manuscript.%
a)%when%subroutine%B%is%invoked%in%subroutine%A,%A%is%broken%into%2%small%kernels,%
as%shown%in%Fig.1.%

%
Fig'1.%when%subroutine%B%in%invoked%in%subroutine%A,%A%is%broken%into%2%small%kernels%

%
b)%when%a%MPI%function%call%is%invoked%in%subroutine%A,%A%is%broken%into%2%small%
kernels,%as%shown%in%Fig.2.%

%
Fig'2.'when%a%MPI%function%call%is%invoked%in%subroutine%A,%A%is%broken%into%2%small%kernels.%

%
c)%when%interior%array% is% first%written%by%one%thread%and% later%read%by%adjacent%
threads,%in%the%mean%while%caching%this%array%in%shared%memory%makes%no%sense�%
A%is%broken%into%2%small%kernels,%as%shown%in%Fig.3.%

CPU code

subroutine A

 statements block A1

 call subroutine B

 statements block A2

end subroutine A

CUDA-C code

function A;
__global__ gpu_kernel_A1;
__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 function B();

 gpu_kernel_A2<<<grid,block>>>;

}

CPU code

subroutine A

 statements block A1

 call MPI_function B

 statements block A2

end subroutine A

CUDA-C code

function A;
__global__ gpu_kernel_A1;
__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 MPI_function B();

 gpu_kernel_A2<<<grid,block>>>;

}

%
Fig'3.%when%interior%array%is%first%written%by%one%thread%and%later%read%by%adjacent%threads,%in%the%

mean%while%caching%this%array%in%shared%memory%makes%no%sense,%A%is%broken%into%2%small%
kernels.%

%
%
%

Responses'to'the'comments'of'referee'#2:' '
%
(1)%”Figure%7%is%poorly%labeled.%Units%are%missing.%I%assume%SSH%is%contours,%SST%is%
colors,%and%currents%are%arrows,%but%it%does%not%say.%I%would%prefer%for%SSH%and%
SST%to%be%in%two%separate%panels.“%
%
[Response]:'
%
% % As%you%suggested,% in%section%5.2%of% the%revised%manuscript,%we%have%redrawn%
the% SSH% and% SST% figures% in% two% separate% panels% and% added% the% corresponding%
labels%and%units%in%the%revised%manuscript.%
%
%
(2)% “I% don’t% follow% the% explanation% of% this% speed@up% in% top% of% 7671.% It% says%
mpiPOM% is%memory% bound,% so% CPU:GPU%performance% is% 1:10.% Is% the% remaining%
factor% of% 5% all% due% to% memory% optimizations?% Are% those% the% ones% already%
described%in%the%text?”%
% %
[Response]:'
%
% % According% to% your% feedback,% in% Section% 5.3% Line% 480~485% of% the% revised%
manuscript,% we% have% revised% the% corresponding% sentences% to% explain% the%
speed@up%more%clearly.%

CPU code

subroutine A

 statements block A1

 statements block A2

end subroutine A

CUDA-C code

function A;
__global__ gpu_kernel_A1;
__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 gpu_kernel_A2<<<grid,block>>>;

}

% % “The%approximate%ratio%of%memory%bandwidth%between%one%SandyBridge%CPU%
and%one%K20X%GPU%is%1%:%5,%and%the%ratio%of%floating%points%performance%between%
one%SandyBridge%CPU%and%one%K20X%GPU% is%1% :%10.%Namely,% if% an%application% is%
strictly%memory%bound,%one%K20X%GPU%can%compete%with%5%SandyBridge%CPUs.%In%
addition,% if% an% application% is% strictly% computing% bound,% it% can% compete%with% 10%
SandyBridge%CPUs.%As%the%mpiPOM%is%memory%bound,%according%to%the%memory%
bandwidth% ratio% between% the% CPU% and% the% GPU,% our% gpuPOM% should% provide%
equiv@%alent%performance%to%5x8%=%40%CPU%cores.%Combining%our%careful%memory%
optimizations,%our%final%design%achieves%another%performance%boost%of%25%,%and%
one%GPU%provides%similar%performance%to%more%than%50%Intel%8@core%SandyBridge%
CPU% cores.% Compared% with% Intel% Westmere% 6@cores% CPU,% our% results% provide%
similar%performance%to%more%than%95%CPU%cores.”%
%
%
(3)”% In% conclusion,% list% number% of% cores% rather% than% 34% nodes,% as% the% reader%
would%not%know%the%number%of%cores%per%node.”% %
%
[Response]:%
%
% % In% the%conclusion%section%of%revised%manuscript(line%560),%we%have% listed%the%
numbers%of%cores%in%terms%of%the%speedup.%
% % “With%the%workstation%with%4%GPUs,%we%achieve%over%400x%speedup%against%a%
single%CPU%core,%and%provide%equivalent%performance%to%a%powerful%CPU%cluster%
with%more%than%400%cores%and%reduce%the%energy%consumption%by%6.8%times”%
%
%
%
We%really%appreciate%your%highly%constructive%comments.%We%hope%our%responses%
will%address%your%concerns.%
%
Best%wishes,% %
%
Xiaomeng%Huang%
%

Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 22 May 2015

gpuPOM
::::::::::::::::::
gpuPOM1.0: a GPU-based Princeton Ocean

Model
Shizhen Xu1, Xiaomeng Huang1, Yan Zhang1, Haohuan Fu1, Lie-Yauw Oey2,3,
Fanghua Xu1, and Guangwen Yang1

1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System
Science, Tsinghua University, 100084, and Joint Center for Global Change Studies, Beijing,
100875, China.
2 Institute of Hydrological & Oceanic Sciences, National Central University, Jhongli, Taiwan.
3 Program in Atmospheric & Oceanic Sciences, Princeton University, Princeton, New Jersey, USA.

Correspondence to: Xiaomeng Huang
(hxm@tsinghua.edu.cn)

Abstract. Rapid advances in the performance of the graphics processing unit (GPU) have made the

GPU a compelling solution for a series of scientific applications. However, most existing GPU ac-

celeration works for climate models are doing partial code porting for certain hot spots, and can only

achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version

of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton5

Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices,

we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified

Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve

the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping

communication and boundary operations among multiple GPUs, and overlapping input/output (I/O)10

between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indi-

cate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a

powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.

1 Introduction

High-resolution atmospheric, oceanic and/or climate modeling remains a significant scientific and15

engineering challenge because of the enormous computing, communication, and storage require-

ments. With the rapid development of computer architecture, in particular multi-core and many-core

techniques, the computing power that can be applied to scientific problems has increased exponen-

tially in recent decades. Some parallel computing techniques, such as the Message Passing Interface

(MPI, Gropp et al. (1999)) and Open Multi-Processing (OpenMP, Chapman et al. (2008)) have been20

widely used to support the parallelization of numerous climate models. Moreover, as modern massive

supercomputers become more and more heterogeneous because of the increasing number of different

1

accelerating devices such as the GPU, the Intel many integrated core (Intel MIC) and reconfigurable

computing based on field programmable gate array (FPGA), new approaches are required to more

effectively utilize the emerging novel architecture, communication and input/output (I/O) to achieve25

order-of-magnitude acceleration required for climate models.

In recent years, a number of scientific codes have been ported to the GPU. Different levels of

speedup were achieved for climate models using GPUs. Michalakes and Vachharajani (2008) ac-

celerated a computationally intensive microphysics process of the Weather Research and Forecast

(WRF) model with a speedup of nearly 25x; but the entire WRF model is sped up by only 1.23x.30

Shimokawabe et al. (2010) fully accelerated the ASUCA model – a non-hydrostatic weather model –

on 528 Nvidia Tesla GT200 GPUs and achieved a speedup of 80x. Linford et al. (2009) accelerated

a computationally intensive chemical kinetics kernel from the WRF model with Chemistry on an

Nvidia Tesla C1060 and achieved a speedup of 8x. Leutwyler et al. (2014) accelerated a full huge

operational weather forecasting model COSMO and achieved 2.8X speedup for its dynamic core.35

Carpenter et al. (2013) accelerated the spectral element dynamical core of the Community Earth

System Model (CESM) using the GPU by 3x. Govett et al. (2010) ported the dynamics portion of

the Non-hydrostatic Icosahedral (NIM) model to the GPU and achieved a speedup of 34x.Zhenya

et al. (2010) adopted OpenACC Application Programming Interface (OpenACC API), which used

simple compiler directives to accelerate some hot-spot functions, to accelerate the parallel ocean40

program (POP) by 2.2x.

Most existing GPU acceleration projects for climate models are only working on certain hot spots

of the program, leaving a significant part of the program still running on CPUs. Therefore, there are

usually frequent data exchange between CPUs and GPUs, which significantly reduces the overall

performance.45

The objective of our study is to shorten the high computation time of high-resolution ocean models

by parallelizing their existing model structures using the GPU. Taking the parallel version of the

Princeton Ocean Model (mpiPOM) as an example, we demonstrate how to parallelize an ocean

model to make it run efficiently on a GPU architecture. Using the state-of-the-art GPU architecture,

we first convert the mpiPOM from its original Fortran version into a new Compute Unified Device50

Architecture C (CUDA-C) version. CUDA-C is the dominant programming language for GPUs.

We call the new version gpuPOM
::::::::::
gpuPOM1.0. Then, we design and implement several optimizing

methods: (i) computation optimization in a single GPU; (ii) communication optimization among

multiple GPUs, and (iii) I/O optimization between a hybrid GPU and CPU.

In terms of computing, we concentrate on memory access optimization and making better use of55

caches in GPU memory hierarchy. We improve memory usage by using read-only data cache, local

memory blocking, loop fusion, function fusion and that disables error-correcting code memory (Er-

ror Checking & Correction, ECC memory). The experimental results demonstrate that high memory

2

access optimization can achieve a speedup of approximately 100x when comparing a single GPU

against a single CPU core.60

In terms of communication, we concentrate on the overlapping between the inner-region computa-

tion and the outer-region communication and update. With the GPUDirect communication technol-

ogy, multiple GPUs in one node can communicate directly and bypass the CPU. In addition, with the

fine-grained control of the CUDA streams and its priority, inner-region computation can be executed

concurrently with outer-region communication and updating.65

In terms of I/O, we choose to split the MPI communicator into computation and I/O processes.

One individual computation process and one individual I/O process are attached to one GPU. The

computation process is responsible for launching kernels on the GPU and the I/O process is respon-

sible for data copy back from the GPU and to write on disk. The computing process and the I/O

process execute concurrently.70

To understand the accuracy, performance and scalability of the gpuPOM, we build a customized

workstation with four GPU K20X devices inside. The experimental results show that the perfor-

mance of the gpuPOM running on this workstation is comparable to a powerful cluster with 408

CPU cores.

The paper is organized as follows. In Section 2, we review the mpiPOM model. In Section 4,75

we present detailed techniques about computation optimization in a single GPU, communication

optimization among multiple GPUs, and I/O optimization between a hybrid GPU and CPU. We

provide the corresponding experimental results about correctness, performance and scalability in

Section 5 and conclude our work in Section 7.

2 The mpiPOM80

The mpiPOM is a parallel version of the Princeton Ocean Model (POM) that is based on MPI.

It retains most of the physics package of the original POM (Blumberg and Mellor, 1983, 1987;

Oey et al., 1985a, b, c; Oey and Chen, 1992a, b), but includes also satellite and drifter assimilation

schemes from the Princeton Regional Ocean Forecast System (Oey, 2005; Lin et al., 2006; Yin and

Oey, 2007), as well as more recently advanced features such as wind-wave induced Stokes drift,85

wave-enhanced mixing and Localized Ensemble Transform Kalman Filter (Oey et al., 2013; Xu

et al., 2013). The POM code was reorganized and MPI was implemented by Jordi and Wang (2012)

using a two-dimensional data decomposition of the horizontal domain with a halo of ghost cells.

The POM is a powerful ocean model that has been used in a wide range of applications: circulation

and mixing processes in rivers, estuaries, shelf and slope, lakes, semi-enclosed seas and open and90

global oceans. It is also at the core of various real-time ocean and hurricane forecasting systems,

for examples: Japan coastal ocean and Kuroshio (Isobe et al., 2012); Adiratic Sea Forecasting Sys-

tem (Zavatarelli and Pinardi, 2003); the Mediterranean Sea forecasting system (Korres et al., 2007);

3

the GFDL Hurricane Prediction system (Kurihara et al., 1995, 1998), the US’ Hurricane Forecast-

ing System (Gopalakrishnan et al., 2010, 2011) and the Advanced Taiwan Ocean Prediction system95

(Oey et al., 2013). Additionally, the model has been used to study various geophysical fluid dy-

namical processes (e.g. Allen and Newberger, 1996; Newberger and Allen, 2007a, b; Kagimoto and

Yamagata, 1997; Guo et al., 2006; Oey et al., 2003; Zavatarelli and Mellor, 1995; Ezer and Mel-

lor, 1992; Oey, 2005; Xu and Oey, 2011. For a more complete list please visit the POM website

(http://www.ccpo.odu.edu/POMWEB).100

The mpiPOM experiment that is used in this paper is one of the two designed and tested by Profes-

sor Oey and students; the codes and results are freely available at the FTP site (ftp://profs.princeton.

edu/leo/mpipom/atop/tests/). The reader can see Chapter 3 of the Lecture Notes (Oey, 2014) for

more detail. The test case is a dam-break problem in which warm and cold waters are initially sepa-

rated in the middle of a zonally periodic channel 200km×50km×50m on an f-plane, with walls at105

the northern and southern boundaries. Geostrophic adjustment then ensues and baroclinic instability

waves amplify and develop into finite-amplitude eddies in 10∼20 days. The horizontal grid sizes are

1 km and there are 50 vertical sigma levels. Although the problem is a test case, the code is the full

mpiPOM version that is used in the ATOP forecasting system.

The model solves the primitive equation under hydrostatic and boussinesq approximations. In110

the horizontal, spatial derivatives are computed either using centered-space differencing or Smo-

larkiewicz’s positive definite advection transport algorithm (Smolarkiewicz, 1984) on a staggered

Arakawa C-grid; both schemes have been tested, but the latter is reported here. In the vertical, the

mpiPOM supports terrain-following sigma coordinates and a fourth-order scheme option to reduce

the internal pressure-gradient errors (Berntsen and Oey, 2010). The mpiPOM uses the time-splitting115

technique to separate the vertically integrated equations (external mode) from the vertical structure

equations (internal mode). The external mode calculation is responsible for updating surface ele-

vation and the vertically averaged velocities. The internal mode calculation results in updates for

velocity, temperature and salinity, as well as the turbulence quantities. The three-dimensional inter-

nal mode and the two-dimensional external mode are both integrated explicitly using a second-order120

leapfrog scheme. These two modules are the most computationally intensive kernels of the mpiPOM

model.

3
::::
GPU

:::::::::::::
programming

:::::
model

::::::::
overview

::
In

:::
this

:::::::
section,

:::
we

:::::::
describe

:::
the

::::
basic

:::::
GPU

::::::::::
architecture

::
in

::
a

:::::::::::
programmer’s

::::::::::
perspective

:::
and

:::::
focus

:::
on

:::
how

::
to

:::::::
harness

:::
the

:::::
power

::
of

:::
the

::::
GPU

::::
with

:::::::::
NVIDIA’s

:::::::
Compute

:::::::
Unified

::::::
Device

::::::::::::::::::
Architecture(CUDA),125

:
a
:::::::::::
programming

::::::
model

:::
and

:::::::::
computing

::::::::
platform

:::
that

::::::
makes

::::
GPU

:::::::
program

:::::::
elegant

:::
and

::::::
simple.

:

::
In

:::
the

::::
GPU

::::::::
hardware

::::::
design,

:::::
there

:::
are

::::::::
numerous

::::::
stream

:::::::::::::
multiprocessors

::::::
(SMs)

:::::::
grouped

::
by

:::::
large

:::::::
numbers

::
of

::::::
CUDA

::::::
cores.

:::
As

::
an

::::::::
example,

:::
the

:::::::
Nvidia’s

::::::
K20X

::::
GPU

:::
we

:::::
used

:::
has

:::
14

::::
SMs

:::
and

:::::
each

4

http://www.ccpo.odu.edu/POMWEB
ftp://profs.princeton.edu/leo/mpipom/atop/tests/
ftp://profs.princeton.edu/leo/mpipom/atop/tests/
ftp://profs.princeton.edu/leo/mpipom/atop/tests/

:::
SM

:::
has

::::
192

::::::
CUDA

:::::
cores

:::
for

:::::
single

::::::::
precision

:::::::::
operation.

::::
One

:::::
K20X

:::::
GPU

:::
can

:::::::
achieve

::::::::::
3.93TFlops

::::::::
theoretical

:::::
peak

::::::::::
performance

::::
with

::::::::::::::
single-precision

::::::
floating

:::::
point

:::
and

::::::::
250GB/s

:::::::
memory

::::::::::
bandwidth.130

:::::
Figure

::
2
:::::::::
illustrates

:::
the

:::::::
memory

::::::::
hierarchy

:::
of

::::::
K20X

:::::
GPU.

:::::
Each

:::
SM

::::
has

::
its

:::::
own

::::::::
execution

:::::
units

::::::
(CUDA

::::::
cores,

::::::::
load/store

:::::
units,

::::::
special

:::::::
function

::::::
units),

::::::::::::::
warp-schedulers,

::::
and

::::::
various

:::::::
on-chip

:::::
faster

::::::::
memories

::::
such

:::
as

::::::::
registers,

:::
L1

:::::::::::
cache/shared

:::::::
memory

::::
and

::::::
texture

::::::
cache.

:::::::
Various

:::::::
on-chip

::::::
caches

:::::::
provides

::::
more

::::::::::::
opportunities

::
to

:::::::::
implement

:::::::
memory

:::::::::::
optimizations

:::
on

::::
GPU

::::::::
platform.

:::::
Each

:::
SM

:::::
owns

:::
64K

:::
32

::
bit

:::::::
registers

::::::
which

:::
are

::
the

::::::
fastest

:::::::
memory

::
in

:::
the

::::
GPU

:::::::
memory

::::::::
hierarchy.

::::
The

::::::
shared

:::::::
memory135

:::
and

:::
the

:::
L1

:::::
cache

:::::
share

:
a
::::::
64KB

::::::
on-chip

::::
fast

:::::::
memory

::::
and

:::
can

:::
be

:::::::::
configured

::::
with

:::::::
artificial

:::::::
options

::::
such

::
as

::::::::
16/48KB,

::::::::
32/32KB

::
or
::::::

48/16
:::
KB.

:::
In

:::::::
addition,

:::::
there

:::
are

:::
48

:::
KB

::::::::
read-only

::::
data

:::::
cache

::::::
which

:::
add

:::
the

::::::
feature

:::
for

::::::::
read-only

::::
data

::
in

:::::
global

:::::::
memory

::
to
:::
be

::::::
loaded

::::::
through

:::
the

:::::
same

::::::
cache.

:::::
There

:::
are

::::
three

::::::::
common

::::::::
methods

::
to

::::
port

:
a
::::::::
program

::::
from

:::::
CPU

::
to

:::::
GPU.

::::
The

::::
first

:::::::
method

::::
uses

::::::
drop-in

:::::::
libraries

::::::::
provided

:::
by

::::::
CUDA

::
to

:::::::
replace

:::
the

:::::::
existing

:::::
code,

::::
such

:::
as

:::
the

:::::
work

:::::::::::
implemented140

::
by

:::::::::::::::::::::
Siewertsen et al. (2012) .

::::
The

::::::
second

:::::::
method

::::
uses

::::::
simple

:::::::::
OpenACC

::::::::
directive

::
as

:::::
hints

::
in
::::

the

::::::
original

:::::
CPU

::::
code,

:::::
such

::
as

:::
the

:::::
work

:::::::::::
implemented

::
by

::::::::::::::::::
Zhenya et al. (2010) .

:::
The

::::
last

:::::::
method,

::
is

:::
the

::::
most

:::::::
complex

:::
but

:::
the

:::::
most

:::::::
effective,

:::::::
rewrites

:::
the

::::::
whole

:::::::
program

::::
with

::::::
CUDA

::::::::::
subroutines.

:

::
In

::::::
CUDA,

::
a
::::::
kernel

:
is

:
a
:::::::::

subroutine
:::::::

running
:::
on

:::
the

:::::
GPU.

:::::
Each

:::::
kernel

::::::
launch

:::::::
consists

:::
of

:
a
:::::
large

::::::
number

:::
of

::::::
threads

::::
and

:::::
these

::::::
threads

::::
are

:::::::
grouped

::::
into

:::::
equal

::::
size

::::::
blocks

::::::
which

:::
can

:::
be

::::::::
executed145

::::::::::::
independently.

::::
Each

::::::
thread

:::::
block

:::
is

::::::
further

::::::
divided

::::
into

::::::
warps,

::::::
which

::::::
consist

:::
of

:::
32

::::::::::
consecutive

::::::
threads.

:::::::
Threads

:::
in

:
a
:::::

warp
:::::::
execute

:::
the

:::::
same

:::::::::
instruction

:::::::::::::
simultaneously

:::
and

::::
can

:::
be

::::::::
scheduled

:::
as

:
a
::::::
whole

::::
unit.

::::::
Kernel

::::::::
function

:::
and

::::
data

:::::::
transfer

::::::::::
commands

::
in

::::::
CUDA

::::
has

:::
an

:::::::
optional

:::::::::
parameter

::::::
"stream

::::
ID".

::
If

:::::::
"stream

:::
ID"

::
is
::::::::
declared,

:::::::::
commands

:::::::::
belonging

::
to

::::::::
different

::::::
streams

::::
can

::
be

::::::::
executed

::::::::::
concurrently.

::
It
::

is
:::::::

usually
::::
used

::
to

::::::::
alleviate

:::
the

:::::
kernel

::::::
launch

::::::::
overhead

:::
of

:::::::::
subsequent

:::::::::::
independent150

::::::
kernels.

:

::
At

:::::::
present,

:::::
there

:::
are

::::
two

::::::
CUDA

:::::::::
platforms

::
to
:::::::

support
::

C
::::

and
:::::::
Fortran

:::::::::::
respectively,

:::::
which

::::
are

::::::::
CUDA-C

:::
and

::::::::::::::
CUDA-Fortran.

::::::::
Although

:::::::::::::
CUDA-Fortran

::::::::
compiler

:::
has

:::::
been

::::::::
available

:::::
since

:::::
2009

:::
and

::::
that

:::
can

:::::
bring

:::::
about

::::
less

:::::::::::
modification

::
to

:::
the

::::::::
mpiPOM

:::::
code,

:::
we

::::
still

::::::
choose

::::::::
CUDA-C

:::
at

:::
the

::::::::::
gpuPOM1.0

:::::::
because:

::::::::::
1)CUDA-C

::
is

::::
free

::
of

::::::
charge

:::::
while

:::::::::::::
CUDA-Fortran

:::
for

:::
one

::::::::::
workstation

:::::
costs155

::::
more

::::
than

::::::
$1000.

:::::::::
2)Previous

::::
work

:::::::::::::::::::::::::
(Henderson et al., 2011) show

::::
that,

:::::
during

:::
the

::::::
porting

::
of

:::::::::::::
Nondydrostatic

:::::::::
Icosahedral

::::::::::::
Model(NIM),

:::
the

::::::::::
commercial

::::::::::::
CUDA-Fortran

::::::::
compiler

::::
does

:::
not

:::::::
perform

::
as
::::

well
:::

as
:::
the

:::::::
manually

:::::::::
converted

::::::::
CUDA-C

::::::
version

::
in

:::::
some

:::::::
kernels.

:::::
3)The

::::::::
read-only

::::
data

:::::
cache

:::::::::
utilization

::
is

:::
not

::::::::
supported

::
in

:::::::::::::
CUDA-Fortran,

::::::
which

::
is

:::
the

:::
key

:::::::::::
optimization

::
of

:::::::
Section

::::
4.1(

:
A

:
).
:::
4)

:::
We

::::
have

:::::::
already

:::
had

:
a
:::
lot

::
of

:::::::
previous

::::::::::
experiences

:::
for

::::
deep

::::::::::::
optimizations

::::
with

::::::::
CUDA-C.160

4
:::
Full

:::::
GPU

:::::::::::
acceleration

::
of

:::
the

:::::::::
mpiPOM

The flowchart of the gpuPOM is illustrated in Fig. 1
:::::
Figure

::
1

::::::::
illustrates

:::
the

:::::::
flowchart

:::
of

::
the

:::::::::
gpuPOM.

The main difference between mpiPOM and gpuPOM is that the CPU in gpuPOM is only responsible

5

for the initializing work and the outputting work. The gpuPOM begins with initializing the relevant

arrays on the CPU host and then copies data from the CPU host to the GPU. The GPU does all165

the computations, including the external mode, the internal mode, and their interactions. In the 2D

external mode loop, the depth-averaged velocity UA, V A and sea surface height are calculated.

In the 3D internal model loop, the fields such as velocities (U,V), temperature (T), salinity (S),

and various turbulence variables are time-stepped forward. Outputs such as velocity and sea surface

height, are copied back to the CPU host and then written to disk at a user-specified time interval.170

In the following sections, we introduce the general optimizations of the gpuPOM in a single GPU

and the special optimizations of the gpuPOM according to state-of-the-art GPU architecture. Then,

we present the design of communications for various processes and multiple GPUs within a node

instead of using regular MPI functions. Finally, we describe the design of I/O overlapping for hybrid

CPU and GPU architecture.175

gpuPOM flowchart

4.1 Computational optimizations in a single GPU

For current computers, GPU device can be connected to a host through a high-speed PCI-express

interface. The Nvidia GPU has a number of multiprocessors which execute in parallel, and has its

own device memory up to several gigabytes. The code is executed in groups of 32 threads, what180

Nvidia calls a warp.

The memory hierarchy of K20X GPU and the relationships with each optimizations

In our implementation, the 3D arrays of variables are stored sequentially in the order of x, y, z

and the 2D arrays are stored in the order of x, y, which is the same as the original code. The vertical

diffusion is solved by the tridiagonal solver (the Thomas Algorithm) which is calculated sequentially185

in the z direction. For the sake of simplicity, the grid is divided along x and y directions (2D block

decomposition) in all kernel functions. Each GPU thread specifies a (x,y) point in the horizontal

direction and performs all the calculations from surface to bottom. The thread blocks are divided as

(32,4). In the x direction, the block number should be a multiple of 32 threads to perform coalesced

memory access within a warp. In the y direction, we tested many thread numbers, such as 4 and 8,190

and obtained similar performances. We finally choose 4 because we attempt to obtain more blocks

to distribute the workload among stream multiprocessors (SM) more uniformly, and also to obtain

enough occupancy (Volkov, 2010). Occupancy is the percentage of threads active per multiprocessor.

Because the high-resolution mpiPOM is memory intensive, the importance of efficiently using

GPU memory cannot be overstated. The memory hierarchy of Nvidia Tesla K20X GPU is illustrated195

in Fig. 2. In the current K20X GPU, each SM owns 64K 32-bit registers; these registers are the fastest

memory in the GPU memory hierarchy. At the same time, the shared memory and the L1 cache

share a 64KB on-chip fast memory and can be configured with artificial options such as 16/48KB,

6

 Initialization

 Output

Advection and

Horizontal diffusion of

U, V

Baroclinic term of

U, V

Sea Surface Height

Vertical integrated

moment equations

UT, VT for

Internal Mode

+Boundary operation

Update U, V

Continuity equation

+Boundary operation

Turbulence equation

+Boundary operation

Tracer transport

Equation(T,S)

+Boundary operation

Momentum equation

+Boundary operation

E
x

tern
al M

o
d

e
In

tern
al M

o
d

e

CPU GPU

MemcpyDeviceToHost

MemcpyHostToDevice

Figure 1.
:::::::
gpuPOM

:::::::
flowchart

32/32KB or 48/16KB. A 48KB read-only data cache can be directly accessed and is newly designed

in each SM and L2 cache with 1.5 MB size that is shared by all SMs.200

::
In

:::
the

::::::::
following

:::::::
sections,

:::
we

::::::::
introduce

:::
the

::::::
general

::::::::::::
optimizations

::
of

:::
the

::::::::
gpuPOM

::
in

:
a
:::::
single

:::::
GPU

:::
and

:::
the

::::::
special

:::::::::::
optimizations

::
of

:::
the

::::::::
gpuPOM

::::::::
following

:::
the

:::::::::::::
state-of-the-art

::::
GPU

:::::::::::
architecture.

:::::
Then,

::
we

:::::::
present

:::
the

::::::
design

::
of

::::::::::::::
communications

:::
for

::::::
various

::::::::
processes

::::
and

:::::::
multiple

:::::
GPUs

::::::
within

::
a

:::::
node.

::::::
Finally,

:::
we

:::::::
describe

:::
the

::::::
design

::
of

:::
I/O

::::::::::
overlapping

:::
for

::::::
hybrid

::::
CPU

:::
and

:::::
GPU

::::::::::
architecture.

7

thread

L1 Cache
Shared

Memory

Read-only

data cache

L2 Cache

DRAM

L1 CacheL1 Cache
L1

Cache

Register
Loop Fusion &

Function Fusion

Read-only data

cache utilization

 Local memory

Blocking

ECC-off & Boost

K20X Memory Hierarchy Optimizations

Figure 2.
:::
The

:::::::
memory

:::::::
hierarchy

::
of

:::::
K20X

::::
GPU

:::
and

::
the

::::::::::
relationships

::::
with

:::
each

:::::::::::
optimizations

4.1
::::::::::::
Computational

::::::::::::
optimizations

:::
in

:
a
::::::
single

::::
GPU205

Managing the significant performance difference between off-chip and on-chip memory is the pri-

mary concern of a GPU programmer. As shown on the right side of Fig. 2, we propose five key

optimizations to fully utilize the faster on-chip memory of the GPU and describe the relationships

between the GPU memory hierarchy and each optimization in the following.

(A) Read-only data cache utilization. Effective use of the new 48KB directly-access and read-210

only data cache in the K20X GPU can improve the performance of memory intensive kernels. This

feature will be automatically enabled and utilized as long as certain conditions are met. We add

“const __restrict__" qualifiers to the parameter pointers in gpuPOM to explicitly allocate the read-

only data cache for our program. The “LDG.E” instruction will then appear in the disassembling

code, and Nvidia Visual Profiler(NVVP) software will show that the read-only data cache is actually215

being utilized.

As an example, consider the calculations of advection and the horizontal diffusion terms. Because

mpiPOM adopts the Arakawa C-grid, the update of T (i, j,k) requires the value of u(i, j,k), u(i+

1, j,k), v(i, j,k) and v(i, j+1,k), in addition to the value of horizontal kinematic viscosity, aam,

from four neighboring grid points. In one time step, the arrays of u and v must be accessed twice,220

and the aam array must be accessed four times. Therefore it is natural to use the read-only data

cache to improve the data locality of gpuPOM. This optimization improves the performance of this

part by 18.8%.

8

(B) Local memory blocking. Cache blocking is a common method to improve data reuse in

parallel computing. In this method, a small subset of a dataset is loaded into the on-chip faster225

memory (e.g., the L1/L2 cache in the GPU and the CPU) and then the small data block is repeatedly

accessed by the program. It is helpful to reduce the need to access the off-chip with high latency

memory (e.g., global memory on the GPU). Because regular global memory access cannot be cached

in L1 cache for K20X GPU, the method used here is to pull the data from local memory to the L1

cache.230

For the subroutines about vertical diffusion and source/sink terms, the chasing method is used

to solve a tridiagonal matrix along the vertical direction for each grid point individually. As shown

in Algorithm 1, the 3D temporary arrays in the original code, such as ee, gg, that store row trans-

formation coefficients are streamed from memory. However, these arrays are too large to reside in

the cache entirely; code efficiency is therefore decreased. We find that each thread performs a col-235

umn calculation from surface to bottom and there is no communication. Thus, we declare 1D arrays

ee_new,gg_new in local memory to replace the original 3D global arrays. Their size is equal to the

level of ocean, nz− 1, which is typically a very small value.

In the chasing method, these local arrays are accessed twice within one thread, one from k = 0

to k = nz− 1 and another from k = nz− 1 to k = 0. After blocking the vertical direction arrays in240

local memory, L1 cache is fully utilized although some of them may be spilled to global memory.

The performance of the subroutines about vertical diffusion and source/sink terms is improved by

35.3% when using the local memory blocking technique.

(C) Loop fusion. Loop fusion is an effective method to store scalar variables in registers for data

reuse. Registers are the fastest memory in the GPU memory hierarchy. For example, as shown in245

Algorithm 2, if the variable drhox(k, j, i) must be read several times in multiple loops, we can fuse

these loops into one. Therefore, the drhox(k, j, i) will be read from the global memory the first

time and then repeatedly read from a register. This method can also be applied in a number of the

mpiPOM subroutines.

Take the kernel profq as an example. After rewriting part of source code with loop fusion, the250

device memory transactions decrease by 57%, while the registers used per thread increase from 46

to 72, as reported in NVVP. Although the occupancy achieved decrease from 61.1% to 42.7%, the

performance of this kernel is improved by 28.6%.

(D) Function fusion. Because we can fuse the loops in which the same arrays are accessed, we

can also fuse functions in which similar formulas are calculated and the same arrays are accessed.255

For example, the advv and advu functions of the mpiPOM calculate advection in longitude and

latitude, respectively, and they can be fused into one subroutine. This optimization benefits from the

elimination of the redundancy calculations.

This optimization is also useful for the situation in which one function is called several times to

calculate different tracers. For example, the proft functions of the mpiPOM is called twice – once260

9

Algorithm 1 A simple example of local memory blocking

/********************

* Origin CUDA-C code

********************/

//ee, gg are parameter pointers of the function

//that represent the use of global memory

for (k = 1; k < nz-2; k++){

ee[k][j][i] = ee[k-1][j][i]*A[k][j][i];

gg[k][j][i] = ee[k-1][j][i]*gg[k-1][j][i]-B[k][j][i];

}

for (k = nz-3; k >= 0; k++){

uf[k][j][i] = (ee[k][j][i]*uf[k+1][j][i]+gg[k])*C[k][j][i];

}

/*******************

* After local memory blocking

*******************/

//ee_new, gg_new are 1-D array declared in function

//that represent the use of local memory

for (k = 1; k < kbm1; k++){

ee_new[k] = ee_new[k-1]*A[k][j][i]

gg_new[k] = ee_new[k-1]*gg_new[k-1]-B[k][j][i];

}

for (k = nz-3; k >= 0; k++){

uf[k][j][i] = (ee_new[k]*uf[k+1][j][i]+gg_new[k])*C[k][j][i];

}

10

Algorithm 2 A simple example of loop fusion

/********************

* Origin cuda-c code

********************/

for (k = 1; k < kbm1; k++){

drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

}

for (k = 0; k < kbm1; k++){

drhox[k][j][i] = drhox[k][j][i] * B[k][j][i];

}

/*******************

* After loop fusion

*******************/

for (k = 1; k < kbm1; k++){

drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

drhox[k-1][j][i] = drhox[k-1][j][i] * B[k][j][i];

}

drhox[0][j][i] = drhox[0][j][i] + B[k][j][i];

for temperature and once for salinity. Their computing formulas are similar and certain common

arrays are accessed; these functions were modified to calculate temperature and salinity simultane-

ously. The method of Function fusion improves the performance of these functions by 28.8%.

(E)ECC-off and GPU boost. Because ECC memory consumes some amount of memory band-

width, we can improve the GPU global memory bandwidth by disabling the error checking and265

memory correcting features. Also, the memory bandwidth that can be achieved is improved by en-

hancing the clock of SM core. In our implementation, we overclock the default clock of K20X GPU

from 732 MHz to 784 MHz. The methods of ECC-off and GPU boost improves the performance of

the whole application by 13.8%.

We divide all the gpuPOM subroutines into different categories based on their different compu-270

tation patterns. As shown in Table 1, in gpuPOM, we deploy different optimizations in different

categories to achieve improved performance; these categories are now described.

(1)Category 1: Advection and horizontal diffusion(adv)

This category has 6 subroutines, and calculates the advection and horizontal diffusion and in the

case of velocity, the pressure gradient and Coriolis terms. Here it is possible to reuse data among275

adjacent threads, and the subroutines therefore benefit from using read-only data cache and shared-

11

Table 1. Different subroutines adopt different optimizations in gpuPOM

Subroutines A B C D E Speedup

Adv & Hor diff
√ √ √ √

2.05X

Ver diff
√ √ √ √

2.82X

Baroclinic
√ √ √

2.08X

Continuity equ
√ √

1.39X

Vorticity
√ √ √

3.19X

State equ
√ √

1.35X

memory. Also, the variables are calculated in different loops of one function or in different functions,

so the loop fusion and function fusion optimizations apply to this part.

(2)Category 2: vertical diffusion(ver)

This category has 4 subroutines, and calculates the vertical diffusion. In this part, chasing method280

is used in the tridiagonal solver in the k-direction. The main feature is that data is reused twice within

one thread, while data is accessed once from k = 0 to k = nz−1 and once from k = nz−1 to k = 0.

The subroutines are significantly sped up after grouping the k-direction variable in local memories.

(3)Category 3: vorticity(vort), baroclinic(baro), continuity equation(cont) and equation of state(state)

This category is less time consuming than the two categories above, but it also benefits from our285

optimizations. Because there exists data reuse with adjacent threads, the use of read-only data cache

improves efficiency. For vort, there is data reuse within one thread, and loop fusion improves the

efficiency.

:::
The

:::::
main

::::::::
bottleneck

::
of

:::
the

::::::::
mpiPOM

::
is

:::::::::::::
memory-bound

:::::::
problem.

:::
To

:::::::
confirm

:::
this

:::::
issue,

:::
we

:::
use

:::
the

::::::::::
Performance

:::::::::::::::::::::::
API(Browne et al., 2000) to

::::::::
estimate

::::::
floating

:::::
point

::::::::
operation

::::::
count

:::
and

:::
the

::::::::
memory290

::::::::::::::
access(store/load)

::::::::::
instruction

:::::
count.

:::::::
Results

:::::
reveal

::::
that

:::
the

::::::::::::
computational

:::::::::::::::::
intensity(flops/byte)

:::
of

::
the

::::::::
mpiPOM

::
is
::::::
around

::::::
1:3.3,

:::::
while

:::
the

::::::::::::
computational

:::::::
intensity

::::::::
provided

::
by

:::::::::::
SandyBridge

::::::::
E5-2670

:::::
CPUs

:
is
:::::
7.5:1,

::::
and

::::
large

:::::
arrays

:::
are

::::::
mostly

:::::::
streamed

:::::
from

:::::::
memory

:::
and

:::::
shows

::::
little

:::::::
locality.

:::::::::
According

::
to

:::
the

:::::::
roofline

::::::::::::::::::::::::
model(Williams et al., 2009) ,

::::
the

:::::
whole

::::::::
mpiPOM

:::
is

::::::
mainly

:::::::::::::::
memory-bounded.

:::
In

:::::::
addition,

:::
the

:::::::::
mpiPOM

::::::
suffers

:::::
from

:
a
::::

flat
:::::::
profiling

:::::::
results,

::::
with

:::::
even

:::
the

:::::
most

::::::::::::::
time-consuming295

::::::::
subroutine

::::
just

:::::::::
occupying

::::
20%

:::
of

:::
the

::::
total

::::::::
execution

:::::
time.

:::::::
Namely,

:::::
there

:::
are

:::
no

:::::::
obvious

:::
hot

::::
spot

:::::::
functions

:::
in

::
the

::::::::
mpiPOM

::::
and

::::::
porting

:
a
:::::::
handful

::
of

::::::::::
subroutines

::
to

:::::
GPU

:
is
:::
not

:::::::
helpful

::
to

:::::::
improve

:::
the

:::::
model

::::::::::
efficiency.

::::
That

::
is

:::
the

:::::
reason

::::
that

:::
we

::::
need

::
to

::::
port

:::
the

:::::
whole

:::::::
program

:::::
from

::::
CPU

::
to

:::::
GPU.

:

::
To

:::::::
alleviate

:::
the

::::::::
memory

:::::
bound

::::::::
problem,

::
an

:::::::::::
optimization

::::::
method

::::
that

::
is

:::::::::
frequently

::::
used

::
is

:::::
cache

::::::::
blocking.

:::
It

::
is

::::::
usually

::::::
cache

::::::::
beneficial

:::
to

:::
use

:::::::
vertical

:::::
index

:::
as

:::
the

:::::::::
innermost

:::::
array

::::::::::
index(z,x,y300

::::::::
ordering).

:::
For

:::
the

::::::::
mpiPOM

::::
with

::::::::::::
962× 722× 51

::::
test

::::
case,

:::
one

:::::
array

:::
has

:::::::::::::::::
962× 722× 4bytes=

:::::::::
2.6MBytes

::
in

::
the

::::
x-y

:::::
plane,

:::::
while

:::
one

::::
CPU

:::
has

::
a

:::::
32KB

:::::::
per-core

:::
L1

:::::
cache,

::::::
256KB

:::::::
per-core

:::
L2

:::::
cache

:::
and

::::::
20MB

:::::
shared

:::
L3

:::::::
caches.

::::
Take

:::
the

:::::::
chasing

::::::
method

:::
in

::::::
vertical

::::::::
diffusion

:::::
terms

::
as

:::
an

:::::::
extreme

::::
case.

::
If
:::::
x,y,z

12

:::::::
ordering

::
is

:::::
used,

::
in

:::::
terms

:::
of

:::::::::
calculation

:::::
along

::::::
z-axis,

:::::
each

:::
x-y

:::::
plane

::
is

:::::::
blocked

::
in
:::

L3
::::::

cache
:::
for

:::::
reuse.

:::::
When

::::::::
traversing

::::::::::
backwards

::::
along

::
z,
:::
the

::::
data

::::::
needed

:::
are

:::
all

:::::::
evicted.

:
If
:::::
z,x,y

:::::::
ordering

::
is

:::::
used,305

::
in

:::::
terms

::
of

::::::::::
calculation

:::::
along

::::::
z-axis,

::::
each

::
k

::::::
column

::::
data

::
is
:::::::

blocked
:::

in
:::
L1

:::::
cache

:::
for

:::::
reuse.

::::::
When

::::::::
traversing

:::::::::
backwards

:::::
along

::
z,

:::
the

::::
data

:::::::
remains

::::
valid

::
in

:::
L1

::::::
cache.

::::::::::::
Unfortunately,

:::
the

::::::::
mpiPOM

::::
uses

:::::::
east-west

:::::
index

::
as

:::
the

:::::::::
innermost

::::
array

:::::
index.

::::::::
However,

:::
for

::::::::
gpuPOM,

:::::
z,x,y

:::::::
ordering

:::
has

::
to

::
be

:::::::
avoided

::
to

:::::
satisfy

:::::
GPU

:::::::
memory

::::::::::
coalescing,

:::::
which

::
is

::::
also

:::::::::::
demonstrated

::
in
:::::::::::::::::::::::
Shimokawabe et al. (2010) .

::::
We

::::
make

::::::::
east-west

:::
(x)

:::
as

::::::::
innermost

::::::::::
index(x,y,z

::::::::
ordering).

::
A

:::
big

:::::::::
difference

:::
for

:::::::
memory

::::::::::::
optimizations310

:::::::
between

::::
GPU

::::
and

::::
CPU

::
is
:::::

that,
::
in

:::::
GPU,

:::::::::::
programmers

::::
can

::::::::
artificially

:::::::
choose

:::::
which

:::::
array

::
to

:::::
store

::
in

:::::
cache.

:::::::::
Moreover,

:::::
GPU

:::::::
provides

:::::::
various

:::::::
on-chip

::::::
caches,

::::
such

:::
as

:::::
L1/L2

::::::
cache,

::::::
shared

::::::::
memory,

::::::
texture

:::::
cache.

:::::
Thus,

:::::::::
according

::
to

::::
how

:::
the

::::::
arrays

:::
are

::::
used,

:::
we

::::
can

:::
put

::::::::
different

:::::
arrays

::
in

::::::::
different

::::::
caches.

::
In

:::
the

::::::::
gpuPOM,

:::
we

:::::
have

:::::::
explored

::
a

:::::
better

::::
data

::::::::
placement

:::
on

:::::::
different

::::::
caches

:::
for

::::::::
different

:::::
terms,

::::::
besides

:::::::::::
conventional

:::::
cache

::::::::
blocking

:::::::::::
optimizations.

:
315

4.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategies used to harness the computing power of multiple

GPUs. With multiple GPUs, the computing domain is divided into smaller blocks than with a single

GPU. The performance of GPU computing is faster and the memory requirement for each GPU is

reduced. To utilize multiple GPUs, an effective domain decomposition method and communication320

method should be employed. We split the domain along the x and y directions (2-D decomposition)

and assign each MPI process for one subdomain, following Jordi and Wang (2012). Then, we attach

the MPI process to one GPU and send messages from one GPU to another. Shimokawabe et al.

(2010) and Yang et al. (2013) proposed some fine-grained overlapping methods of GPU computation

and CPU communication to improve the simulation performance. An important common issue is that325

the communications between multiple GPUs explicitly require the participation of the CPU. In our

work, we hope to implement the communication to bypass the CPU to fully employ the capability

of the GPU.

State-of-the-art MPI libraries, such as OpenMPI and MVAPICH2, have announced their support

for MPI communication directly from GPU memory, which is known as CUDA-aware MPI. We tried330

MVAPICH2 to implement direct communication among multiple GPUs at first. However, we found

that the boundary operation and MPI communication occupied nearly 15% of the total runtime after

GPU porting.

To fully overlap the boundary operations and MPI communications with computation, we adopt

the data decomposition method shown in Fig. 3. The data region is decomposed into three parts: the335

inner part, the outer part, and the halo part. The outer part includes east/west/north/south part, and

the halo part also includes east/west/north/south halos to exchange data with neighbors. In CUDA,

a stream is a sequence of commands that execute in order; different streams can also execute con-

currently with different priorities. In our design, the inner part, which is the most time-consuming

13

Inner Part
(stream 1)

North Part

(stream 2)

South Part

(stream 2)

W
est P

art

(stream
 2

)

E
ast P

art

(stream
 2

)

W
est H

alo (stream
 2

)

E
ast H

alo
 (stream

 2
)

North Halo(stream 3)

South Halo(stream 3)

32

Figure 3. Data decomposition in gpuPOM

Rank0: GPU0

stream1

stream2

stream3

cudaStreamSynchronize Operation

Inner Part

East/West part

North/South part

Halo Comm. Halo Comm.

Figure 4. The workflow of multiple streams on the GPU. The “inner/east/west/north/south part" and “Halo"

refer to computation and update of corresponding part. “Comm." refers to communication between processes,

which implies synchronization.

part with the largest workload is allocated to stream 1 in which to execute. The east/west outer part340

is allocated to stream 2 and the north/south outer part is allocated to stream 3. In the east/west outer

part, the width is set to 32 to ensure coalesced memory access in a warp to improve performance.

The halo part is also allocated to stream 2.

The workflow of multiple streams on the GPU is shown in Fig. 4. The east/west/north/south parts

are normal kernel functions that can run in parallel with the inner part through different streams. The345

communication operations are implemented by cudaMemcpyAsync, which is an asynchronous

CUDA memory copy function. The corresponding synchronization operation between the CPU and

the GPU or among MPI processes are implemented with cudaStreamSynchronize function and

MPI_barrier function. To hide the subsequent communication by the inner part, stream 2 and

14

stream 3 for the outer part have higher priority to preempt the computing resource from stream 1 at350

any time.

Current CUDA-aware MPI implementation such as MVAPICH2 is not suitable for the “Comm."

part in Fig. 3. We found the two-sided MPI functions MPI_Send and MPI_Recv will block

the current stream so that the concurrency pipeline is broken. The probable cause is synchronous

cudaMemcpy function is called in the current implementation of MPI_Send and MPI_Recv,355

according to Potluri et al. (2012). Moreover, the implementation of non-contiguous MPI datatype

for communication between GPUs is not efficient enough for the gpuPOM. The computation time

of many kernels is about a few hundred microseconds to a few milliseconds while MPI latency for

our message size is about the same, which means the outer part update and communication can not

be fully overlapped.360

From CUDA 4.1, the Inter-Process Communication (IPC) feature has been introduced to facilitate

direct data copy among multiple GPU buffers that are allocated by different processes. The IPC is

implemented by creating and exchanging memory handles among processes and obtaining the device

buffer pointers of others. This feature has been utilised in CUDA-aware MPI libraries to optimise

communications within a node. Therefore, we decided to implement the communication among mul-365

tiple GPUs by calling the low-level IPC functions and asynchronous CUDA memory copy functions

directly, instead of using high-level CUDA-aware MPI functions. Our communication optimizations

among multiple GPUs are mainly implemented with the following two optimizations..

First, we put the phases of creating, exchanging and opening relevant memory handles into the ini-

tialization phase of the gpuPOM, which is executed only once. This method can remove the overhead370

of IPC memory handle operations during each MPI communication operation. The cudaMemcpyAsync

function with the corresponding device buffer pointers of neighbor processes replaces the original

MPI functions.

Second, we take full consideration of the architecture of our platform in which 4 GPUs are con-

nected with two I/O Hubs (IOHs). As illustrated in Fig. 5, there are two Intel SandyBridge CPUs that375

connect two GPUs. Both the CPUs are themselves connected through Intel QuickPath Interconnect

(QPI). Notation 1© means that the communications between GPUs are connected with the same IOH

support Peer-to-Peer (P2P) access. Notation 2© represents the communications in which P2P access

is not supported. If MPI_Rank 0 (context on GPU-0) sends data to MPI_Rank 2 (context on GPU-2),

rank 0 must switch its context to GPU-2 temporally and opens the corresponding memory handles to380

obtain the device buffer pointers of rank 2. For those GPUs that do not support P2P access between

one another, we must switch context to the same GPU before opening the corresponding memory

handles. We then call regular cudaMemcpyAsync functions to fulfill data communications. For

communications between GPUs on the same IOH, the switching context is not necessary. Although

the function cudaMemcpyAsync is used in the communication of both 1© and 2©, the NVVP soft-385

ware shows that 1© does a device-to-device memory copy that bypasses the CPU, whereas 2© does

15

 Q
P

I
in

co
m

p
at

ib
le

 w
it

h
 P

C
I-

e
P

2
P

 s
p
ec

if
ic

at
io

n

CPU0 CPU1QPI

Q
P

I

IOH-0

Q
P

I

IOH-1QPI

P
C

I-
e

P
C

I-
e

P2P

supported

GPU0

1

GPU1

1

GPU2

GPU32

2

1

P2P

supported

symbolizes global data domain,

and 2-D decomposition(2x2) is used among 4 gpus

Figure 5. Communications pattern among multiple GPUs in one node

a device-to-host and a host-to-device memory copy that involves the CPU. The 2-D decomposition

introduced in Fig. 5 is an example to demonstrate our design can easily extend to 8 or more GPUs

within one node.

4.3 I/O optimizations between hybrid GPU and CPU390

The time consumed for I/O in the original mpiPOM is not significant because the output frequency is

relatively low. However, after we fully accelerate the model by GPU, the I/O overhead, which is ap-

proximately 30% of the total runtime, cannot be ignored. As described in Sec. 4.2, each MPI process

sets its context on one GPU and is responsible for launching kernel functions on this GPU, and the

CPU is used to collect and output data. In fact, in most climate models, including the mpiPOM, the395

computing phase and I/O phase run alternately. In a sense, the computing phase and the I/O phase

are serial, which means that the GPU will remain idle until the CPU finishes I/O operations. Huang

et al. (2014) designed a fast I/O library for climate models and provided automatic overlapping of

I/O and computing. Motivated by their work, we design a method so that computations on GPU and

I/O operations on CPU can run in parallel.400

16

One GPU

Compute

process

I/O

process

MPI_Barrier operation

data

copy
I/O

computation computation

data

copy
I/O

computation

Time

Figure 6. One computing process and one I/O process both set their contexts on the same GPU. During the data

copy phase, the computing process remains idle and the I/O process will copy data from the GPU to the CPU

host through the cudaMemcpy function.

Because MPI processes are blocked during the output phase and cannot launch kernels to GPUs,

we choose to launch more MPI processes. We divide all the MPI processes into computing processes

and I/O processes with different MPI communicators. The computing processes are responsible for

launching kernel functions as usual, and the I/O processes are responsible for output. One I/O process

attaches to one computing process and these two processes set their contexts on one single GPU405

through cudaSetDevice function. The total number of MPI processes are twice the size they were

before.

Since the I/O processes must fetch data from the GPU, where the data are allocated by the com-

puting processes, communication is necessary between them. Here, we again utilize the feature of

CUDA IPC, as introduced in Sec. 4.2. Through CUDA IPC, the I/O processes obtain the device410

buffer pointers from the computing processes during the initialization phase. When there is a need

to output data, the computing processes are blocked and kept idle for a short time while waiting for

I/O processes to fetch data. Then, the computing processes continue their computation, and the I/O

processes complete their output in the background, as illustrated in Fig. 6.

The advantage of this method is that it overlaps the I/O on the CPU with computation on the415

GPU. In the serial I/O, the computing processes are blocked while data are brought to the host and

written to disk. In the overlapping I/O, the computing processes wait for the data to be brought

to the host. In addition, the bandwidth of data brought to the host through the PCI-express bus is

approximately 6 GBps, but the output bandwidth is approximately 100 MBps, as determined by the

disk. Thus
::::::::
Therefore, the overlapping method significantly accelerates the entire application.420

::::
Note

::::
that

::::
there

:::
are

:::::
more

::::
than

:::
50

:::::
kernel

::::::::
functions

:::
in

:::
the

::::::
current

:::::::
version

::
of

::::::::
gpuPOM.

::::
The

:::::
main

:::::
reason

::::
that

:::
we

::::
have

:
a
:::::
large

:::::::
number

::
of

::::::
kernels

::
in

::::::::
gpuPOM

::
is

::::
that

::::
there

::::
exist

:::::::::
numerous

::::::::::
subroutines

::
in

::::::::
mpiPOM.

:::::
Since

:::
we

:::
port

:::
the

:::::
entire

::::::
model

:::
one

:::::::::
subroutine

::
by

::::
one

:::::::::
subroutine,

:::::
which

::
is
::
a

:::::::::
convenient

:::
way

::
to
::::::

debug
:::
the

::::::::
gpuPOM

:::
and

::
to
:::::::::
guarantee

::
its

::::::::
bit-by-bit

::::::::
identical

::::::
results

::
to

::::::::
mpiPOM,

:::
we

:::::
need

::
to

::::
write

::
a

::::
large

:::::::
number

::
of

:::::
GPU

::::::
kernels.

:::::::
Further

:::::
more,

:::
we

:::::
break

::::::
several

::::::::::
subroutines

::
of

::::::::
mpiPOM

::::
into425

::::::
several

::::
GPU

::::::
kernels

::
of

::::::::
gpuPOM

::
in

:
3
::::::
cases:

::::
when

:::::::::
subroutine

::
B

::
is

::::::
invoked

::
in

:::::::::
subroutine

:::::::::::
A(illustrated

::
in

:::
Fig.

:::::
7(a)),

:::::
when

:
a
::::
MPI

:::::::
function

::::
call

::
is

::::::
invoked

::
in
:::::::::
subroutine

:::::::::::
A(illustrated

::
in

::::
Fig.

:::::
7(b)),

:::
and

:::::
when

17

CPU code

subroutine A

 statements block A1

 call subroutine B

 statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 function B();

 gpu_kernel_A2<<<grid,block>>>;

}

CPU code

subroutine A

 statements block A1

 call MPI_function B

 statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 MPI_function B();

 gpu_kernel_A2<<<grid,block>>>;

}

CPU code

subroutine A

 statements block A1

 statements block A2

end subroutine A

CUDA-C code

function A;

__global__ gpu_kernel_A1;

__global__ gpu_kernel_A2;

function A{

 gpu_kernel_A1<<<grid,block>>>;

 gpu_kernel_A2<<<grid,block>>>;

}

(a)when subroutine B is invoked in subroutine A, A is broken into

2 small kernels.

(b)when a MPI function call is invoked in subroutine A, A is broken

into 2 small kernels.

(c)when interior array is first written by one thread and later read

by adjacent threads, in the mean while caching this array in shared

memory makes no sense, A is broken into 2 small kernels.

Figure 7.
:::
The

:
3
:::::

cases
::::
when

:
a
::::::::
subroutine

::
is
:::::
broken

::::
into

::::
small

::::::
kernels.

::::::
interior

:::::
array

::
is

::::
first

::::::
written

:::
by

:::
one

::::::
thread

::::
and

::::
later

::::
read

:::
by

:::::::
adjacent

:::::::
threads,

::
in

:::
the

::::::
mean

:::::
while

::::::
caching

::::
this

:::::
array

::
in

::::::
shared

:::::::
memory

::::::
makes

:::
no

::::::::::::::
sense(illustrated

::
in

::::
Fig.

:::::
7(c)).

::::::::
Although

::::::::
function

:::::
fusion

:::
has

:::::
been

::::
done

:::
as

::::::::
described

:::
in

::::::
Section

:::
4.1

::
(
:
D
:
),
::::::::::

aggressive
:::::::
function

::::::
fusion

::
to

:::::
make

:::
use

:::
of430

:::
data

:::::::
locality

:::::::
between

:::::::::
functions

::
is

:
a
:::::::::
promising

::::::::::::::::::::::::::::::::::::
optimization(Wahib and Maruyama, 2014) .

::::
But,

::
a

:::::::
redesign

::
of

:::
the

::::
code

::::::::
structure

::
of

::::::::
mpiPOM

::
is

::::::
needed

:::
and

::
it

::
is

:
a
::::
part

::
of

:::
our

:::::
future

:::::
work.

:

18

5 Experiments

In this section, we first describe the specification of our platform and comparison methods used to

validate the correctness of the gpuPOM. Furthermore, we present the performance and scalability of435

the gpuPOM on the GPU platform in comparison with the mpiPOM on the CPU platform.

5.1 Platform Setup

The GPU platform used in our experiments is a super workstation computer consisting of two CPUs

and 4 GPUs, as illustrated in Fig. 5. The CPUs are 2.6 GHz 8-core Intel E5-2670 (architecture code-

named SandyBridge), which can turbo to 3.0 GHz when all 8 cores are utilized. The peak single-440

precision performance of the Intel SandyBridge CPU is 384 GFlops and the peak memory bandwidth

is 51.2 GBps. The GPUs are Nvidia Telsa K20X, equipped with 2,688 GPU-cores and 6 GB GDDR5

fast on-board memory. The peak single-precision performance of K20X GPU is 3.95 TFlops and

the peak memory bandwidth is 250 GBps. Therefore, the aggregated performance provided with 4

GPUs can reach 16 TFlops and 1 TBps memory bandwidth, which is sufficient to execute the general445

simulation research for regional ocean models thus far. The operating system is RedHat Enterprise

Linux 6.3 x86_64. The programs on this platform are complied with Intel compiler v14.0.1, Intel

MPI Library v4.1.3 and CUDA 5.5 Toolkit.

For the purposes of comparison, the CPU platform used in our experiments is the Tansuo100

supercomputer at Tsinghua University, which consists of 740 nodes, each of which has two 2.93450

GHz 6-core Intel Xeon X5670 processors and 32 GB memory. The nodes are connected through

an Infiniband network, which provides a maximum bandwidth of 40 Gbps. The node operating

system is RedHat Enterprise Linux 5.5 x86_64. All the programs on this platform are compiled with

Intel compiler v11.1, and the MPI environment is Intel MPI v4.0.2. The Original mpiPOM code is

benchmarked with its initial compiler flags(i.e., -O3 -precise) and also with the same Intel compiler.455

We also use the GPUDirect technology within MVAPICH2 v1.9 to test the communication effects

among multiple GPUs, and compare the results with our implementation.

5.2 The test case and the verification of accuracy

The “"dam break" simulation (Oey, 2014) is conducted to verify the correctness and test the per-

formance and the scalability of the gpuPOM. It is a baroclinic instability problem which simulates460

flows produced by horizontal temperature gradients. The model domain is configured as a straight

channel with uniform depth of 50 m. Periodic boundary conditions are used in the east-west direc-

tion, and the channel is closed in the north and south. Its horizontal resolution is 1km×1km. To test

large computational grid, the domain size of this test case is increased to 962× 722 horizontal grid

points and 51 vertical sigma levels, which is limited by the capacity of on-board memory. Initially,465

temperature in the southern half of the channel is 15oC and 25oC in the northern half. The salinity

19

is fixed at 35 psu. The fluid is then allowed to adjust. In the first 3-5 days, geostrophic adjustments

occurs. Then unstable wave develops due to baroclinic instability. Eventually, eddies are generated.

Figure 8 shows the sea-surface height (SSH), sea-surface temperature (SST), and currents after 39

days. The development of a gravity wave is manifest. Noticeably, The gravity wave is confined in470

the middle of the channel by Rossby radius deformation.

To verify accuracy, we check the binary output files output from the original mpiPOM and the

gpuPOM. This testing method is also used in the GPU-porting of ROMs (Mak et al., 2011). As

introduced in Whitehead and Fit-Florea (2011), the same inputs will give identical results for indi-

vidual IEEE-754 operations except in a few special cases. These cases can be classified into three475

categories: different operations orders, different instructions and different implementations of math

libraries. For the first in our study, the parallelization of the mpiPOM does not change the order of

each floating point operation and we benefit from this. For the second case in our study, the GPUs

have fused multiply-add (FMA) instruction while the CPU does not in our CPU platform. Because

this instruction might cause a difference in the numerical results, we disable FMA instructions with480

the “-fmad=false” compiler flag for the GPUs. For the third case in our study, the value of exponent

used in the GPU has a maximum of 2 rounding errors NVIDIA (2014). Fortunately, in the execution

path of our dam break simulation, the power of the exponent functions remains unchanged over the

entire simulation. Therefore, we accomplish this function on the CPU during the initialization phase

and copy the results to the GPU for later data reuse. The experimental results demonstrate that the485

output variables regarding velocity, temperature, salinity and sea surface height are identical.

5.3 Performance

To understand the advantages of the optimizing methods introduced in Sec. 4, we test the dam break

case with different experiments . The current dam break case uses single-precision format. The

metrics of seconds per simulation day, which is the walltime it requires to obtain 24 hours in the490

simulation, is measured and used to compare the performance.

In the first experiment, we compare the gpuPOM with the mpiPOM on different hardware plat-

forms, including K20X GPU, the Intel Westmere 6-cores X5670 CPU and the Intel SandyBridge E5-

2670 CPU. Fig. 9 shows that one K20X GPU can compete with approximately 55 Intel SandyBridge

CPU cores or 95 Intel Westmere CPU cores. Obtaining such a speedup on a pure CPU platform is495

reasonable. Taking the Sandybridge
::::::::::
SandyBridge

:
CPU platform as an example, the theoretical mem-

ory bandwidth of one 8-core E5-2670 CPU is 51.2 GBps, and the peak single-precision floating point

performance is 384 GFlops with all 8 cores turbo to 3.0 GHz. However, for K20X GPU, the mem-

ory bandwidth and peak single-precision floating point performance are 250 GBps and 3.95 TFlops,

respectively. The approximate ratio of memory bandwidth is 1:5 and the ratio of floating points500

performance is 1:10. Therefore, if an application is strictly memory intensive, one K20X GPU can

compete with 5 CPUs (approximately 40 SandyBridge CPU cores). In addition, if an application

20

Figure 8. The sea-surface height (SSH), sea-surface temperature (SST), and currents after 39 days

simulation
::
The

::::::
model

:::::
results

::::
after

:::
39

::::
days

::::::::
simulation.

::::
For

:::
the

::
up

:::::
figure,

:::::
color

::::::
shading

::
is
:::

the
:::
Sea

:::::::
Surface

:::::
Height

::::::
(SSH).

::::::
Vectors

::
are

:::::
ocean

:::::::
current.

:::
For

:::
the

:::
low

:::::
figure,

:::::
color

::::::
shading

::
is

:::
the

:::
Sea

::::::
Surface

::::::::::
Temperature

:::::
(SST).

::::::
Several

::::
warm

:::
and

::::
cold

:::::
eddies

::
are

::::::::
generated

::
in

:::
the

:::::
middle

::
of

:::
the

:::::
domain

:::::
where

::::
SST

::::::
gradient

::
is

::::::
largest.

::::::::
Noticeably,

:::
the

:::::
gravity

:::::
wave

:
is
:::::::
confined

::
in

::
the

::::::
middle

::
of

::
the

::::::
channel

:::
by

:::::
Rossby

:::::
radius

::::::::::
deformation.

21

is strictly computing bound, it can compete with 10 CPUs (approximately 80 SandyBridge CPU

cores). Our results are more than 50x because the mpiPOM is mostly memory intensive and we

have performed several memory optimizations to improve the data locality.
:::
The

::::::::::
approximate

:::::
ratio

::
of505

:::::::
memory

:::::::::
bandwidth

:::::::
between

::::
one

:::::::::::
SandyBridge

::::
CPU

::::
and

:::
one

::::::
K20X

::::
GPU

::
is
::

1
:
:
::
5,
::::

and
:::
the

::::
ratio

:::
of

::::::
floating

:::::
points

:::::::::::
performance

:::::::
between

:::
one

:::::::::::
SandyBridge

:::::
CPU

:::
and

:::
one

:::::
K20X

:::::
GPU

::
is

:
1
:
:
:::
10.

:::::::
Namely,

::
if

::
an

:::::::::
application

::
is

::::::
strictly

:::::::
memory

::::::
bound,

:::
one

::::::
K20X

::::
GPU

:::
can

::::::::
compete

::::
with

:
5
:::::::::::
SandyBridge

::::::
CPUs.

::
In

:::::::
addition,

::
if

::
an

::::::::::
application

::
is

::::::
strictly

:::::::::
computing

::::::
bound,

::
it

:::
can

:::::::
compete

::::
with

:::
10

:::::::::::
SandyBridge

::::::
CPUs.

::
As

:::
the

::::::::
mpiPOM

::
is

:::::::
memory

::::::
bound,

:::::::::
according

::
to

:::
the

:::::::
memory

:::::::::
bandwidth

::::
ratio

:::::::
between

:::
the

::::
CPU

::::
and510

::
the

:::::
GPU,

::::
our

::::::::
gpuPOM

:::::
should

:::::::
provide

:::::::::
equivalent

:::::::::::
performance

::
to

:::
5x8

::
=

::
40

:::::
CPU

:::::
cores.

::::::::::
Combining

:::
our

::::::
careful

:::::::
memory

::::::::::::
optimizations,

::::
our

::::
final

::::::
design

::::::::
achieves

::::::
another

:::::::::::
performance

:::::
boost

:::
of

:::::
25%,

:::
and

:::
one

:::::
GPU

:::::::
provides

:::::::
similar

::::::::::
performance

::
to
:::::

more
::::
than

:::
50

::::
Intel

::::::
8-core

:::::::::::
SandyBridge

::::
CPU

::::::
cores.

::::::::
Compared

::::
with

:::::
Intel

::::::::
Westmere

:::::::
6-cores

:::::
CPU,

:::
our

::::::
results

::::::
provide

::::::
similar

:::::::::::
performance

::
to

:::::
more

::::
than

::
95

::::
CPU

::::::
cores.515

The performance API tool (PAPI) shows that the performance of the gpuPOM on single K20X is

107.3Gflops in single-precision for the 962*722*51 grid size. The low performance in Gflops reflects

the memory-bound problem in climate models. Previous work such as time skewing (McCalpin and

Wonnacott (1999); Wonnacott (2000)) can make a stencil computation compute bound by making

use of data locality between different time-steps. However, for real-world climate models including520

mpiPOM, the code is usually tens to hundreds of thousands lines and analyzing the dependency

manually is tough. Designing an automated tool to further analyze and optimize the mpiPOM and

the gpuPOM is a part of our future work.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80 90 100 110

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

CPU cores

One K20X GPU
Intel X5670(6cores)

Intel E5-2670(8 cores)

Figure 9. Performance comparison with different hardware platform

22

In the second experiment, we test the communication overlapping method used in the gpuPOM

and compare it with the MVAPICH2. In the current MVAPICH2, the communication and boundary525

operations are not overlapping with computing. Fig. 10 shows the weak scaling performance of

the gpuPOM on multiple GPUs. To maximize performance, the grid size for each GPU is set to

962× 722× 51. When using 4 GPUs with the implementation of MVAPICH2, 18% of the total

runtime is consumed in executing the communication and boundary operations. This overhead does

not exist in our communication overlapping method. Fig. 10 shows that it spends almost the same530

time when using different GPUs because the communication and boundary operations are almost

fully overlapped with the inner part of the computation.

 0

 20

 40

 60

 80

 100

 120

 140

1-GPU 2-GPUs 4-GPUs

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

Number of GPUs

Our design
CUDA-aware MPI

Figure 10. The weak scaling test between our communication overlapping method and the MVAPICH2 sub-

routines.

In the third experiment, we test the efficiency of the gpuPOM on multiple GPUs. Table 2 shows the

strong scaling result of the gpuPOM on multiple GPUs. We fix the global grid size at 962×722×51

and increase the amount of GPUs gradually. The results show that the strong scaling efficiency is535

99% on 2 GPUs and 92% on 4 GPUs. A smaller subdomain will decrease the performance of the

gpuPOM in two aspects. First, communication time can easily exceed the computation time in the

inner part and cannot be overlapped. As the subdomain size decreases, the inner part computation

time decreases, but the communication time will not decrease because latency is the dominant factor.

Second, the latency of kernel launching and overhead of implicit synchronization after kernel exe-540

cution will not decrease. There are a series of small kernels in the gpuPOM, and the execution time

is close to launching latency and synchronization overhead. When the subdomain size decreases, the

impact of these delays expands.

23

Table 2. The strong scaling result of gpuPOM

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time(s) 97.2 48.7 26.3

Efficiency 1.00 0.99 0.92

In the fourth experiment, we test the performance of the I/O overlapping method and compare

it with the default parallel NetCDF (PnetCDF) method and NO-I/O method. NO-I/O means that545

all I/O operations are disabled in the program and the time measured is the pure computing time.

We simulated the experiment for 20 days and output the history files daily in the netCDF format.

The variables included in the output netCDF files are 2-dimensional arrays of size 722× 482 and

3-dimensional arrays of size 722× 482× 51. The final history files are approximately 12 GB. Fig.

11 shows that the I/O overlapping method outperforms the default PnetCDF method. For 1 GPU and550

2 GPUs, the overall runtime decreases from1694/1142 seconds to 1239/688 seconds, which is close

to the NO-I/O method. The small difference between our design and NO-I/O is that the computing

processes must be blocked until I/O processes bring data from the GPU. For the case of 4 GPUs, the

output time is longer than computational time because the latter is fast and the I/O time is relatively

large such that the I/O phase cannot fully overlap with the computing phase. The overall runtime555

equals the sum of the computation time and the non-overlapped I/O time.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1-GPU 2-GPUs 4-GPUs

S
ec

o
n
d
s

o
f

2
0
-d

ay
s

si
m

u
la

ti
o
n

Number of GPUs

PnetCDF
I/O-overlapping

NO-I/O

Figure 11. I/O Test for gpuPOM

In the last experiment, we test different workloads with the gpuPOM and compare the results

with the mpiPOM on Tansuo100 platform. The available global grid size are choosen from the

24

three different high-resolution sets (Grid-1: 962×722×51, Grid-2: 1922×722×51, Grid-3: 1922×
1442× 51). Fig. 12 shows that our workstation with 4 GPUs is comparable to a powerful cluster560

with 408 CPU cores (34 nodes * 12 cores/node) for the simulation of mpiPOM. Since the Thermal

Design Power(TDP) of one X5670 CPU(6-cores) is 95W and that of one K20X GPU is 235W, it

means using 4 GPUs brings 6.8 times less energy consumption compared with 408 CPU cores. Small

subdomains will decrease the performance of the gpuPOM as discussed in the strong scaling test,

but it may greatly benefit the mpiPOM on the CPU. The last level cache of one SandyBridge CPU in565

our platform is 20 MB, whereas that of K20X GPU is only 1.5 MB. As the subdomain size for each

MPI process decreases, the cache hit ratio will increase on a pure CPU platform, which can surely

improve the performance especially for the memory-bound problem. However, for the simulation on

408 CPU cores, the MPI communication time may occupy more than 40% of total execution time.

With the number of cores increasing to over 450, the execution time may increase instead, as shown570

in Fig. 12. As a result, our GPU solution has an overwhelming advantage compared to the CPU

because the communication overhead is less expensive and overlapped.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 350 400 450 500

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

CPU cores

Grid-1 Tansuo100
Grid-1 GPU workstation

Grid-2 Tansuo100
Grid-2 GPU workstation

Grid-3 Tansuo100
Grid-3 GPU workstation

Figure 12. Four GPUs performance test compared with Tansuo100 clusters(Intel Westmere CPUs)

6
::::
Code

::::::::::
availablity

:::
The

::::::::
gpuPOM

::::
used

:::
to

:::::::
simulate

:::
the

:::::::
regional

:::::
ocean

::::::::
dynamic

::::
and

:::::::
physical

::::::
process

:::::::
releases

:::::
with

:::
the

::::::
version

:::
1.0

::::::
series,

::::::
which

::
is

:::::
freely

::::::::
available

::
at
:

https://github.com/hxmhuang/gpuPOM.
:::::
Note

::::
that575

::
the

:::::::
testing

:::::
script

::::
"run_exp002

:::
.sh"

::::
can

::
be

:::::::::::
downloaded

::
to

:::::::
compile

::::
and

:::::::
execute

:::
the

::::::
codes,

:::
and

:::
to

::::::::
reproduce

:::
the

:::
test

:::::
case.

25

https://github.com/hxmhuang/gpuPOM

7 Conclusions

In this paper, we provide a full GPU accelerated solution of POM. Unlike partial GPU porting, such

as WRF and ROMs, the gpuPOM does all the computations on the GPU. The main contribution of580

our work includes a better use of state-of-the-art GPU architecture, particularly regarding the mem-

ory subsystem, a new design of a communication and boundary operations overlapping approach

and a new design of an I/O overlapping approach. With the workstation with 4 GPUs, we achieve

over 400x speedup against a single CPU core, and provide equivalent performance to a powerful

CPU cluster with 34 nodes
:::::
more

::::
than

:::
400

:::::
cores

:
and reduce the energy consumption by 6.8 times.585

This work provides cost-effective and efficient ways in ocean modeling.

Acknowledgements. This work is supported in part by a grant from the Natural Science Foundation of China(41375102),

the National Grand Fundamental Research 973 Program of China (No. 2014CB347800), and the National High

Technology Development Program of China (2011AA01A203).

26

References590

Allen, J. S. and Newberger, P. A.: Downwelling Circulation on the Oregon Continental Shelf. Part I:

Response to Idealized Forcing, Journal of Physical Oceanography, 26, 2011–2035, doi:10.1175/1520-

0485(1996)026<2011:DCOTOC>2.0.CO;2, 1996.

Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure gradient in σ-coordinate ocean models: compar-

ison of second-, fourth-, and sixth-order schemes, Ocean dynamics, 60, 317–330, 2010.595

Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic numerical circulation studies of the South Atlantic

Bight, Journal of Geophysical Research: Oceans (1978–2012), 88, 4579–4592, 1983.

Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean circulation model, Coastal

and estuarine sciences, 4, 1–16, 1987.

Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P.: A portable programming interface for performance600

evaluation on modern processors, International Journal of High Performance Computing Applications, 14,

189–204, 2000.

Carpenter, I., Archibald, R., Evans, K. J., Larkin, J., Micikevicius, P., Norman, M., Rosinski, J., Schwarzmeier,

J., and Taylor, M. A.: Progress towards accelerating HOMME on hybrid multi-core systems, International

Journal of High Performance Computing Applications, 27, 335–347, 2013.605

Chapman, B., Jost, G., and Van Der Pas, R.: Using OpenMP: portable shared memory parallel programming,

vol. 10, The MIT Press, 2008.

Ezer, T. and Mellor, G. L.: A numerical study of the variability and the separation of the Gulf Stream, induced

by surface atmospheric forcing and lateral boundary flows, Journal of physical oceanography, 22, 660–682,

1992.610

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tuleya, R., Yablonsky, R., and Zhang, X.:

Hurricane Weather Research and Forecasting (HWRF) model scientific documentation, L Bernardet Ed, 75,

2010.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tong, M., Tallapragada, V., Tuleya, R., Yablon-

sky, R., and Zhang, X.: Hurricane Weather Research and Forecasting (HWRF) model: 2011 scientific docu-615

mentation, L. Bernardet, Ed, 2011.

Govett, M., Middlecoff, J., and Henderson, T.: Running the NIM next-generation weather model on GPUs,

in: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.

792–796, IEEE, 2010.

Gropp, W. D., Lusk, E. L., and Thakur, R.: Using MPI-2: Advanced features of the message-passing interface,620

vol. 2, Globe Pequot, 1999.

Guo, X., Miyazawa, Y., and Yamagata, T.: The Kuroshio Onshore Intrusion along the Shelf Break of the East

China Sea: The Origin of the Tsushima Warm Current., Journal of Physical Oceanography, 36, 2006.

Henderson, T., Middlecoff, J., Rosinski, J., Govett, M., and Madden, P.: Experience applying Fortran GPU

compilers to numerical weather prediction, in: Application Accelerators in High-Performance Computing625

(SAAHPC), 2011 Symposium on, pp. 34–41, IEEE, 2011.

Huang, X., Wang, W., Fu, H., Yang, G., Wang, B., and Zhang, C.: A fast input/output library for high-resolution

climate models, Geoscientific Model Development, 7, 93–103, 2014.

27

http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2

Isobe, A., Kako, S., Guo, X., and Takeoka, H.: Ensemble numerical forecasts of the sporadic Kuroshio water

intrusion (kyucho) into shelf and coastal waters, Ocean Dynamics, 62, 633–644, 2012.630

Jordi, A. and Wang, D.-P.: sbPOM: A parallel implementation of Princenton Ocean Model, Environmental

Modelling & Software, 38, 59–61, 2012.

Kagimoto, T. and Yamagata, T.: Seasonal transport variations of the Kuroshio: An OGCM simulation, Journal

of physical oceanography, 27, 403–418, 1997.

Korres, G., Hoteit, I., and Triantafyllou, G.: Data assimilation into a Princeton Ocean Model of the Mediter-635

ranean Sea using advanced Kalman filters, Journal of Marine Systems, 65, 84–104, 2007.

Kurihara, Y., Bender, M. A., Tuleya, R. E., and Ross, R. J.: Improvements in the GFDL hurricane prediction

system, Monthly Weather Review, 123, 2791–2801, 1995.

Kurihara, Y., Tuleya, R. E., and Bender, M. A.: The GFDL hurricane prediction system and its performance in

the 1995 hurricane season., Monthly weather review, 126, 1998.640

Leutwyler, D., Fuhrer, O., Cumming, B., Lapillonne, X., Gysi, T., Lüthi, D., Osuna, C., and Schär, C.: Towards

Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO

Regional Model, in: EGU General Assembly Conference Abstracts, vol. 16, p. 11914, 2014.

Lin, X., Xie, S.-P., Chen, X., and Xu, L.: A well-mixed warm water column in the central Bohai Sea in summer:

Effects of tidal and surface wave mixing, Journal of Geophysical Research: Oceans (1978–2012), 111, 2006.645

Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core acceleration of chemical kinetics for

simulation and prediction, in: Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis, p. 7, ACM, 2009.

Mak, J., Choboter, P., and Lupo, C.: Numerical ocean modeling and simulation with CUDA, in: OCEANS 2011,

pp. 1–6, IEEE, 2011.650

McCalpin, J. and Wonnacott, D.: Time skewing: A value-based approach to optimizing for memory locality,

Tech. rep., Technical Report DCS-TR-379, Department of Computer Science, Rugers University, 1999.

Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather prediction, Parallel Processing

Letters, 18, 531–548, 2008.

Newberger, P. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for applica-655

tion in the surf zone: 1. Formulation, Journal of Geophysical Research: Oceans (1978–2012), 112, 2007a.

Newberger, P. A. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for appli-

cation in the surf zone: 2. Application to DUCK94, Journal of Geophysical Research-Oceans, 112, 2007b.

NVIDIA: CUDA C Programming Guide Version 5.5, available at http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html, 2014.660

Oey, L., Chang, Y.-L., Lin, Y.-C., Chang, M.-C., Xu, F.-H., and Lu, H.-F.: ATOP-the Advanced Taiwan Ocean

Prediction System based on the mpiPOM Part 1: model descriptions, analyses and results, Terr Atmos Ocean

Sci, 24, 2013.

Oey, L.-Y.: A wetting and drying scheme for POM, Ocean Modelling, 9, 133–150, 2005.

Oey, L.-Y.: Geophysical Fluid Modeling with the mpi version of the Princeton Ocean Model665

(mpiPOM). Lecture Notes, 70 pp, ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/

GFModellingUsingMpiPOM.pdf, 2014.

28

ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf

Oey, L.-Y. and Chen, P.: A model simulation of circulation in the northeast Atlantic shelves and seas, Journal

of Geophysical Research: Oceans (1978–2012), 97, 20 087–20 115, 1992a.

Oey, L.-Y. and Chen, P.: A nested-grid ocean model: With application to the simulation of meanders and ed-670

dies in the Norwegian Coastal Current, Journal of Geophysical Research: Oceans (1978–2012), 97, 20 063–

20 086, 1992b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part I:

Description of the model and model simulations, Journal of Physical Oceanography, 15, 1676–1692, 1985a.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part675

II: Comparison with observation, Journal of Physical Oceanography, 15, 1693–1709, 1985b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part

III: Salt flux analyses, Journal of physical oceanography, 15, 1711–1720, 1985c.

Oey, L.-Y., Lee, H.-C., and Schmitz, W. J.: Effects of winds and Caribbean eddies on the frequency of Loop

Current eddy shedding: A numerical model study, Journal of Geophysical Research: Oceans (1978–2012),680

108, 2003.

Potluri, S., Wang, H., Bureddy, D., Singh, A. K., Rosales, C., and Panda, D. K.: Optimizing MPI Communi-

cation on Multi-GPU Systems Using CUDA Inter-Process Communication, in: Parallel and Distributed Pro-

cessing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pp. 1848–1857,

IEEE, 2012.685

Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., Nukada, A., Maruyama, N., and Mat-

suoka, S.: An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather model ASUCA

production code, in: High Performance Computing, Networking, Storage and Analysis (SC), 2010 Interna-

tional Conference for, pp. 1–11, IEEE, 2010.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosystem model spin-up using transport matrices690

to GPUs, Geoscientific Model Development Discussions, 5, 2179–2214, 2012.

Smolarkiewicz, P. K.: A fully multidimensional positive definite advection transport algorithm with small im-

plicit diffusion, Journal of Computational Physics, 54, 325–362, 1984.

Volkov, V.: Better performance at lower occupancy, in: Proceedings of the GPU Technology Conference, GTC,

vol. 10, 2010.695

Wahib, M. and Maruyama, N.: Scalable kernel fusion for memory-bound GPU applications, in: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp.

191–202, IEEE Press, 2014.

Whitehead, N. and Fit-Florea, A.: Precision & performance: Floating point and IEEE 754 compliance for

NVIDIA GPUs, rn (A+ B), 21, 1–1874919 424, 2011.700

Williams, S., Waterman, A., and Patterson, D.: Roofline: an insightful visual performance model for multicore

architectures, Communications of the ACM, 52, 65–76, 2009.

Wonnacott, D.: Using time skewing to eliminate idle time due to memory bandwidth and network limitations,

in: Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pp.

171–180, IEEE, 2000.705

Xu, F.-H. and Oey, L.-Y.: The origin of along-shelf pressure gradient in the Middle Atlantic Bight, Journal of

Physical Oceanography, 41, 1720–1740, 2011.

29

Xu, F.-H., Oey, L.-Y., Miyazawa, Y., and Hamilton, P.: Hindcasts and forecasts of Loop Current and eddies in

the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation

schemes, Ocean Modelling, 69, 22–38, 2013.710

Yang, C., Xue, W., Fu, H., Gan, L., Li, L., Xu, Y., Lu, Y., Sun, J., Yang, G., and Zheng, W.: A peta-scalable CPU-

GPU algorithm for global atmospheric simulations, in: Proceedings of the 18th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pp. 1–12, ACM, 2013.

Yin, X.-Q. and Oey, L.-Y.: Bred-ensemble ocean forecast of Loop Current and rings, Ocean Modelling, 17,

300–326, 2007.715

Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean Sea circulation, Journal of Physical

Oceanography, 25, 1384–1414, 1995.

Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling system: a nested approach, Annales Geophysicae,

21, 345–364, 10.5194/angeo-21-345-2003, 2003.

Zhenya, S., Haixing, L., Xiaoyan, L., et al.: The Applica tion of GPU in Ocean General Circulation Mode POP,720

Computer Applications and Software, 27, 27–29, 2010.

(R1)

30

10.5194/angeo-21-345-2003

	reply-letter-all-v0.6
	diff

