
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 10 August 2015

POM.gpu-v1.0: a GPU-based Princeton Ocean Model
Shizhen Xu1, Xiaomeng Huang1, Lie-Yauw Oey2,3, Fanghua Xu1, Haohuan Fu1,
Yan Zhang1, and Guangwen Yang1

1 Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System
Science, Tsinghua University, 100084, and Joint Center for Global Change Studies, Beijing,
100875, China.
2 Institute of Hydrological & Oceanic Sciences, National Central University, Jhongli, Taiwan.
3 Program in Atmospheric & Oceanic Sciences, Princeton University, Princeton, New Jersey, USA.

Correspondence to: Xiaomeng Huang
(hxm@tsinghua.edu.cn)

Abstract. Graphics Processing Units (GPUs) is an attractive solution in many scientific applications

due to its high performance. However, most existing GPU conversions of climate models use GPUs

for only a few computationally intensive regions. In the present study, we redesign the mpiPOM (a

parallel version of the Princeton Ocean Model) with GPUs. Specifically, we first convert the model

from its original Fortran form to a new Compute Unified Device Architecture C (CUDA-C) code,5

then we optimise the code on each of the GPUs, the communications between the GPUs, and the I/O

between the GPUs and the Central Processing Units (CPUs). We show that the performance of the

new model on a workstation containing 4 GPUs is comparable to that on a powerful cluster with 408

standard CPU cores, and it reduces the energy consumption by a factor of 6.8.

1 Introduction10

High-resolution atmospheric, oceanic and climate modelling remain significant scientific and engi-

neering challenges because of the enormous computing, communication, and storage requirements

involved. Due to the rapid development of computer architecture, in particular the development of

multi-core and many-core hardware, the computing power that can be applied to scientific problems

has increased exponentially in recent decades. Parallel computing methods, such as the Message15

Passing Interface (MPI, Gropp et al. (1999)) and Open Multi-Processing (OpenMP, Chapman et al.

(2008)) have been widely used to support the parallelization of climate models. However, supercom-

puters are becoming increasingly heterogeneous involving devices such as the GPU and the Intel

Many Integrated Core (Intel MIC), and new approaches are required to effectively utilize the new

hardware.20

In recent years, a number of scientific codes have been ported to the GPU as shown in Table 1.

Most existing GPU acceleration codes for climate models are only operating on certain hot spots of

the program, leaving a significant portion of the program still running on CPUs. The speed of some

1

Table 1. Existing GPU porting work in climate fields. The speedups are normalized to one CPU core.

Model Name Model Description Porting Modules to GPU Speedup

WRF Weather research and forecasting WSM5 microphysics 8

WRF-Chem WRF chemical Chemical kinetics kernel 8.5

POP Parallel ocean program Loop structures 2.2

COSMO Consortium for small-scale modelling Dynamical core 22.7

NIM Non-hydrostatic icosahedral model Dynamical core 34

ASUCA Non-hydrostatic weather model Dynamical core & physical 80

subroutines reported in the Weather Research and Forecast (WRF) (Michalakes and Vachharajani,

2008) and WRF-Chem(Linford et al., 2009) is improved by a factor of approximately 8 whereas25

the whole model achieves limited speedup because of partial porting. The speed of POP (Zhenya

et al., 2010) is improved by a factor of only 2.2 because the model only accelerated a number of loop

structures using the OpenACC Application Programming Interface (OpenACC API). The speed of

COSMO(Leutwyler et al., 2014), NIM(Govett et al., 2010) and ASUCA(Shimokawabe et al., 2010)

are greatly improved by multiple GPUs. We believe that the elaborate optimization of the memory30

access of each GPU and the communication between GPUs can further accelerate these models.

The objective of our study was to shorten the computation time of the Princeton Ocean Model

(POM) by parallelizing its existing model structures using the GPU. Taking the parallel version of

the Princeton Ocean Model (mpiPOM), we demonstrate how to code an ocean model so that it runs

efficiently on GPU architecture. We first convert the mpiPOM from its original Fortran version into35

a new Compute Unified Device Architecture C (CUDA-C) version, POM.gpu-v1.0. CUDA-C is the

dominant programming language for GPUs. We then optimise the code on each of the GPUs, the

communications between the GPUs, and the I/O between GPUs and the CPUs to further improve

the performance of POM.gpu.

To understand the accuracy, performance and scalability of the POM.gpu code, we customized40

a workstation with four Nvidia K20X GPUs. The results show that the performance of POM.gpu

running on this workstation is comparable to that on a powerful cluster with 408 standard CPU

cores.

This paper is organized as follows. In Section 2, we review the mpiPOM model. In Section 3,

we briefly introduce the GPU computing model. In Section 4, we present the detailed optimization45

techniques. In Section 5, we report on the correctness, performance and scalability of the model. We

present the code availability in Section 6 and conclude our work in Section 7.

2

2 The mpiPOM

The mpiPOM is a parallel version of the POM. It retains most of the physics of the original POM

(Blumberg and Mellor, 1983, 1987; Oey et al., 1985a, b, c; Oey and Chen, 1992a, b), and includes50

satellite and drifter assimilation schemes from the Princeton Regional Ocean Forecast System (Oey,

2005; Lin et al., 2006; Yin and Oey, 2007), stokes drift and wave-enhanced mixing(Oey et al., 2013;

Xu et al., 2013; Xu and Oey, 2014). The POM code was reorganized and the parallel MPI version

was implemented by Jordi and Wang (2012) using a two-dimensional data decomposition of the hor-

izontal domain. The MPI is a standard library for message passing and it is widely used to develop55

parallel programs.The POM is a powerful ocean model that has been used in a wide range of appli-

cations: circulation and mixing processes in rivers, estuaries, shelves, slopes, lakes, semi-enclosed

seas and open and global oceans. It is also at the core of various real-time ocean and hurricane fore-

casting systems, e.g., the Japanese coastal ocean and Kuroshio current (Miyazawa et al., 2009; Isobe

et al., 2012; Varlamov et al., 2015); the Adriatic Sea Forecasting System (Zavatarelli and Pinardi,60

2003); the Mediterranean Sea forecasting system (Korres et al., 2007); the GFDL Hurricane Predic-

tion system (Kurihara et al., 1995, 1998), the US’ Hurricane Forecasting System (Gopalakrishnan

et al., 2010, 2011) and the Advanced Taiwan Ocean Prediction system (Oey et al., 2013). Addition-

ally, the model has been used to study various geophysical fluid dynamical processes (e.g., Allen

and Newberger, 1996; Newberger and Allen, 2007a, b; Kagimoto and Yamagata, 1997; Guo et al.,65

2006; Oey et al., 2003; Zavatarelli and Mellor, 1995; Ezer and Mellor, 1992; Oey, 2005; Xu and

Oey, 2011, 2014, 2015; Chang and Oey, 2014; Huang and Oey, 2015; Sun et al., 2014, 2015). For a

more complete list, please visit the POM website (http://www.ccpo.odu.edu/POMWEB).

The mpiPOM experiment used in this paper is one of two that were designed and tested by Profes-

sor Oey and students; the codes and results are freely available at the FTP site (ftp://profs.princeton.70

edu/leo/mpipom/atop/tests/). The reader can refer to Chapter 3 of the lecture notes (Oey, 2014) for

more detail. The test case is a dam-break problem in which warm and cold waters are initially sepa-

rated in the middle of a zonally periodic channel (200km × 50km × 50m) on an f-plane, with walls

at the northern and southern boundaries. Geostrophic adjustment then ensues and baroclinic insta-

bility waves amplify and develop into finite-amplitude eddies in 10∼20 days. The horizontal grid75

sizes are 1 km and there are 50 vertical sigma levels. Although the problem is a test case, the code is

the full mpiPOM version used in the ATOP forecasting system.

The model solves the primitive equation under hydrostatic and Boussinesq approximations. In

the horizontal, spatial derivatives are computed either using centred-space differencing or Smo-

larkiewicz’s positive definite advection transport algorithm (Smolarkiewicz, 1984) on a staggered80

Arakawa C-grid; both schemes have been tested, but the latter is reported here. In the vertical, the

mpiPOM supports terrain-following sigma coordinates and a fourth-order scheme option to reduce

the internal pressure-gradient errors (Berntsen and Oey, 2010). The mpiPOM uses the time-splitting

technique to separate the vertically integrated equations (external mode) from the vertical structure

3

http://www.ccpo.odu.edu/POMWEB
ftp://profs.princeton.edu/leo/mpipom/atop/tests/
ftp://profs.princeton.edu/leo/mpipom/atop/tests/
ftp://profs.princeton.edu/leo/mpipom/atop/tests/

equations (internal mode). The external mode calculation is responsible for updating the surface ele-85

vation and vertically averaged velocities. The internal mode calculation updates the velocity, temper-

ature and salinity, as well as the turbulence quantities. The three-dimensional internal mode and the

two-dimensional external mode are both integrated explicitly using a second-order leapfrog scheme.

These two modules are the most computationally intensive kernels of the mpiPOM model.

The main computational problem of the mpiPOM is memory bandwidth limited. To confirm this90

issue, we use the runtime performance API tool to estimate the floating point operation count and

the memory access instruction count, as in Browne et al. (2000). The results reveal that the compu-

tational intensity, defined as floating point operations per byte transferred to or from memory, of the

mpiPOM is approximately 1:3.3, whereas the computational intensity provided by a modern high-

performance CPU (an Intel SandyBridge E5-2670) is 7.5:1. Many large arrays are mostly pulled95

from main memory and there is poor data reuse in the mpiPOM. In addition, there are no obvious

hot spot functions in the mpiPOM, and even the most time-consuming subroutine occupies only 20%

of the total execution time. Therefore, porting a handful of subroutines to the GPU is not helpful in

improving the model efficiency. This explains why we must port the entire program from the CPU

to the GPU.100

3 GPU computing model overview

Modern GPUs employ a stream-processing model with parallelism. Each GPU contains a number

of stream multiprocessors (SMs). In this work, we carried out the conversion using four Nvidia’s

K20X GPUs. Each K20X GPU contains 14 SMs and each SM has 192 single precision processors

and 64 additional processors for double precision. Although the computational capability of each105

processor is low, one GPU with thousands of processors can greatly boost the performance compared

to the CPU. In computing, FLOPS (FLoating-point Operations Per Second) is a measure of computer

performance. The theoretical peak performance of each K20X GPU is 3.93 teraFLOPS (TFLOPS,

one trillion floating-point operations per second) for the single precision floating-point calculations.

In contrast, a single Intel SandyBridge E5-2670 CPU is only capable of 0.384 TFLOPS.110

Each pair of GPUs shares 6 Gigabytes (GB) of memory, with the interface having a potential

bandwidth of 250 GB/s. Figure 3 illustrates the memory hierarchy of the K20X GPU. Each SM

possesses some types of fast on-chip memory such as register, L1 cache, shared memory and read-

only data cache. In GPUs, the register is the fastest memory, of which the size is 256 Kilobytes

(KB) for each SM. The shared memory and the L1 cache use the common 64 KB space which can115

be partitioned as 16/48 KB, 32/32 KB or 48/16 KB. The 48 KB read-only data cache is useful for

holding frequently used values that remain unchanged during each stage of the processing.

There are three widely used methods for porting a program to GPUs. The first method uses drop-in

libraries provided by CUDA to replace the existing code, as in Siewertsen et al. (2012). The second

4

kernel 1 kernel 3

kernel 0 kernel 2

Time

stream 0

stream 1

...

...

...

...

...

...

...

...

...

...

...

...

...
...

thread

kernel

GPU

block(0,0) block(1,0) block(2,0)

block(0,1) block(1,1) block(2,1)

warp

block

warp

Figure 1. The hierarchy of stream, kernel, block, warp and thread.

method uses OpenACC directive as hints in the original CPU code as in Zhenya et al. (2010). The120

last method is the most complex but also the most effective; it involves rewriting the entire program

using low level CUDA subroutines.

In CUDA terminology, a kernel is a single section of code or subroutine running on the GPU.

The underlying code in a kernel is split into a series of threads each of which deals with different

data. These threads are grouped into equal size thread blocks that can be executed independently. A125

thread block is further divided into warps as basic scheduled units. A warp consists of 32 consecutive

threads that execute the same instruction simultaneously. Each kernel and data transfer command

in CUDA has an optional parameter “stream ID”. If the “stream ID” is set in code, commands

belonging to different streams can be executed concurrently. A stream in CUDA is a sequence of

commands executed in order. Different streams can execute concurrently with different priorities.130

Figure 1 illustrates the hierarchy of these terms.

At present, CUDA compilers are available for C and Fortran. Although CUDA-Fortran has been

available since 2009 and would involve less modification of the mpiPOM code, we chose CUDA-C

to convert the POM.gpu-v1.0 because of the following reasons: 1) CUDA-C is free of charge; 2)

previous work (Henderson et al., 2011) has shown that the CUDA-Fortran compiler did not perform135

as well as the CUDA-C version for some of the kernels during the porting of NIM; 3) the read-only

data cache is not supported by CUDA-Fortran, which is the key optimization of Section 4.1.2; and

4) we have many previous optimisation experiences with CUDA-C.

5

4 Full GPU acceleration of the mpiPOM

Figure 2 is a flowchart illustrating the structure of POM.gpu. The main difference between the140

mpiPOM and the POM.gpu is that the CPU in the POM.gpu is only responsible for the initializ-

ing and the output work. The POM.gpu begins by initializing the relevant arrays on the CPU and

then copies data from CPU to the GPU. The GPU then performs all of the model computations.

Outputs such as velocity and sea surface height, are copied back to the CPU and are then written to

the disk at a user-specified time interval.145

In the following sections, we introduce the optimizations of the POM.gpu by computation, com-

munication and I/O aspects individually.

For the individual GPUs, we concentrate on memory access optimization by making better use

of caches in the GPU memory hierarchy. This involves using read-only data cache, local memory

blocking, loop fusion, function fusion, and disabling error-correcting code memory. The test results150

demonstrate that a single GPU can run the model almost one hundred times faster than a single CPU

core.

In terms of communication, we overlapped the sending of boundary data between the GPUs with

the main computation. Data is also sent directly between the GPUs, bypassing the CPU.

In terms of I/O, we launched extra MPI processes on the main CPU to output the data. These155

MPI processes are divided into two categories, the computation processes and the I/O processes.

The computation processes are responsible for launching kernels into GPUs and the I/O processes

are responsible for copying data back from the GPUs and for writing to disks. The computation

processes and the I/O processes can execute simultaneously to save output time.

4.1 Computational optimizations in a single GPU160

Managing the significant performance difference between global memory and on-chip fast memory

is the primary concern for GPU computing. The ratio of bandwidth between global memory and

shared memory is approximately 1:10. Therefore, data reuse in on-chip cache always needs to be

seriously considered. As shown on the right side of Fig. 3, we propose two classes of optimization,

including the standard optimization of fusion and the special optimization of the GPU, to better165

utilize the fast registers and caches.

4.1.1 Standard optimizations of fusion

Fusion optimization in the POM.gpu code includes loop fusion and function fusion. The loop fusion

merges several loops into one loop and the function fusion merges several subroutines into one

subroutine.170

Loop fusion is an effective method to store scalar variables in registers for data reuse. As shown

in Fig. 4, if the variable drhox(k, j, i) is read several times in multiple loops, we can fuse these loops

6

 Initialization

 Output

Advection and

Horizontal diffusion of

U, V

Baroclinic term of

U, V

Sea Surface Height

Vertical integrated

moment equations

UT, VT for

Internal Mode

+Boundary operation

Update U, V

Continuity equation

+Boundary operation

Turbulence equation

+Boundary operation

Tracer transport

Equation(T,S)

+Boundary operation

Momentum equation

+Boundary operation

E
x
tern

al M
o
d
e

In
tern

al M
o
d
e

CPU GPU

MemcpyDeviceToHost

MemcpyHostToDevice

Figure 2. POM.gpu flowchart

into one. Therefore, drhox(k, j, i) will first be read from the global memory and then repeatedly read

from a register. For instance, for the profq kernel optimized with loop fusion, the device memory

transactions decrease by 57%, and the running speed of this kernel is improved by 28.6%. The loop175

fusion optimization can also be applied in a number of mpiPOM subroutines.

Similar to loop fusion, we can also merge functions in which the same arrays are accessed. For

example, the advv and advu functions in the mpiPOM code are used to calculate the advection

terms in horizontal directions, respectively. After merging them into one subroutine, the redundant

memory access is avoided. The function fusion can also be applied in which one function is called180

several times to calculate different tracers. The proft function in the mpiPOM code is called twice

7

Thread

L1 Cache
Shared

Memory

Read-only

data cache

L2 Cache

Global memory

L1 CacheL1 Cache
L1

Cache

Register
Loop Fusion &

Function Fusion

Read-only data

cache utilization

 Local memory

Blocking

ECC-off & Boost

K20X Memory Hierarchy Optimizations

Figure 3. The memory hierarchy of the K20X GPU and the relationships with each optimization

/*************************

 *There exist two loops.

 *drhox is visited twice in these loops.

 *************************/

for (k = 1; k < nz-1; k++){

 drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

}

for (k = 0; k< nz-1; k++){

 drhox[k][j][i] = drhox[k][j][i] * B[k][j][i];

}

/*************************

 *These loops can be fused into one

 *to reduce global memory access.

 *************************/

for (k = 1; k < nz-1; k++){

 drhox[k][j][i] = drhox[k-1][j][i] + A[k][j][i];

 drhox[k-1][j][i] = drhox[k-1][j][i] * B[k-1][j][i];

}

drhox[k-1][j][i] = drhox[k-1][j][i] * B[k-1][j][i];

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 4. A simple example of loop fusion.

– one for temperature and one for salinity. Their computing formulas are similar and some common

arrays are accessed. After function fusion, the running speed of the proft kernel is improved by

28.8%.

4.1.2 Special optimizations of the GPU185

Our special optimizations mainly focus on the improved utilization of the read-only data cache and

the L1 cache on the GPU. It is useful to alleviate the bottleneck of memory bandwidth that is limited

by using these fast on-chip caches.

8

/*************************

 *3D arrays ee and gg represent row transformation

 *coefficients of the chasing method.

 *************************/

for (k = 1; k < nz-2; k++){

 ee[k][j][i] = ee[k-1][j][i]*A[k][j][i];

 gg[k][j][i] = ee[k-1][j][i]*gg[k-1][j][i] - B[k][j][i];

}

for (k = nz-3; k>= 0; k++){

 uf[k][j][i] = (ee[k][j][i]*uf[k+1][j][i]+gg[k]) * C[k][j][i];

}

/*************************

 *Each thread pulls its own tile of ee,gg to

 *1D new arrays ee_new, gg_new(local memory).

 *There two new arrays can be cached in L1 for reuse.

 *************************/

for (k = 1; k < nz-2; k++){

 ee_new[k] = ee_new[k-1]*A[k][j][i];

 gg_new[k] = ee_new[k-1]*gg[k-1] - B[k][j][i];

}

for (k = nz-3; k>= 0; k++){

 uf[k][j][i] = (ee_new[k]*uf[k+1]+gg_new[k])*C[k][j][i];

}

(a)Original CUDA-C code (b)Optimized CUDA-C code

Figure 5. A simple example of local memory blocking.

There is a 48KB read-only data cache in the K20X GPU. We can automatically use this as long

as the read-only condition is met. In the POM.gpu, we simply add “const __restrict__” qualifiers190

into the parameter pointers to explicitly direct the compiler to implement the optimization. As an ex-

ample, consider the calculations of advection and the horizontal diffusion terms. Because mpiPOM

adopts the Arakawa C-grid, in the horizontal plane, updating the temperature(T) requires the veloc-

ity of longitude(u), the velocity of latitude(v) and the horizontal kinematic viscosity(aam) on the

neighbouring grid points. In one kernel, the u and v arrays are accessed twice, and the aam array is195

accessed four times. After using read-only data cache to improve the data locality, the running speed

of this kernel is improved by 18.8%.

To reuse the data in each thread, we use local memory blocking to pull the data from global

memory to the L1 cache. In this method, a small subset of a dataset is loaded into the fast on-

chip memory and then the small data block is repeatedly accessed by the program.This method is200

helpful in reducing the need to access the off-chip with high latency memory. In the subroutines of

the vertical diffusion and source/sink terms, the chasing method is used to solve a tridiagonal matrix

along the vertical direction for each grid point individually. Each thread only accesses its own tiles of

row transformation coefficients. As shown in Fig. 5, the arrays are accessed twice within one thread,

one from the surface(k = 0) to the bottom(k = nz− 1) and another from the bottom(k = nz− 1) to205

the surface(k = 0). After blocking the vertical direction arrays in local memory, the L1 cache is fully

utilized and the running speed of these subroutines is improved by 35.3%.

In current implementation, as in the original mpiPOM code, the 3D arrays of variables are stored

sequentially as east-west(x), north-south(y), vertical(z), i.e., i, j,k ordering. 2D arrays are stored in

i, j ordering. The vertical diffusion is solved using a tridiagonal solver which is calculated sequen-210

tially in the z direction. For simplicity, in our kernel functions the grid is divided along x and y.

Each GPU thread then specifies an (x,y) point in the horizontal direction and performs all of the

9

calculations from the surface to the bottom. The thread blocks are divided as 32× 4 subdomains

in the x-y plane. In the x direction, the block number must be a multiple of 32 threads to perform

consecutive and aligned memory access within a warp (NVIDIA, 2015). In the y direction, we tested215

many thread numbers, such as 4 and 8, and obtained similar performances. We ultimately choose 4

because this value produced more blocks and allowed us to distribute the workload more uniformly

amongst the SMs. In addition, 128(=32×4) threads are enough to maintain the full occupancy, which

is the number of active threads in each multiprocessor.

In GPU computing, one is free to choose which arrays will be stored in an on-chip cache. Our220

experience involves putting the data along the horizontal direction into the read-only cache to reuse

among threads, and putting the data along with vertical direction into the local memory for reuse

within one thread.

Furthermore, we improve the global memory bandwidth by disabling the Error Checking and

memory Correcting(ECC-off), as well as enhancing the clock on the GPU(GPU boost). This method225

improves the performance of the POM.gpu by 13.8%.

4.1.3 Results of the computational optimizations

We divide all of the POM.gpu subroutines into three categories based on their different computa-

tional patterns. As shown in Table 2, in the POM.gpu, we deploy different optimizations in these

categories to improve the performance of POM.gpu; these categories are described as follows.230

(1) Category 1: Advection and horizontal diffusion (adv)

This category has 6 subroutines, and calculates the advection, horizontal diffusion and the pressure

gradient and Coriolis terms in the case of velocity. Here, it is possible to reuse data among adjacent

threads, and the subroutines therefore benefit from using the read-only data cache. At the same time,

the variables are calculated in different loops or in different functions such that the loop fusion and235

function fusion optimizations are applied to this part as well.

(2) Category 2: vertical diffusion (ver)

This category has 4 subroutines, and calculates the vertical diffusion. In this part, the chasing

method is used in the tridiagonal solver in the k-direction. The main feature is that the data are

accessed twice within one thread, once from the surface to the bottom and again from the bottom to240

the surface. The subroutines are significantly sped up after grouping the k-direction variable in the

local memories.

(3) Category 3: vorticity (vort), baroclinicity (baro), continuity equation (cont) and equation of

state (state)

This category is less time consuming than the two categories described above, but it also benefits245

from our optimizations. Because data exists reuse among threads, the use of a read-only data cache

improves data locality. For the vort subroutine, there is data reuse within one thread, and thus the

loop fusion improves the data locality.

10

Table 2. Different subroutines adopt different optimizations in the POM.gpu

Subroutines Loop Function Read-only Local memory ECC-off & Speedup

fusion fusion data cache blocking GPU boost

Adv & Hor diff
√ √ √ √

2.05X

Ver diff
√ √ √ √

2.82X

Baroclinicity
√ √ √

2.08X

Continuity equation
√ √

1.39X

Vorticity
√ √ √

3.19X

State equation
√ √

1.35X

4.2 Communication optimizations among multiple GPUs

In this section, we present the optimizing strategies for multiple GPUs. In the mpiPOM, the entire250

domain is split along the horizontal directions and each MPI process is responsible for the model’s

computation of one subdomain, following Jordi and Wang (2012). In the POM.gpu, we attach one

MPI process to one GPU and move the complete computation to the GPU. The MPI process is in

charge of the computation within each subdomain and of the data transfer between the GPU and main

memory. The data transfer between subdomains is handled by the GPUs directly. Shimokawabe et al.255

(2010) and Yang et al. (2013) proposed fine-grained overlapping methods of GPU computation and

CPU communication to improve the computing performance. An important issue in their work is

that the communications between multiple GPUs explicitly require the participation of the CPU. In

our current work, we simply bypass the CPU in implementing the communication to fully exploit

the capability of the GPUs.260

At present, two MPI libraries, OpenMPI and MVAPICH2, provided support for the direct com-

munication from the GPU to the main memory. This capability is referred as CUDA-aware MPI. We

attempted to use MVAPICH2 to implement direct communication among multiple GPUs. However,

we found that inter-domain communication occupied nearly 18% of the total runtime.

Instead, to fully overlap the boundary operations and MPI communications with computation,265

we adopt the data decomposition method shown in Fig. 6. The data region is decomposed into

three regions: the inner region, the outer region, and a halo region which exchanges data with its

neighbours. In our design, the inner region, which is the most time-consuming is allocated to “stream

1”. The east/west outer region is allocated to “stream 2” and the north/south outer region is allocated

to “stream 3”. In the east/west outer region, the width is set to 32 to ensure consecutive and aligned270

memory access in a warp. All of the halo regions are also allocated to “stream 2”.

The workflow of multiple streams on the GPU is shown in Fig. 7. The east/west/north/south re-

gions are common kernel functions that can run in parallel with the inner region through different

streams. The communication operations between domains are implemented by an asynchronous

11

Inner Region
(stream 1)

North Region

(stream 2)

South Region

(stream 2)

W
est R

eg
io

n

(stream
 2

)

E
ast R

eg
io

n

(stream
 2

)

W
est H

alo (stream
 2

)

E
ast H

alo
 (stream

 2
)

North Halo(stream 3)

South Halo(stream 3)

32

Figure 6. Data decomposition in the POM.gpu

Rank0: GPU0

stream1

stream2

stream3

cudaStreamSynchronize Operation

Inner region

East/West region

North/South region

Halo Comm. Halo Comm.

Figure 7. The workflow of multiple streams on the GPU. The “inner/east/west/north/south region” and “Halo”

refer to the computation and update of the corresponding region. “Comm.” refers to the communication between

processes, which implies synchronization.

CUDA memory copy. The corresponding synchronization operations between the CPU and the275

GPU or among the MPI processes are implemented by a synchronization CUDA function and a

MPI barrier function. To overlap the subsequent communication with the inner region, “stream 2”

and “stream 3” for the outer region have higher priority in preempting the computing resource from

“stream 1” at any time. Based on this workflow, the inter-domain communication is overlapped with

the computation. The experimental results show that our design can remove the communication280

overhead taken by MVAPICH2.

12

One GPU

Compute

process

I/O

process

MPI_Barrier operation

data

copy
I/O

computation computation

data

copy
I/O

computation

Time

Figure 8. One computing process and one I/O process both set their contexts on the same GPU. During the data

copy phase, the computing process remains idle and the I/O process will copy data from the GPU to the CPU

through the cudaMemcpy function.

4.3 I/O optimizations between the GPUs and the CPUs

The time consumed for I/O in the mpiPOM is not significant. However, after we fully accelerate

the model by GPU, it accounts for approximately 30% of the total runtime. The computing phase

and the I/O phase are serial, which means that the GPU will remain idle until the CPU finishes the285

I/O operations. Motivated by previous work on I/O overlapping (Huang et al., 2014), we designed a

similar method following computations on a GPU and I/O operations on a CPU to run in parallel.

In the POM.gpu, we chose to launch more MPI processes. The MPI processes are divided into

computing processes and I/O processes with different MPI communicators. The computing pro-

cesses are responsible for launching kernel functions as usual, and the I/O processes are responsible290

for output. One I/O process attaches to one computing process and these two processes set their

contexts on the same GPU.

Because the I/O processes must fetch data from the GPU, communication is necessary between

them. The I/O processes obtain the device buffer pointers from the computing processes during the

initialization phase. When writing history files, the computing processes are blocked and remain295

idle for a short time, waiting for I/O processes to fetch data. Then, the computing processes continue

their computation, and the I/O processes complete their output in the background, as illustrated in

Fig. 8. This method can be further optimized by placing the archive data into a set-aside buffer and

carry on the main calculation. However, the method requires more memory, which is not abundant

in current K20X GPUs.300

The advantage of this method is that it overlaps the I/O on the CPU with the model calculation

on the GPU. In serial I/O, the GPU computing processes are blocked while data are sent to the

CPU and written to disk. In overlapping I/O, the computing processes only wait for the data to be

sent to the host. The bandwidth of data brought to the host is approximately 6 GB/s, but the output

bandwidth to the disk is approximately 100 MB/s, as determined by the speed of the disk. Therefore,305

the overlapping method significantly accelerates the entire application.

13

5 Experiments

In this section, we first describe the specification of our platform and comparison methodology to

validate the correctness of the POM.gpu. Furthermore, we present the performance and scalability

of the POM.gpu comparied with the mpiPOM.310

5.1 Platform Setup

The POM.gpu runs in a workstation consisting of two CPUs and four GPUs. The CPUs are 2.6

GHz 8-core Intel SandyBridge E5-2670. The GPUs are Nvidia Tesla K20X. The operating system

is RedHat Enterprise Linux 6.3 x86_64. All programs are complied with Intel compiler v14.0.1,

CUDA 5.5 Toolkit, Intel MPI Library v4.1.3 and MVAPICH2 v1.9.315

For comparison, the mpiPOM runs on the Tansuo100 cluster at Tsinghua University consisting

of 740 nodes. Each node is equipped with two 2.93 GHz 6-core Intel Xeon X5670 CPUs and 32

GB of memory. The nodes are connected through an infiniband network. The operating system is

RedHat Enterprise Linux 5.5 x86_64. Programs on this platform are compiled with Intel compiler

v11.1 and Intel MPI v4.0.2. The mpiPOM code is compiled with its original compiler flags, i.e.,320

“-O3 -fp-model precise”.

5.2 The test case and the verification of accuracy

The “dam break” simulation (Oey, 2014) is conducted to verify the correctness and test the perfor-

mance and scalability of the POM.gpu. It is a baroclinic instability problem that simulates flows

produced by horizontal temperature gradients. The model domain is configured as a straight channel325

with a uniform depth of 50 m. Periodic boundary conditions are used in the east-west direction, and

the channel is closed in the north and south. Its horizontal resolution is 1km×1km. The domain size

of this test case is 962× 722 horizontal grid points and 51 vertical sigma levels, which is limited

by the capacity of one GPU’s memory. Initially, the temperature in the southern half of the channel

is 15oC and 25oC in the northern half. The salinity is fixed at 35 psu. The fluid is then allowed to330

adjust. In the first 3-5 days, geostrophic adjustments occur. Then, an unstable wave develops due to

baroclinic instability. Eventually, eddies are generated. Figure 9 shows the sea-surface height (SSH),

sea-surface temperature (SST), and currents after 39 days. The scales of the frontal wave and eddies

are determined by the Rossby radius of deformation. This dam break case uses a single-precision

format.335

To verify the accuracy, we check the binary output files of the mpiPOM and the POM.gpu, as in

Mak et al. (2011). The test results demonstrate that the variables velocity, temperature, salinity and

sea surface height are all identical.

14

Figure 9. The model results after 39 days of simulation. For the top figure, the colour shading is the sea-surface

height (SSH), and vectors are ocean currents. For the bottom figure, the colour shading is the sea surface

temperature (SST). Several warm and cold eddies are generated in the middle of the domain where the SST

gradient is largest. Noticeably, the gravity wave is confined to the middle of the channel by Rossby radius

deformation.

22

Figure 9. The model results after 39 days of simulation. For the top figure, the colour shading is the sea-surface

height (SSH), and vectors are ocean currents. For the bottom figure, the colour shading is the sea surface

temperature (SST). Several warm and cold eddies are generated in the middle of the domain where the SST

gradient is largest; their scales are determined by the Rossby radius of deformation.

5.3 Model Performance

To understand the advantages of the optimizations in Sec. 4, we conducted different tests. The met-340

rics of seconds per simulation day are measured to compare the model performance.

15

5.3.1 Single GPU performance

In our first test, we compare the performance of the mpiPOM using two different CPUs, the Intel

X5670 CPU (6 cores) and the Intel E5-2670 CPU (8 cores), with that obtained from the POM.gpu us-

ing one single GPU. Fig. 10 shows that one K20X GPU can compete with approximately 55 E5-2670345

CPU cores to 95 X5670 CPU cores in the simulation. From the parameters of the Intel E5-2670 CPU

and Nvidia K20X GPU, we find that, the ratio of memory bandwidth and the ratio of floating points

performance are approximately 1:5 and 1:10, respectively. This means, if an application is strictly

memory bandwidth limited, one GPU can compete with 5 CPUs; if an application is strictly compu-

tation limited, it can compete with 10 CPUs. Since the mpiPOM is memory bandwidth limited, the350

POM.gpu should provide equivalent performance to the mpiPOM running on up to 5× 8 = 40 CPU

cores. Our procedure attempts to optimize memory access and we can further increase this number

to 55.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80 90 100 110

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

CPU cores

One K20X GPU
Intel X5670(6cores)

Intel E5-2670(8 cores)

Figure 10. Performance comparison with different hardware platforms

5.3.2 Multiple GPUs performance

In the second test, we compare our communication overlapping method with the MVAPICH2 library.355

Fig. 11 presents the weak scaling performance on multiple GPUs, where the grid size for each GPU

is kept at 962×722×51. When 4 GPUs are used with MVAPICH2, approximately 18% of the total

runtime is consumed by inter-domain communication and boundary operations. This overhead can

be greatly reduced by our communication overlapping method.

In the third test, we fix the global grid size at 962× 722× 51, and measure the strong scaling360

performance of POM.gpu. Table 3 shows that the strong scaling efficiency is 99% on 2 GPUs and

92% on 4 GPUs. When more GPUs are used, the size of each subdomain becomes smaller. This

16

 0

 20

 40

 60

 80

 100

 120

 140

1-GPU 2-GPUs 4-GPUs

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

Number of GPUs

Our design
CUDA-aware MPI

Figure 11. The weak scaling test between our communication overlapping method and the MVAPICH2 sub-

routines.

decreases the performance of POM.gpu in two aspects. First, the communication overhead may

exceed the computation time of the inner region as the size of each subdomain decreases. As a result,

the overlapping method in Section 4.2 are not effective. Second, there are many “small” kernels in the365

POM.gpu code, in which the calculation is simple and less time consuming. With fewer inner region

computations, the overhead of kernel launching and implicit synchronization with kernel execution

must be counted.

Table 3. The strong scaling result of POM.gpu

Number of GPUs 1-GPU 2-GPUs 4-GPUs

Time(s) 97.2 48.7 26.3

Efficiency 100% 99% 92%

5.3.3 I/O performance

In the fourth test, we compare our I/O overlapping method with the parallel NetCDF (PnetCDF)370

method and NO-I/O. NO-I/O means that all I/O operations are disabled in the program and that the

time measured is the pure computing time. This simulation is run for 20 days, and the history files

are output daily. The final history files in NetCDF format are approximately 12 GB. Fig. 12 shows

that the I/O overlapping method outperforms the PnetCDF method. For 1 GPU and 2 GPUs, the

overall runtime decreases from 1694/1142 seconds to 1239/688 seconds, which is close to the NO-375

17

I/O. The extra overhead of our method compared with NO-I/O involves the computing processes that

need to be blocked until the I/O processes obtain data from the GPUs. When running with 4 GPUs,

the output time exceeds the computation time. Then, the I/O phase cannot be fully overlapped with

the model computation phase. The overall runtime equals the sum of the computation time and the

non-overlapped I/O time.380

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1-GPU 2-GPUs 4-GPUs

S
ec

o
n
d
s

o
f

2
0
-d

ay
s

si
m

u
la

ti
o
n

Number of GPUs

PnetCDF
I/O-overlapping

NO-I/O

Figure 12. I/O test for the POM.gpu

5.3.4 Comparison with a cluster

In the last test, we compare the performance of POM.gpu on a workstation containing 4 GPUs with

that on the Tansuo100 cluster. Three different high-resolution grids (Grid-1: 962×722×51, Grid-2:

1922×722×51, Grid-3: 1922×1442×51) are used. Fig. 13 shows that our workstation with 4 GPUs

is comparable to 408 standard CPU cores (= 34 nodes × 12 cores/node) in the simulation. Because385

the thermal design power of one X5670 CPU is 95 W and that of one K20X GPU is 235 W, we reduce

the energy consumption by a factor of 6.8. Theoretically, as the subdomain of each MPI process

becomes smaller, the cache hit ratio of the mpiPOM code will increase. This will greatly alleviate

the memory bandwidth-limited problem. However, in the simulation on 408 standard CPU cores,

the MPI communication may occupy more than 40% of the total execution time. When scaling to390

over 450 cores, the mpiPOM simulation may instead become slower, as shown in Fig. 13. Therefore,

for high-resolution ocean modelling, our POM.gpu has a clear advantage compared to the original

mpiPOM.

18

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 350 400 450 500

S
ec

o
n
d
s

p
er

 s
im

u
la

ti
o
n
 d

ay

CPU cores

Grid-1 Tansuo100
Grid-1 GPU workstation

Grid-2 Tansuo100
Grid-2 GPU workstation

Grid-3 Tansuo100
Grid-3 GPU workstation

Figure 13. Performance test of four GPUs compared with Tansuo100 cluster

6 Code availability

The POM.gpu version 1.0 is available at https://github.com/hxmhuang/POM.gpu. To reproduce the395

test case in Section 5, the script “run_exp002.sh” is provided to compile and execute the POM.gpu

code.

7 Conclusions and future work

In this paper, we develop POM.gpu, a full GPU solution based on the mpiPOM. Unlike previous

GPU porting, the POM.gpu code distributes the model computations on the GPU. Our main con-400

tributions include: optimizing the code on each of the GPUs, the communications between GPUs,

and the I/O process between the GPUs and the CPUs. Using a workstation with 4 GPUs, we achieve

the performance of a powerful CPU cluster with 408 standard CPU cores. Our model also reduces

the energy consumption by a factor of 6.8. It is a cost-effective and energy-efficient strategy for

high-resolution ocean modelling. We have described the method and tests in details and, with the405

availability of the POM.gpu code, our experiences may hopefully be useful to developers and de-

signers of other general circulation models.

In our current POM.gpu, we design a large number of kernel functions because we port the entire

mpiPOM one subroutine at a time. This was done to simplify the debugging of POM.gpu and to

check that the results are consistent with the mpiPOM. In our future work, we will adjust the code410

structure of POM.gpu and adopt aggressive function fusion to further improve the performance.

Previous studies proposed to take advantage of data locality between time steps by time skew-

ing (McCalpin and Wonnacott, 1999; Wonnacott, 2000), thus transforming the problem of memory

19

https://github.com/hxmhuang/POM.gpu

bandwidth into the problem of computation. However, the real-world ocean models, including the

mpiPOM, often involve hundreds of thousands lines of code, and analysing the data dependency415

and applying time skewing in such a context are challenging and difficult. We leave that to the next-

generation POM.gpu.

Acknowledgements. The author would like to thank David Webb, Robert Marsh and the anonymous reviewer

for their valuable comments and improvements regarding the presentation of this manuscript. This study was

supported by funding from the National Natural Science Foundation of China(41375102), the National Grand420

Fundamental Research 973 Program of China (No. 2014CB347800), and the National High Technology Devel-

opment Program of China (2011AA01A203).

20

References

Allen, J. S. and Newberger, P. A.: Downwelling Circulation on the Oregon Continental Shelf. Part I:

Response to Idealized Forcing, Journal of Physical Oceanography, 26, 2011–2035, doi:10.1175/1520-425

0485(1996)026<2011:DCOTOC>2.0.CO;2, 1996.

Berntsen, J. and Oey, L.-Y.: Estimation of the internal pressure gradient in σ-coordinate ocean models: compar-

ison of second-, fourth-, and sixth-order schemes, Ocean dynamics, 60, 317–330, 2010.

Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic numerical circulation studies of the South Atlantic

Bight, Journal of Geophysical Research: Oceans (1978–2012), 88, 4579–4592, 1983.430

Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean circulation model, Coastal

and estuarine sciences, 4, 1–16, 1987.

Browne, S., Dongarra, J., Garner, N., Ho, G., and Mucci, P.: A portable programming interface for performance

evaluation on modern processors, International Journal of High Performance Computing Applications, 14,

189–204, 2000.435

Chang, Y.-L. and Oey, L.-Y.: Instability of the North Pacific subtropical countercurrent, Journal of Physical

Oceanography, 44, 818–833, 2014.

Chapman, B., Jost, G., and Van Der Pas, R.: Using OpenMP: portable shared memory parallel programming,

vol. 10, The MIT Press, 2008.

Ezer, T. and Mellor, G. L.: A numerical study of the variability and the separation of the Gulf Stream, induced440

by surface atmospheric forcing and lateral boundary flows, Journal of physical oceanography, 22, 660–682,

1992.

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tuleya, R., Yablonsky, R., and Zhang, X.:

Hurricane Weather Research and Forecasting (HWRF) model scientific documentation, L Bernardet Ed, 75,

2010.445

Gopalakrishnan, S., Liu, Q., Marchok, T., Sheinin, D., Surgi, N., Tong, M., Tallapragada, V., Tuleya, R., Yablon-

sky, R., and Zhang, X.: Hurricane Weather Research and Forecasting (HWRF) model: 2011 scientific docu-

mentation, L. Bernardet, Ed, 2011.

Govett, M., Middlecoff, J., and Henderson, T.: Running the NIM next-generation weather model on GPUs,

in: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.450

792–796, IEEE, 2010.

Gropp, W. D., Lusk, E. L., and Thakur, R.: Using MPI-2: Advanced features of the message-passing interface,

vol. 2, Globe Pequot, 1999.

Guo, X., Miyazawa, Y., and Yamagata, T.: The Kuroshio Onshore Intrusion along the Shelf Break of the East

China Sea: The Origin of the Tsushima Warm Current., Journal of Physical Oceanography, 36, 2006.455

Henderson, T., Middlecoff, J., Rosinski, J., Govett, M., and Madden, P.: Experience applying Fortran GPU

compilers to numerical weather prediction, in: Application Accelerators in High-Performance Computing

(SAAHPC), 2011 Symposium on, pp. 34–41, IEEE, 2011.

Huang, S.-M. and Oey, L.: Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone,

Journal of Geophysical Research: Oceans, 2015.460

Huang, X., Wang, W., Fu, H., Yang, G., Wang, B., and Zhang, C.: A fast input/output library for high-resolution

climate models, Geoscientific Model Development, 7, 93–103, 2014.

21

http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1996)026%3C2011:DCOTOC%3E2.0.CO;2

Isobe, A., Kako, S., Guo, X., and Takeoka, H.: Ensemble numerical forecasts of the sporadic Kuroshio water

intrusion (kyucho) into shelf and coastal waters, Ocean Dynamics, 62, 633–644, 2012.

Jordi, A. and Wang, D.-P.: sbPOM: A parallel implementation of Princenton Ocean Model, Environmental465

Modelling & Software, 38, 59–61, 2012.

Kagimoto, T. and Yamagata, T.: Seasonal transport variations of the Kuroshio: An OGCM simulation, Journal

of physical oceanography, 27, 403–418, 1997.

Korres, G., Hoteit, I., and Triantafyllou, G.: Data assimilation into a Princeton Ocean Model of the Mediter-

ranean Sea using advanced Kalman filters, Journal of Marine Systems, 65, 84–104, 2007.470

Kurihara, Y., Bender, M. A., Tuleya, R. E., and Ross, R. J.: Improvements in the GFDL hurricane prediction

system, Monthly Weather Review, 123, 2791–2801, 1995.

Kurihara, Y., Tuleya, R. E., and Bender, M. A.: The GFDL hurricane prediction system and its performance in

the 1995 hurricane season., Monthly weather review, 126, 1998.

Leutwyler, D., Fuhrer, O., Cumming, B., Lapillonne, X., Gysi, T., Lüthi, D., Osuna, C., and Schär, C.: Towards475

Cloud-Resolving European-Scale Climate Simulations using a fully GPU-enabled Prototype of the COSMO

Regional Model, in: EGU General Assembly Conference Abstracts, vol. 16, p. 11914, 2014.

Lin, X., Xie, S.-P., Chen, X., and Xu, L.: A well-mixed warm water column in the central Bohai Sea in summer:

Effects of tidal and surface wave mixing, Journal of Geophysical Research: Oceans (1978–2012), 111, 2006.

Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core acceleration of chemical kinetics for480

simulation and prediction, in: Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis, p. 7, ACM, 2009.

Mak, J., Choboter, P., and Lupo, C.: Numerical ocean modeling and simulation with CUDA, in: OCEANS 2011,

pp. 1–6, IEEE, 2011.

McCalpin, J. and Wonnacott, D.: Time skewing: A value-based approach to optimizing for memory locality,485

Tech. rep., Technical Report DCS-TR-379, Department of Computer Science, Rugers University, 1999.

Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather prediction, Parallel Processing

Letters, 18, 531–548, 2008.

Miyazawa, Y., Zhang, R., Guo, X., Tamura, H., Ambe, D., Lee, J.-S., Okuno, A., Yoshinari, H., Setou, T., and

Komatsu, K.: Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean490

reanalysis, Journal of oceanography, 65, 737–756, 2009.

Newberger, P. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for applica-

tion in the surf zone: 1. Formulation, Journal of Geophysical Research: Oceans (1978–2012), 112, 2007a.

Newberger, P. A. and Allen, J. S.: Forcing a three-dimensional, hydrostatic, primitive-equation model for appli-

cation in the surf zone: 2. Application to DUCK94, Journal of Geophysical Research-Oceans, 112, 2007b.495

NVIDIA: CUDA C Best Practices Guide, available at http://docs.nvidia.com/cuda/cuda-c-best-practices-

guide/index.html#coalesced-access-to-global-memory, 2015.

Oey, L., Chang, Y.-L., Lin, Y.-C., Chang, M.-C., Xu, F.-H., and Lu, H.-F.: ATOP-the Advanced Taiwan Ocean

Prediction System based on the mpiPOM Part 1: model descriptions, analyses and results, Terr Atmos Ocean

Sci, 24, 2013.500

Oey, L.-Y.: A wetting and drying scheme for POM, Ocean Modelling, 9, 133–150, 2005.

22

Oey, L.-Y.: Geophysical Fluid Modeling with the mpi version of the Princeton Ocean Model

(mpiPOM). Lecture Notes, 70 pp, ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/

GFModellingUsingMpiPOM.pdf, 2014.

Oey, L.-Y. and Chen, P.: A model simulation of circulation in the northeast Atlantic shelves and seas, Journal505

of Geophysical Research: Oceans (1978–2012), 97, 20 087–20 115, 1992a.

Oey, L.-Y. and Chen, P.: A nested-grid ocean model: With application to the simulation of meanders and ed-

dies in the Norwegian Coastal Current, Journal of Geophysical Research: Oceans (1978–2012), 97, 20 063–

20 086, 1992b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part I:510

Description of the model and model simulations, Journal of Physical Oceanography, 15, 1676–1692, 1985a.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part

II: Comparison with observation, Journal of Physical Oceanography, 15, 1693–1709, 1985b.

Oey, L.-Y., Mellor, G. L., and Hires, R. I.: A three-dimensional simulation of the Hudson-Raritan estuary. Part

III: Salt flux analyses, Journal of physical oceanography, 15, 1711–1720, 1985c.515

Oey, L.-Y., Lee, H.-C., and Schmitz, W. J.: Effects of winds and Caribbean eddies on the frequency of Loop

Current eddy shedding: A numerical model study, Journal of Geophysical Research: Oceans (1978–2012),

108, 2003.

Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., Nukada, A., Maruyama, N., and Mat-

suoka, S.: An 80-fold speedup, 15.0 TFlops full GPU acceleration of non-hydrostatic weather model ASUCA520

production code, in: High Performance Computing, Networking, Storage and Analysis (SC), 2010 Interna-

tional Conference for, pp. 1–11, IEEE, 2010.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosystem model spin-up using transport matrices

to GPUs, Geoscientific Model Development Discussions, 5, 2179–2214, 2012.

Smolarkiewicz, P. K.: A fully multidimensional positive definite advection transport algorithm with small im-525

plicit diffusion, Journal of Computational Physics, 54, 325–362, 1984.

Sun, J., Oey, L., Xu, F., Lin, Y., Huang, S., and Chang, R.: The Influence of Ocean on Typhoon Nuri (2008), in:

AGU Fall Meeting Abstracts, vol. 1, p. L3360, 2014.

Sun, J., Oey, L.-Y., Chang, R., Xu, F., and Huang, S.-M.: Ocean response to typhoon Nuri (2008) in western

Pacific and South China Sea, Ocean Dynamics, 65, 735–749, 2015.530

Varlamov, S. M., Guo, X., Miyama, T., Ichikawa, K., Waseda, T., and Miyazawa, Y.: M2 baroclinic tide vari-

ability modulated by the ocean circulation south of Japan, Journal of Geophysical Research: Oceans, 2015.

Wonnacott, D.: Using time skewing to eliminate idle time due to memory bandwidth and network limitations,

in: Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pp.

171–180, IEEE, 2000.535

Xu, F.-H. and Oey, L.-Y.: The origin of along-shelf pressure gradient in the Middle Atlantic Bight, Journal of

Physical Oceanography, 41, 1720–1740, 2011.

Xu, F.-H. and Oey, L.-Y.: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the

three-layer circulation structure of the Luzon Strait and the South China Sea, Ocean Dynamics, 64, 905–923,

2014.540

23

ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf
ftp://profs.princeton.edu/leo/lecture-notes/OceanAtmosModeling/Notes/GFModellingUsingMpiPOM.pdf

Xu, F.-H. and Oey, L.-Y.: Seasonal SSH variability of the Northern South China Sea, Journal of Physical

Oceanography, 2015.

Xu, F.-H., Oey, L.-Y., Miyazawa, Y., and Hamilton, P.: Hindcasts and forecasts of Loop Current and eddies in

the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation

schemes, Ocean Modelling, 69, 22–38, 2013.545

Yang, C., Xue, W., Fu, H., Gan, L., Li, L., Xu, Y., Lu, Y., Sun, J., Yang, G., and Zheng, W.: A peta-scalable CPU-

GPU algorithm for global atmospheric simulations, in: Proceedings of the 18th ACM SIGPLAN symposium

on Principles and practice of parallel programming, pp. 1–12, ACM, 2013.

Yin, X.-Q. and Oey, L.-Y.: Bred-ensemble ocean forecast of Loop Current and rings, Ocean Modelling, 17,

300–326, 2007.550

Zavatarelli, M. and Mellor, G. L.: A numerical study of the Mediterranean Sea circulation, Journal of Physical

Oceanography, 25, 1384–1414, 1995.

Zavatarelli, M. and Pinardi, N.: The Adriatic Sea modelling system: a nested approach, Annales Geophysicae,

21, 345–364, 10.5194/angeo-21-345-2003, 2003.

Zhenya, S., Haixing, L., Xiaoyan, L., et al.: The Applica tion of GPU in Ocean General Circulation Mode POP,555

Computer Applications and Software, 27, 27–29, 2010.

(R1)

24

10.5194/angeo-21-345-2003

