

Response to the Executive Editor of GMD

Dear authors,

In my role as Executive editor of GMD, I would like to bring to your attention our Editorial:

http://www.geoscientific-model-development.net/gmd_journal_white_paper.pdf <http://www.geoscientific-model-dev.net/6/1233/2013/gmd-6-1233-2013.html> *This highlights some requirements of papers published in GMD, which is also available on the GMD website in the 'Manuscript Types' section:*

http://www.geoscientific-model-development.net/submission/manuscript_types.html

In particular, please note that for your paper, the following requirements have not been met in the Discussions paper – please correct this in your revised submission to GMD. “– The paper must be accompanied by the code, or means of accessing the code, for the purpose of peer-review. If the code is normally distributed in a way which could compromise the anonymity of the referees, then the code must be made available to the editor. The referee/editor is not required to review the code in any way, but they may do so if they so wish. ”

“– All papers must include a section at the end of the paper entitled "Code availability". In this section, instructions for obtaining the code (e.g. from a supplement, or from a website) should be included; alternatively, contact information should be given where the code can be obtained on request, or the reasons why the code is not available should be clearly stated. ”

Yours,

Dan Lunt

Dear Dan Lunt,

In response to your comments I would like to inform you that I have sent the STOPS package, which include the source code along with run scripts, to the editor. I will also include it in the revised submission of the manuscript to GMD. Also, I will add to the manuscript the required section on code availability, in which the reader will be informed that the STOPS source code can be obtained by contacting the leading author at bczader@uh.edu

Response to the Referee #1

Dear Reviewer,

Thank you for your time and effort put into reviewing the paper. Please find below our responses to your comments.

This publication is timely and well done. The STOPS system could be an important tool for scientists policy makers, and consultants alike. The tool uses a moving CMAQ simulation that dynamically interfaces with archived CMAQ simulations. The tool is well described and the basic performance is well described for the no emissions modification case. I would have liked to see an evaluation of the response to additional emissions, which will stress the boundary assumptions further. I look forward to more application papers (e.g., chemistry updates that would influence boundaries, other emission additions).

--- We evaluated STOPS against CMAQ results for the base case showing that it is capable of predicting mixing ratios in close agreement with CMAQ predictions. It is not possible to evaluate STOPS for the countless possibilities of emission perturbations as the response depend on the choice of emitted species, strength of the perturbation and also, since STOPS accounts for horizontal transport through domain boundaries and some material would be transported outside domain, it also depends on domain size. Because of the latest reason we did not use 1x1 grid domain as it is more likely to quickly lose the effect from a perturbation in the domain.

--- We do plan to work on STOPS applications and hopefully a paper would result from that.

The model description section is clear and detailed. The author first introduces the two basic approaches which air pollution models are based on: Eulerian and La-grangian. The author then points out the limitations of modeling with either approach exclusively. The nested-moving approach in STOPS is described as a useful hybrid Eulerian–Lagrangian modeling approach. This paper provides sufficient description of the modifications to CMAQ. Finally, I would not call this Lagrangian. STOPS is actually a series of Eulerian models strung together at the computational time-step. It is more of a pseudo or quasi-Lagrangian approach.

--- We used the term "Lagrangian" because of STOPS movement with a local flow. Although not rigorously correct, as there is in- and out-flow through the domain boundaries that is in contrast to Lagrangian ideas, it was "inspired by Lagrangian methods" while taking advantage of the existing simulation machinery in CMAQ (we added this statement in lines 129-132) and we think it is valid to use the term Lagrangian for descriptive purposes . To indicate that it is not exactly Lagrangian tool we will replace the wording "Lagrangian-Eulerian tool" with "Lagrangian-Eulerian based tool" or "Lagrangian-Eulerian approach".

The tables used in the paper are not clear and need improvement. In all tables, what are MAXD and MIND?

--- The MAXD and MIND will be removed from the caption of tables 2, 3, and 4 as they are not shown in tables.

In Table 2, there are three sets of results with identical “NAME” values. I assume this is related to the domain, but the table is unclear.

--- The first set corresponds to results from static simulations for Houston domain (please see figure 2 and table 1 for domains locations and sizes), the second set for industrial domain, and the third for urban domain. Indeed the naming in the table does not show that, we will correct the names to make it clear.

In Table 4, the domain was starting in the industrial domain, but the nomenclature is identical to Table 3 that started in the urban (urb) domain. Why is that appropriate?

--- This is a mistake, thank you for pointing it out; all names in table 4 should have ‘ind’ instead of ‘urb’. We will correct that.

Tables 5, 6 and 7 are referenced by number without the word “table”.

--- We will add the word table into a text where the tables are referenced.

Minor comments: - Abstract, add units to the bias in the abstract.

--- We will add the units of ppbV.

Page 7631, why not include a 1x1 simulation?

--- A 1x1 STOPS domain is possible, but is more likely to quickly lose the effect from a perturbation in the domain, like modified emissions. Thus it is not likely to be used in practice. We added this information in manuscript in lines 317-319.

Figure 1, Conceptual model should include multiple columns to be consistent with implementation?

--- We will modify the figure to include 3x3 columns in the conceptual model.

Make it clear that you are comparing instantaneous concentrations (not time interval averaged).

--- We will add the following at the end of section 3 on page 7627 (please see lines 283-4): "where H_i and S_i corresponds to instantaneous mixing ratios obtained with CMAQ and STOPS, respectively."

Overall, this is a good manuscript that needs minor improvements. More discussion of the differences, or potential for differences, between CMAQ and STOPS with emission modifications would improve the manuscript. Table clarifications are necessary before publication.

--- The evaluation of STOPS against CMAQ results shown that STOPS is capable of predicting mixing ratios in close agreement with CMAQ predictions. As already mentioned, there are endless possibilities for emission modifications and it is not practical to evaluate them here. The scope of the paper was presentation of the model and its evaluation, the emission modification in section 4 shows just a potential application.

--- We will modify the tables according to reviewer suggestions.

Response to Referee #2

Dear Reviewer,

Thank you for your time and effort put into reviewing the paper and for your helpful suggestions. Please find below our response to your comments.

Major comments:

1. More detailed description of STOPS

I recommend a more detailed description of the STOPS model. A work flow could be helpful. This description should include:

--- STOPS is based on the CMAQ model and the structure and science processed are the same as in CMAQ as mentioned in line 10-11 of the abstract and lines 7-10 on page 7624. Since CMAQ is well documented we did not see a need of repeating its description, instead we provided a reference to Byun and Schere 2006 in the manuscript (please see also the following link for additional CMAQ documentation <https://www.cmascenter.org/help/documentation.cfm>). Therefore, in the manuscript we provided only information on modifications of CMAQ code related to STOPS structure and movement of its domain.

- When are which boundary conditions taken for STOPS. Is there only temporal or also some horizontal interpolation?*

--- In the original CMAQ there is temporal interpolation of boundary conditions; this is, hourly boundary values are interpolated to match smaller calculation time steps. In STOPS, in addition to this temporal interpolation, we also added spatial interpolation. It was needed for cases when the STOPS grids do not align with the grid cells of a CMAQ file used for boundary conditions. We added this information in lines 165-173.

- The transport is described in the text. If a column is taken. Is it one box or still divided into several cells?*

--- We keep the same vertical structure as in CMAQ, so the column(s) are divided into many vertical layers. Please also see a modified figure 1 and description in lines 19 and 145-155.

- What other processes are calculated? Chemistry? Convection? Depositon? Rainout? Lightning? How is this done in detail?*

--- For each grid cell in a domain the following processes are calculated: horizontal and vertical advection, horizontal and vertical diffusion, dry and wet deposition, chemical reactions in gas, aquas and

particle phase, as well as photochemical processes and chemistry in clouds. We added this information in lines 149-152. Please also refer to Byun and Schere (2006) referenced in the manuscript as well as the following documentation of CMAQ <https://www.cmascenter.org/help/documentation.cfm>.

- *Are the processes calculated in the column or flux changes taken from CMAQ?*

--- The processes are calculated for each grid cell inside STOPS domain. In and out-flow of pollutants between grid cells as well as at the STOPS domain boundaries is accounted for.

- *Is there a difference between the output time and the calculation timestep? How is this organised?*

--- Usually outputs are saved as hourly values but a user has an option to change that. The calculation of science processes in CMAQ as well as in STOPS is based on so call synchronization time step, which is in a range of seconds to minutes and determined by the model to satisfy the Courant condition safe advection time step. We added this information in lines 165-173.

2. Units and equations

Please add units to all variables. It makes it easier to understand. If the word "mass" is used I would expect something like a unit "kg". But here it seems not to have a unit at all. Some variables, like delta sigma are not explained properly and some equations have little errors.

--- We will modify the manuscript as follow:

Page 7622 lines 23-25 was: "It can also be utilized to provide detailed process analysis information (mass budget and integrated chemical reaction rates) for a moving window domain to capture chemical evolution of plumes."

Will be (see lines 99-102 in the below manuscript): "It can also be utilized to provide detailed process analysis information (a contribution of physical and chemical process to a simulated mixing ratio) for a moving window domain to capture evolution of plumes."

Text from page 2624 line 16 to page 2425 line 4 will be replaced with the following and eq. 2 will be removed (see lines 198 – 223):

"The trajectory for STOPS movement is calculated based on the mean wind in the middle column (thereafter mwind) that is averaged from surface layer up to the Planetary Boundary Layer (PBL) height and weighted by differences in pressure in each layer. The u and v components of wind (m/s) were calculated according to the following equations:

$$\tilde{u} = \frac{1}{\sum_{L=1}^{PBL} \Delta \sigma_F(L)} \sum_{L=1}^{PBL} u_L \cdot \Delta \sigma_F(L) \quad (1a)$$

$$\tilde{v} = \frac{1}{\sum_{L=1}^{PBL} \Delta \sigma_F(L)} \sum_{L=1}^{PBL} v_L \cdot \Delta \sigma_F(L) \quad (1b)$$

Where $\sigma_F = 1 - \sigma$ and σ (unitless) is a scaled atmospheric pressure in a sigma coordinate system defined as follow: (eq 3).

3. Chosen performance metrics

I know that these metrics are often used. It would be helpful to first clarify for what purpose they can be used. What is the scientific question? And which metric is answering this question best? E.g. total ozone for maintaining the mass budget. Or difference in ozone mixing ratios for ... ? There are some issues if the mass or volume in the individual CMAQ cells are differing, e.g. in the vertical. That should be clarified in more detail. MAX and MIN is used in the text but is missing in the description.

--- Our goal was to evaluate STOPS performance for surface ozone mixing ratios (ppbV). The mean absolute error (MAE) would be the most rigorous metric for this purpose but the mean bias is useful too as it shows if model under or overpredicts values. We will remove equation 5 and 6 since we realized that the mean values are not shown in the manuscript and add units.

--- The MAXD and MIND will be removed from the caption of tables 2, 3, and 4 as they are not shown in tables.

4. Concept of verification.

The chosen stepwise verification seems to be valid, but hard to judge, since I couln't follow in detail. Please include a subsection explaining the procedure, motivation, and interpretation of the experimental set-up in more detail. (see also questions below). The fact that there is only one subsection in 3.2 might indicate that there are some more thoughts on the structure necessary.

--- The following will be added before section 3.1 (lines 295-300): "We performed verification for three cases: (1) a case when the STOPS domain does not move, which was performed to test an effect of boundary condition on STOPS results; (2) cases with STOPS moving along different trajectories performed to test STOPS performance for different atmospheric conditions as well as an effect of different ways of trajectory calculation on STOPS results; (3) cases with different STOPS domain sizes to test an effect of domain size on the STOPS results."

--- Section 3.1 will be renamed to: "Effect of boundary conditions". Section 3.2: "Uncertainties related to movement of STOPS". Section 3.2.1 will be changed to 3.3: "Effect of domain size".

Some more general comments:

- Please explain rows and columns in CMAQ. And make a difference between the CMAQ column and STOPS vertical column. This is confusing.

--- We will replace the sentences on page 2623 lines 24 through page 7624 line 5 with a new description. Please see lines 145-173 in the modified manuscript.

- Title: "Development" -> "Description"? (also section name)

--- The whole manuscript is a description of STOPS and its evaluation, in the title we wanted to underline that we both developed and evaluated this model.

- The authors sometimes use ppb and ppbV. Is there a difference? Is it mass versus volume mixing ratio? Please use it uniformly.

--- We will modify the text to uniformly use unit "ppbV" which indicates volume mixing ratio.

- Similar with CST and UTC. The use is correct, but it makes it harder to read. Please use one time only.

--- We will modify the manuscript to consistently use UTC.

More detailed comments:

I 17: Why "columns of air.", I rather would say air parcels. Most are only points in the atmosphere, but some actually have an extension.

--- We will replace "columns" to "parcels" in the description of Lagrangian approach in the Introduction.

I19 : "so there are no advection terms in the set of governing equations.". Please rephrase. It sounds like there is no advection. Of course the air parces are advected.

--- What we meant is that there is only parcel movement with wind but there is no advection in and out of the column, a process that is considered in Eulerian models. We will modify it as follow (see lines 58-61):

"The air parcels move along with the prevailing winds (being advected), there is no mass exchange between parcels and surroundings except emissions of pollutants that are accounted for when the air parcels pass over source regions."

I23-28: Please rephrase, since there are Lagrangian chemistry models!

--- We will rephrase as follow: "Often they do not account for chemical transformations as the chemistry is modeled as first order decay of pollutants; in such cases they are unable to adequately predict the atmospheric concentrations of species with short lifetimes, such as fast reacting ozone-forming VOCs and air toxics, an example of which is 1,3-butadiene." (See lines 67-70)

p7622 l8 "... tool to study a source-receptor relationship". Still there are diffusion processes, turbulence etc, which is normally not resolved, but which leads to a inter parcel exchange. This normally limits the efficiency of source-receptor relationships. This might come later, but should somehow be mentioned here. On top, there are other methods to resolve source receptor relationships, such as tagging. That should be mentioned somehow. Lagrangian methods are not the only one. Probably a combination would be most favourable?

--- While tagging could be used in source-receptor applications it increases number of model species and therefore computation time. It also does not give information about response to emission changes. Our goal was to get a fast tool that simulates effects of perturbation in emissions and STOPS is just one approach that we thought might be useful for that purpose.

p7623 l 6 Delete "A"

--- we will delete it.

p7624 l 8 "physical and chemical processes in STOPS are the same as in the full domain CMAQ model" Please clarify: Are the same subroutines used, i.e. there is a call of the e.g. chemistry package from STOPS or are chemical changes from the CMAQ simulation extracted and applied to the column in STOPS?

--- You could think of STOPS as being CMAQ with a much smaller domain that moves with wind. As STOPS is based on CMAQ's code, the same subroutines are used and the same process included. We modified only several subroutines to account for movement of a domain and added a new module as described in the manuscript.

l 19 Correct "l=PBL" -> "PBL" (in all equations!)

--- It will be corrected.

l 20ff add units to the variables. Every sentence is a paragraph that is irritating. Clarify pl (midlevel pressure?). Explain why the mean wind has units m/s/kg. (sigma is a number; w in m/s?; and M in kg?) In eq. (2) M is defined as a unitless number, namely the ratio of the PBL-mass to the total model atmosphere mass uin the respective column. Please revise either the equations or the naming. A mass should have kg as a unit. Explain delta sigma. Difference of what?

--- The idea was to calculate average wind based on wind values in each layer and weight it by mass of air in each layer. We approximated mass by calculating differences in pressure which in sigma coordinate system could be calculated from differences in sigma layers. We will remove eq. 2, modify equations 1 as well as rephrase the text as follow (see lines 198-223) : “The trajectory for STOPS movement is calculated based on the mean wind in the middle column (thereafter mwind) that is averaged from surface layer up to the Planetary Boundary Layer (PBL) height and weighted by differences in pressure in each layer. The u and v components of wind (m/s) were calculated according to the following equations:

$$\tilde{u} = \frac{1}{\sum_{L=1}^{PBL} \Delta\sigma_F(L)} \sum_{L=1}^{PBL} u_L \cdot \Delta\sigma_F(L) \quad (1a)$$

$$\tilde{v} = \frac{1}{\sum_{L=1}^{PBL} \Delta\sigma_F(L)} \sum_{L=1}^{PBL} v_L \cdot \Delta\sigma_F(L) \quad (1b)$$

Where $\sigma_F = 1 - \sigma$ and σ (unitless) is a scaled atmospheric pressure in a sigma coordinate system defined as follow: (eq 3).

Section 3:

1. *Please clarify the Si - Hi matching: It is unclear to me how the matching of Hi and Si is done, e.g. to calculate the mean bias in eq. (7). Background: The column in STOPS is moving. Hence after a couple of timesteps the column is covering in the horizontal fractions of different CMAQ grid cells. Which of these grid cells is taken? Or is a weighted mean calculated? See e.g. also Grewe et al., 2014 (Meteorologische Zeitschrift) for problems in Eulerian-Lagrangian cell matching.*

--- Explanation will be added on page 7627 just before section 3.1 (lines 291-3): “For cases when STOPS grids do not align with CMAQ grids the CMAQ values from grid cell corresponding to a STOPS cell are interpolated by means of weighted averaging of CMAQ values.”

2. *Please clarify units of Si Hi*

--- We will add the following at the end of section 3 on page 7627 (lines 283-4): “where H_i and S_i corresponds to instantaneous mixing ratios (ppbV) obtained with CMAQ and STOPS, respectively.”

3. *Please motivate more the use of the performance metrics. Clarify why the difference of (i guess) ppbvs is taken in eq. (7)? For example, if the mass or volume of the individual cells in the column is differs largely, then one cell might dominate the total mass in the column. The mass of a species simulated with STOPS and CMAQ might be basically equal, but the performance metrics might show a large discrepancy because it is dominated by cells with low mass.*

--- Our goal was to evaluate STOPS performance for surface ozone, so the statistics is calculated for ozone mixing ratios in ppbV. The mean bias is the most widely used in atmospheric model evaluations

therefore it is useful for comparing our results with other studies, also it provides information on model under or over predicts values. MAE and RMSE are the more rigorous metrics that we thought would be useful to show.

4. Explain what stationary mode means. What is stationary? windfield? chemistry? zero wind?

--- When we use “stationary” we refer to a domain that is not moving. To clarify this we will modify the first sentence in that paragraph (p. 7627 lines 14-16) as follow (see lines 302-306):“First, the correctness of the STOPS code implementation was verified by performing STOPS simulations in the stationary mode, this is when it is not moving. In this configuration STOPS domain is like a CMAQ sub-domain in which the grid cells are aligned with CMAQ grid cells; thus, STOPS calculated values can be directly compared with CMAQ values from corresponding grid cells.”

5. The naming "output time step" is confusing. Is this the time step of STOPS? or is STOPS run with shorter time steps and just the output of STOPS is at a different intervall?

--- The calculation time step is in order of minutes. The output time step is usually 1 hour. We will rephrase the paragraph on page 7628 (lines 7 – 18) to provide clarification on that. Please see lines 331-349.

6. Throughout the text "interpolation" is used. I first thought a horizontal interpolation is meant to match locations. Please clarify.

--- Temporal interpolation of hourly input values is performed for most of the input data, including boundary conditions, in CMAQ as well as STOPS. In addition, for the case when STOPS domain travels; thus, may not necessarily align with the grid cell of input data, we also perform spatial interpolation. Please see modified lines 165-173.

p 7627 l 16/17 "of either initial or boundary values", but what is with the H_i values?

--- The following will be added at the end of section 3 on page 7627: “where H_i and S_i corresponds to instantaneous mixing ratios (ppbV) obtained with CMAQ and STOPS, respectively.”

p 7628 l 12 Please define what is meant by "from the corresponding grid cells".

--- Here STOPS was just like a sub-domain of CMAQ, so its grid is located inside CMAQ grid and aligns with CMAQ grid cell. We were comparing values from STOPS grids cells with the corresponding grid cells in CMAQ. We will rephrase this sentence to make it clear. Please also refer to a modified figure 1 and modified explanation in lines 145-173 and 302-306 and 331-349.

Section 3.2

Here a couple of things are now explained, which partly clarify some of the questions above. Please give this information earlier. (stationary/alignment of cells/ ...)

--- As mentioned above we will provide some additional information in lines 145-173, 291-300.

p 7629 l8-9. How is the interpolation done?

--- We will rephrase it as follow (please see lines 381-389): "For the purpose of comparing STOPS values with CMAQ ones we utilized two approaches which were performed after STOPS finished its calculations. In the first approach we aligned the STOPS grid cells with the closest CMAQ grid cells (shifted the STOPS domain) and took the corresponding values for a comparison. In the second approach we performed spatial interpolation by calculating weighted average from several CMAQ grid cells that overlap with the STOPS grid cell."

p 7630 l 21 "STOPS concentrations were spatially ..." I would have thought that the CMAQ values have to be interpolated (or redistributed?). How many STOPS values are available? Where are they located?

--- You are right, that was a mistake and we will rephrase it as follow (lines 385-7): "we performed spatial interpolation by calculating weighted average from several CMAQ grid cells that overlap with the STOPS grid cell."

--- Number of STOPS values depends on the size of its domain; since we compared only surface values there were N values as specified in equation 4, where NCOL and NROW is number of columns and rows in STOPS domain, and NTSTEP number of output time steps (please see this added explanation in lines 284-5. As STOPS moves it calculates mixing ratios for different locations.

Figure 5: triangles and crosses cannot be identified. Please plot differently, e.g. in color.

--- We will replace the graphs with color ones.

"Very good performance was found on 28 August with the averaged mean absolute error of 1.3 and 1.5 for the urban and industrial domains, subsequently" What is looked at? Surface ozone? 1.3 and 1.5 ppbV? kg?

--- yes, we looked at surface ozone (ppbV). We will add this information into a manuscript at lines 27, 31, 449.

p 7631 "STOPS system were validated against CMAQ calculated concentration". This assumes that CMAQ is the reference. But what is if the lagrangian transport is just more accurate, with less diffusion. Then a

difference would be an enhancement of the model. But the statistics would show the opposite effect. Please explain.

--- Since STOPS is based on CMAQ model so in this context we believe it is right to evaluate STOPS against CMAQ.

Table 5 and 6 could be converted into a figure to better show the convergence?

--- We prefer to show all the statistics currently listed in those tables and therefore would like to keep the tables.

Section 4:

At what time is the release? 6:00? And where exactly?

--- We will add the following explanation in line 19 p. 7632 (see lines 535-6): "The additional emission was added between 12 and 13 UTC at the location of the middle cell of STOPS domain at its starting position."

Why did you change between UTC and CST?

--- We will modify to UTC to be consistent with other parts of the manuscript.

1 Development and evaluation of the Screening Trajectory Ozone Prediction System
2 (STOPS, version 1.0)
3 Beata H. Czader¹, Peter Percell¹, Daewon Byun¹⁺, Soontae Kim^{1,2}, and Yunsoo Choi¹
4 ¹Department of Earth and Atmospheric Sciences, University of Houston, Houston, USA
5 ²currently at Ajou University, Suwon, S. Korea
6 [†]deceased

7

8 Correspondence to: B. H. Czader (bczader@uh.edu)

9

10 **Abstract**

11 A hybrid Lagrangian-Eulerian based modeling tool has been developed using the
12 Eulerian framework of the Community Multiscale Air Quality (CMAQ) model. It is a
13 moving nest that utilizes saved original CMAQ simulation results to provide boundary
14 conditions, initial conditions, as well as emissions and meteorological parameters
15 necessary for a simulation. Given that these file are available, this tool can run
16 independently from the CMAQ whole domain simulation and it is designed to simulate
17 source – receptor relationship upon changes in emissions. In this tool, the original
18 CMAQ's horizontal domain is reduced to a small sub-domain that follows a trajectory
19 defined by the mean mixed-layer wind. It has the same vertical structure and physical
20 and chemical interactions as CMAQ except advection calculation. The advantage of this
21 tool compared to other Lagrangian models is its capability of utilizing realistic
22 boundary conditions that change with space and time as well as detailed chemistry
23 treatment. The correctness of the algorithms and the overall performance was evaluated
24 against CMAQ simulation results. Its performance depends on the atmospheric
25 conditions occurring during the simulation period with the comparisons being most
26 similar to CMAQ results under uniform wind conditions. The mean bias for surface
27 ozone mixing ratios varies between -0.03 ppbV and -0.78 ppbV and the slope is
28 between 0.99 and 1.01 for different analyzed cases. For complicated meteorological
29 condition, such as wind circulation, the simulated mixing ratios deviate from CMAQ

30 values as a result of Lagrangian approach of using mean wind for its movement, but are
31 still close, with the mean bias for ozone varying between 0.07 ppbV and -4.29 ppbV
32 and slope varying between 0.95 and 1.06³ for different analyzed cases. For historical
33 reasons this hybrid Lagrangian – Eulerian based tool is named the Screening Trajectory
34 Ozone Prediction System (STOPS) but its use is not limited to ozone prediction as
35 similarly to CMAQ it can simulate concentrations of many species, including
36 particulate matter and some toxic compounds, such as formaldehyde and 1,3-butadiene.
37

38 1. Introduction

39

40 Air pollution modeling is used to predict concentrations of pollutants and to understand
41 physical and chemical processes involved as well as to develop necessary control
42 strategies to improve air quality. Air pollution can be numerically simulated by several
43 techniques that, based on the frame of references, are generally divided into two
44 categories: Eulerian and Lagrangian.

45

46 In the Eulerian approach, the observer adopts a fixed frame of reference, usually the
47 surface of the earth, with the modeling domain divided into many grid cells. This
48 enables easy representation of the pollutant production and transformation processes.

49 Most Eulerian models account for atmospheric dynamics (horizontal and vertical
50 advection and diffusion), emissions sources, and chemical production and destruction.
51 They are often used to forecast air quality. A widely used Eulerian type model is the
52 Community Multiscale Air Quality (CMAQ) model developed by the U.S.
53 Environmental Protection Agency (Byun and Schere, 2006).

54

55 Lagrangian (or Trajectory) models are based on species conservation equations
56 describing atmospheric diffusion and chemical reactions stated in terms of moving
57 coordinates. The observer adopts moving coordinates that follow sets of hypothetical
58 columns of air parcels. The air parcels move along with the prevailing winds (being

59 advection), there is no mass exchange between parcels and surroundings except
60 emissions of pollutants that are accounted for when the air parcels pass over source
61 regions~~The air columns move along with the prevailing winds, so there are no advection~~
62 ~~terms in the set of governing equations. Primary pollutant emissions are injected into~~
63 ~~the columns when they pass over source regions.~~ Lagrangian models have much shorter
64 run times and are therefore more computationally efficient than their chemical transport
65 counterparts. These models have been successfully applied to simulate dispersion of
66 several pollutants over length scales of the order of a few tens of kilometers or lesser.
67 Often they do not account for chemical transformations as the chemistry is modeled as
68 first order decay of pollutants; in such cases they are unable to adequately predict the
69 atmospheric concentrations of species with short lifetimes, such as fast reacting ozone-
70 forming VOCs and air toxics, an example of which is 1,3-butadiene.~~However, they do~~
71 ~~not account for chemical transformations as the chemistry is modeled as first order~~
72 ~~decay (pseudo second order) of pollutants; and therefore, they are unable to adequately~~
73 ~~predict the atmospheric concentrations of species with short lifetimes, such as fast~~
74 ~~reacting ozone forming VOCs and air toxics, an example of which is 1,3-butadiene.~~

75
76 An ideal air pollution model would combine the computational efficiency of a
77 dispersion model with the chemistry details of a chemical transport model. In other
78 words, it would be a hybrid system merging a chemical transport model with a
79 dispersion-Lagrangian movement model. This paper presents the development,
80 validation and an example of application of a hybrid modeling approach that utilizes
81 Lagrangian advection scheme in an Eulerian modeling framework. This hybrid
82 Eulerian-Lagrangian based modeling tool was designed to re-simulate only a part of a
83 CMAQ modeling domain that is of interest. This makes it a computationally efficient
84 tool to study a source-receptor relationship, such as the effect of emission events on the
85 ozone concentration. In addition, it can quickly perform the analysis of physical and
86 chemical process, so called process analysis, which is very time consuming to perform
87 using the full-domain Eulerian air quality grid model. Compared to Lagrangian column

88 models our approach has advantages of using detailed chemistry and dynamic boundary
89 conditions. To assure the correctness of the algorithm's implementation, the results
90 were thoroughly evaluated and compared with the CMAQ simulation results.

91

92 Currently many institutions perform air quality forecasting. When implemented into the
93 real-time air quality forecasting this Eulerian-Lagrangian based hybrid tool can be used
94 for a time efficient re-simulation utilizing the same inputs as already prepared for the
95 forecasting. As emission source can be directly added to this tool it can simulate effects
96 of additional (non-routine) emission releases that are not included in the standard
97 inventory, for example 'upset' emissions from industrial facilities or wild fire emissions.
98 Other application could be a simulation of plumes from chemical industry upon
99 hurricane damage or upon a release of chemical or biological agents. It can also be
100 utilized to provide detailed process analysis information (a contribution of physical and
101 chemical process to a simulated mixing ratio mass budget and integrated chemical
102 reaction rates) for a moving window domain to capture chemical evolution of plumes.
103 Performing process analysis is also very time consuming and it is not used in the air
104 quality forecasting applications.

105

106 A hybrid modeling approach was previously used to simulate concentrations of benzene
107 in Houston (Stein et al., 2007). It consisted of CMAQ, the Hybrid Single Particle
108 Lagrangian Integrated Trajectory (HYSPPLIT) model, and the AMS/EPA Regulatory
109 Model (AERMOD), where CMAQ was used to provide background concentrations.
110 Although it successfully predicted benzene concentrations it has limitations in
111 AERMOD being a steady-state plume dispersion model, which does not consider
112 chemistry, and therefore, it is not suitable for simulations of more reactive species or
113 secondary (not emitted) species. ~~A~~-Lagrangian approaches were also developed for the
114 purpose of detailed analysis of chemical interactions inside a plume. For example,
115 Kimura et al., 2008 implemented algorithms inside grid model that allow tracking
116 plume inside the grid model (Lagrangian approach) and to provide details of chemical

117 transformations inside a plume. However, this tool does not operate independently from
118 the host model, making re-simulation time consuming. Henderson et al. (2011) reported
119 a pseudo-Lagrangian post-processing tool, which can be used outside the grid model to
120 analyze its outputs in order to identify plumes and perform process analysis of the
121 plume. In contrast, our tool can be run independently from the whole domain
122 simulations of grid model and is designed to simulated effect upon emissions changes.

123

124

125 **2. Development of a hybrid Eulerian-Lagrangian based modeling approach**

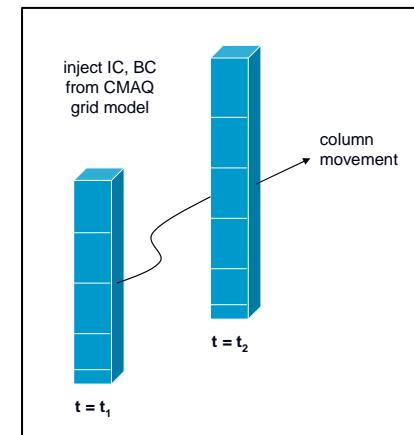
126

127 A hybrid Eulerian-Lagrangian based modeling tool is derived from the CMAQ model in
128 which the original CMAQ's horizontal domain is reduced to a small sub-domain that
129 can move along a specific trajectory. Although not rigorously correct, as there is in- and
130 out-flow through the domain boundaries that is in contrast to Lagrangian ideas, it was
131 "inspired by Lagrangian methods" while taking advantage of the existing simulation
132 machinery in CMAQ. Initially developed for ozone pollution applications was named
133 the Screening Trajectory Ozone Prediction System (STOPS). Although it is not limited
134 to ozone prediction, but similarly to CMAQ, it can simulate concentrations of many
135 species, including particulate matter and some toxic compounds, such as formaldehyde
136 and 1,3-butadiene, for historical reason we continue to use the name STOPS. STOPS
137 can be considered as a moving nest window model, where the domain moves with the
138 mean wind speed of the target air column in which the dynamic boundary conditions are
139 obtained from saved original CMAQ simulation results.

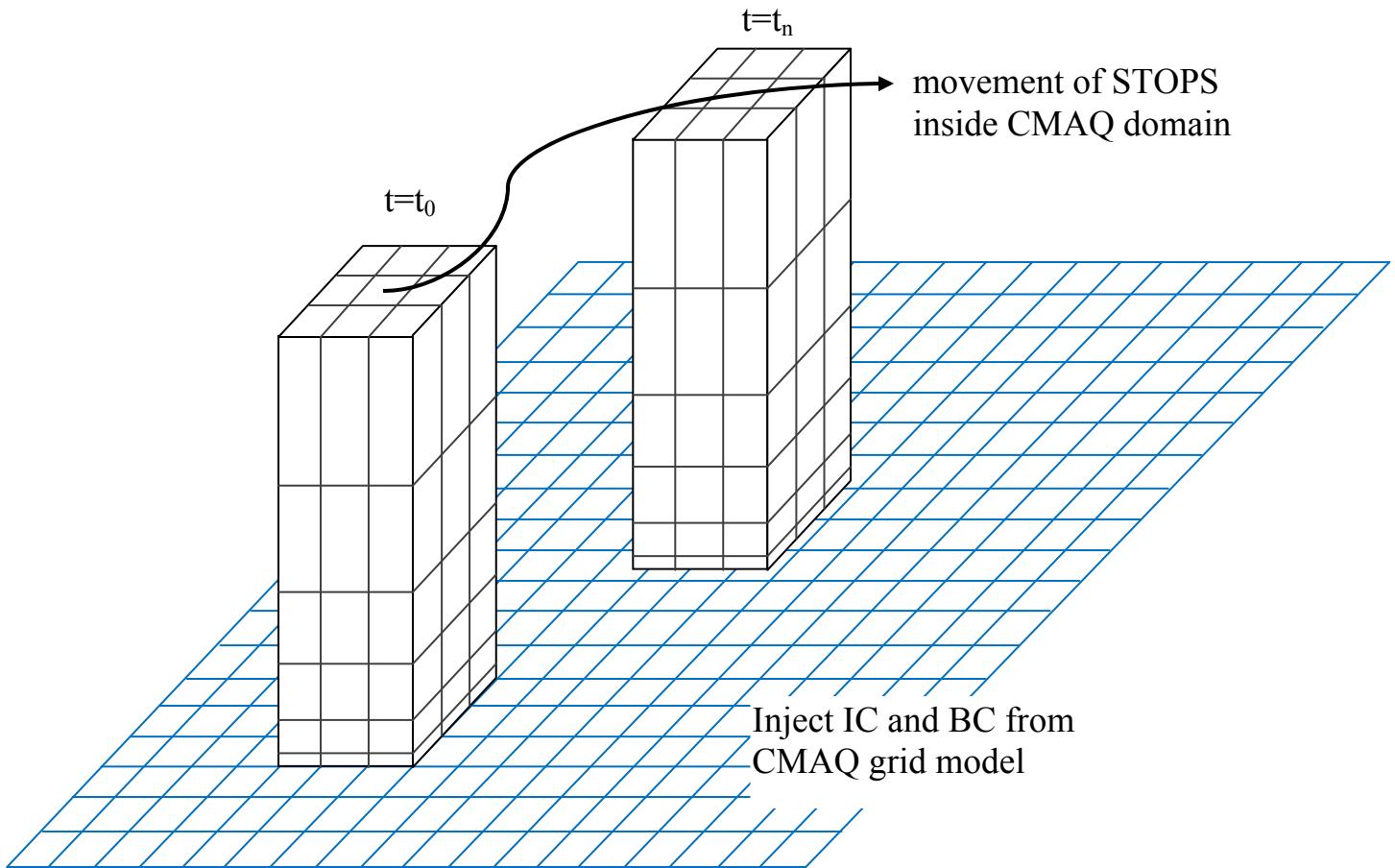
140

141 In the simplest application, the STOPS domain can consist of only one cell in the
142 horizontal direction, which corresponds to a 2D column shown in Fig. 1. The modeling
143 domain can be extended with a few horizontal layers of cells padding the targeted
144 analysis domain.

145 CMAQ domain is divided into grid cells with certain number of rows and columns in a
146 horizontal direction and layers in a vertical direction. STOPS can be considered as a
147 sub-domain of CMAQ, which is also divided into a grid cells in horizontal and vertical
148 direction but opposite to CMAQ, STOPS domain moves with the mean wind as
149 presented in Fig. 1. For each grid cell in a domain CMAQ calculates horizontal and
150 vertical advection, horizontal and vertical diffusion, dry and wet deposition, chemical
151 reactions in gas, aquas and particle phase, as well as photochemical processes and
152 chemistry in clouds. The vertical layer structure and the physical and chemical
153 processes in STOPS are the same as in the full domain CMAQ model, except that
154 advection fluxes are obtained utilizing difference between a cell horizontal wind
155 velocity and averaged velocity of STOPS. At its starting position STOPS grid is aligned
156 with CMAQ grid, but as it moves with wind its grid may not necessarily align with
157 CMAQ grids (see Fig. 1). The initial location of the STOPS domain can be defined by
158 choosing position of the domain middle cell in terms of latitude and longitude
159 coordinates or in terms of the column and row number corresponding to the CMAQ full
160 domain. STOPS uses initial condition and the dynamic boundary conditions from saved
161 original CMAQ simulation results as well as emission and meteorological parameters as
162 prepared for CMAQ. Because of that STOPS movement is limited by CMAQ domain
163 boundaries.


164

165 Usually input and output files have hourly values. The calculation of science processes
166 in CMAQ as well as in STOPS is based on so call synchronization time step, which is in
167 a range of seconds to minutes and determined by the model to satisfy the Courant
168 condition safe advection time step. Both, CMAQ and STOPS perform temporal
169 interpolation of hourly values (initial conditions, boundary conditions, emissions, and
170 meteorological parameters) to obtain a value at a smaller calculation time steps. In
171 STOPS, in addition to temporal interpolation, we also added spatial interpolation. It was
172 needed for cases when the STOPS grid cells do not align with the grid cells of a CMAQ
173 files.


174

175 The initial location of the STOPS domain can be defined by choosing position of the
176 domain middle cell in terms of latitude and longitude coordinates or in terms of the
177 column and row number corresponding to the CMAQ full domain. The vertical layer
178 structure and the physical and chemical processes in STOPS are the same as in the full
179 domain CMAQ model, except that advection fluxes are obtained utilizing difference
180 between a cell horizontal wind velocity and averaged velocity of STOPS. The trajectory
181 used for moving the STOPS domain, in fact, should be viewed as the window of
182 analysis. STOPS is essentially a moving nest CMAQ that utilizes the saved original
183 CMAQ simulation results to provide boundary conditions, initial conditions, emissions
184 and meteorological parameters necessary for the simulations. Use of the dynamic
185 boundary conditions is one of the advantages of STOPS compared to a Lagrangian
186 column models.

187

188
189
190
191
192
193
Figure1. The conceptual model for STOPS
trajectory movement.

194
 195 | Figure1. The conceptual model for of STOPs and its trajectory movement.
 196

197

198 | The trajectory for STOPs movement is calculated based on the mean wind in the
 199 middle column (thereafter mwind) that is averaged from surface layer up to the
 200 Planetary Boundary Layer (PBL) height and weighted by differences in pressure in each
 201 layer. The u and v components of wind (m/s) were calculated according to the following
 202 equations:

203 $\tilde{u} = \frac{1}{\sum_{L=1}^{PBL} \Delta \sigma_F(L)} \sum_{L=1}^{PBL} u_L \cdot \Delta \sigma_F(L)$ (1a)

204
 205 $\tilde{v} = \frac{1}{\sum_{L=1}^{PBL} \Delta \sigma_F(L)} \sum_{L=1}^{PBL} v_L \cdot \Delta \sigma_F(L)$ (1b)

206

207 Where $\sigma F = 1 - \sigma$ and σ (unitless) is a scaled atmospheric pressure in a sigma coordinate
208 system defined as follow:

209 The trajectory for STOPS movement is calculated based on the mean wind \bar{w}_{PBL} in the
210 middle column (hereafter mwind) that is mass averaged up to the Planetary Boundary
211 Layer (PBL) height according to the following equation:

$$\bar{w}_{PBL} = \frac{\pm}{M_{PBL}} \sum_{l=1}^{l=PBL} w_l \cdot \Delta \sigma_l \quad (1)$$

213 where l is a layer number, M_{PBL} is the total mass of air column from the surface to the
214 PBL height, and w_l is a wind in the layer l .

217 The total mass of air from the surface to the PBL height (M_{PBL}) is calculated as follows:

$$M_{PBL} = \sum_{l=1}^{l=PBL} \Delta \sigma_l \quad (2)$$

220 where σ is defined as:

$$\sigma = \frac{(p - p_t)}{(p_s - p_t)} \quad (32)$$

222 where p is a pressure at the current level, p_t is a model top pressure, p_s is a surface
223 pressure.

224 The trajectory can be also determined based on the averaged value from all cells inside
225 STOPS domain (hereafter awind) as opposed to the middle column value.

226

227 The implementation of STOPS required modifications of the CMAQ source code which
228 included the following:

- 229 • A Fortran-90 module, STOPS_MODLUE, was created to hold the additional data
230 structure related to STOPS and subroutines associated with a coordinate conversion,
231 position and velocity along the trajectory.
- 232 • The SUBHFILE subroutine was modified. This subroutine determines the spatial
233 relationship between the CMAQ grid and grids of input data, e.g., inputs with

234 emission or meteorological data may have different horizontal domains that the
235 CMAQ domain. SUBHFILE subroutine was enhanced to support a moving
236 horizontal sub-domain, whose grid points do not necessarily coincide with grid
237 points of the input data, and may have different locations at every synchronization
238 time step.

239 • The boundary subroutine, RDBCON, was modified to support a boundary thickness
240 of 3 cells and to get boundary values for changing locations directly from the
241 CMAQ full-grid concentrations [s_file](#).

242 • The netCDF output file, CONC, saves only STOPS grid concentrations. In addition,
243 an ASCII output file is generated that holds trajectory information, this is latitude
244 and longitude of the middle point of the STOPS domain for each output time step,
245 along with the corresponding column and row numbers of a full CMAQ domain.

246 • For source-receptor applications the STOPS code was modified in a way that
247 additional emissions can be directly injected into STOPS without a need of
248 reprocessing an emission inventory. A name of the emitted compound(s) (in terms
249 of model species), a location of emission release, starting and ending times, and the
250 amount need to be specified by the user in the STOPS run script.

251 • Given that STOPS is based on the CMAQ source code and uses the same input files
252 its results shall closely approximate those obtained with the 3-D CMAQ model. For
253 the purpose of comparing STOPS results against CMAQ results the post processing
254 program was developed and incorporated into the STOPS build and run scripts.
255 With this, additional file, HCONC, is generated from the STOPS simulations. It
256 holds CMAQ concentrations from grid cells that correspond to the current location
257 of STOPS.

258

259 The advantage of STOPS compared to other Lagrangian models is the capability of
260 utilizing realistic boundary conditions that change with space and time. Because of that,
261 STOPS takes into account flow in and out of a domain, allowing for an exchange of
262 mass between a moving domain and surroundings. This allows for simulations of

263 conditions when a wind shear occurs for which the usual Lagrangian models are usually
264 not suitable. On the other hand, in the case of significant deviations in a wind speed and
265 direction some mass may be blown out of the STOPS simulation domain.

266

267 **3. Verification of STOPS performance**

268 CMAQ has been found to be a reliable modeling tool, whose performance has been
269 evaluated in many studies [Smyth *et al.*, 2006; Eder and Yu, 2006; Arnold and Dennis,
270 2006; Byun *et al.*, 2007; Appel *et al.*, 2012]. As a moving nest, which uses the same
271 inputs as CMAQ and utilizes CMAQ's simulations results as dynamic boundary
272 conditions and initial conditions, the STOPS performance is expected to be close to the
273 results of the original CMAQ model; therefore, the code implementation was verified
274 by comparing its simulation results with those obtained using CMAQ.

275

276 The following statistical parameters were calculated for performance evaluation:

277 Number of dataset
$$N = NCOL * NROW * NTSTEP \quad (4)$$

278 Mean of host concentration
$$\bar{H} = \frac{1}{N} \sum_{i=1}^N H_i \quad (5)$$

279 Mean of STOPS concentration
$$\bar{S} = \frac{1}{N} \sum_{i=1}^N S_i \quad (6)$$

280 Mean Bias
$$MB = \frac{1}{N} \sum_{i=1}^N (H_i - S_i) \quad (7)$$

281 Mean Absolute Error
$$MAE = \frac{1}{N} \sum_{i=1}^N |H_i - S_i| \quad (8)$$

282 Root Mean Square Error
$$RMSE = \left[\frac{1}{N} \sum_{i=1}^N (H_i - S_i)^2 \right]^{\frac{1}{2}} \quad (9)$$

283 where H_i and S_i corresponds to instantaneous mixing ratios obtained with CMAQ and
284 STOPS, respectively. NCOL and NROW are numbers of STOPS columns and rows,
285 respectively, and NTSTEP is number of output time steps.

286

287 Daily ozone maximum values from CMAQ and STOPS simulations where also
288 calculated and are indicated as H_{MAX}
289 Daily ozone maximum from STOPS simulations — and S_{MAX} , respectively.

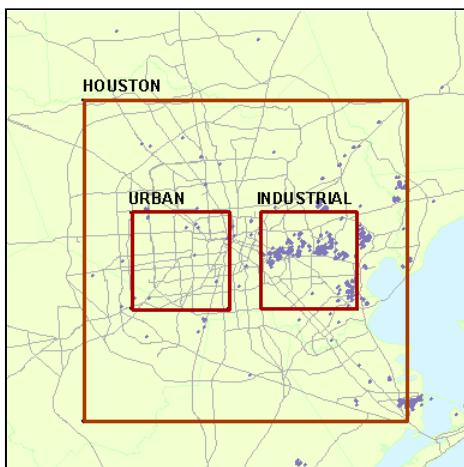
290

291 For cases when STOPS grids do not align with CMAQ grids the CMAQ values from
292 several grid cells corresponding to a STOPS cell are interpolated by means of weighted
293 averaging of CMAQ values.

294

295 We performed verification for three cases: (1) a case when the STOPS domain does not
296 move, which was performed to test an effect of boundary condition on STOPS results;
297 (2) cases with STOPS moving along different trajectories performed to test STPOPS
298 performance for different atmospheric conditions as well as an effect of different ways
299 of trajectory calculation on STOPS results; (3) cases with different STOPS domain
300 sizes to test an effect of domain size on the STOPS results.

301 **3.1 STOPS in the stationary mode Effect of boundary conditions**


302 First, the correctness of the STOPS code implementation was verified by performing
303 STOPS simulations in the stationary mode, this is when it is not moving. In this
304 configuration STOPS domain is like a CMAQ sub-domain in which the grid cells are
305 aligned with CMAQ grid cells; thus, STOPS calculated values can be directly compared
306 with CMAQ values from corresponding grid cells. First, the correctness of the STOPS
307 code implementation was verified by performing STOPS simulations in the static mode
308 in which the grid cells were aligned with CMAQ grids and directly compared to CMAQ
309 values. With this setup, STOPS does not perform spatial interpolations of either initial
310 or boundary values. The simulations were performed for three domains, differing in size

311 and starting positions as presented in Fig. 2: “Houston” domain, “urban” domain that
 312 sits in the urban area and “industrial” domain that is over the industrial region. The size
 313 of a domain is defined by a number of padding cells around the middle cell. The
 314 location of the middle cell-column in each STOPS domain relatively to the CMAQ
 315 (host) grid, number of padding cells in each direction around a-STOPS middle
 316 cellcolumn, and a number of total STOPS columns and rows of the host domain are
 317 presented in Table1. A 1x1 STOPS domain is possible, but is more likely to quickly
 318 lose the effect from a perturbation in the domain, like modified emissions. Thus, it is
 319 not likely to be used in practice and we did not perform tests on that domain.

320

321

322

323

324

Figure.2. Starting locations of STOPS domains. Points indicate location of emission point sources in Houston.

325

326

327

328

Table1. Specifications of STOPS domains

Name	Column and row of middle STOPS cell in a host grid	Number of padding cells in each direction	Number of rows of STOPS domain	Number of columns of STOPS domain
Houston	25, 30	10	21	21
Urban	21, 30	2	5	5

Industrial	29, 30	2	5	5
------------	--------	---	---	---

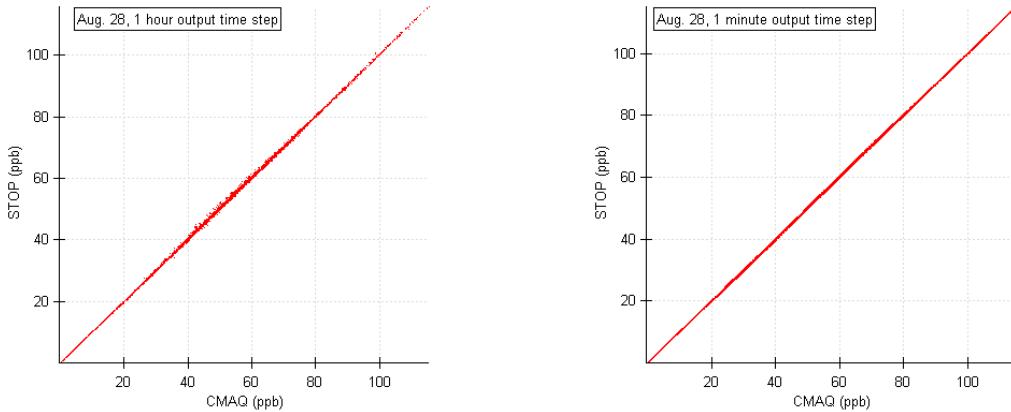
329

330

331 Usually CMAQ boundary conditions as well as other input files are provided at hourly
 332 intervals and modeled CMAQ calculated mixing ratios eoneconcentrations are also saved
 333 with an at hourly output time stepintervals. However, Because a model performs
 334 calculations are performed at much smaller time intervals that could be on the order of
 335 minutes; therefore, the boundary values are interpolated from two corresponding hourly
 336 values to match a specific computation time step. This, which is also a case for STOPS.
 337 ~~that uses CMAQ hourly concentrations for boundary conditions~~. For the comparison of
 338 STOPS results with CMAQ values we used CMAQ concentrations from the
 339 ~~corresponding~~ grid cells corresponding to cells in STOPS domain. These grid cells in
 340 CMAQ are not at the domain boundaries but inside domain; therefore, in these grid
 341 cells to calculate advection is calculated CMAQ uses based on values from adjacent
 342 cells at every synchronization time step. In as opposed to STOPS these cells are at the
 343 domain boundary and hourly boundary values are interpolated for advection calculation.
 344 Because of that, we expect some differences between STOPS and CMAQ calculated
 345 mixing ratios. and tTo justify them, CMAQ and STOPS simulations were performed for
 346 different output time steps, which were set to 1 hour, 5 minutes, and 1 minute. This
 347 allows for obtaining boundary conditions at small time steps, which is close to the
 348 synchronization time step and forcing CMAQ and STOPS to use the same values for
 349 advection calculation.

350

351 Three sample days out of the TexAQS 2000 episode were chosen for simulations:
 352 August 25, 28, and 30. For all cases the STOPS simulation started at 12 UTC and lasted
 353 12 hours. Surface ozone values from CMAQ and STOPS were compared at each cell
 354 and each simulations output time step. The summary of statistical parameters calculated
 355 by CMAQ and STOPS in a stationary mode is presented in Table2. Differences between
 356 the concentrations obtained from these two models are attributed to different values at
 357 the domain boundaries. Decreasing the hourly output time step to make it closer to the


358 synchronization time step lessens the effect of different boundary conditions as STOPS
359 values became closer to CMAQ values. At 1 minute output time step differences
360 | between ozone concentrations are less than 1 ~~ppb~~^{ppbV}. Figure 3 shows comparison of
361 STOPS and CMAQ values from simulation with 1 hour output time step (left) and 1
362 minute time step (right) with less scattering from 1 minute output time step, confirming
363 that shortening the output time step makes STOPS results closer to CMAQ.
364

365
 366 Table 2. Summary of statistical parameters for STOPS-and CMAQ predicted ozone
 367 mixing ratio~~concentration pairs~~, when STOPS was used in the stationary mode ~~(the~~
 368 ~~values of MAXD and MIND are given in ppbv)~~. "hou" indicates results from the
 369 Houston domain; "ind" –from the industrial domain; "urb" –from urban domain.
 370

NAME	N	HMAX	SMAX	MB	MAE	RMSE
stat_hou_1h.0825	5733	162.1	162.9	-0.1894	0.3822	0.6820
stat_hou_1h.0828	5733	115.6	115.8	-0.1160	0.1979	0.3229
stat_hou_1h.0830	5733	158.7	158.7	-0.3089	0.3870	0.5920
stat_hou_5m.0825	63945	166.4	167.1	-0.1183	0.2067	0.3946
stat_hou_5m.0828	63945	116.0	115.7	0.0369	0.1213	0.2075
stat_hou_5m.0830	63945	160.3	160.5	0.0167	0.1297	0.2295
stat_hou_1m.0825	317961	166.0	166.0	0.0140	0.0456	0.0906
stat_hou_1m.0828	317961	115.1	115.1	-0.0117	0.0365	0.0744
stat_hou_1m.0830	317961	158.9	158.9	-0.0138	0.0308	0.0715
stat_ind_1h.0825	325	108.7	113.9	-0.8562	1.0007	1.4691
stat_ind_1h.0828	325	88.5	88.0	-0.7096	0.8004	1.1424
stat_ind_1h.0830	325	145.1	147.8	-1.8936	1.9774	2.6690
stat_ind_5m.0825	3625	111.6	112.8	-0.5794	0.6502	0.9494
stat_ind_5m.0828	3625	88.6	87.7	-0.2883	0.4229	0.6003
stat_ind_5m.0830	3625	148.2	148.4	-0.4536	0.5636	0.7370
stat_ind_1m.0825	18025	112.0	112.6	-0.1275	0.2107	0.3356
stat_ind_1m.0828	18025	86.6	86.6	-0.0724	0.1045	0.1426
stat_ind_1m.0830	18025	146.6	146.7	-0.0974	0.1342	0.2249
stat_urb_1h.0825	325	162.1	161.4	-0.9287	1.3587	2.1596
stat_urb_1h.0828	325	69.2	70.7	-0.5708	0.6402	0.9812
stat_urb_1h.0830	325	145.9	148.0	-1.5667	1.5673	1.9527
stat_urb_5m.0825	3625	165.9	167.1	-0.5115	0.6070	0.9891
stat_urb_5m.0828	3625	70.5	71.0	-0.2271	0.3825	0.6278
stat_urb_5m.0830	3625	145.9	146.8	-0.3074	0.3411	0.4611
stat_urb_1m.0825	18025	165.4	165.8	0.0214	0.2073	0.3132
stat_urb_1m.0828	18025	69.9	69.7	-0.0300	0.0875	0.1292
stat_urb_1m.0830	18025	144.3	144.7	-0.1970	0.2114	0.3607

371

372

373

374 Figure 3. Comparison of CMAQ and static STOPS simulation results for Aug. 28 for 1 hour (left) and 1
 375 minute (right) output time step. Both graphs correspond to simulation from the Houston domain.

376

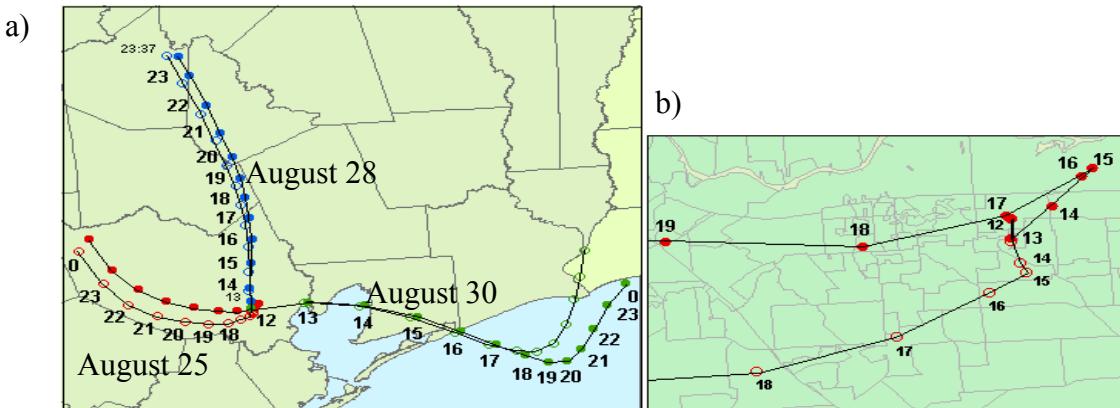
3.2 STOPS in the moving mode Uncertainties related to movement of STOPS

377

The next step in the STOPS verification was to analyze uncertainties related to the movement of a nest STOPS domain. A direct comparison between CMAQ and STOPS result was complicated due to the fact that when STOPS travels with wind its grid cells do not necessarily align with CMAQ grid cells. In order to overcome this problem, if or the comparison purpose of comparing STOPS values with CMAQ ones we utilized two approaches which were performed after STOPS finished its calculations. In the first approach we aligned either the STOPS domain grid cells had to be aligned with the closest CMAQ grid cells (shifted the STOPS domain) and took the corresponding values for a comparison. In the second approach we performed spatial interpolation by calculating or weighted average from several CMAQ grid cells that overlap with the STOPS grid cell STOPS values from several cells have to be interpolated to the corresponding CMAQ cell. The performance evaluation was tested for these two possibilities approaches.

390

391


There are two options in STOPS that can be used for a trajectory calculation. A trajectory can be determined either based on the wind in the middle column of the STOPS domain as described by Eq. 1 (mwind) or based on the averaged value from the whole STOPS domain (awind). Two smaller sub-domains shown in Figure.2, which are

395 urban and industrial, were selected for STOPS simulations in the moving mode with the
396 two options for trajectory calculation being tested.

397

398 The days for which comparison was carried out were characterized by different
399 meteorological conditions. August 25, 2000 was the day with complicated, circular
400 wind patterns; on August 28th, 2000 strong, but uniform southerly winds were observed,
401 and on Aug. 30 change of winds from south-easterly to south-westerly was observed in
402 the early afternoon hours. STOPS trajectories for these three days, with the starting
403 position at the location of industrial sub-domain, are presented in Figure 4. Trajectories
404 determined based on the winds in the STOPS middle column are indicated by filled
405 circles, and those determined based on the average winds in the whole STOPS domain
406 with open circles. All trajectories start at 12 UTC and end the next day at 0 UTC, except
407 trajectories on Aug. 28 that ended at 23 UTC due to subdomain reaching the boundaries
408 of CMAQ domain earlier as an effect of strong winds on that day. On August 28 and 30
409 there are little differences in trajectories determined by the two different methods.
410 However, as can be seen from Figure 4b, there are differences in trajectories for Aug.
411 25, especially during the first couple of hours of simulations. Both trajectories move
412 south between hour 12 and 13 UTC. After that, the trajectory determined by the winds
413 in the middle column moves east until 15 UTC and then west, making a circular pattern;
414 at 17 UTC it comes back to the close proximity of the starting position. On the contrary,
415 the trajectory determined by the winds averaged in the whole STOPS domain initially
416 move south for couple of hours and then continuously moves west.

417

418
 419 Figure 4. a) STOPs trajectories starting from the industrial sub-domain. Trajectories determined based on
 420 the winds in the STOPs middle column are indicated by filled circles, and those determined based on the
 421 average winds in the whole STOPs domain with open circles. Trajectories for Aug. 25 are indicated with
 422 red dots, those for Aug. 28 with blue dots, and for Aug. 30 with green dots. Numbers next to dots show
 423 UTC time b) details of the trajectory on Aug. 25.

424

425

426 In order to quantify the differences between numerous options available in STOPs
 427 several simulations were performed with changing the options one at a time. The
 428 analysis was performed for the cases when trajectory was determined based on the
 429 winds in the middle column (mwind) and the averaged winds in the whole STOPs
 430 domain (awind). The simulation results when the STOPs domain was shifted for the
 431 purpose of aligning its grids with CMAQ grid are indicated with 'sh'. The naming
 432 convention used to describe each case of interest is presented in the following example:
 433 'awind_urb_1h.0825_sh' means that the trajectory was estimated based on the averaged
 434 winds in the whole STOPs domain, the trajectory starting position was urban sub-
 435 domain, the model output time step was set to 1 hour, the simulation was performed for
 436 Aug. 25, and the STOPs domain was shifted to be aligned with the host domain grid for
 437 the comparison purpose. The case 'awind_urb_1h.0825' means the same as above
 438 except that **STOPs-CMAQ** concentrations were spatially interpolated to be compared
 439 with **CMAQ-STOPs concentrationsmixing ratios**. Results of the statistical analysis of
 440 CMAQ and STOPs predictions of ozone concentrations when STOPs was used in the

441 moving mode are presented in Table 3 for cases when simulations were initialized in the
442 urban sub-domain and in Table 4 for starting positions in the industrial sub-domain.

443

444 Figure 5 shows scatter plots comparing CMAQ and STOPS concentrations of ozone for
445 Aug. 25, 28, and 30 for the STOPS starting position at the urban sub-domain (left
446 graphs) and industrial sub-domain (right graphs). Triangles correspond to values
447 calculated with STOPS simulations when the its trajectory was determined based on the
448 winds in the middle column (mwind), crosses to the trajectory obtained from the
449 average winds in the whole STOPS domain (awind). Plotted are ozone mixing ratios
450 concentrations from all cells in the first model layer, at every output time step. Very
451 good performance was found on Aug. 28 with the averaged mean absolute error of 1.3
452 ppbV and 1.5 ppbV for the urban and industrial domains, subsequently. Better
453 agreement between CMAQ-STOPS concentration pairs was found when the STOPS
454 trajectory was calculated based on the winds in the middle column. Shifting the STOPS
455 domain to align it with the CMAQ grid resulted in better agreement than the case when
456 STOPS-CMAQ values had to be were interpolated.

457

458 Table 3. A summary of statistical parameters for STOPS-CMAQ concentrations, when STOPS was used
 459 in the moving mode, with the starting position at the urban sub-domain ~~(the values of MAXD and MIND~~
 460 ~~are given in ppb).~~

NAME	N	HMAX	SMAX	MB	MAE	RMSE
awind_urb_1h.0825	217	105.1	111.8	-1.7055	3.7246	5.4175
awind_urb_1h.0828	185	104.8	109.5	-0.5229	2.4865	4.1357
awind_urb_1h.0830	217	132.1	120.7	-0.6365	4.6031	7.0249
awind_urb_5m.0825	2329	107.9	108.1	-0.5235	2.9698	4.1889
awind_urb_5m.0828	1929	105.3	108.6	-0.062	2.2454	3.9979
awind_urb_5m.0830	2329	131.4	127.4	-0.9365	3.9527	5.9425
awind_urb_1m.0825	11545	107.8	107.3	-0.4557	3.1165	4.394
awind_urb_1m.0828	9449	103.2	109.2	-0.0297	2.2157	3.9464
awind_urb_1m.0830	11545	131.0	126.4	-0.8205	3.8026	5.743
mwind_urb_1h.0825	217	105.4	109.1	-1.5074	2.6628	3.8337
mwind_urb_1h.0828	169	104.0	102.4	-0.0594	1.4279	2.2759
mwind_urb_1h.0830	217	137.8	135.9	-0.5092	3.2716	5.2829
mwind_urb_5m.0825	2329	107.7	107.2	-0.663	2.4906	3.493
mwind_urb_5m.0828	1833	104.2	102.6	0.5222	1.8313	2.7969
mwind_urb_5m.0830	2329	137.6	137.5	-0.5207	3.8601	5.7908
mwind_urb_1m.0825	11545	107.8	106.5	-0.7221	2.6495	3.7622
mwind_urb_1m.0828	9129	103.0	101.4	0.6286	1.6039	2.4716
mwind_urb_1m.0830	11545	137.7	135.7	-0.0888	4.1309	6.0413
awind_urb_1h_sh.0825	325	108.2	111.8	-0.4767	1.521	2.3025
awind_urb_1h_sh.0828	275	105.0	109.5	-0.5584	1.5322	2.1738
awind_urb_1h_sh.0830	325	132.1	128.1	-0.1203	2.0124	3.16
awind_urb_5m_sh.0825	3625	110.0	108.1	-0.1248	1.4191	2.1658
awind_urb_5m_sh.0828	3000	105.5	109.4	0.0152	1.3118	2.1861
awind_urb_5m_sh.0830	3625	134.5	134.1	-0.4659	2.126	3.1923
awind_urb_1m_sh.0825	18025	110.7	107.3	0.0743	1.3337	1.9913
awind_urb_1m_sh.0828	14750	103.6	109.2	-0.0619	1.3074	2.2298
awind_urb_1m_sh.0830	18025	134.1	133.5	-0.1377	1.9516	2.9423
mwind_urb_1h_sh.0825	325	108.2	109.1	-0.1204	1.7139	2.5346
mwind_urb_1h_sh.0828	250	104.0	109.8	-0.3751	1.4664	2.7279
mwind_urb_1h_sh.0830	325	137.8	139.7	-0.1818	2.4477	3.7688
mwind_urb_5m_sh.0825	3625	108.9	107.2	-0.0929	1.4659	2.1744
mwind_urb_5m_sh.0828	2850	104.4	111.2	0.0849	1.1706	2.0956
mwind_urb_5m_sh.0830	3625	138.5	140.2	-0.5113	2.5097	3.7741
mwind_urb_1m_sh.0825	18025	109.2	106.5	-0.1237	1.3359	1.9914
mwind_urb_1m_sh.0828	14250	103.0	111.2	0.1064	1.2086	2.0841
mwind_urb_1m_sh.0830	18025	138.4	138.5	-0.4413	2.4165	3.5173

461

462

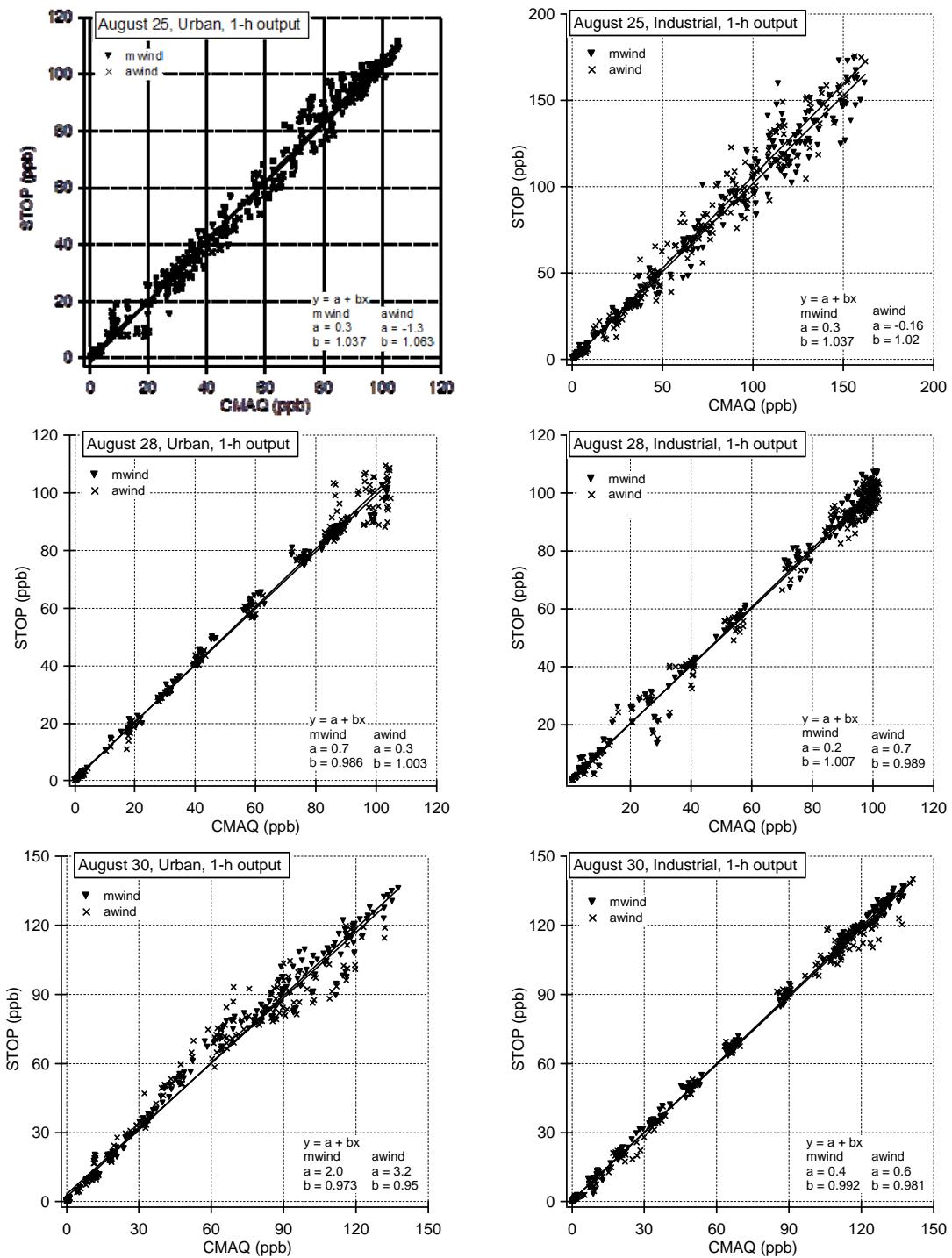
463

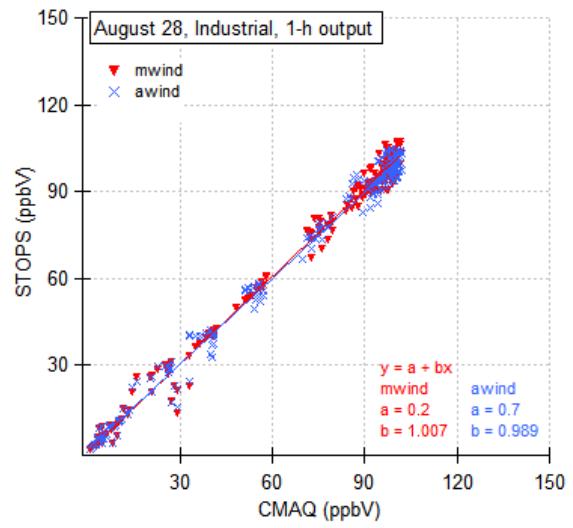
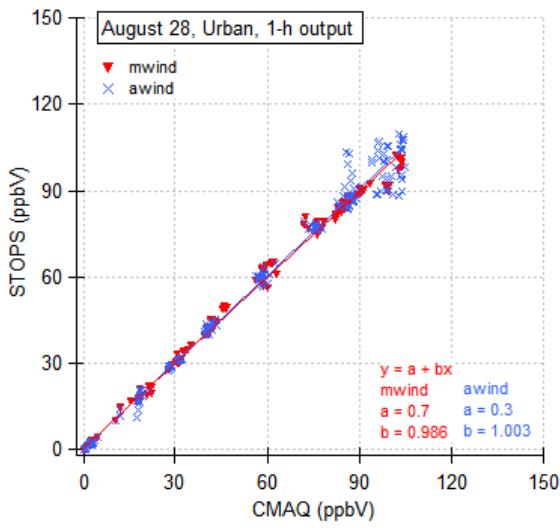
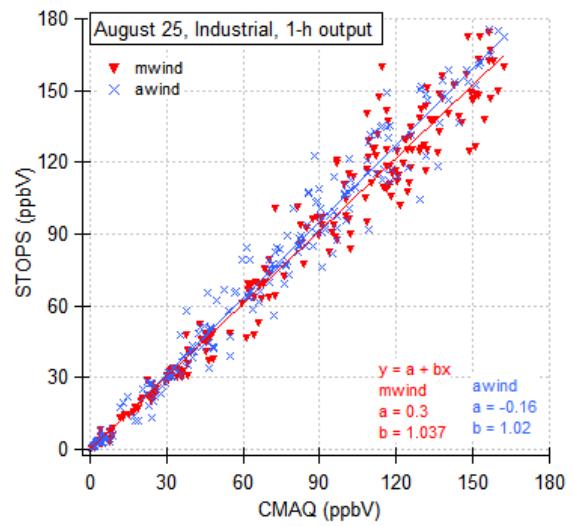
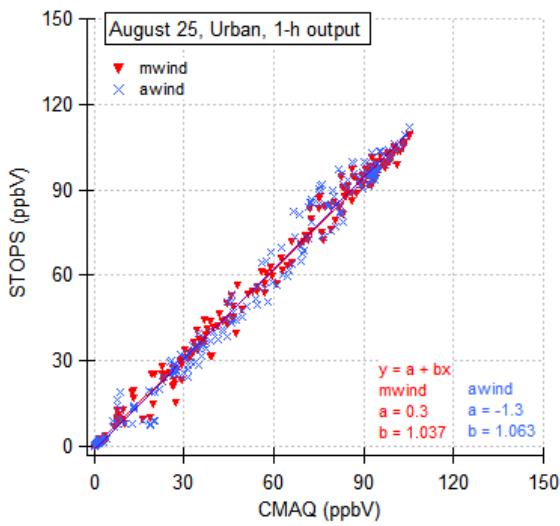
464 Table 4. A summary of statistical parameters for STOPS-CMAQ concentrations, when STOPS was used
 465 in the moving mode, with the starting position at the industrial sub-domain (the values of MAXD and
 466 MIND are given in ppb).

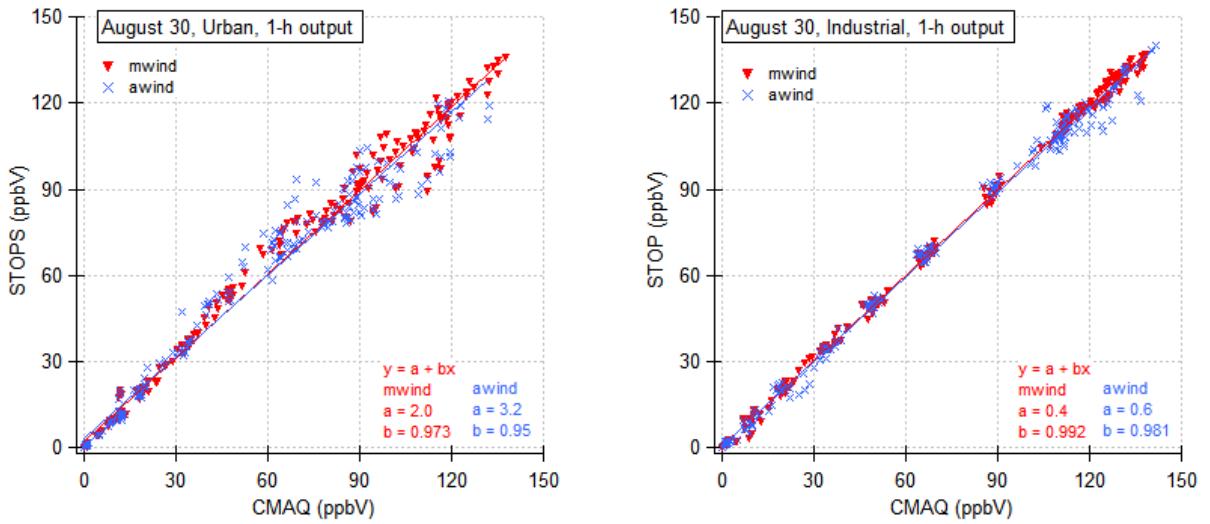
NAME	N	HMAX	SMAX	MB	MAE	RMSE
awind_urbind_1h.0825	217	162.1	175.6	-3.7049	6.667	9.7334
awind_indurb_1h.0828	201	102.0	104.5	-0.0743	2.7724	3.6884
awind_indurb_1h.0830	217	141.4	140.1	0.5727	2.2085	3.4874
awind_indurb_5m.0825	2329	166.2	179.9	-4.2896	6.9033	10.246
awind_indurb_5m.0828	2281	102.0	105.4	-0.0317	2.8724	3.7569
awind_indurb_5m.0830	2329	141.7	140.5	0.7063	2.4671	3.9274
awind_indurb_1m.0825	11545	166.0	178.6	-4.0882	7.0306	10.1471
awind_indurb_1m.0828	11373	101.5	106.2	-0.2101	2.9622	3.8751
awind_indurb_1m.0830	11545	140.4	139.7	0.6337	2.3704	3.7275
rwind_indurb_1h.0825	217	162.1	174.0	-1.2557	6.3057	9.6064
rwind_indurb_1h.0828	201	101.6	107.3	-0.6898	2.3871	3.4938
rwind_indurb_1h.0830	217	138.0	136.8	0.125	1.4439	1.9605
rwind_indurb_5m.0825	2329	166.4	178.7	-1.0198	6.3622	9.4587
rwind_indurb_5m.0828	2217	101.7	105.6	-0.2336	2.3862	3.3116
rwind_indurb_5m.0830	2329	141.8	137.4	0.9498	2.0799	2.8743
rwind_indurb_1m.0825	11545	166.0	177.7	-0.6788	6.2981	9.3914
rwind_indurb_1m.0828	11017	101.1	105.7	-0.3779	2.2792	3.2517
rwind_indurb_1m.0830	11545	140.0	136.6	0.743	1.9787	2.6921
awind_indurb_1h_sh.0825	325	162.1	175.6	-2.7155	4.1153	6.5406
awind_indurb_1h_sh.0828	300	102.6	104.5	-0.0949	1.5528	2.2241
awind_indurb_1h_sh.0830	325	141.5	141.3	-0.0785	1.6427	2.3778
awind_indurb_5m_sh.0825	3625	166.4	179.9	-1.0475	3.9286	6.2411
awind_indurb_5m_sh.0828	3550	102.4	105.4	-0.0618	1.4688	2.0437
awind_indurb_5m_sh.0830	3625	142.4	142.2	-0.1354	1.6548	2.502
awind_indurb_1m_sh.0825	18025	166.0	178.6	-1.0034	4.0013	6.2608
awind_indurb_1m_sh.0828	17750	101.9	106.2	-0.3176	1.4425	2.0392
awind_indurb_1m_sh.0830	18025	141.0	141.1	-0.1505	1.6257	2.3916
rwind_indurb_1h_sh.0825	325	162.1	174.0	-2.4646	3.9385	6.1064
rwind_indurb_1h_sh.0828	300	101.9	107.3	-0.782	1.5209	2.1193
rwind_indurb_1h_sh.0830	325	141.1	141.3	-0.224	1.3034	1.6851
rwind_indurb_5m_sh.0825	3625	166.4	178.7	-1.0628	4.012	6.134
rwind_indurb_5m_sh.0828	3450	101.7	105.6	-0.3803	1.3697	1.8761
rwind_indurb_5m_sh.0830	3625	142.4	143.1	-0.1763	1.4963	2.0331
rwind_indurb_1m_sh.0825	18025	166.0	177.7	-0.8412	3.9665	6.0567
rwind_indurb_1m_sh.0828	17200	101.2	105.7	-0.6202	1.4004	1.9443
rwind_indurb_1m_sh.0830	18025	140.8	141.6	-0.355	1.4364	1.9099

467

468


469





470


471

472

473

475
476 Figure 5. Comparison of ozone concentrations obtained with STOPS and CMAQ for Aug. 25, 28, and 30
477 for the STOPS starting position at the urban sub-domain (left figures) and the industrial sub-domain (right
478 figures). Triangles correspond to the trajectory determined from winds in the middle column (mwind),
479 crosses to the trajectory from average winds in the whole STOPS domain (awind). Compared are values
480 from each cell in the first model layer, at every output time step. Note: the scale is adjusted to the
481 maximum ozone concentration on a given day, therefore differs in each graph.

482 3.3 Effect of a domain size on the STOPS performance

483 Simulation results obtained with the STOPS system were validated against CMAQ
484 calculated concentration fields for various STOPS domain sizes. The area of interest
485 was always the same and consisted of nine inner cells in the STOPS domain. Therefore,
486 by changing the STOPS domain size, the number of boundary layers around the area of
487 interest differs.

488 Six different simulations with different domain sizes of 3x3, 5x5, 7x7, 9x9, 15x15, and
489 21x21 cells were performed. In each case the starting position was the same, with the
490 middle column of the STOPS domain corresponding to the 21st column and 30th row in
491 the CMAQ domain (urban sub-domain). Although the STOPS simulations were
492 performed for the different domains, the final analysis was carried out based on the
493 concentrations in the inner 9 cells of the first layer. Additional analysis, based on the
494 averaged concentration in the area of interest, was also performed. The averaging
495 eliminates concentration differences caused by uncertainties in the horizontal transport.

496 All simulations were carried out for August 25, 2000, for the stationary and moving
497 mode. In case of the moving mode, the STOPS trajectory was determined based on the
498 wind in the middle column. For the purpose of the CMAQ-STOPS comparison the
499 STOPS grid was shifted to coincide with the CMAQ grid.
500 Statistical parameters of the CMAQ-STOPS ozone comparison results from simulations
501 with different domain sizes are shown in [Table 5](#) for the stationary case and in [Tables 6](#)
502 and 7 for the moving cases. It can be seen that increasing the number of boundary layers
503 around the domain of interest improves the correlation between CMAQ and stationary
504 STOPS results. In case of the moving mode, the simulations with bigger domains
505 reached the boundary of the CMAQ domain earlier than the intended simulation ending
506 time, therefore, it is not very practical.

507

508 Table 5. Statistical parameters of simulations with different STOPS domain sizes. In each case only 9
 509 inner cells were taken for the analysis. The results correspond to the stationary case.

CASE	N	HMAX	SMAX	MB	MAE	RMSE	RMSE avg
3x3	117	162.1	158.5	-1.0496	1.9374	3.1827	2.4100
5x5	117	162.1	161.4	-0.9025	1.3159	2.1476	1.7210
7x7	117	162.1	159.0	-0.2914	1.0090	1.7355	1.4075
9x9	117	162.1	160.4	-0.1232	0.6343	1.2566	0.9400
15x15	117	162.1	160.8	0.0818	0.2696	0.4597	0.2346
21x21	117	162.1	162.8	-0.0315	0.2634	0.4579	0.3491

510

511

512

513 Table 6. Statistical parameters for simulations with different STOPS domain size, where only 9 inner
 514 cells were chosen for the analysis. The results correspond to the moving case, when the trajectory starting
 515 position corresponds to the 21 and 30 CMAQ column and row, respectively.

CASE	N	HMAX	SMAX	MB	MAE	RMSE	RMSE avg
3x3	117	105.4	106.4	-0.3768	1.6632	2.5934	1.7774
5x5	117	105.4	105.2	-0.2481	1.4438	2.2264	1.3617
7x7	117	105.4	105.1	-0.3131	1.4116	2.1408	1.2725
9x9	108	105.4	104.7	-0.4253	1.2482	1.8741	1.0929
15x15	99	105.4	104.3	-0.1542	1.0885	1.5237	0.6736
21x21	81	84.4	84.4	-0.3360	1.1220	1.7900	0.8787

516

517

518 Table 7. As above, but with different starting position corresponding to the 25 and 30 CMAQ column and
 519 row, respectively.

CASE	N	HMAX	SMAX	MB	MAE	RMSE	RMSE avg
3x3	117	143.0	138.1	-1.1138	3.2706	4.9511	3.3688
5x5	117	143.0	133.7	-0.3396	3.0431	4.7310	3.1896
7x7	117	143.0	133.4	-0.1603	2.9672	4.6991	3.2204
9x9	117	143.0	134.0	-0.0864	2.9405	4.6791	3.2066
15x15	108	143.0	134.2	-0.0661	3.0548	4.8358	3.3063
21x21	99	143.0	133.8	0.2430	3.0527	5.1374	3.7556

520

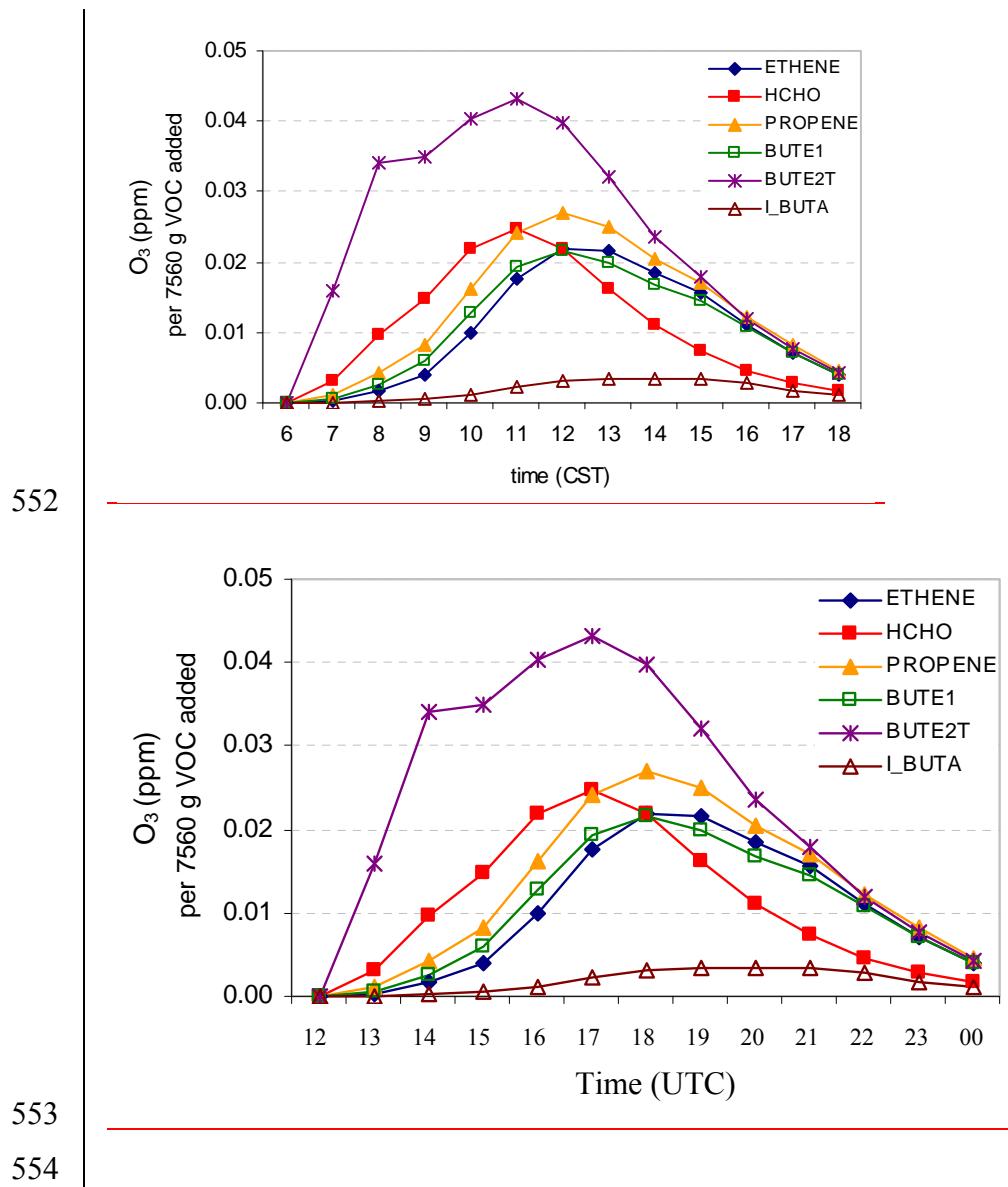
521

522 4. Example of application

523 Here, we present an example of STOPS application for a source-receptor relationship
 524 analysis. Many industrial petrochemical and chemical manufacturing facilities are
 525 located in the Houston Ship Channel. In addition to emissions associated with regular

operations, they frequently release additional, so called ‘upset emissions’ [Murphy and Allen, 2005]. Such emission releases can dominate local emissions and result in very high ozone concentrations [Zhang *et al.*, 2004; Nam *et al.*, 2006]. Impact of such releases can be simulated by STOPS.

We performed the base case simulations as described in Czader *et al.* (2008) in which we used the extended version of SAPRC-99 that explicitly represents emissions and chemistry of many individual VOCs. In addition to the base case simulation we performed STOPS re-simulations in which additional emission spike of several individual VOCs was added to STOPS one at the time, imitating ‘upset emission’ release. The additional emission was added between 12 and 13 UTC at the location of the middle cell of STOPS domain at its starting position. Figure 6 show snapshots of ozone mixing ratios in the STOPS domain on August 25, 28, and 30 of 2000 along trajectories shown in Fig. 4. The results are from the base case simulation. Figure 7 shows changes in ozone mixing ratios occurring along trajectory downwind from an emission source on August 25 that are caused by additional emissions of VOCs injected into a STOPS domain. It can be seen that different compounds affect ozone concentration to a different extent. The low reactive isobutane (I_BUTA) has a small effect on ozone, which is in contrast to *trans*-2-butene (BUTE2T) that due to its high reactivity has a potential of increasing ~~the~~ ozone mixing ratio locally, close to the emission source, and with higher magnitude.


546

547

548

549 Figure 6. Snapshots of ozone concentrations along STOPS trajectories on August 25
550 (left), August 28 (middle), and August 30 (right) when the STOPS simulation started
551 from the industrial sub-domain.

555 Figure 7. Changes in ozone along STOPS trajectory on August 25 due to emission spike
 556 of different individual VOCs. The values are integrated in the surface layer of the
 557 STOPS domain.

558

559 **5. Summary**

560 A hybrid Lagrangian-Eulerian based modeling tool (called STOPS) was developed as a
561 computationally efficient 3-D grid sub-model for the purpose of evaluations of the
562 source-receptor relationship upon release of new emissions. It is suitable to track a
563 pollutant plume emitted in the morning then undergoing physical and chemical
564 transformation in the well-mixed convective conditions. The correctness of its
565 algorithms and the overall performance was evaluated against CMAQ simulation results
566 and it was shown that STOPS is capable of predicting ozone mixing ratios in close
567 agreement with CMAQ predictions. STOPS Its performance however depends on the
568 trajectory calculations and the atmospheric conditions occurring during the simulation
569 period. Better agreement between CMAQ-STOPS concentration pairs was found when
570 the STOPS trajectory was calculated based on the winds in the middle column as
571 compared to calculation based on the value averaged in the whole STOPS domain.
572 Under some atmospheric conditions, such as uniform winds on August 28, its
573 performance was very satisfactory, with the mean bias for ozone mixing ratios varying
574 between -0.03 ppbV and -0.78 ppbV and the slope between 0.99 and 1.01 for different
575 analyzed cases. However, for complicated meteorological condition, such as on August
576 25 where recirculation of air occurred, its predictions deviated from CMAQ simulated
577 values, with mean bias varying between 0.07 ppbV and -4.29 ppbV and slope varying
578 between 0.95 and 1.063 for different analyzed cases for ozone surface mixing ratio.
579 Averaging the surface concentration values over a STOPS domain resulted in the
580 smaller bias between STOPS and CMAQ results. This technique is appropriate since
581 STOPS is designed to be used for the chemical analysis rather than for the analysis of
582 individual cells in which concentration values are strongly affected by fine uncertainties
583 in the horizontal transport. The limitation of STOPS is due to the Lagrangian movement
584 when applied for non-uniform winds for which the plume might be dispersed outside of
585 STOPS domain. This is a limitation of every Lagrangian approach. The advantages of

586 STOPS compared to Lagrangian type models is usage of realistic boundary conditions
587 at every simulations time step as well as using detailed chemistry.

588

589 **Code availability**

590 The STOPS source code can be obtained by contacting the leading author at
591 bczader@uh.edu

592

593 **Acknowlegments**

594 This work is dedicated to the memory of Dr. Daewon Byun (1956-2011), whose pursuit
595 of scientific excellence as a developer of the CMAQ model continues to inspire us.

596

597 **References**

598 Appel, K., Chemel, C., Roselle, S. J., Francis, S. X. V., Hu, R.-M., Sokhi, R. S., Rao, S. T., and Galmarini,
599 S.: Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North
600 American and European domains, *Atmos. Environ.*, 53, 142–155, 2012.

601 Arnold, J.R. and Dennis, R.L.: Testing CMAQ chemistry sensitivities in base case and emissions control
602 runs at SEARCH and SOS99 surface sites in the southeastern US, *Atmos. Environ.*, 40, 5027-5040, 2006.

603 Byun, D. and Schere, K.L.: Review of the Governing Equations, Computational Algorithms, and Other
604 Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, *Appl.*
605 *Mech. Rev.*, 59, 51-77, 2006.

606 Byun, D.W., Kim, S.-T., and Kim, S.-B.: Evaluation of air quality models for the simulation of a high
607 ozone episode in the Houston metropolitan area, *Atmos. Environ.*, 41, 837-853, 2007.

608 Czader, B. H., Byun, D. W., Kim, S.-T., and Carter, W. P. L.: A study of VOC reactivity in the Houston-
609 Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism, *Atmos. Environ.*,
610 42, 5733–5742, 2008.

611 Eder, B. and Yu, S.: A performance evaluation of the 2004 release of Models-3 CMAQ. *Atmos. Environ.*,
612 40, 4811-4824, 2006.

613 Henderson, B.H., Kimura, Y., McDonald-Buller, E., Allen, D.T., and Vizuete, W.: Comparison of
614 Lagrangian process analysis tools for Eulerian air quality models, *Atmos. Environ.*, 45, 5200-5211, 2011.

615 Kimura, Y., McDonald-Buller, E., Vizuete, W., and Allen, D.T.: Application of a Lagrangian process
616 analysis tool to characterize ozone formation in Southeast Texas, *Atmos. Environ.*, 42, 5743-5759, 2008.

617 Murphy, C.F. and Allen, D.T.: Hydrocarbon emissions from industrial release events in the Houston-
618 Galveston area and their impact on ozone formation, *Atmos. Environ.*, 39, 3785-3798, 2005.

619 Nam, J., Kimura, Y., Vizuete, W., Murphy, C., and Allen, D.T.: Modeling the impacts of emission events
620 on ozone formation in Houston, Texas. *Atmos. Environ.*, 40, 5329-5341, 2006.

621 Smyth, S.C., Jiang, W., Yin, S., Roth, H., and Giroux, E.: Evaluation of CMAQ O₃ and PM2.5
622 performance using Pacific 2001 measurement data, *Atmos. Environ.*, 40, 2735-2749, 2006.

623 Stein, A.F., Isakov, V., Godowitch, J., and Draxler, R.R.: A hybrid modeling approach to resolve
624 pollutant concentrations in an urban area, *Atmos. Environ.*, 41, 9410-9426, 2007.

625 Zhang, R., Lei, W., Tie, X., and Hess, P.: Industrial emissions cause extreme diurnal urban ozone
626 variability, *P. Natl. Acad. Sci. USA*, 101, 6346-6350, 2004.

627