
GMDD
7, 7525–7558, 2014

Reduction of
predictive

uncertainty in
estimating irrigation
water requirement

S. Multsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Model Dev. Discuss., 7, 7525–7558, 2014
www.geosci-model-dev-discuss.net/7/7525/2014/
doi:10.5194/gmdd-7-7525-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

Reduction of predictive uncertainty in
estimating irrigation water requirement
through multi-model ensembles and
ensemble averaging

S. Multsch1, J.-F. Exbrayat2,3, M. Kirby4, N. R. Viney4, H.-G. Frede1, and
L. Breuer1

1Institute for Landscape Ecology and Resources Management (ILR), Research Centre for
BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen,
Heinrich-Buff-Ring 26, 35390 Giessen, Germany
2School of GeoSciences and National Centre for Earth Observation, University of Edinburgh,
Edinburgh, UK
3Climate Change Research Centre and ARC Centre of Excellence for Climate System
Science, University of New South Wales, Sydney, New South Wales, Australia
4CSIRO Land and Water, GP.O. Box 1666, Canberra, ACT 2601, Australia

7525

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 7525–7558, 2014

Reduction of
predictive

uncertainty in
estimating irrigation
water requirement

S. Multsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Received: 25 September 2014 – Accepted: 20 October 2014 – Published: 10 November 2014

Correspondence to: S. Multsch (sebastian.multsch@umwelt.uni-giessen.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

7526

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 7525–7558, 2014

Reduction of
predictive

uncertainty in
estimating irrigation
water requirement

S. Multsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Irrigation agriculture plays an increasingly important role in food supply. Many evapo-
transpiration models are used today to estimate the water demand for irrigation. They
consider different stages of crop growth by empirical crop coefficients to adapt evap-
otranspiration throughout the vegetation period. We investigate the importance of the5

model structural vs. model parametric uncertainty for irrigation simulations by consid-
ering six evapotranspiration models and five crop coefficient sets to estimate irrigation
water requirements for growing wheat in the Murray-Darling Basin, Australia. The study
is carried out using the spatial decision support system SPARE:WATER. We find that
structural model uncertainty is far more important than model parametric uncertainty to10

estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA)
technique, we are able to reduce the overall predictive model uncertainty by more than
10 %. The exceedance probability curve of irrigation water requirements shows that
a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would
be less frequently exceeded in case of the REA ensemble average (45 %) in compar-15

ison to the equally weighted ensemble average (66 %). We conclude that multi-model
ensemble predictions and sophisticated model averaging techniques are helpful in pre-
dicting irrigation demand and provide relevant information for decision making.

1 Introduction

1.1 Predicting crop water needs20

Globally, the proportion of fresh water consumption by agriculture is large
(9087 km3 yr−1) (Hoekstra and Mekonnen, 2012) and is projected to increase in the
future in order to support the increasing world population. More precisely, most of
the change in freshwater consumption will arise from the increasing irrigation demand
by crops (De Fraiture and Wichelns, 2010). Therefore, strategies based on improved25
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irrigation methods and local adaptions of management practices are likely to be im-
plemented to anticipate this trend. Such strategies are often developed using decision
support systems that are informed by mathematical models. For example, irrigation
management has been optimized by modelling and measurements for crops grown in
Central Asia (Pereira et al., 2009) or for irrigated cotton in the High-Plains region of5

Texas (Howell et al., 2004). Others have investigated water use efficiency (Wang et al.,
2001) or crop water productivity (Liu et al., 2007) by modelling experiments for irrigated
crops grown in China.

All these models depend on the calculation of evapotranspiration (ET) which rep-
resents the evaporation from a surface and transpiration from plants. In the case of10

agricultural crops, ET is equal to the crop water needed for crop growth and yield pro-
duction. Globally, evapotranspiration represents about two thirds of the total rainfall
on land, while evapotranspiration from crops amounts for about 8 % (Oki and Kanae,
2006), and is insofar the most important term of the water balance. The basic concept
for deriving crop water needs of irrigated crops has been initially reported by Jensen15

(1968) and is proposed by Allen et al. (1998) as the single crop coefficient concept.
The crop specific evapotranspiration (ETc) is derived from reference evapotranspira-
tion (ETo) and a crop specific coefficient (Kc):

ETc = ETo ·Kc (1)

with ETo given in [mm] and dimensionless Kc. ETo can be calculated by standardise po-20

tential evapotranspiration (PET) to a short (grass) or tall (alfalfa) reference crop. In the
case of the Penman–Monteith equation (Monteith, 1965; Penman, 1948) standardized
fixed values for albedo (0.23), plant height (0.12 cm) and surface resistance (70 ms−1)
are assumed (Allen et al., 1998; Jensen et al., 1990). Kc is commonly calculated on
the basis of field experiments (e.g. Ko et al., 2009; da Silva et al., 2013) and varies with25

the crop development.
Such an approach is part of many irrigation management models, including Crop-

wat (Smith, 1992), ISAREG (Pereira et al., 2009), ISM (George et al., 2000) or global
7528
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crop water models (Siebert and Döll, 2010). Moreover, the single crop coefficient con-
cept is the basis for the simulation of crop water needs in many studies. For example,
Lathuillière et al. (2012) have derived water use by terrestrial ecosystems and have
shown that ET declines over a 10 year period by about 25 % in response to deforesta-
tion and replacement by agriculture in Brazil. They showed that irrigation water require-5

ment (IRR) is relevant for terrestrial water fluxes and a reliable estimation is crucial for
the closure of the water cycle. In another study future climate impacts on groundwater
in agriculture areas have been investigated (Toews and Allen, 2009). They showed that
larger return flows to the groundwater can be related to increased IRR under warmer
temperatures and longer vegetation periods. Moreover, the crop coefficient concept is10

also the basis for the water footprint (volume of water consumed or polluted to produce
one unit of biomass) assessment of crops (Mekonnen and Hoekstra, 2011) and has
been used to determine water requirements and the water footprint of the agriculture
sector in Saudi Arabia (Multsch et al., 2013).

1.2 Sources of predictive uncertainty15

Major sources of uncertainties should be considered in the study design, quantified
throughout the modelling process (Refsgaard et al., 2007) and communicated as part
of the results to the end users. Uncertainties related to large scale estimations of the
IRR have only rarely been analysed. For example, Siebert and Döll (2010) have studied
the uncertainty in predicting green (rainfall consumed by crops) and blue (consumed20

surface and groundwater by crops in terms of irrigation) water consumption by using
different ETo equations on a global scale. They observed a significant difference of blue
water consumption, i.e. required irrigation, and only a small change in green water con-
sumption between model runs while using two classical ETo equations. More recently,
Sheffield et al. (2012) pointed out that using a more up-to-date parameterization of PET25

to calculate drought indices led to different conclusions on drought occurrence globally.
Generally, model predictive uncertainty can be lead back to four sources, input un-

certainty, output uncertainty, structural uncertainty and parametric uncertainty (Renard
7529
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et al., 2010). The last two, structural and parametric uncertainty, are addressed in this
study with a focus on the prediction of IRR. As part of the parametric uncertainty, the
parameterization of equations to quantify natural or anthropogenic processes has re-
ceived considerable interest, particularly in conceptual rainfall–runoff modelling (Beven,
2006; Vrugt et al., 2009). In case of modelling crop water needs according to Eq. (1),5

Kc is an important model parameter. Kc values for a large number of crops are provided
by the FAO56 irrigation guidelines (Allen et al., 1998) which are commonly used for ir-
rigation planning. However, it has been highlighted that an adjustment to the global Kc
is needed if the simulations are used for irrigation planning on a local to regional scale
(Ko et al., 2009; da Silva et al., 2013). Nevertheless, it is still unclear whether a local10

adaption of Kc leads to a better model performance. For this reason, we quantify the
parametric uncertainty of model parameterisation with different Kc sets.

The model structure also introduces uncertainties, as any model remains a simplifi-
cation of the real world. In the context of modelling water resources, all hydrological and
crop growth models rely on the estimation of ET. According to Eq. (1), ETo is required15

to estimate crop specific evapotranspiration. ETo equations are often divided into cat-
egories according to the input data (Bormann, 2011; Tabari et al., 2013): temperature
based equations such as Hargreaves–Samani (HS) equation (Hargreaves and Samani,
1985), radiation based equations such as Priestley–Taylor (PT) (Priestley and Taylor,
1972) or combined equations such as the FAO56 Penman–Monteith (PM56) equation20

(Allen et al., 1998), that further takes wind speed into account. Nevertheless, in many
cases it was shown that the variability among PET methods is large (Fisher et al.,
2011; Kite and Droogers, 2000). Because most water resources models rely on some
calculation of ETo, we see it as a crucial source of structural uncertainty that is rarely
considered.25

1.3 Reduction of predictive uncertainty by ensemble modelling

Ensembles of model predictions can be developed by different sets of model parame-
terization (single-model ensemble) and model structures (multi-model ensemble). The

7530

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 7525–7558, 2014

Reduction of
predictive

uncertainty in
estimating irrigation
water requirement

S. Multsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

weighting of model ensembles according to their fit to observational data has become
of interest to reduce the uncertainty and to derive a more robust predictions and pro-
jections. Giorgi and Mearns (2002) have introduced the reliability ensemble averaging
technique (REA) in climate research. Basically, different models are weighted accord-
ing to their performance in representing measured data and according to the distance5

of individual models to the ensemble average prediction to quantify the convergence of
different models. This approach has been applied more recently for predicting catch-
ment nitrogen fluxes (Exbrayat et al., 2013) and calculating water balances and land
use interaction (Huisman et al., 2009).

In a first step, we analyse the relative contributions of the structural and paramet-10

ric model uncertainty in hind casts of IRR of wheat across the Murray-Darling-Basin
(MDB), Australia. Simulations are calculated using the spatial decision support system
SPARE:WATER (Multsch et al., 2013). In a second step, we apply the REA methodol-
ogy to reduce the predictive uncertainty of IRR. The general procedure is as follows:

– The applicability of six different ETo methods is evaluated by using available mea-15

sured class-A-pan evaporation measurements of 34 stations in the MDB over
a 21 years time period;

– 30 different model realisations are setup in a multi-model ensemble by combining
various ETo equations (n = 6) and crop coefficient data sets (n = 5);

– IRR is calculated by forcing the multi-model ensemble with climate time series20

of 21 years (monthly data) for 3969 sites (each 1 km2 ×1 km2) in the MDB where
irrigated wheat has been grown according to the land use allocation in 2000;

– The 30 model realisations are weighted according to their performance in repre-
senting measured data and their distance to the ensemble average.

By doing so, we quantify structural (ETo method) and parametric (Kc set) uncertainty25

and apply REA to provide a robust estimate of IRR and the confidence interval around
it.
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2 Methods and data

2.1 Study site and data

The MDB covers about 1 millionkm2 of south-east Australia (Fig. 1). Irrigation agri-
culture in the MDB sums up to 17 600 km2, which is equal to 65 % of the total irriga-
tion agriculture in Australia. Total water withdrawal for irrigation in 2006 amounted to5

7.36 km3 yr−1 (ABS, 2006). Wheat is the second most important crop grown in MDB
after grazing pastures, covering 3969 km2 in 2006 and was therefore selected for this
case study for which IRR and its underlying uncertainty was calculated. The cropping
areas have been taken from a land use map from 2006 (ABARES, 2010) with a spatial
resolution of 0.01◦×0.01◦ (∼ 1km×1km). We assume a fixed land use distribution over10

time in our model study to clearly target the uncertainty in ETo method and crop coeffi-
cients. Climate data for 1986–2006 were taken from the SILO Data Drill of the Queens-
land Department of Natural resources and Water (https://longpaddock.qld.gov.au/silo/,
Jeffrey et al., 2001) with a spatial resolution of 0.05◦ ×0.05◦ (∼ 5km×5km). We used
the same weather dataset over all 3969 1×1 km land grid cells overlapped by a 5×5 km15

grid cell in the weather data. The model was forced with monthly data. For validation,
we compared simulated ETo to measured class-A pan data from 34 stations through-
out the MDB. The class-A pan data were obtained from Patched Point Dataset of the
Queensland Department of Science, Information Technology, Innovation and the Arts,
(http://www.longpaddock.qld.gov.au/silo/ppd/). Measured data have been adjusted with20

monthly pan-coefficients according to McMahon et al. (2013) to represent evaporation
from open surface water. For stations where no pan-coefficient was available we used
the one from the nearest station.

2.2 Simulation of irrigation requirement with SPARE:WATER

SPARE:WATER (Multsch et al., 2013) is a spatial decision support system for the cal-25

culation of crop specific water requirements and water footprints from local to regional
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scale. Input parameter for the simulation are climate data, irrigation management (ir-
rigation water quality, irrigation efficiency, irrigation method), a digital elevation model
and crop characteristics such as maximum crop height and length of growing season
as well as sowing and planting date. In a first step, the water requirement of growing
a crop is simulated for each grid cell according to the spatial resolution of the input5

data. In a second step, the water footprint for spatial entities such as administrative
boundaries or catchments is calculated considering statistical data on crop yield and
harvest area. Water footprints for geographic entities are given as volume of water
consumed per year (e.g. km3 yr−1) and water footprints for specific crops as volumes
of water consumed per biomass (m3 t−1).10

In this study the calculation of the IRR is calculated as the difference between ETc
and effective rainfall (Peff). The latter one is estimated from the difference of surface
run-off (RO) and precipitation (P ). RO is derived as a fixed fraction of 20 % of total P .
On this basis, IRR is calculated according to Eq. (2):

IRR = max(ETc − Peff,0) (2)15

with IRR, ETc and Peff given in [mm]. ETc is calculated based on the single crop
coefficient approach initially proposed by Jensen (1968) and recommended by Allen
et al. (1998) according to Eq. (1). The input parameters for this method are the length
of four individual stages (initial season, growth season, mid-season and late season)
during the growing season and three related crop coefficients (Kc). These define the20

ratio between ETo and ETc for each part of the growing season. We have considered
five different Kc data sets (Table 1). The most common dataset has been proposed
from the FAO56 Irrigation and Drainage Guidelines (Allen et al., 1998). This approach
has been applied for calculating crop water footprints (Mekonnen and Hoekstra, 2011)
and is part of the widely used Cropwat model (Smith, 1992). It has been discussed25

that locally adapted Kc sets are superior in simulating site-specific crop water require-
ment than global ones (Ko et al., 2009; da Silva et al., 2013). Thus, further data sets
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have been collected from various sources which represent site-specific relationships
between ETo and ETc for areas in the MDB.

ETo has been calculated with six different methods (Table 2). Two of them are clas-
sified as combined methods (PM56, PPET), three are radiation-based methods (PT,
TURC, APET) and one is a temperature based method (HS). All of them are com-5

monly applied function, e.g. PM56 and HS are included in Cropwat (Smith, 1992) and
Aquacrop (Steduto et al., 2009), two models to quantify crop water and IRR, widely
used and promoted by the FAO. The cropping system model EPIC (Williams, 1989) ad-
ditionally allows the use of the PT equation, while the global vegetation model LPJmL
(Fader et al., 2010) and the global water model WaterGap (Döll et al., 2003) are re-10

stricted to PT. APET and PPET have been particularly tested for the utilisation under
Australian weather conditions in several (Chiew et al., 2002; Chiew and Leahy, 2003;
Donohue et al., 2010).

2.3 Reliability ensemble averaging

We used two types of ensemble averaging techniques, which differ in the weighing15

technique. We calculated an equally weighted average of all 30 model realisations
(6ETo methods×5Kc datasets) for every grid cell which sum up to 3969 cells (1×1 km)
in the MDB where irrigated wheat is grown according to the land use allocation in 2006.
However, this method does not consider the capability of its ensemble members to pre-
dict a target value nor does it value the agreement of model predictions amongst each20

other. Therefore, we apply the REA technique that was initially proposed by Giorgi and
Mearns (2002) to reduce uncertainties in climate change projections (see Appendix C
for details). Moreover, it was used in impact studies targeting land use change impacts
on hydrology (Huisman et al., 2009) and water quality scenario projections (Exbrayat
et al., 2013).25

The strength of the REA method is that it considers both the quality of a model pre-
diction (performance) and its position within an ensemble of prediction (convergence).
The aim is to provide a best estimate of predictions and a robust assessment of the
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confidence interval around it. The REA weighting scheme estimates two factors, model
performance (RB) and model convergence (RD). RB represents the capability of each
ensemble member to represent real world data by its bias B. RD is a measure of the
distance D of a single model to the equally weighted ensemble average. Both are lim-
ited by the natural background variability (ε). The combined effect known as reliability5

factor (R) is derived as:

R =

RB︷ ︸︸ ︷[
ε

abs(B)

]
·

RD︷ ︸︸ ︷[
ε

abs(D)

]
(3)

In this study, ε is calculated from measured class-A pan evaporation for 34 climate
stations in the study region for the time period from 1986 to 2006. The class-A pan
data has been adjusted with monthly pan coefficients for climate stations in Australia10

(McMahon et al., 2013). We calculated the annual mean evaporation [mm] for each year
and each station and used the 50 % confidence interval (difference between the 25 and
75 % percentile) of 224 mm to define ε. The consideration of the difference between
upper and lower percentiles has been recommended by Giorgi and Mearns (2002).
Model performance is measured by the RMSE between measured (class-A pan) and15

predicted ETo for each model (i ).
The convergence criterion RD is calculated in an iterative procedure. The difference

between the average IRR of each ensemble member i and the ensemble average
is calculated. Under the consideration of the natural background variability ε a first
guess of RD (for each ensemble member) is predicted as well as a first guess of the20

REA average. This procedure is repeated by considering the newly derived REA aver-
age until the ensemble convergence, so that the difference between ensemble mem-
bers and the REA average cannot be reduced by additional iterations (see Giorgi and
Mearns, 2002, for a complete methodological description). The error of the equally
weighted ensemble average is described by the RMSE between IRRi predicted by25

model i (with n = 30 models) and the equally weighted ensemble average irrigation
7535
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water requirement (IRR). The error of the reliability ensemble average (RMSEREA) is
derived from the reliability factor of each model (Ri ), the irrigation water requirement
predicted by model i (IRRi ) and the REA weighted ensemble average (IRRREA). The
RMSE represents an approximate 60–70 % confidence interval under the assumption
that the amount of irrigation is distributed somewhere between normal and uniform.5

3 Results

3.1 Validation of ETo methods

We applied six ETo equations to 34 sites in the MDB for which measured class-A pan
evaporation data were available from 1986 to 2006 (Fig. 2). Class-A pan data represent
the evaporation from an open water surface and integrate all climate factors driving10

evaporation such as radiation, wind speed, humidity and temperature. Pan evapora-
tion differs from evaporation from a cropped surface through a different albedo, heat
storage and humidity above the surface. For this reason, the class-A pan data have
been adjusted with monthly pan coefficients (McMahon et al., 2013) to better compare
them with ETo simulations of open surface waters. On an annual average, class-A pan15

evaporation of 1558 mmyr−1 were reduced by 9 % to 1422 mmyr−1 across all stations.
The median daily ETo for APET is 3.6 mmd−1, PM56 3.9 mmd−1, HS 3.8 mmd−1,

PPET 5.2 mmd−1, PT 6.4 mmd−1 and TURC 3.4 mmd−1. According to the root-mean-
squared-error (RMSE) PM56 gave the most reliable results. The median of ETo for
APET, PM56 and HS are close to the median of the measured evaporation rate of20

3.7 mmd−1. Apart from PT and PPET, the other methods underestimate ETo, especially
where class-A pan data are larger than 6 mmd−1. The relationship between measured
and simulated ETo is linear as shown by the coefficients of determination r2 ranging
from 77 % (PT) to 88 % (PPET).
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The simulated ETo is normally distributed if a single station and one year is tested
(Shapiro test for normality: alpha > 0.1 for each year and station). The difference be-
tween the 34 stations is up to two times larger than the inter-annual difference in the
21 years period. Thus, spatial variability is larger than temporal variability in the MDB.
The intra-annual variability shows a different picture. The median ETo in the summer5

months is up to four times larger than the ETo during winter months for all ETo methods,
except PPET and PT with a six times larger ETo in summer than in winter months.

Four of the six methods simulate the measured data with a high r2 and a low RMSE.
The difference between the methods itself is large, in particular through the high ETo
estimates by PT and PPET. Thus, the structural uncertainty through the ETo method is10

substantial and needs to be considered for the prediction of IRR which is addressed in
the next chapters.

3.2 Irrigation water requirement and its variability

The IRR of wheat has been simulated using an ensemble of thirty model realisations for
each of the 3969 1km×1km irrigated cells in the MDB for 21 years. Average values of15

IRR for all model realisations are shown in Table 3. In most cases, the largest estimates
are given by the combinations of the Kc set Hughes with the ETo method PT. These are
almost 2.5 times higher than the lowest average IRR calculated by the combination of
TURC with the Kc set Harris. It is obvious that changing ETo method results in a larger
variation of calculated IRR than using a different Kc set. Hence, the average IRR give20

a first idea about variability due to model structures and parameters.
Over a large watershed such as the MDB local differences in IRR may be large while

catchment wide water management plans define thresholds for water withdrawal, for
example due to water rights or water resources protection measures. A given threshold
may require heterogeneous local adaptations of irrigation management and a change25

in cropping patterns. Figure 3 shows the probability that a certain amount of IRR is
exceeded in the MDB on average over the 21 year period. It illustrates the range of IRR
predicted by the ensemble of all 30 model realisations for each grid cell. Two groups
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can be identified that are separated by ETo methods. The first group is composed of
PPET and PT calculations. In this case, IRR is up to twice as high as compared to
predictions by other models. The second group is formed by APET, HS, PM56 and
TURC with substantially lower calculations of less than 500 mm in most cases. We
note that the parametric uncertainty is almost negligible compared to the uncertainty5

introduced by the various ETo methods.

3.3 Ensemble averaging, uncertainty and weighting

Ensemble predictions have become an important tool to account for different model
structures and parameters (Exbrayat et al., 2013; Huisman et al., 2009; Wada et al.,
2013). The consideration of ensembles is especially helpful to increase our confidence10

in simulations when no validation data are at hand, such as projections of Earth’s future
climate under specified emission scenarios. Here we apply the concept of ensemble
prediction to simulations of IRR. Two different ensemble averages, expressed as the
exceedance probability of the IRR of wheat are shown in Fig. 4. The first one rep-
resents the equally weighted average of irrigation (IRR, black line). The second one15

represents a weighted average using the reliability ensemble averaging (IRRREA, red
line, see methods description) that weights predictions based on their performance and
agreement with other ensemble members. This prevents dismissing some model struc-
ture, a process that can be rather subjective. Also, even an overall poorly performing
model can contribute to the optimal information extracted from the ensembles (Viney20

et al., 2009), or may outperform better performing models once boundary conditions
are changed (Exbrayat et al., 2013).

We use the inverse of the cumulative daily RMSE (Fig. 2) of the ETo methods during
the growing season to calculate the criterion RB (RMSE 154 mm for APET, 123 mm
for PM56, 142 mm HS, 232 mm PPET, 373 mm PT, 166 mm TURC). The convergence25

criterion RD was calculated based on the difference of the predicted irrigation given by
a single ensemble member and the equally weighted ensemble average (see Methods
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description). Overall, the PT model combinations have the lowest reliability factors of
between 0.51 and 0.6 followed by PPET with 0.96, a result driven by the poorer per-
formance of these methods to simulate pan-evaporation (Fig. 2), and the outlying posi-
tions of simulations using PT and PPET (Fig. 3). All other models are weighted similarly,
a result in accordance with the similar performance and simulated values exhibited by5

these methods (see Table 4 for details).
The application of the reliability factor leads to a decrease of the calculated total

IRR in each grid cell as well as to a decrease of its overall uncertainty (Fig. 4). The
uncertainty range is given by the ensemble average plus/minus the RMSE in each grid
cell, assuming that modelling errors are normally distributed.10

Exceedance probability curves might support defining thresholds in irrigation plan-
ning with consequences for decision makers through, for example, the adaptation of
improved irrigation practice (e.g. from full to deficit irrigation, installation of advanced
irrigation techniques) or the purchase of additional water rights. For example, a limit
of available irrigation water of 400 mm per growing season will be exceeded less fre-15

quently in the MDB if the REA average IRR is considered (45 %) in comparison to the
equally weighted average (66 %).

The spatial distribution of the equally weighted and the REA weighted ensemble
averages are shown in Fig. 5a and b. The equally weighted average of IRR ranges
between 124 and 691 mm with an average across the MDB of 424 mm (Fig. 5a). Thus,20

spatial variability is large and western and northern areas require five to six times more
irrigation than in the south-east. The REA derived average IRR ranges between 104
and 663 mm across the river basin (Fig. 5b) with an average of 405 mm. Depending
on the location this value is up to 18 % lower as compared to simulations based on
the equally weighted average (Fig. 5c). Also, the uncertainty range decreases as con-25

sequence of the REA method by about 10 % across the MDB with maximum values
of around 26 % when comparing equally and REA weighted RMSE (Fig. 5d–f). The
largest change in uncertainty can be found in the south-east of the MDB and also in
areas towards the east (Fig. 5f). Thus, REA not only leads to a decrease of predicted
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IRR but also to a reduction of its uncertainty. The uncertainty is reduced because the
REA is drawn toward the group of the better ETo methods that also agree well between
themselves.

4 Discussion and conclusions

The simulation of IRR strongly varies amongst ETo methods. Bormann (2011) recom-5

mended that the selection of the ETo method should be based on the validation of ETo
with real world observations rather than only on the availability of climate input data.
This is due to the general large variability among ETo methods, which was also re-
vealed in a study where PT was set as a benchmark model and the RMSE between
ETo methods was analysed (McMahon et al., 2013). Likewise, the influence of a single10

ETo method on the prediction of crop yields was also reported for an agriculture site
in Europe (Balkovič et al., 2013) where ETo estimates by PT were 40 % higher and
those by Penman–Monteith 10 % lower in comparison to HS. We also found a large
variability among ETo methods in our study. However, similar ranges across Australia
for ETo have been reported by others (Chiew et al., 2002) for APET, PPET and PM5615

as well as lower values for PT. Lascano et al. (2010) as well as Lascano and Van Bavel
(2007) have shown that methods to calculate ET based on combination methods, i.e.,
Penman–Monteith, tend to underestimate ET by as much as 25 %, especially in dry
climates.

Bormann (2011) further recommended that the reliability of ETo equations should20

be tested in a spatial context, especially if applied on large scale. For various re-
gions across Australia, a large range of mean annual ETo between 1700 mm (PT) and
3670 mm (PPET) was reported (Donohue et al., 2010). To investigate the spatial het-
erogeneity within the MDB we analysed results of the 34 class-A pan stations. Overall,
the performance of four of the ETo methods was good with RMSEs around 1 mm day−1,25

except for three stations in the north. PPET performed less well with RSME increasing
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to 2 mm day−1 while the PT value ranged up to 4 mm day−1. However, we found no
consistent spatial pattern.

ETo estimates using the PM56 method revealed the best performance criteria in
our study. PM56 considers the most meteorological input parameters thereby possibly
best representing the altering dry and wet conditions across the MDB over the year.5

The better performance of physically based equations in comparison to more empirical
approaches for the simulation of ETo has also been reported by others (Donohue et al.,
2010). PT performed least well in our study and resulted in up to two times larger esti-
mates than other ETo methods. This is somewhat contrasting with other studies (Chiew
et al., 2002; Donohue et al., 2010) where PT gave lower ETo values in comparison to10

methods such as APET and PPET.
One reason is that Donohue et al. (2010) have considered the actual albedo from

remotely sensed vegetation cover (Donohue et al., 2008) for the estimation of the net
incoming solar radiation. In our calculations, an albedo of a reference crop 0.23 (short
crop, i.e. grass) has been considered according to the guidelines for ETo from Allen15

et al. (1998). Another likely reason for this observation is that the PT equation is based
on the Penman–Monteith equation in which the aerodynamic term is replaced by a con-
stant (alpha) which is commonly set to 1.26 under Australian climatic conditions (Chiew
and Leahy, 2003) and which we also applied. The consideration of region-specific alpha
for the MDB could have increased the performance of PT in our study. The HS equation20

is commonly applied in situations where meteorological data are scarce, because the
equation depends on more readily available temperature and extra-terrestrial radiation
derived from latitude and day of the year. A reason for its good performance in our
study could be that the semi-arid climate in most of the MDB is favourable for the HS
equation, which is supported by Tabari (2010) who conclude that HS is a good candi-25

date model for warm humid and semi-arid sites, but fails under cold humid climates.
However, the poor response of HS to changing climatic boundary conditions has also
been criticized in a study on global drought simulations (Sheffield et al., 2012).
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We combined the six ETo methods with five Kc sets to address stochastic parametric
uncertainty for irrigated wheat in the MDB. We show that the ETo method uncertainty
range exceeded the uncertainty range of Kc sets. Thus, the Kc sets have a minor influ-
ence on predicted IRR. At first sight, this seems to be contrasting to others who have
stated that adapted, regional Kc sets are required to estimate reliable IRR rates. For5

instance, da Silva et al. (2013) reported that Kc sets from FAO56 lead to errors in plot
scale irrigation planning under tropical conditions. Similar observations were reported
for semi-arid conditions in the Texas High Plains region (Ko et al., 2009), highlighting
the importance of regionally based Kc sets. While regional adaptation of Kc might be
important at smaller scales, e.g. on the farm level, we conclude that large scale appli-10

cations do not necessarily need to focus on this potential contribution of uncertainty.
Rather, effort should be put into finding appropriate ETo methods, or even better, utilize
ensemble predictions to cover a more realistic range of predictions. Our study confirms
this latter recommendation, as we could not identify a single best ETo method for the
MDB. Especially in cases where no data for a direct evaluation of model results are15

available the application of model ensembles gives insight to the predictive uncertainty,
e.g., being helpful in the development of best management practices (Exbrayat et al.,
2013), study of land use (Huisman et al., 2009) or climate change (Exbrayat et al.,
2014).

Besides the uncertainty introduced by local to global Kc values the utilisation of the20

single crop coefficient concept itself comes along with errors, which are not addressed
in this study. For example, Lascano (2000) shows how Kc varies as a function of time
(50 days) and how it changes when using a daily, 3 and 8 day moving average. More-
over, the temporal resolution of ETo calculation, i.e., hourly vs. daily is an important
component and errors associated with the method of irrigation (surface, drip, sprin-25

kler) cannot be neglected, but are beyond the uncertainty calculation of this study.
We acknowledge that we do not consider uncertainties in boundary conditions (e.g.
relevance of CO2 concentration, land-use management options, climatic variability) al-
though these may be non-negligible. For example, atmospheric CO2 has been reported
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as a driving factor of ET in North America, South America and Asia regions besides
climate forcing (Shi et al., 2013). Others reported that changes in future precipitation
regimes will have the greatest impact on the calculated water footprint (reflecting high
ET rates) of maize in Italy and that changes in CO2 and warming were less important
(Bocchiola et al., 2013). Conversely, water use was more driven by agricultural man-5

agement than by regional climatic variation in a water footprint analysed for an irrigation
district in China (Sun et al., 2013). Statistical correction of model forcing data (such as
bias correction of precipitation) has also been reported to alter ET estimates as shown
by Ye et al. (2012) for the Upper Yellow River in China with changes of up to 29 % of ET.
Thus, an even more complete picture of global model uncertainty can only be shown10

by considering all sorts of predictive uncertainty, including model input data, validation
data, and spatial input data in addition to the impact of model structural and parametric
uncertainty as presented here.

However, we argue that future management practices or the impact of climate
change cannot be reliably evaluated due to the large uncertainty that exists in the ETo15

method, the basis of water resources modelling. We partially cope with this problem
by applying the REA technique to extract the most relevant information from our sim-
ulations. The advantage of REA in decision making has already been shown for other
fields of research, such as the development of N reduction scenarios to improve sur-
face water quality (Exbrayat et al., 2013) or estimation of the effect of land use change20

on water budgets and hydrological fluxes (Huisman et al., 2009). Despite the growing
importance of IRR for today’s agriculture (Siebert and Döll, 2010) and the effect on sur-
face (Hoekstra et al., 2012) and groundwater (Wada et al., 2010) resources, few studies
have dealt with the predictive uncertainty of this requirement (e.g. Wada et al., 2013)
and how to reduce it.25
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Table 1. The five crop parameter sets for Kc.

Name (Reference) Spatial reference Kcini
Kcmid

Kcend

FAO56 (Allen et al., 1998) Global 0.7 1.15 0.25
Harris (Harris, 2002) Queensland 0.3 1.15 0.25
Kirby (Kirby et al., 2012) Murray-Darling Basin 0.4 1.15 0.4
Meyer (Meyer, 1999) Griffith, MDB 0.4 1.05 0.5
Hughes (Hughes, 1999) Murray and Murrumbidgee valleys 0.3 1.0 0.6
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Table 2. The six equations applied for the calculation of reference evapotranspiration.

Method Abbreviation Equation

FAO-56 Penman–Monteith
(Allen et al., 1998)

PM56 PETPM56 =
0.408·∆·(Rn−G)+γ· 900

Tmean+273 ·u2 ·(es−ea)

∆+γ·(1+0.34·u2)

Priestley–Taylor
(Priestley and Taylor, 1972)

PT PETPT = α ·
[

∆
∆+γ

]
· (Rn−G)

λ

Hargreaves–Samani
(Hargreaves and Samani, 1985)

HS PETHS = 0.0023 · (Tmean +17.8) · (Tmax − Tmin)0.5 ·Ra ·0.408

Turc (Allen, 2003; Turc, 1961) TURC PETTURC = αT ·
Tmean

Tmean+15 · 23.8856·Rs+50
λ

Areal – PET (Morton, 1983) APET PETAPET = b1 +b2

(
1+γ·p
∆

)−1
·RTP

Point – PET (Morton, 1983) PPET PETPPETenergy-balance = Rn − λP · fT · (TP − Tmean)
PETPPETvapor-transfer = fT · (es −ea)

With PETPM56, PETPT, PETHS, PETTURC, PETAPET, PPETEnergy-Balance and PPETVapor-Transfer in [mm], extra-terrestrial radiation Ra, solar

radiation Rs, net radiation Rn, soil heat flux density G and net radiation at equilibrium temperature RTP in [MJm−2], equilibrium

temperature TP , mean Tmean, minimum Tmin and maximum Tmax air temperature in [◦C], wind speed u2 at 2 m height [ms−1], atmospheric
pressure p, saturated es and actual ea vapour pressure in [kPa], slope of vapour pressure curve ∆ and the psychometric constant γ in
[kPa ◦C−1], latent heat of vaporization λ in [MJkg−1], and the dimensionless empirical constants b1 and b2 [–], the heat transfer coefficient
λP [–], the vapour transfer coefficient fT [–] and the humidity based value αT .
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Table 3. Average equally weighted irrigation water requirement (IRR) [mm] during the growing
season of wheat in all cells [n = 3969] of the MDB grouped by ETo methods and Kc sets over
the period 1986–2006 (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Mon-
teith; HS: Hargreaves–Samani; PPET: Point potential evapotranspiration; PT: Priestly–Taylor;
TURC: Turc).

Kc

Kirby Hughes Meyer FAO56 Harris IRR

E
T

o
m

et
ho

d

HS 381 381 372 349 336 364
PT 661 671 654 618 580 637
PPET 577 577 565 534 514 551
PM56 365 362 355 344 324 350
APET 357 354 347 329 315 340
TURC 315 316 308 289 279 301

IRR 443 443 433 410 391 424

7552

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/7525/2014/gmdd-7-7525-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 7525–7558, 2014

Reduction of
predictive

uncertainty in
estimating irrigation
water requirement

S. Multsch et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Performance (RB) and convergence (RD) and reliability (R) coefficient of the ensemble
members.

FAO56 Harris Hughes Kirby Meyer

RB 1 1 1 1 1
APET RD 1 1 1 1 1

R 1 1 1 1 1

RB 0.96 0.96 0.96 0.96 0.96
PPET RD 0.99 1.00 0.99 0.99 0.99

R 0.96 0.96 0.96 0.95 0.96

RB 1 1 1 1 1
HS RD 1 1 1 1 1

R 1 1 1 1 1

RB 1 1 1 1 1
PM56 RD 1 1 1 1 1

R 1 1 1 1 1

RB 1 1 1 1 1
T RD 1 1 1 1 1

R 1 1 1 1 1

RB 0.60 0.60 0.60 0.60 0.60
PT RD 0.98 1.00 0.85 0.88 0.90

R 0.59 0.60 0.51 0.53 0.54
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Figure 1. The Murray-Darling basin (MDB) is located in south-east Australia. Irrigated wheat 3 

areas (2005/06) across the MDB are indicated as black dots, n=3,969; cell size=1 x 1 km. 4 

5 

Figure 1. The Murray-Darling basin (MDB) is located in south-east Australia. Irrigated wheat
areas (2005/06) across the MDB are indicated as black dots, n = 3969; cell size=1km×1km.
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Figure 2. Comparison of daily measured class-A pan evaporation with simulated potential 3 

evapotranspiration at 34 sites in the MDB during the time period from 1986 to 2006. The class-A 4 

pan measurements have been adjusted with site-specific pan coefficients. The coefficient of 5 

determination (r²) and the root mean square error (RMSE) are depicted for each ETo method 6 

(APET: Areal potential evapotranspiration; PM56: FAO56 Penman-Monteith; HS: Hargreaves-7 

Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc).8 

Figure 2. Comparison of daily measured class-A pan evaporation with simulated potential
evapotranspiration at 34 sites in the MDB during the time period from 1986 to 2006. The
class-A pan measurements have been adjusted with site-specific pan coefficients. The coef-
ficient of determination (r2) and the root mean square error (RMSE) are depicted for each ETo
method (APET: Areal potential evapotranspiration; PM56: FAO56 Penman–Monteith; HS: Har-
greaves–Samani; PPET: Point potential evapotranspiration; PT: Priestly–Taylor; TURC: Turc).
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Figure 3 Exceedance probability of equally weighted average irrigation water requirement ( IRR ) 3 

for wheat during the growing season. Averages have been calculated for each cropping area [n = 4 

3969 = 100%] for the period 1986-2006. Colours indicate different ETo methods (APET: Areal 5 

potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-Samani; PPET: 6 

Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc) and symbols differentiate 7 

Kc sets.8 

Figure 3. Exceedance probability of equally weighted average irrigation water requirement
(IRR) for wheat during the growing season. Averages have been calculated for each crop-
ping area [n = 3969 = 100 %] for the period 1986–2006. Colours indicate different ETo meth-
ods (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Harg-
reaves–Samani; PPET: Point potential evapotranspiration; PT: Priestly–Taylor; TURC: Turc)
and symbols differentiate Kc sets.
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 2 

Figure 4 Cumulative density function of equally weighted ( IRR ) and REA weighted ( REAIRR ) 3 

average irrigation water requirement for wheat during the growing season. Averages have been 4 

calculated for each cropping area [n = 3969 = 100%] for the period 1986-2006. Colours indicate 5 

the predicted root mean square difference (RMSE) of the ensemble of ETo methods and Kc sets 6 

(APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-7 

Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc). 8 

Figure 4. Cumulative density function of equally weighted (IRR) and REA weighted (IRRREA)
average irrigation water requirement for wheat during the growing season. Averages have been
calculated for each cropping area [n = 3969 = 100 %] for the period 1986–2006. Colours indi-
cate the predicted root mean square difference (RMSE) of the ensemble of ETo methods and
Kc sets (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Harg-
reaves–Samani; PPET: Point potential evapotranspiration; PT: Priestly–Taylor; TURC: Turc).
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Figure 5. Average equally weighted (a) and REA weighted (b) irrigation water requirement during the growing season of wheat (1986-2 

2006). Dots indicate irrigated cropping areas [n=3,969; cell size=1 x 1 km] (note: a buffer has been used to increase the visibility of the 3 

single grid cells). (c) illustrates the difference between both IRR calculations (b-a). (d) and (e) show the root mean square error between 4 

the 30 realisations and the equally weighted (d) and REA weighted (e) averages as well as the difference (f) between both calculations, 5 

respectively. 6 

Figure 5. Average equally weighted (a) and REA weighted (b) irrigation water requirement
during the growing season of wheat (1986–2006). Dots indicate irrigated cropping areas [n =
3969; cell size=1km×1km] (note: a buffer has been used to increase the visibility of the single
grid cells). (c) illustrates the difference between both IRR calculations (b–a). (d) and (e) show
the root mean square error between the 30 realisations and the equally weighted (d) and REA
weighted (e) averages as well as the difference (f) between both calculations, respectively.
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