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Abstract 17 

Irrigation agriculture plays an increasingly important role in food supply. Many 18 

evapotranspiration models are used today to estimate the water demand for irrigation. They 19 

consider different stages of crop growth by empirical crop coefficients to adapt 20 

evapotranspiration throughout the vegetation period. We investigate the importance of the model 21 

structural versus model parametric uncertainty for irrigation simulations by considering six 22 

evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements 23 



 

2 

 

for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the 1 

spatial decision support system SPARE:WATER. We find that structural model uncertainty 2 

among reference ET is far more important than model parametric uncertainty introduced by crop 3 

coefficients. These crop coefficients are used to estimate irrigation water requirement following 4 

the single crop coefficient approach. Using the Reliability Ensemble Averaging (REA) technique, 5 

we are able to reduce the overall predictive model uncertainty by more than 10%. The 6 

exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. 7 

an irrigation water limit due to water right of 400mm, would be less frequently exceeded in case 8 

of the REA ensemble average (45%) in comparison to the equally weighted ensemble average 9 

(66%). We conclude that multi-model ensemble predictions and sophisticated model averaging 10 

techniques are helpful in predicting irrigation demand and provide relevant information for 11 

decision making. 12 

 13 

 14 

1 Introduction 15 

1.1 Predicting crop water needs 16 

Globally, the proportion of fresh water consumption by agriculture from rainfall as well as 17 

surface and groundwater resources is large (9,087 km
3
 y

r-1
) (Hoekstra and Mekonnen, 2012). It is 18 

projected that water demand is increasing in the future, in particular by irrigation agriculture, in 19 

order to support the increasing world population with food (Foley et al., 2011; De Fraiture and 20 

Wichelns, 2010; Hanjra and Qureshi, 2010; Wada and Bierkens, 2014). Therefore, strategies 21 

based on improved irrigation methods and local adaptions of management practices are likely to 22 

be implemented to anticipate this trend. Such strategies are often developed using decision 23 

support systems that are informed by mathematical models. For example, irrigation management 24 

has been optimized by modelling and measurements for crops grown in Central Asia (Pereira et 25 

al., 2009) or for irrigated cotton in the High-Plains region of Texas (Howell et al., 2004). Others 26 

have investigated water use efficiency (Wang et al., 2001) or crop water productivity (Liu et al., 27 

2007) by modelling experiments for irrigated crops grown in China.  28 
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All these models depend on the calculation of evapotranspiration (ET) which represents the 1 

evaporation from a surface and transpiration from plants. In the case of agricultural crops, ET is 2 

equal to the crop water needed for crop growth and yield production. Globally, 3 

evapotranspiration represents about two thirds of the total rainfall on land, while 4 

evapotranspiration from crops amounts for about 8% (Oki and Kanae, 2006), and is insofar the 5 

most important term of the water balance. The basic concept for deriving crop water needs of 6 

irrigated crops has been initially reported by Jensen (1968) and is proposed by Allen et al. (1998) 7 

as the single crop coefficient concept. The crop specific evapotranspiration (ETc) is derived from 8 

reference evapotranspiration (ETo) and a crop specific coefficient (Kc): 9 

coc KETET           (1) 10 

with ETo given in [mm] and dimensionless Kc. ETo can be calculated by standardise potential 11 

evapotranspiration (PET) to a short (grass) or tall (alfalfa) reference crop. In the case of the 12 

Penman-Monteith equation (Monteith, 1965; Penman, 1948) standardized fixed values for albedo 13 

(0.23), plant height (0.12 cm) and surface resistance (70 m s
-1

) are assumed (Allen et al., 1998; 14 

Jensen et al., 1990). Kc is commonly calculated on the basis of field experiments (e.g. Ko et al., 15 

2009; da Silva et al., 2013) and varies with the crop development.   16 

Such an approach is part of many irrigation management models, including Cropwat (Smith, 17 

1992), ISAREG (Pereira et al., 2009), ISM (George et al., 2000) or global crop water models 18 

(Siebert and Döll, 2010). Moreover, the single crop coefficient concept is the basis for the 19 

simulation of crop water needs in many studies. For example, Lathuillière et al. (2012) have 20 

derived water use by terrestrial ecosystems and have shown that actual ET declines over a 10 21 

year period by about 25% in response to deforestation and replacement by agriculture in Brazil. 22 

They showed that irrigation water requirement (IRR) is relevant for terrestrial water fluxes and a 23 

reliable estimation is crucial for the closure of the water cycle. In another study future climate 24 

impacts on groundwater in agriculture areas have been investigated (Toews and Allen, 2009). 25 

They showed that larger return flows to the groundwater can be related to increased IRR under 26 

warmer temperatures and longer vegetation periods. Moreover, the crop coefficient concept is 27 

also the basis for the water footprint (volume of water consumed or polluted to produce one unit 28 

of biomass) assessment of crops (Mekonnen and Hoekstra, 2011) and has been used to determine 29 
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water requirements and the water footprint of the agriculture sector in Saudi Arabia (Multsch et 1 

al., 2013). In almost all studies, researcher use only one ETo method with a single, often spatially 2 

independent Kc set. As a result, some scientists ask to use locally adapted Kc sets at least (Ko et 3 

al., 2009; da Silva et al., 2013). For this reason, the investigation of predictive uncertainty of IRR 4 

is needed, in particular in the frame of large scale assessments. 5 

 6 

1.2 Sources of predictive uncertainty 7 

Major sources of uncertainties should be considered in the study design, quantified throughout 8 

the modelling process (Refsgaard et al., 2007) and communicated as part of the results to the end 9 

users. Uncertainties related to large scale estimations of the IRR have only rarely been analysed. 10 

For example, Siebert and Döll (2010) have studied the uncertainty in predicting green (rainfall 11 

consumed by crops) and blue (consumed surface and groundwater by crops in terms of irrigation) 12 

water consumption by using different ETo equations on a global scale. They observed a 13 

significant difference of blue water consumption, i.e. required irrigation, and only a small change 14 

in green water consumption between model runs while using two classical ETo equations. More 15 

recently, Sheffield et al. (2012) pointed out that using a more up-to-date parameterization of PET 16 

to calculate drought indices led to different conclusions on drought occurrence globally. 17 

Generally, model predictive uncertainty can be lead back to four sources, input uncertainty, 18 

output uncertainty, structural uncertainty and parametric uncertainty (Renard et al., 2010). The 19 

last two, structural and parametric uncertainty, are addressed in this study with a focus on the 20 

prediction of IRR. As part of the parametric uncertainty, the parameterization of equations to 21 

quantify natural or anthropogenic processes has received considerable interest, particularly in 22 

conceptual rainfall-runoff modelling (Beven, 2006; Vrugt et al., 2009). In case of modelling crop 23 

water needs according to Eq. 1, Kc is an important model parameter. Kc values for a large number 24 

of crops are provided by the FAO56 irrigation guidelines (Allen et al., 1998) which are 25 

commonly used for irrigation planning. However, it has been highlighted that an adjustment to 26 

the global Kc is needed if the simulations are used for irrigation planning on a local to regional 27 

scale (Ko et al., 2009; da Silva et al., 2013). Nevertheless, it is still unclear whether a local 28 
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adaption of Kc leads to a better model performance. For this reason, we quantify the parametric 1 

uncertainty of model parameterisation with different Kc sets. 2 

The model structure also introduces uncertainties, as any model remains a simplification of the 3 

real world. In the context of modelling water resources, all hydrological and crop growth models 4 

rely on the estimation of ET. According to equation 1, ETo is required to estimate crop specific 5 

evapotranspiration. ETo equations are often divided into categories according to the input data 6 

(Bormann, 2011; Tabari et al., 2013): temperature based equations such as Hargreaves-Samani 7 

(HS) equation (Hargreaves and Samani, 1985), radiation based equations such as Priestley-Taylor 8 

(PT) (Priestley and Taylor, 1972) or combined equations such as the FAO56 Penman-Monteith 9 

(PM56) equation (Allen et al., 1998), that further takes wind speed into account. Nevertheless, in 10 

many cases it was shown that the variability among ETo methods is large (Fisher et al., 2011; 11 

Kite and Droogers, 2000). Because most water resources models rely on some calculation of ETo, 12 

we see it as a crucial source of structural uncertainty that is rarely considered.  13 

1.3 Reduction of predictive uncertainty by ensemble modelling  14 

Ensembles of model predictions can be developed by different sets of model parameterization 15 

(single-model ensemble) and model structures (multi-model ensemble). The weighting of model 16 

ensembles according to their fit to observational data has become of interest to reduce the 17 

uncertainty and to derive a more robust predictions and projections. Giorgi and Mearns (2002) 18 

have introduced the reliability ensemble averaging technique (REA) in climate research. 19 

Basically, different models are weighted according to their performance in representing measured 20 

data and according to the distance of individual models to the ensemble average prediction to 21 

quantify the convergence of different models. This approach has been applied more recently for 22 

predicting catchment nitrogen fluxes (Exbrayat et al., 2013) and calculating water balances and 23 

land use interaction (Huisman et al., 2009). 24 

In a first step, we analyse the relative contributions of the structural and parametric model 25 

uncertainty in hind casts of IRR of wheat across the Murray-Darling-Basin (MDB), Australia. 26 

Simulations are calculated using the spatial decision support system SPARE:WATER (Multsch 27 

et al., 2013). In a second step, we apply the REA methodology to reduce the predictive 28 

uncertainty of IRR. The general procedure is as follows: 29 
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 The applicability of six different ETo methods is evaluated by using available measured 1 

class-A-pan evaporation measurements of 34 stations in the MDB over a 21years time 2 

period; 3 

 30 different model realisations are setup in a multi-model ensemble by combining various 4 

ETo equations (n=6) and crop coefficient data sets (n=5); 5 

 IRR is calculated by forcing the multi-model ensemble with climate time series of 21 6 

years (monthly data) for 3,969 sites (each 1 km² x 1km²) in the MDB where irrigated 7 

wheat has been grown according to the land use allocation in 2000; 8 

 The 30 model realisations are weighted according to their performance in representing 9 

measured data and their distance to the ensemble average. 10 

By doing so, we quantify structural (ETo method) and parametric (Kc set) uncertainty and apply 11 

REA to provide a robust estimate of IRR and the confidence interval around it. The underlying 12 

research question is how can we derive better predictions by using an ensemble of well-known 13 

ETo methods as well as Kc sets and which are the likely causes of predictive uncertainty in IRR 14 

estimations. Finally, we show a procedure to reduce predictive uncertainty of IRR. 15 

 16 

2 Methods and data 17 

2.1 Study site and data 18 

The MDB covers about 1 million km² of south-east Australia (Fig. 1). Irrigation agriculture in the 19 

MDB sums up to 17,600 km², which is equal to 65% of the total irrigation agriculture in 20 

Australia. Total water withdrawal for irrigation in 2006 amounted to 7.36 km³ yr
-1 

(ABS, 2006). 21 

Wheat is the second most important crop grown in MDB after grazing pastures, covering 3,969 22 

km² in 2006 and was therefore selected for this case study for which IRR and its underlying 23 

uncertainty was calculated. The cropping areas have been taken from a land use map from 2006 24 

(ABARES, 2010) with a spatial resolution of 0.01° x 0.01° (~1 km x 1 km). We assume a fixed 25 

land use distribution over time in our model study to clearly target the uncertainty in ETo method 26 

and crop coefficients. Climate data for 1986-2006 were taken from the SILO Data Drill of the 27 
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Queensland Department of Natural resources and Water (https://longpaddock.qld.gov.au/silo/ 1 

(Jeffrey et al., 2001)) with a spatial resolution of 0.05° x 0.05° (~5 km x 5 km). We used the 2 

same weather dataset over all 3,969 1 x 1 km land grid cells overlapped by a 5 x 5 km grid cell in 3 

the weather data. The model was forced with monthly data. For validation, we compared 4 

simulated ETo to measured class-A pan data from 34 stations throughout the MDB. The class-A 5 

pan data were obtained from Patched Point Dataset of the Queensland Department of Science, 6 

Information Technology, Innovation and the Arts, 7 

(http://www.longpaddock.qld.gov.au/silo/ppd/). Measured data have been adjusted with monthly 8 

pan-coefficients according to McMahon et al. (2013) to represent evaporation from open surface 9 

water. For stations where no pan-coefficient was available we used the one from the nearest 10 

station. 11 

 12 

2.2 Simulation of irrigation requirement with SPARE:WATER 13 

SPARE:WATER (Multsch et al., 2013) is a spatial decision support system for the calculation of 14 

crop specific water requirements and water footprints from local to regional scale. Input 15 

parameter for the simulation are climate data, irrigation management (irrigation water quality, 16 

irrigation efficiency, irrigation method), a digital elevation model and crop characteristics such as 17 

maximum crop height and length of growing season as well as sowing and planting date. In a first 18 

step, the water requirement of growing a crop is simulated for each grid cell according to the 19 

spatial resolution of the input data. In a second step, the water footprint for spatial entities such as 20 

administrative boundaries or catchments is calculated considering statistical data on crop yield 21 

and harvest area. Water footprints for geographic entities are given as volume of water consumed 22 

per year (e.g. km³ yr
-1

) and water footprints for specific crops as volumes of water consumed per 23 

biomass (m³ t
-1

). 24 

In this study the calculation of the IRR is calculated as the difference between ETc and effective 25 

rainfall (Peff). The latter one is estimated from the difference of surface run-off (RO) and 26 

precipitation (P). RO is derived as a fixed fraction of 20% of total P. The fixed fraction of runoff 27 
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is adapted from the default setting of the FAO Cropwat model (Smith, 1992). On this basis, IRR 1 

is calculated according to Eq. 2: 2 

 0,max effc PETIRR          (2) 3 

with IRR, ETc and Peff given in [mm]. ETc is calculated based on the single crop coefficient 4 

approach initially proposed by Jensen (1968) and recommended by Allen et al. (1998) according 5 

to Eq. 1. The input parameters for this method are the length of four individual stages (initial 6 

season, growth season, mid-season and late season) during the growing season and three related 7 

crop coefficients (Kc). These define the ratio between ETo and ETc for each part of the growing 8 

season. We have considered five different Kc data sets (Table 1). The most common dataset has 9 

been proposed from the FAO56 Irrigation and Drainage Guidelines (Allen et al 1998). This 10 

approach has been applied for calculating crop water footprints (Mekonnen and Hoekstra, 2011) 11 

and is part of the widely used Cropwat model (Smith 1992). It has been discussed that locally 12 

adapted Kc sets are superior in simulating site-specific crop water requirement than global ones 13 

(Ko et al., 2009; da Silva et al., 2013). Thus, further data sets have been collected from various 14 

sources which represent site-specific relationships between ETo and ETc for areas in the MDB. 15 

ETo has been calculated with six different methods (Table 2). Two of them are classified as 16 

combined methods (PM56, PPET), three are radiation-based methods (PT, TURC, APET) and 17 

one is a temperature based method (HS). All of them are commonly applied function, e.g. PM56 18 

and HS are included in Cropwat (Smith, 1992) and Aquacrop (Steduto et al., 2009), two models 19 

to quantify crop water and IRR, widely used and promoted by the FAO. The cropping system 20 

model EPIC (Williams, 1989) additionally allows the use of the PT equation, while the global 21 

vegetation model LPJmL (Fader et al., 2010) and the global water model WaterGap (Döll et al., 22 

2003) are restricted to PT. APET and PPET have been particularly tested for the utilisation under 23 

Australian weather conditions in several (Chiew et al., 2002; Chiew and Leahy, 2003; Donohue 24 

et al., 2010).  25 

 26 
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2.3 Reliability Ensemble averaging 1 

We used two types of ensemble averaging techniques, which differ in the weighing technique. 2 

We calculated an equally weighted average of all 30 model realisations (6 ETo methods x 5 Kc 3 

datasets) for every grid cell which sum up to 3,969 cells (1 x 1 km) in the MDB where irrigated 4 

wheat is grown according to the land use allocation in 2006. However, this method does not 5 

consider the capability of its ensemble members to predict a target value nor does it value the 6 

agreement of model predictions amongst each other. Therefore, we apply the REA technique that 7 

was initially proposed by Giorgi and Mearns (2002) to reduce uncertainties in climate change 8 

projections. Moreover, it was used in impact studies targeting land use change impacts on 9 

hydrology (Huisman et al., 2009) and water quality scenario projections (Exbrayat et al., 2013).  10 

The strength of the REA method is that it considers both the quality of a model prediction 11 

(performance) and its position within an ensemble of prediction (convergence). The aim is to 12 

provide a best estimate of predictions and a robust assessment of the confidence interval around 13 

it. The REA weighting scheme estimates two factors, model performance (RB) and model 14 

convergence (RD). RB represents the capability of each ensemble member to represent real world 15 

data by its bias B. RD is a measure of the distance D of a single model to the equally weighted 16 

ensemble average. Both are limited by the natural background variability (ε). The combined 17 

effect known as reliability factor (R) is derived as: 18 

 DB RR

DabsBabs
R 


















)(
*

)(


                                                              (3) 19 

In this study, ε is calculated from measured class-A pan evaporation for 34 climate stations in the 20 

study region for the time period from 1986 to 2006. The class-A pan data has been adjusted with 21 

monthly pan coefficients for climate stations in Australia (McMahon et al., 2013). We calculated 22 

the annual mean evaporation [mm] for each year and each station and used the 50% confidence 23 

interval (difference between the 25% and 75% percentile) of 224 mm to define ε. The 24 

consideration of the difference between upper and lower percentiles has been recommended by 25 

Giorgi and Mearns (2002). Model performance is measured by the RMSE between measured 26 

(class-A pan) and predicted ETo for each model (i).  27 
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The convergence criterion RD is calculated in an iterative procedure. The difference between the 1 

average IRR of each ensemble member i and the ensemble average is calculated. Under the 2 

consideration of the natural background variability ε a first guess of RD (for each ensemble 3 

member) is predicted as well as a first guess of the REA average. This procedure is repeated by 4 

considering the newly derived REA average until the ensemble convergence, so that the 5 

difference between ensemble members and the REA average cannot be reduced by additional 6 

iterations (see Giorgi and Mearns (2002) for a complete methodological description). The error of 7 

the equally weighted ensemble average is described by the RMSE between IRRi predicted by 8 

model i (with n=30 models) and the equally weighted ensemble average irrigation water 9 

requirement ( IRR ). The error of the reliability ensemble average (RMSEREA) is derived from the 10 

reliability factor of each model (Ri), the irrigation water requirement predicted by model i (IRRi) 11 

and the REA weighted ensemble average ( REAIRR ). The RMSE represents an approximate 60-12 

70% confidence interval under the assumption that the amount of irrigation is distributed 13 

somewhere between normal and uniform. 14 

 15 

3 Results 16 

3.1 Validation of ETo methods 17 

We applied six ETo equations to 34 sites in the MDB for which measured class-A pan 18 

evaporation data were available from 1986 to 2006 (Fig. 2). Class-A pan data represent the 19 

evaporation from an open water surface and integrate all climate factors driving evaporation such 20 

as radiation, wind speed, humidity and temperature. Pan evaporation differs from evaporation 21 

from a cropped surface through a different albedo, heat storage and humidity above the surface. 22 

For this reason, the class-A pan data have been adjusted with monthly pan coefficients 23 

(McMahon et al., 2013) to better compare them with ETo simulations of open surface waters. On 24 

an annual average, class-A pan evaporation of 1,558 mm yr
-1

 were reduced by 9% to 1,422 mm 25 

yr
-1 

across all stations. 26 

The median daily ETo for APET is 3.6 mm d
-1

, PM56 3.9 mm d
-1

, HS 3.8 mm d
-1

, 27 

PPET5.2 mm d
-1

, PT 6.4 mm d
-1

 and TURC 3.4 mm d
-1

. According to the root-mean-squared-28 
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error (RMSE) PM56 gave the most reliable results. The median of ETo for APET, PM56 and HS 1 

are close to the median of the measured evaporation rate of 3.7 mm d
-1

. Apart from PT and PPET, 2 

the other methods underestimate ETo, especially where class-A pan data are larger than 6 mm d
-1

. 3 

The relationship between measured and simulated ETo is linear as shown by the coefficients of 4 

determination r
2
 ranging from 77% (PT) to 88% (PPET).  5 

The simulated ETo is normally distributed if a single station and one year is tested (Shapiro test 6 

for normality: alpha>0.1 for each year and station). The difference between the 34 stations is up 7 

to two times larger than the inter-annual difference in the 21 years period. Thus, spatial 8 

variability is larger than temporal variability in the MDB. The intra-annual variability shows a 9 

different picture. The median ETo in the summer months is up to four times larger than the ETo 10 

during winter months for all ETo methods, except PPET and PT with a six times larger ETo in 11 

summer than in winter months. 12 

Four of the six methods simulate the measured data with a high r² and a low RMSE. The 13 

difference between the methods itself is large, in particular through the high ETo estimates by PT 14 

and PPET. Thus, the structural uncertainty through the ETo method is substantial and needs to be 15 

considered for the prediction of IRR which is addressed in the next chapters. 16 

 17 

3.2 Irrigation water requirement and its variability 18 

The IRR of wheat has been simulated using an ensemble of thirty model realisations for each of 19 

the 3,969 1 km × 1 km irrigated cells in the MDB for 21 years. Average values of IRR for all 20 

model realisations are shown in Table 3. In most cases, the largest estimates are given by the 21 

combinations of the Kc set Hughes with the ETo method PT. These are almost 2.5 times higher 22 

than the lowest average IRR calculated by the combination of TURC with the Kc set Harris. It is 23 

obvious that changing ETo method results in a larger variation of calculated IRR than using a 24 

different Kc set. Hence, the average IRR give a first idea about variability due to model structures 25 

and parameters. 26 

Over a large watershed such as the MDB local differences in IRR may be large while catchment 27 

wide water management plans define thresholds for water withdrawal, for example due to water 28 
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rights or water resources protection measures. A given threshold may require heterogeneous local 1 

adaptations of irrigation management and a change in cropping patterns. Figure 3 shows the 2 

probability that a certain amount of IRR is exceeded in the MDB on average over the 21 year 3 

period. It illustrates the range of IRR predicted by the ensemble of all 30 model realisations for 4 

each grid cell. Two groups can be identified that are separated by ETo methods. The first group is 5 

composed of PPET and PT calculations. In this case, IRR is up to twice as high as compared to 6 

predictions by other models. The second group is formed by APET, HS, PM56 and TURC with 7 

substantially lower calculations of less than 500 mm in most cases. We note that the parametric 8 

uncertainty is almost negligible compared to the uncertainty introduced by the various ETo 9 

methods. 10 

3.3  Ensemble averaging, uncertainty and weighting 11 

Ensemble predictions have become an important tool to account for different model structures 12 

and parameters (Exbrayat et al., 2013; Huisman et al., 2009; Wada et al., 2013). The 13 

consideration of ensembles is especially helpful to increase our confidence in simulations when 14 

no validation data are at hand, such as projections of Earth’s future climate under specified 15 

emission scenarios. Here we apply the concept of ensemble prediction to simulations of IRR. 16 

Two different ensemble averages, expressed as the exceedance probability of the IRR of wheat 17 

are shown in Fig. 4. The first one represents the equally weighted average of irrigation ( IRR , 18 

black line). The second one represents a weighted average using the reliability ensemble 19 

averaging ( REAIRR , red line, see methods description) that weights predictions based on their 20 

performance and agreement with other ensemble members. This prevents dismissing some model 21 

structure, a process that can be rather subjective. Also, even an overall poorly performing model 22 

can contribute to the optimal information extracted from the ensembles (Viney et al., 2009), or 23 

may outperform better performing models once boundary conditions are changed (Exbrayat et al., 24 

2013). 25 

We use the inverse of the cumulative daily RMSE (Fig. 2) of the ETo methods during the 26 

growing season to calculate the criterion RB (RMSE 154 mm for APET, 123 mm for PM56, 27 

142 mm HS, 232 mm PPET, 373 mm PT, 166 mm TURC). The convergence criterion RD was 28 

calculated based on the difference of the predicted irrigation given by a single ensemble member 29 
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and the equally weighted ensemble average (see Methods description). Overall, the PT model 1 

combinations have the lowest reliability factors of between 0.51 and 0.6 followed by PPET with 2 

0.96, a result driven by the poorer performance of these methods to simulate pan-evaporation 3 

(Fig. 2), and the outlying positions of simulations using PT and PPET (Fig. 3). All other models 4 

are weighted similarly, a result in accordance with the similar performance and simulated values 5 

exhibited by these methods (see Table 4 for details).  6 

The application of the reliability factor leads to a decrease of the calculated total IRR in each grid 7 

cell as well as to a decrease of its overall uncertainty (Fig. 4). The uncertainty range is given by 8 

the ensemble average plus/minus the RMSE in each grid cell, assuming that modelling errors are 9 

normally distributed.  10 

Exceedance probability curves might support defining thresholds in irrigation planning with 11 

consequences for decision makers through, for example, the adaptation of improved irrigation 12 

practice (e.g. from full to deficit irrigation, installation of advanced irrigation techniques) or the 13 

purchase of additional water rights. For example, a limit of available irrigation water of 400 mm 14 

per growing season will be exceeded less frequently in the MDB if the REA average IRR is 15 

considered (45%) in comparison to the equally weighted average (66%).  16 

The spatial distribution of the equally weighted and the REA weighted ensemble averages are 17 

shown in Fig. 5a and b. The equally weighted average of IRR ranges between 124 and 691 mm 18 

with an average across the MDB of 424 mm (Fig. 5a). Thus, spatial variability is large and 19 

western and northern areas require five to six times more irrigation than in the south-east. The 20 

REA derived average IRR ranges between 104 mm and 663 mm across the river basin (Fig. 5b) 21 

with an average of 405 mm. Depending on the location this value is up to 18% lower as 22 

compared to simulations based on the equally weighted average (Fig. 5c). Also, the uncertainty 23 

range decreases as consequence of the REA method by about 10 % across the MDB with 24 

maximum values of around 26% when comparing equally and REA weighted RMSE (Fig. 5d-f). 25 

The largest change in uncertainty can be found in the south-east of the MDB and also in areas 26 

towards the east (Fig. 5f). Thus, REA not only leads to a decrease of predicted IRR but also to a 27 

reduction of its uncertainty. The uncertainty is reduced because the REA is drawn toward the 28 

group of the better ETo methods that also agree well between themselves. 29 
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 1 

4 Discussion and conclusions 2 

The simulation of IRR strongly varies amongst ETo methods. Bormann (2011) recommended that 3 

the selection of the ETo method should be based on the validation of ETo with real world 4 

observations rather than only on the availability of climate input data. This is due to the general 5 

large variability among ETo methods, which was also revealed in a study where PT was set as a 6 

benchmark model and the RMSE between ETo methods was analysed (McMahon et al., 2013). 7 

Likewise, the influence of a single ETo method on the prediction of crop yields was also reported 8 

for an agriculture site in Europe (Balkovič et al., 2013) where ETo estimates by PT were 40% 9 

higher and those by Penman-Monteith 10% lower in comparison to HS. We also found a large 10 

variability among ETo methods in our study. However, similar ranges across Australia for ETo 11 

have been reported by others (Chiew et al., 2002) for APET, PPET and PM56 as well as lower 12 

values for PT. Lascano et al (2010) as well as Lascano and Van Bavel (2007) have shown that 13 

methods to calculate ETo based on combination methods, i.e., Penman-Monteith, tend to 14 

underestimate ET by as much as 25%, especially in dry climates. 15 

Bormann (2011) further recommended that the reliability of ETo equations should be tested in a 16 

spatial context, especially if applied on large scale. For various regions across Australia, a large 17 

range of mean annual ETo between 1,700 mm (PT) and 3,670 mm (PPET) was reported 18 

(Donohue et al., 2010). To investigate the spatial heterogeneity within the MDB we analysed 19 

results of the 34 class-A pan stations. Overall, the performance of four of the ETo methods was 20 

good with RMSEs around 1 mm day
-1

, except for three stations in the north. PPET performed less 21 

well with RSME increasing to 2 mm day
-1

 while the PT value ranged up to 4 mm day
-1

. However, 22 

we found no consistent spatial pattern. We are aware that the utilization of class-A pan data 23 

comes along with uncertainties. We did not assume that the data are error-free, but for the 24 

application of REA, a comparison of model simulations and observations is needed to calculate 25 

the model performance criterion. We could have treated PM56 as being an “observation” in terms 26 

of a benchmark model. However, we think that a more independent test is more appropriate in the 27 

sense of REA and therefore decided to use those observations that are at hand: class-A pan 28 

observations. To account for the difference of class-A pan evaporation and reference crop ET, we 29 
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used a commonly applied correction factor (pan-coefficients according to McMahon et al. 1 

(2013)) to derive crop ET from class-A pan measurements. Most often, ET estimates are not 2 

compared to any measurements at all, leaving modelers with no information on how good their 3 

model application is. We therefore think that a comparison to class-A pan is for sure not perfect, 4 

but better than not testing at all. 5 

ETo estimates using the PM56 method revealed the best performance criteria in our study. PM56 6 

considers the most meteorological input parameters thereby possibly best representing the 7 

altering dry and wet conditions across the MDB over the year. The better performance of 8 

physically based equations in comparison to more empirical approaches for the simulation of ETo 9 

has also been reported by others (Donohue et al., 2010). PT performed least well in our study and 10 

resulted in up to two times larger estimates than other ETo methods. This is somewhat contrasting 11 

with other studies (Chiew et al., 2002; Donohue et al., 2010) where PT gave lower ETo values in 12 

comparison to methods such as APET and PPET. One reason is that Donohue et al. (2010) have 13 

considered the actual albedo from remotely sensed vegetation cover (Donohue et al., 2008) for 14 

the estimation of the net incoming solar radiation. In our calculations, an albedo of a reference 15 

crop 0.23 (short crop, i.e. grass) has been considered according to the guidelines for ETo from 16 

Allen et al. (1998). Another likely reason for this observation is that the PT equation is based on 17 

the Penman-Monteith equation in which the aerodynamic term is replaced by a constant (alpha) 18 

which is commonly set to 1.26 under Australian climatic conditions (Chiew and Leahy, 2003) 19 

and which we also applied. The consideration of region-specific alpha for the MDB could have 20 

increased the performance of PT in our study. The HS equation is commonly applied in situations 21 

where meteorological data are scarce, because the equation depends on more readily available 22 

temperature and extra-terrestrial radiation derived from latitude and day of the year. A reason for 23 

its good performance in our study could be that the semi-arid climate in most of the MDB is 24 

favourable for the HS equation, which is supported by Tabari (2010) who conclude that HS is a 25 

good candidate model for warm humid and semi-arid sites, but fails under cold humid climates. 26 

However, the poor response of HS to changing climatic boundary conditions has also been 27 

criticized in a study on global drought simulations (Sheffield et al., 2012).  28 

We combined the six ETo methods with five Kc sets to address stochastic parametric uncertainty 29 

for irrigated wheat in the MDB. We show that the ETo method uncertainty range exceeded the 30 
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uncertainty range of Kc sets. Thus, the Kc sets have a minor influence on predicted IRR. At first 1 

sight, this seems to be contrasting to others who have stated that adapted, regional Kc sets are 2 

required to estimate reliable IRR rates. For instance, da Silva et al. (2013) reported that Kc sets 3 

from FAO56 lead to errors in plot scale irrigation planning under tropical conditions. Similar 4 

observations were reported for semi-arid conditions in the Texas High Plains region (Ko et al., 5 

2009), highlighting the importance of regionally based Kc sets. While regional adaptation of Kc 6 

might be important at smaller scales, e.g. on the farm level, we conclude that large scale 7 

applications do not necessarily need to focus on this potential contribution of uncertainty. Rather, 8 

effort should be put into finding appropriate ETo methods, or even better, utilize ensemble 9 

predictions to cover a more realistic range of predictions. Our study confirms this latter 10 

recommendation, as we could not identify a single best ETo method for the MDB. Especially in 11 

cases where no data for a direct evaluation of model results are available the application of model 12 

ensembles gives insight to the predictive uncertainty, e.g., being helpful in the development of 13 

best management practices (Exbrayat et al., 2013), study of land use (Huisman et al., 2009) or 14 

climate change (Exbrayat et al., 2014). 15 

Besides the uncertainty introduced by local to global Kc values the utilisation of the single crop 16 

coefficient concept itself comes along with errors, which are not addressed in this study. For 17 

example, Lascano (2000) shows how Kc varies as a function of time (50 days) and how it 18 

changes when using a daily, 3 and 8-day moving average. Moreover, the temporal resolution of 19 

ETo calculation, i.e., hourly vs. daily is an important component and errors associated with the 20 

method of irrigation (surface, drip, sprinkler) cannot be neglected, but are beyond the uncertainty 21 

calculation of this study. We acknowledge that we do not consider uncertainties in boundary 22 

conditions (e.g. land-use management options, climatic variability) although these may be non-23 

negligible. For example, Bocchiola et al. (2013) reported that changes in future precipitation 24 

regimes will have the greatest impact on the calculated water footprint (reflecting high ET rates) 25 

of maize in Italy and that changes in CO2 and warming were less important. Conversely, water 26 

use was more driven by agricultural management than by regional climatic variation in a water 27 

footprint analysed for an irrigation district in China (Sun et al., 2013). Statistical correction of 28 

model forcing data (such as bias correction of precipitation) has also been reported to alter ET 29 

estimates as shown by Ye et al. (2012) for the Upper Yellow River in China with changes of up 30 
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to 29% of ET. Beyond that, the forcing data themself introduce additional uncertainties. 1 

However, this is not part of this study and it would clearly go beyond the scope of our work 2 

presented here. Nevertheless, on the long term more research needs to be put in the investigation 3 

of the global predictive uncertainty of models, where all sources of uncertainty are evaluated, i.e. 4 

spatial input data uncertainty (e.g. soil and land use information), model forcing data uncertainty 5 

(e.g. climate data), parameter uncertainty, and model structure uncertainty. Thus, an even more 6 

complete picture of global model uncertainty can only be shown by considering all sorts of 7 

predictive uncertainty, including model input data, validation data, and spatial input data in 8 

addition to the impact of model structural and parametric uncertainty as presented here. 9 

However, we argue that future management practices or the impact of climate change cannot be 10 

reliably evaluated due to the large uncertainty that exists in the ETo method, the basis of water 11 

resources modelling. We partially cope with this problem by applying the REA technique to 12 

extract the most relevant information from our simulations. The advantage of REA in decision 13 

making has already been shown for other fields of research, such as the development of N 14 

reduction scenarios to improve surface water quality (Exbrayat et al., 2013) or estimation of the 15 

effect of land use change on water budgets and hydrological fluxes (Huisman et al., 2009). 16 

Despite the growing importance of IRR for today’s agriculture (Siebert and Döll, 2010) and the 17 

effect on surface (Hoekstra et al., 2012) and groundwater (Wada et al., 2010) resources, few 18 

studies have dealt with the predictive uncertainty of this requirement (e.g. Wada et al. (2013)) 19 

and how to reduce it. 20 
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 1 

Table 1. The five crop parameter sets for Kc. 2 

Name (Reference) Spatial reference Kcini Kcmid Kcend 

FAO56 (Allen et al., 1998) Global 0.7 1.15 0.25 

Harris (Harris, 2002) Queensland 0.3 1.15 0.25 

Kirby (Kirby et al., 2012) Murray-Darling Basin 0.4 1.15 0.4 

Meyer (Meyer, 1999) Griffith, MDB 0.4 1.05 0.5 

Hughes (Hughes, 1999) Murray and Murrumbidgee valleys 0.3 1.0 0.6 

 3 
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 1 

Table 2. The six equations applied for the calculation of reference evapotranspiration.  2 

Method Abbreviation Equation 

FAO-56 Penman-

Monteith (Allen et 

al., 1998) 
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Point – PET 

(Morton, 1983) 
PPET 

 meanPTPnbalancePPETenergy TTfRETo    

 asTtransferPPETvapor eefETo   

 

With ETo PM56, ETo PT, ETo HS, PETTURC, ETo APET, ETo Energy-Balance and ETo Vapor-Transfer in [mm], extra-3 

terrestrial radiation Ra, solar radiation Rs, net radiation Rn, soil heat flux density G and net radiation at equilibrium 4 

temperature RTP in [MJ m
-2

], equilibrium temperature TP ,mean Tmean, minimum Tmin and maximum Tmax air 5 

temperature in [°C], wind speed u2 at 2 m height [m s
–1

], atmospheric pressure p, saturated es and actual ea vapour 6 

pressure in [kPa], slope of vapour pressure curve Δ and the psychometric constant γ in [kPa °C
–1

], latent heat of 7 

vaporization λ in [MJ kg
-1

], and the dimensionless empirical constants b1 and b2 [-], the heat transfer coefficient λP [-8 

], the vapour transfer coefficient fT  [-] and the humidity based value αT. 9 

10 
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 1 

Table 3. Average equally weighted irrigation water requirement ( IRR ) [mm] during the growing 2 

season of wheat in all cells [n=3,969] of the MDB grouped by ETo methods and Kc sets over the 3 

period 1986-2006 (APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; 4 

HS: Hargreaves-Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: 5 

Turc). 6 

 Kc  

Kirby Hughes Meyer FAO56 Harris IRR  

E
T

o
 m

et
h

o
d
 

HS 381 381 372 349 336 364 

PT 661 671 654 618 580 637 

PPET 577 577 565 534 514 551 

PM56 365 362 355 344 324 350 

APET 357 354 347 329 315 340 

TURC 315 316 308 289 279 301 

 IRR  
443 443 433 410 391 424 

 7 
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Table 4. Performance (RB) and convergence (RD) and reliability (R) coefficient of the ensemble 2 

members. 3 

  FAO56 Harris Hughes Kirby Meyer 

 RB 1 1 1 1 1 

APET RD 1 1 1 1 1 

 R 1 1 1 1 1 

 RB 0.96 0.96 0.96 0.96 0.96 

PPET RD 0.99 1.00 0.99 0.99 0.99 

 R 0.96 0.96 0.96 0.95 0.96 

 RB 1 1 1 1 1 

HS RD 1 1 1 1 1 

 R 1 1 1 1 1 

 RB 1 1 1 1 1 

PM56 RD 1 1 1 1 1 

 R 1 1 1 1 1 

 RB 1 1 1 1 1 

T RD 1 1 1 1 1 

 R 1 1 1 1 1 

 RB 0.60 0.60 0.60 0.60 0.60 

PT RD 0.98 1.00 0.85 0.88 0.90 

 R 0.59 0.60 0.51 0.53 0.54 
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Figure 1. The Murray-Darling basin (MDB) is located in south-east Australia. Irrigated wheat 3 

areas (2005/06) across the MDB are indicated as black dots, n=3,969; cell size=1 x 1 km. 4 
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Figure 2. Comparison of daily measured class-A pan evaporation with simulated potential 3 

evapotranspiration at 34 sites in the MDB during the time period from 1986 to 2006. The class-A 4 

pan measurements have been adjusted with site-specific pan coefficients. The coefficient of 5 

determination (r²) and the root mean square error (RMSE) are depicted for each ETo method 6 

(APET: Areal potential evapotranspiration; PM56: FAO56 Penman-Monteith; HS: Hargreaves-7 

Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc).8 
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Figure 3 Exceedance probability of equally weighted average irrigation water requirement ( IRR ) 3 

for wheat during the growing season. Averages have been calculated for each cropping area [n = 4 

3969 = 100%] for the period 1986-2006. Colours indicate different ETo methods (APET: Areal 5 

potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-Samani; PPET: 6 

Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc) and symbols differentiate 7 

Kc sets.8 
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Figure 4 Cumulative density function of equally weighted ( IRR ) and REA weighted ( REAIRR ) 3 

average irrigation water requirement for wheat during the growing season. Averages have been 4 

calculated for each cropping area [n = 3969 = 100%] for the period 1986-2006. Colours indicate 5 

the predicted root mean square difference (RMSE) of the ensemble of ETo methods and Kc sets 6 

(APET: Areal potential evapotranspiration; PM56: FAO56 Penman Monteith; HS: Hargreaves-7 

Samani; PPET: Point potential evapotranspiration; PT: Priestly-Taylor; TURC: Turc). 8 



 

32 

 

 1 

Figure 5. Average equally weighted (a) and REA weighted (b) irrigation water requirement during the growing season of wheat (1986-2 

2006). Dots indicate irrigated cropping areas [n=3,969; cell size=1 x 1 km] (note: a buffer has been used to increase the visibility of the 3 

single grid cells). (c) illustrates the difference between both IRR calculations (b-a). (d) and (e) show the root mean square error between 4 

the 30 realizations and the equally weighted (d) and REA weighted (e) averages as well as the difference (f) between both calculations, 5 

respectively. 6 


