
 1

An Approach to Enhance pnetCDF Performance in 1

Environmental Modeling Applications 2

D. C. Wong1, C. E. Yang2,‡, J. S. Fu2, K. Wong2, Y. Gao2,* 3

[1]{U.S. Environmental Protection Agency, Research Triangle Park, NC, USA} 4

[2]{University of Tennessee, Knoxville, TN, USA} 5

[*]{now at: Pacific Northwest National Laboratory, Richland, WA, USA} 6

Correspondence to: D. C. Wong (wong.david-c@epa.gov) 7

 8

Abstract 9

Data intensive simulations are often limited by their I/O performance, and “novel” techniques 10

need to be developed in order to overcome this limitation. The software package, pnetCDF 11

which works with parallel file systems, was developed to address this issue by providing 12

parallel I/O capability. This study examines the performance of an application level data 13

aggregation approach which performs data aggregation along either row or column dimension 14

of MPI processes on a spatially decomposed domain, and then applies the pnetCDF parallel 15

I/O paradigm. The test was done with three different domain sizes which represent small, 16

moderately large, and large data domains, using a small-scale Community Multi-scale Air 17

Quality model (CMAQ) mock-up code. The examination includes comparing I/O 18

performance with traditional serial I/O technique, straight application of pnetCDF, and the 19

data aggregation along row and column dimension before applying pnetCDF. After the 20

comparison, “optimal” I/O configurations of this application level data aggregation approach 21

were quantified. Data aggregation along the row dimension (pnetCDFcr) works better than 22

along the column dimension (pnetCDFcc) although it may perform slightly worse than the 23

straight pnetCDF method with a small number of processors. When the number of processors 24

becomes larger, pnetCDFcr out performs pnetCDF significantly. If the number of processors 25

keeps increasing, pnetCDF reaches a point where the performance is even worse than the 26

‡ Co-first Author

mailto:wong.david-c@epa.gov

 2

serial I/O technique. This new technique has also been tested for a real application where it 1

performs two times better than the straight pnetCDF paradigm. 2

1 Introduction 3

The Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006) is a 4

regional air quality model which is widely used in air quality research and regulatory 5

applications (e.g. Fu et al., 2012). This model was developed in the 1990s by the U.S. 6

Environmental Protection Agency (US EPA) and it has continued to evolve. Recently, CMAQ 7

was combined with WRF to form a WRF-CMAQ two-way coupled model (Wong et al., 8

2012) with direct aerosol effects on radiation. CMAQ has been and continues to be 9

extensively used to provide guidance in rulemaking such as CSAPR (Cross-State Air 10

Pollution Rule, http://www.epa.gov/airtransport/CSAPR/), used by state and local agencies 11

for air quality management analyses such as SIP (State Implementation Plan), and also used 12

by academia and industry for studying relevant atmospheric processes and model 13

applications. CMAQ has also been adapted into the real-time US National Air Quality 14

Forecasting system (AQF) (Otte et al., 2005) operationally at National Weather Service since 15

2003 and was recently deployed for forecasting air quality for the 2010 Shanghai World 16

Expo. 17

CMAQ uses IOAPI (Input/Output Applications Programming Interface 18

http://www.cmascenter.org/ioapi) to handle I/O since the initial model inception. In recent 19

years, I/O has been shown as one of the bottlenecks in the CMAQ model system. I/O 20

consumes about 24% - 35% of the entire simulation time. For many applications model run 21

time is critically important such air quality forecasting which requires meeting operational 22

time constraints, studies of relationships between climate change and air quality that involve 23

decadal scale simulations (e.g. Gao et al., 2013), or multiscale model simulations involving 24

multiple coarse and fine grid resolutions. For such runtime critical applications improving 25

efficiency of I/O becomes an even more important element that needs to be addressed. To 26

increase the I/O efficiency, we turn to a parallel I/O approach which has been applied in other 27

computer science fields but not for existing environmental models and their processes. 28

Section 2 provides background information about what has been done regarding parallel I/O 29

applications. Section 3 describes the current implementation of I/O in CMAQ through IOAPI. 30

Section 4 depicts our application level data aggregation technique to enhance I/O performance 31

using pnetCDF and demonstrates I/O enhancement through testing with a smaller scale 32

 3

model. This technique was applied to CMAQ and preliminary results are presented in Section 1

5 while Section 6 summarizes the main findings and presents discussion of future work. 2

2 Previous Work in Parallel I/O 3

The independent I/O and collective I/O are the two most common I/O strategies in parallel 4

applications. However, a shortcoming of the independent I/O approach is the servicing of the 5

I/O requests of each process individually (Chen et al, 2010). The collective I/O provides a 6

better solution of managing non-contiguous portions of a file with multiple processes 7

interleaved (Thakur et al., 1999). Several collective I/O techniques are hence developed to 8

improve the parallel I/O performance at various levels by enabling the compute nodes to 9

cooperate with efficient parallel access to the storage system. Examples include, two-phase 10

I/O (del Rosario et al., 1993), data sieving (Thakur et al., 1999), and the collective buffering 11

(Nitzberg and Lo, 1997). 12

To optimize the I/O performance, software is designed to access non-contiguous patterns by 13

implementation of collective I/O. Data is rearranged and aggregated in memory prior to 14

writing to files, which reduces the number of disk accesses and the seek-time overhead due to 15

large amounts of non-contiguous write requests. Improved I/O efficiency is observed through 16

split writing and hierarchical striping of data (Yu et al., 2007). The benefits of utilizing the 17

improved parallel I/O techniques on applications in various research areas have been 18

recognized (Li et al., 2003; Kordenbrock and Oldfield, 2006; Huang et al., 2013). The 19

approach to parallelize the I/O by using the network Common Data Form (netCDF), a set of 20

software libraries and self-describing, machine-independent data formats, has been discussed 21

regarding the performance of different I/O libraries (Li et al., 2003), including serial netCDF, 22

parallel-netCDF (pnetCDF) and Hierarchical Data Format (Cheng, 2000). 23

File data striping on parallel file systems also influences I/O performance. Data is distributed 24

using a fixed block size in a round-robin manner among available I/O servers and disks based 25

on a simple striping data distribution function. Optimal striping setup on parallel file systems 26

can significantly reduce the I/O time (Nisar et al., 2012) while inappropriate settings may 27

incur striping overhead for both metadata and file read/write operations (Yu et al., 2007). 28

Research work has shown degradation of parallel I/O efficiency when large numbers of 29

processors are applied to scientific applications such as CMAQ (Kordenbrock and Oldfield, 30

2006). To overcome these short comings, we re-engineered the current CMAQ I/O module to 31

 4

better utilize more processors on high performance computational machines as well as 1

quantifying the optimal data striping setup on Lustre file systems. 2

3 I/O in CMAQ 3

The Community Multiscale Air Quality (CMAQ) modeling system, an active open-source 4

development project of the U.S. Environmental Protection Agency, is an air quality model for 5

regulatory and policy analysis. The interactions of atmospheric chemistry and physics are 6

studied through this three-dimensional Eulerian atmospheric chemistry and transport 7

modeling system. The primary goal for CMAQ is to simulate ozone, particulate matter, toxic 8

airborne pollutants, visibility, and acidic and nutrient pollutant species within the troposphere 9

and across spatial scales ranging from local to hemispheric. 10

IOAPI, a third-party software, was created concurrently with the initial development of the 11

CMAQ model. It provides a simple interface to handle read and write data in netCDF format 12

in CMAQ. It originally operated in serial mode and was later expanded to run on SMP 13

machines using OpenMP. It has never been implemented with capability to run on a 14

distributed system. 15

When CMAQ was parallelized in late 1998, a “pseudo” parallel I/O library, PARIO, was 16

created to enable CMAQ to run on a distributed system. PARIO was built on top of the IOAPI 17

library to handle regular data operations (read and write) from each MPI-process. Each 18

individual processor can read its sub-domain portion of data straightly from the input files. 19

However, for output, PARIO requires all processors send its portion of data to the designated 20

processor, i.e. processor 0, which will stitch all data together and write en masse to the output 21

file (Figure 1a). Clearly, there are a few shortcomings of this strategy: (1) as the number of 22

processors increases, the network will be flooded with more MPI messages and require longer 23

synchronization time to accomplish an output task, (2) if the domain size remains the same 24

but the number of processors increases, the output data size in each processor decreases which 25

will lower the I/O efficiency, and (3) it requires extra memory for processor 0 to hold the 26

entire dataset before writing to the file. 27

 28

4 An Application Level Data Aggregation Approach 29

Besides the shortcomings mentioned in Section 3, IOAPI has another major drawback, which 30

is not taking advantage of existing technology advancements such as parallel file systems and 31

 5

parallel I/O framework, for example, pnetCDF. Kordenbrock and Oldfield (2006) have 1

shown an enhancement of model I/O performance with the adoption of pnetCDF. Our new 2

approach not only utilizes advanced parallel I/O technology, it also addresses all the 3

shortcomings directly. This new approach performs I/O through pnetCDF on a parallel file 4

system basis, thus eliminating the first and third shortcomings discussed above. 5

Spatial domain decomposition is widely used in parallelizing scientific models such as 6

CMAQ. The key characteristic of this new technique is data aggregation which can be 7

considered as mitigation for the second shortcoming described above. Generally speaking, 8

data can be either aggregated along the row dimension or column dimension of a rectangular 9

horizontal grid to enhance the I/O efficiency. During aggregation, a small number of localized 10

MPI communication processes were introduced which does not diminish the overall benefit of 11

the technique. 12

In order to determine the performance of this new technique, a small-scale code was devised. 13

This smaller code, which is designed to mimic the CMAQ model, contains a time step loop 14

with artificial workload. Data is output at the end of each time step.. This small scaled code 15

was tested with three time steps and was run on two different machines. The following two 16

subsections provide brief information about the machines as well as how the test was setup. 17

4.1 High-Performance Computational Systems (HPCs) 18

The experiments were performed on two HPCs to examine the CMAQ I/O performance with 19

various methods. (1) Edison: a Cray XC30 system with 236 Tflop/sec, 5,200 computes nodes 20

with 64 GB memory per node, 333 TB of aggregate memory, Cray Aries high-speed 21

interconnect and 6.4 PB of scratch storage space. Each node has dual-socket twelve-core Intel 22

Ivy Bridge processors at 2.4GHz. The software packages we used were: cray-mpich/7.0.4, 23

cray-netcdf/4.3.0, parallel-netcdf/1.3.1, lustre: 2.5.0. (2) Kraken: a Cray XT5 system with the 24

peak performance of 1.17 Petaflops/sec, 112,896 compute cores, 147 TB of compute memory, 25

3.3 PB of raw parallel file system disk storage space, and 9,408 compute nodes. Each node 26

has two 2.6 GHz six-core AMD Opteron processors (Istanbul), 16 GB of memory, and is 27

connected by Cray SeaStar2+ router. The software packages we used were: Cray MPT 5.3.5, 28

netcdf 3.6.3, pnetcdf 1.2.0, lustre 2.5.0. 29

The file system on both HPCs is managed by Lustre, a massively parallel-distributed file 30

system that has the ability to distribute the segments of a single file across multiple object 31

 6

storage targets (OSTs). A striping technique is applied when a file with a linear sequence of 1

bytes is separated into small chunks. Through this technique, the bandwidth of accessing the 2

file and the available disk space for storing the file both increase as read and write operations 3

can access multiple OSTs concurrently. The default value of stripe count is 1 OST of stripe 4

count and 1 MB of stripe size on both Kraken and Edison. 5

4.2 Experimental Design 6

To examine the I/O performance of each module, a small scaled model (pseudo code I/O 7

module) written in Fortran90 which includes the basic functions, reading data, writing data 8

and performing arithmetic in between read and write operations, was tested to imitate the 9

complex CMAQ model with the emphasis on the I/O behavior. The code loops for three times 10

to represent three time steps as in regular CMAQ simulations. The pseudo code of this small 11

scaled model looks like this: 12

 DO I = 1, 3 13

 Read in data 14

 Perform numerical calculation 15

 Output result 16

 END DO 17

Three domain sizes were chosen to represent the typical 12-km resolution settings in the 18

CMAQ community: a small domain that covers the entire State of California and vicinity area 19

(CA), 89 x 134 x 35 x 146 (column by row by layer by species), a medium-sized domain that 20

covers the Eastern US (EUS) 279 x 299 x 35 x 146, and a large domain that covers the entire 21

continental US (CONUS), 459 x 299 x 35 x 146 (Figure 2). Various combinations of stripe 22

counts (2, 5, 11, 20, and 40) and stripe sizes (1MB, 2MB, 4MB, 8MB and 16MB) are tested 23

on different processor configurations (4x4, 4x8, 8x8, 8x16, and 16x16 on CA and EUS 24

domain and 4x8, 8x8, 8x16, 16x16, and 16x32 on CONUS domain). Regular domain 25

decomposition is applied on the spatial domain (column by row) as in the CMAQ model. 26

Each experiment was carried out multiple times and the averaged values were reported. Four 27

different I/O techniques were setup: the serial I/O scheme used in the current CMAQ model 28

which uses regular Network Common Data Form (rnetCDF), I/O implementation with 29

straight parallel netCDF (pnetCDF) (Fig. 1b), our new technique with data row-wise 30

 7

aggregation among MPI processes plus I/O through using pnetCDF (pnetCDFcr) (Fig. 1c), 1

and our new technique with data column-wise aggregation among MPI processes plus I/O 2

through using pnetCDF (pnetCDFcc) (Fig. 1d). Figure 1 illustrates the essence of these 3

methods. Timing includes the actual I/O time (disk writing time) plus any additional time 4

such as data gathering as in the method shown in Figure 1a or additional MPI communication 5

as needed in data aggregation techniques. 6

The results provided by the small scaled model serve as a basis to determine the optimal 7

striping information (count and size) for further experiments with the pre-released CMAQ 8

version 5.0.2. One-day simulations of CMAQ on a 4-km resolution EUS domain (423 x 594 x 9

14 x146) were run to evaluate the differences among rnetCDF, pnetCDF, and the data 10

aggregation schemes using pnetCDF with respect to I/O performance. These tests were 11

conducted on Kraken and Edison with three different processor configurations: 10x12, 12x15, 12

and 18x20. 13

5 Results 14

5.1 Small scale model results 15

In Figures 3 - 8 and 10, a relative performance calculation shown in formula (1) is plotted 16

against the stripe counts and sizes: 17

 (1) 18

 19

where Tm1 and Tm2 denote the averaged maximum I/O time for method 1 and method 2, 20

respectively. Since, all the runs were done on non-dedicated system environments, the same 21

setup was run multiple times for consistency purposes and outliers were filtered. To avoid 22

visual blocking when displaying negative values below the xy-plane, absolute values are 23

plotted and solid bars represent positive values and checkered bars represent negative values. 24

In each figure, a larger positive solid bar is the desirable outcome. 25

The CA case, which represents a relatively small domain, shows a general trend that 26

performance degrades as the stripe count increases and/or the stripe size increases. For this 27

case, pnetCDF performance can be worse than the serial approach using regular netCDF (Fig. 28

4). With the data aggregation technique, aggregation along the row dimension is better. 29

Overall, data aggregation along row dimension, pnetCDFcr outperforms pnetCDF. Setting the 30

%100
)(

(%).
1

21

m

mm

T

TT
eperformancrel




 8

stripe count to 5 and stripe size to 1MB seems to be the “optimal” settings on both machines 1

and among all processor configurations. Furthermore, as the number of processors increase, 2

the relative performance of pnetCDF drops (from ~50% to ~20% on Kraken (Fig. 3) and from 3

~40% to about negative 25% on Edison (Fig. 4). Conversely, with the optimal settings, 4

relative performance of pnetCDFcr increases as the number of processors increases (increases 5

from ~20% to 75% except 4x4 case on Kraken (Fig. 3) and increases from ~20% to 80% on 6

Edison (Fig. 4). 7

The EUS case, which represents a moderately large domain, shows similar result as in the CA 8

case. Relative performance of aggregation along row dimension is much better than along 9

column dimension (Fig. 5 - 6). With small number of processors scenarios, 4x4 and 4x8, 10

pnetCDF performs better than pnetCDFcr. At 8x8, pnetCDFcr performs better than pnetCDF 11

slightly, ~10%. As the number of processors grows, the enhancement becomes more 12

significant. Overall, the optimal setting on Kraken is stripe count equals to 11 and stripe size 13

equals to 2MB and on Edison is stripe count equals to 5 and stripe size equals to 2MB. Again, 14

with pnetCDF, the relative performance drops as the number of processors increases 15

(decreases from ~90% to ~75% on Kraken and ~50% to ~40% on Edison). However, the 16

pnetCDFcr shows the opposite behavior: as the number of processors increases, the relative 17

performance increases significantly. 18

The CONUS case represents a relatively large domain, showing similar results as the CA and 19

EUS cases (Fig. 7 - 8). When the number of processors increases, the relative performance of 20

pnetCDF decreases (from ~80 down to ~60% on Kraken and from ~75% down to ~50% on 21

Edison). However, the relative performance of the pnetCDFcr scheme increases dramatically. 22

Overall the “optimal” settings are stripe count equals to 11 and stripe size equals to 2MB. 23

5.2 Stripe Size and Stripe Counts Effect with PnetCDF 24

Stripe size and stripe count are two of the key factors that affect I/O performance as shown in 25

Figures 3 - 8. The CONUS domain is chosen with various stripe counts (2, 5, and 11) and 26

stripe sizes (1MB, 2MB, 4MB, 8MB, 16MB) here to summarize these effects (Fig. 9). Among 27

all stripe counts, the cases using stripe counts of 11 demonstrate the best performance 28

compared to other stripe counts; for stripe sizes, the 2MB cases were better than the other 29

stripe sizes. As more processors were applied, larger stripe sizes resulted in decreasing 30

performance in writing out data while 2MB cases had relatively better results compared to the 31

 9

other four sizes. Shorter writing time was found when fewer processors were requested. The 1

stripe count effect showed that stripe counts of 11 had the best performance compared to the 2

other two stripe count cases. The differences became more significant when more processors 3

were used. 4

5.3 The Impact of Large Number of Processors on I/O Efficiency 5

Section 5.1 has shown pnetCDF performance decreases as the number of processors 6

increases. When the number of processors continues to increase, the performance of pnetCDF 7

reaches a point that’s worse than the serial I/O scheme (Fig. 10). In contrast, pnetCDFcr 8

scheme continues to improve significantly as the number of processors increases. 9

The I/O efficiency is defined as the rate of data being output. In parallel applications with a 10

spatial domain decomposition strategy, the domain size in each processor becomes smaller as 11

the number of processors increase (Fig. 11 left panel). It is known that the I/O rate is higher if 12

a large chunk of data is being output. Figure 11 (right panel) reflects this assertion which was 13

tested on Kraken. When the data is aggregated, no matter whether it is along row or column 14

dimension, it will increase the data size in the processor which is responsible for the I/O. This 15

is clearly shown in Figure 11 left panel. With data aggregation (pnetCDFcc or pnetCDFcr), 16

the data size decreases slower than the pnetCDF approach as the number of processors 17

increases. This translates into a higher I/O rate in aggregated schemes than the pnetCDF 18

approach with respect to the same number of processors. pnetCDFcc is worse than pnetCDFcr 19

due to the internal data alignment in the netCDF internal format (row major). 20

5.4 Application to CMAQ 21

Based on this small-scale code experiment, the setting of 11 stripe count and 2MB stripe size 22

is selected to employ in a real CMAQ application: one-day simulation on a 4 km resolution 23

EUS domain (423x594x14x142). Figure 12 shows the overall writing time recorded on 24

Kraken and Edison with respect to three different ways to perform I/O: the current way using 25

regular netCDF (rnetCDF), using straight pnetCDF with 11 stripe count and 2MB stripe size 26

(pnetCDF), and our new approach (pnetCDFcr) with 11 stripe counts and 2MB stripe size. 27

Clearly pnetCDFcr shortens the writing time significantly. 28

 29

 10

6 Conclusions 1

We performed a series of experiments with four different I/O modules to examine their I/O 2

efficiencies in CMAQ. First, a small scaled code was tested on three different domains: CA, 3

EUS and CONUS which represents small, moderately large, and large data sizes of CMAQ 4

outputs. The I/O modules include serial mode which is currently used in CMAQ, direct 5

application of parallel netCDF (pnetCDF), and a new technique based on data aggregation 6

which can be along row or column dimension (pnetCDFcr and pnetCDFcc) before applying 7

the parallel netCDF technique. The experiment results show: (1) pnetCDFcr performs better 8

than pnetCDFcc; (2) pnetCDF performance deteriorates as the number of processors increases 9

and becomes worse than serial mode when certain large numbers of processors are used; (3) 10

even though pnetCDFcr does not perform as well as pnetCDF in the small number of 11

processors scenarios, it does out-perform pnetCDF once the number of processors becomes 12

larger. In addition, an overall “optimal” setting has been shown based on the experiments: 5 13

stripe count and 1MB stripe size for small domain, 11 stripe count and 2MB stripe size or 5 14

stripe count and 2MB stripe size for the moderately large domain, and 11 stripe count and 15

2MB stripe size for the large domain. 16

This data aggregation I/O module was also tested for a one-day, 4 km by 4 km EUS domain 17

using CMAQ compared to the serial I/O mode, which is currently implemented in CMAQ, 18

and direct parallel netCDF. The results show significant reduction of I/O writing time when 19

this new data aggregated pnetCDF (pnetCDFcr) technique is used compared with serial I/O 20

approach and with application of straight pnetCDF. With this finding, the overall run time of 21

scientific applications which require I/O will be significantly reduced. A more important 22

implication is that it allows users to use a large number of processors to run applications and 23

still maintain a reasonable parallel speedup thereby deferring speedup degradation governed 24

by the Amdahl’s Law. Furthermore, the technique can be transfered to other environmental 25

models that have large I/O burdens. 26

 27

Acknowledgements and Disclaimer 28

The views expressed here are those of the authors and do not necessarily reflect the views and 29

policies of the U.S. Environmental Protection Agency (EPA) or any other organization 30

participating in the AQMEII project. This paper has been subjected to EPA review and 31

approved for publication. Yang Gao was partly supported by the Office of Science of the U.S. 32

 11

Department of Energy as part of the Regional and Global Climate Modeling Program. The 1

Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute 2

(DE-AC05-76RL01830). The Kraken is a supercomputing facility through National Science 3

Foundation TeraGrid resources provided by National Institute for Computational Sciences 4

(NICS) under grant numbers TG-ATM110009 and UT-TENN0006. 5

6

 12

References 1

Byun, D. W. and Schere, K. L.: Review of the governing equations, computational 2

algorithms, and other components of the Models-3 Community Multiscale Air Quality 3

(CMAQ) Modeling System. Appl. Mech. Rev., 59, 51-77, 2006. 4

Chen, Y., Sun, X.-H., Thakur, R., Song, H., and Jin, H.: Improving Parallel I/O Performance 5

with Data Layout Awareness. Cluster ’10: Proceedings of the IEEE International Conference 6

on Cluster Computing 2010, Washington, DC, USA: IEEE Computer Society, 2010. 7

Cheng, A. and Folk, M.: HDF5: High performance science data solution for the new 8

millennium. Proceedings of SC2000: High Performance Networking and Computing, Dallas, 9

TX, ACM Press and IEEE Computer Society Press, 2000. 10

del Rosario, J., Brodawekar, R., and Choudhary, A.: Improved Parallel I/O via a Two-Phase 11

Run-time Access Strategy. Workshop on I/O in Parallel Computer Systems at IPPS ’93, Apr. 12

1993, pp. 56-70, 1993. 13

Fu, J. S., Dong, X., Gao, Y., Wong, D., and Lam Y. F.: Sensitivity and linearity analysis of 14

ozone in East Asia: The effects of domestic emission and intercontinental transport, J. Air 15

Waste Manag. Assoc., 62(9), 1102-1114, 2012. 16

Gao, Y., Fu, J. S., Drake, J. B., Lamarque, J.-F., and Liu, Y.: The impact of emission and 17

climate change on ozone in the United States under representative concentration pathways 18

(RCPs), Atmos. Chem. Phys., 13, 9607-9621, doi:10.5194/acp-13-9607-2013, 2013. 19

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and Zhang, C.: A fast 20

input/output library for high resolution climate models. Geosci. Model Dev., 7, 93–103, 2014, 21

doi:10.5194/gmd-7-93-2014, 2014. 22

Kordenbrock, T. H. and Oldfield, R. A.: Parallel I/O Advancements in Air Quality Modeling 23

Systems. Poster on 5th annual CMAS conference, 2006. 24

Li, J., Liao, W.-K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R., Siegel, A., 25

Gallagher, B., and Zingale, M.: Parallel netCDF: A High-Performance Scientific I/O 26

Interface, Proceedings of the 2003 ACM/IEEE conference on Supercomputing, p.39, 27

November 15-21, 2003. DOI: 10.1145 /1048935.1050189. 28

 13

Nisar, A., Liao, W.-K., and Choudhary, A.: Delegation-Based I/O Mechanism for High 1

Performance Computing Systems. IEEE Transactions on Parallel and Distributed Systems, 2

vol. 23, no. 2, pp. 271-279, Feb. 2012, doi:10.1109/TPDS.2011.166, 2012. 3

Nitzberg, B. and Lo, V. M.: Collective Buffering: Improving Parallel I/O Performance. 4

HPDC, pp. 148, 1997. 5

Otte, T. L., Pouliot, G., Pleim, J. E., Young, J. O., Schere, K. L., Wong, D. C., Lee, P. C. S., 6

Tsidulko, M., McQueen, J. T., Davidson, P., Mathur, R., Chuang, H.-Y., DiMego, G., and 7

Seaman, N. L.: Linking the Eta Model with the Community Multiscale Air Quality (CMAQ) 8

modeling system to build a national air quality forecasting system. Weather Forecast, 20, 367-9

384, 2005. 10

Thakur, R., Gropp, W., and Lusk, E.: Data sieving and collective I/O in ROMIO. Proceedings 11

of the Seventh Symposium on the Frontiers of Massively Parallel Computation, IEEE 12

Computer Society Press, 182-189, Feb. 1999. 13

Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., 14

Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with aerosol feedback: 15

software development and preliminary results. Geosci. Model Dev., 5, 299-312, 2012. 16

Yu, W., Vetter, J., Canon, R. S., and Jiang, S.: Exploiting Lustre File Joining for Effective 17

Collective IO. The Seventh IEEE International Symposium on Cluster Computing and the 18

Grid, 2007. 19

 20

 14

PE0
 PE1
 PE2
 PE3

netCDF

PE0
 PE1
 PE2
 PE3

pnetCDF

PE0
 PE1
 PE2
 PE3

PE4
 PE5
 PE6
 PE7

…

pnetCDFcr

PE0
 PE1
 PE2
 PE3

Parallel File System (Lustre)

PE4
 PE5
 PE6
 PE7

pnetCDFcc

PE8
 PE9
 PE10
 PE11

(1a) (1b)

(1d) (1c)

Parallel File System (Lustre)

Parallel File System (Lustre)
 Parallel File System (Lustre)

 1

Figure 1. Conceptual diagrams of four I/O modules: serial I/O used in current CMAQ with 2

netCDF data format (1a), straight pnetCDF implementation (1b), with data aggregation along 3

row dimension and then use pnetCDF (1c), and with data aggregation along column 4

dimension and then use pnetCDF (1d). PE denotes a processor. Arrows show the direction of 5

data movement. 6

7

 15

 1

 2

Figure 2: Regional representation of the CA (blue box), EUS (red box) and CONUS (entire) 3

domains. 4

 5

 6

 7

 8

 9

10

 16

 1

 2

 3

 4

 17

 1

Figure 3. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on CA domain with 4x4, 4x8, 8x8, 8x16, and 16x16 processor configuration from 3

Kraken. Red colour denotes positive value in relative performance while blue colour denotes 4

negative value in relative performance. 5

6

 18

 1

 2

 3

 4

 19

 1

Figure 4. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on CA domain with 4x4, 4x8, 8x8, 8x16, and 16x16 processor configuration from 3

Edison. Red colour denotes positive value in relative performance while blue colour denotes 4

negative value in relative performance. 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 20

 1

 2

 3

 4

 21

 1

Figure 5. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on EUS domain with 4x4, 4x8, 8x8, 8x16, and 16x16 processor configuration 3

from Kraken. Red colour denotes positive value in relative performance while blue colour 4

denotes negative value in relative performance. 5

6

 22

 1

 2

 3

 4

 23

 1

Figure 6. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on EUS domain with 4x4, 4x8, 8x8, 8x16, and 16x16 processor configuration 3

from Edison. Red colour denotes positive value in relative performance while blue colour 4

denotes negative value in relative performance. 5

6

 24

 1

 2

 3

 4

 25

 1

Figure 7. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on CONUS domain with 4x8, 8x8, 8x16, 16x16, and 16x32 processor 3

configuration from Kraken. Red colour denotes positive value in relative performance while 4

blue colour denotes negative value in relative performance. 5

6

 26

 1

 2

 3

 4

 27

 1

Figure 8. Relative I/O performance of pnetCDF to rnetCDF, and pnetCDFcc and pnetCDFcr 2

to pnetCDF on CONUS domain with 4x8, 8x8, 8x16, 16x16, and 16x32 processor 3

configuration from Edison. Red colour denotes positive value in relative performance while 4

blue colour denotes negative value in relative performance. 5

6

 28

 1

0

10

20

30

40

50

60

70

4x4 4x8 8x8 8x16 16x16 16x32 32x32

M
a

x
.

IO
 T

im
e

(s
ec

o
n

d
)

Processors

pnetCDF - 11C

1MB

2MB

4MB

8MB

16MB

0

10

20

30

40

50

60

70

80

4x4 4x8 8x8 8x16 16x16 16x32 32x32

M
a

x
.

IO
 T

im
e

(s
ec

o
n

d
)

Processors

pnetCDF - 2M

Count 2

Count 5

Count 11

Count 20

Count 40

 1

Figure 9. The impact of stripe count and size on parallel netCDF I/O performance on CONUS 2

domain. Left: various stripe sizes with fixed 11 stripe counts. Right: various stripe counts with 3

fixed 2MB stripe size. 4

5

 29

 1

 2

Figure 10. Relative performance of pnetCDF and pnetCDFcr with respect to rnetCDF in a 3

large number of processors scenario on Kraken. Red colour denotes positive value in relative 4

performance while blue colour denotes negative value in relative performance. 5

6

 30

0

50

100

150

200

250

300

350

400

pnetCDFcr pnetCDFcc pnetCDF

M
B

y
te

2x2

4x4

4x8

8x8

8x16

0

20

40

60

80

100

120

140

160

180

200

pnetCDFcr pnetCDFcc pnetCDF

M
B

y
te

 /
 s

ec

2x2

4x4

4x8

8x8

8x16

 1

0

200

400

600

800

1000

1200

1400

pnetCDFccr pnetCDFcc pnetCDF

M
B

y
te

4x4

4x8

8x8

8x16

16x16

0

20

40

60

80

100

120

140

pnetCDFccr pnetCDFcc pnetCDF

M
B

y
te

 /
 s

ec

4x4

4x8

8x8

8x16

16x16

 2

0

500

1000

1500

2000

2500

pnetCDFcr pnetCDFcc pnetCDF

M
B

y
te

4x8

8x8

8x16

16x16

16x32

0

20

40

60

80

100

120

140

pnetCDFcr pnetCDFcc pnetCDF

M
B

y
te

 /
 s

ec

4x8

8x8

8x16

16x16

16x32

 3

Figure 11: The maximum data size (left panel) and I/O rate (right panel) among all I/O 4

processors in CA (top), EUS (middle) and CONUS domain (bottom), respectively, in the 5

pseudo code experiment running on Edison. 6

7

 31

 1

0

500

1000

1500

2000

2500

3000

10x12 12x15 18x20

I/
O

 T
im

e
(s

ec
o

n
d

)

Processors

Kraken -Total Write Time

rnetCDF pnetCDF pnetCDFcr

0

500

1000

1500

2000

2500

3000

10x12 12x15 18x20

I/
O

 T
im

e
(s

ec
o

n
d

)

Processors

Edison -Total Write Time

rnetCDF pnetCDF pnetCDFcr

1
Figure 12. Total write time in one-day CMAQ simulation by different I/O approaches on a 2

4km EUS domain with stripe size 2MB and stripe count 11 (Kraken left and Edison right). 3

