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Abstract

Based on direct measurements of half-hourly canopy evapotranspiration (ET; Wm−2)
using the eddy covariance (EC) system and daily soil evaporation (E ; mmd−1) us-
ing microlysimeters over a crop ecosystem in arid northwest China from 27 May to
14 September in 2013, a Bayesian method was used to simultaneously parameter-5

ize the soil surface and canopy resistances in the Shuttleworth–Wallace (S–W) model.
The posterior distributions of the parameters in most cases were well updated by the
multiple measuring dataset with relatively narrow high-probability intervals. There was
a good agreement between measured and simulated values of half-hourly ET and daily
E with a linear regression being y = 0.84x+0.18 (R2 = 0.83) and y = 1.01x+0.0110

(R2 = 0.82), respectively. The causes of underestimations of ET by the S–W model
was mainly attributed to the micro-scale advection, which can contribute an added en-
ergy in the form of downward sensible heat fluxes to the ET process. Therefore, the
advection process should be taken into accounted in simulating ET in heterogeneous
land surface. Also, underestimations were observed on or shortly after rainy days due15

to direct evaporation of liquid water intercepted in the canopy. Thus, the canopy inter-
ception model should be coupled to the S–W model in the long-term ET simulation.

1 Introduction

In agriculture ecosystem, more than 90 % of all water inputs is lost by evapotranspira-
tion (ET) (Morison et al., 2008), which is defined as the sum of water loss by evapo-20

ration (E ) from soil and transpiration (T ) from plants (Rana and Katerji, 2000). E and
T are influenced by different abiotic and biotic factors (Wang and Yakir, 2000), and the
contributions of E and T to the total ecosystem ET are highly variable in space and time
(Ferretti et al., 2003). Thus, accurate measurement or estimation of ET and its com-
ponents (E and T ) is essential for many applications in agriculture, such as irrigation25

scheduling, drainage, and yield forecasts (Wallace and Verhoef, 2000; Flumignan et al.,
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2011; Sun et al., 2012). The Shuttleworth–Wallace model (S–W model) (Shuttleworth
and Wallace, 1985) takes the interactions between the fluxes from soil and canopy
into account, and is physically sound and rigorous. Previous studies have proved that
it has good performances for row crops such as maize, wheat, cotton, sorghun and
vine (Stannard, 1993; Tourula and Heikinheimo, 1998; Anadranistakis et al., 2000; Teh5

et al., 2001; Lund and Soegaard, 2003; Kato et al., 2004; Ortega-Farias et al., 2007;
Zhang et al., 2008).

Despite these studies, there are still some insufficiencies in the application of the
S–W model (Hu et al., 2009; Zhu et al., 2013). First, the S–W model is sensitive to the
errors in the values of canopy and soil resistances (Lund and Soegaard, 2003). Previ-10

ous studies mainly focused on the parameterization of the canopy resistance (Hanan
and Prince, 1997; Samanta et al., 2007; Zhu et al., 2013), and less attentions has
been committed to the parameterization of the soil surface resistance (Sellers et al.,
1992; van de Griend and Owe, 1994; Villagarcía et al., 2010). In crop ecosystem, E
may contribute significantly to the total ET when leaf area index (LAI) is low (Lund15

and Soegaard, 2003; Zhang et al., 2008). Thus, simultaneous parameterization of the
canopy and soil resistances in the S–W model, based on direct measurement of ET
and its components by using a combination of micro-meteorological (e.g. eddy covari-
ance methods, Bowen ratio), hydrological (e.g. chambers, microlysimeters) and eco-
physiological techniques (e.g. sap-flow, stable isotopes) (Williams et al., 2004; Scott20

et al., 2006), is important to reduce the model error. However, such studies are relative
rare or non-existent. Secondly, as far as the parameterization method is concerned,
abundant evidence has shown that the Bayesian method provides a powerful new tool
to simultaneously optimized many or all model parameters against all available mea-
surements (Clark and Gelfand, 2006). Although some pioneering efforts have been25

made (e.g. Samanta et al., 2007; Zhu et al., 2013), the Bayesian method has been
much less frequently used in parameterization of ET model than in the other envi-
ronmental sciences (van Oijen et al., 2005). Moreover, the Bayesian method, to our
knowledge, has not been used to simultaneously optimized the parameters of the S–W
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model against multiple measuring dataset (Sect. 2.5). Finally, arid northwest China,
one of the driest area in the world (Zhu et al., 2007, 2008), is characterized by a widely
distributed desert/Gobi interspersed with many oases in different sizes and shapes.
Land surface processes of this heterogeneous region are much complex than in other
regions (Zhang and Huang, 2004). Thus, the applicability of the S–W model in such5

regions need to be investigated in details.
Based on direct measurements of different components of ET obtained by using the

eddy covariance technique and microlysimeters over a spring maize field in arid region
of northwest China from 27 May to 14 September in 2013, the objectives of the present
study were to: (1) simultaneously parameterize the S–W model using the Bayesian10

method against multiple measuring dataset; (2) verify the performances of the S–W
model, and identify the causes of failure and success in simulating ET over the crop
ecosystem in arid desert oasis of northwest China. It is expected that this study can
not only promote the developments of ET model parameterization, but also help us to
find a proper direction in modifying the S–W model used in arid regions.15

2 Materials and methods

2.1 Study site

The study site is located in Daman (DM) Oasis, in the middle Heihe River Basin, Gansu
province, China (100◦22′20′′ E, 38◦51′20′′ N; 1556 ma.s.l.; Fig. 1). The annual average
temperature and precipitation was 7.2 ◦C and 125 mm (1960–2000), respectively. The20

potential evaporation is around 2365 mmyr−1, and the dryness index is 15.9. The soil
type is silt clay loam on the surface and silt loam in the deeper layer.

The study area has an agricultural development history of over 2000 yr owing to
its flat terrain, adequate sunlight and convenient water resources from Qilian Moun-
tains. The main crops in the DM Oasis are spring wheat and maize. The spring wheat25

(Triticum aestivum L.) is generally sown in the later March and harvested in the middle
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10 days of July, while the maize (Zea mays L.) is sown in the late April and harvested
in the middle 10 days of September.

2.2 Measurements and data processing

The field observation systems at this site were constructed in May 2013 as part of the
Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project (see de-5

tails in Li et al., 2013b). The fluxes of sensible heat (H), latent heat (λET) and carbon
dioxide were measured at the height 4.5 m using the eddy covariance (EC) system (Liu
et al., 2014), which consists of an open-path infrared gas analyzer (Li-7500, LiCor Inc.,
Lincoln, NE, USA) and a 3-D sonic anemometer (CSAT-3, Campbell Scientific Inc., Lo-
gan, UT, USA). The EC data were sampled at a frequency of 10 Hz by a data logger10

(CR5000, Campbell Scientific Inc.), and then were processed with an average time of
30 min. Post-processing calculations, using EdiRe software, included spike detection,
lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual tem-
perature conversion, planar fit coordinate rotation, the WPL density fluctuation correc-
tion and frequency response correction (Xu et al., 2014). Data gaps due to instrument15

malfunction, power failure and bad weather conditions were filled using artificial neural
network (ANN) and mean diurnal variations (MDV) methods (Falge et al., 2001). The
ANN method was applied when the synchronously meteorological data were available;
otherwise, the MDV method was used. The gap-filling data were used only to analyze
the seasonal and annual variations in ET.20

Continuous complementary measurements also included standard hydro-
meteorological variables. Rainfall was measuring using a tipping bucket rain gauge
(TE525MM, Campbell Scientific Instruments Inc.). Air temperature and relative
humidity (HMP45C, Vaisala Inc., Helsinki, Finland) and wind speed/direction (034B,
Met One Instruments, Inc. USA) were measured at heights of 3, 5, 10 15, 20, 3025

and 40 m above the ground. Downward and upward solar and longwave radiation
(PSP, The EPPLEY Laboratory Inc., USA) and photosynthetic photon flux density
(PPFD) (LI-190SA, LI-COR Inc.) were measured at height of 6 m. Soil temperature
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(Campbell-107, Campbell Scientific Instruments Inc.) and moisture (CS616, Campbell
Scientific Instruments Inc.) were measured at 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 1.2 and
1.6 m depths. Three heat flux plates (HFT3, Campbell Scientific Instruments Inc.)
were randomly buried at the depths of 0.01 m. The average soil heat fluxes were
calculated using the three randomly buried plates. These data were logged every5

10 min by a digital micrologger (CR23X, Campbell Scientific Inc.) equipped with an
analog multiplexer (AM416) was used for sampling and logging data.

Daily soil evaporation was measured using three microlysimeters randomly placed
between crop rows. The microlysimeters with an internal diameter of 10 cm and a depth
of 20 cm were filled with an intact soil core and pushed into soil with the top slightly10

above the soil surface (Daamen et al., 1993; Liu et al., 2002). The average weight loss
of these microlysimeters measured using electronic scales with 0.01 g precision was
nearly equal to soil evaporation. In order to keep the soil moisture in microlysimeters
similar to that between the rows, the soil in the microlysimeters was replaced daily or
every two days.15

Leaf area index (LAI) was measured using AM300 portable leaf area meter (ADC
BioScientific Ltd., UK). The fraction of land cover (f ) was estimated by measuring the
projected crop canopy area of selected stands in corresponding field plot. LAI, f and
crop height were measured approximately every 10 days during the growing season,
and the gaps were linearly interpolated to daily interval.20

2.3 Description of the S–W model

In the S–W model, the ecosystem evapotranspiration (λET; Wm−2) is separated into
evaporation from the soil surface (λE ; Wm−2) and transpiration from the vegetation
canopy (λT ; Wm−2) (Fig. 2), which are calculated as (Shuttleworth and Wallace, 1985;
Lhomme et al., 2012):25

λET = λE + λT = CsETs +CcETc (1)
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ETs =
∆A+ [ρCpD−∆rs

a(A−As)]/(ra
a + rs

a)

∆+γ[1+ rs
s/(ra

a + rs
a)]

(2)

ETc =
∆A+ [ρCpD−∆rc

aAs]/(ra
a + rc

a)

∆+γ[1+ rc
s/(ra

a + rc
a)]

(3)

Cs =
1

1+ [RsRa/Rc(Rs +Ra)]
(4)

Cc =
1

1+ [RcRa/Rs(Rc +Ra)]
(5)

Ra = (∆+γ)ra
a (6)5

Rc = (∆+γ)rc
a +γrc

s (7)

Rs = (∆+γ)rs
a +γrs

s (8)

λE =
∆As +ρCpD0/r

s
a

∆+γ(1+ rs
s/r

s
a)

(9)

λT =
∆(A−As)+ρCpD0/r

c
a

∆+γ(1+ rc
s/r

c
a)

(10)

D0 = D+
(∆A− (∆+γ)λET)ra

a

ρcp
(11)10

where ETs, and ETc are terms to describe evaporation from soil and transpiration
from the plant (Wm−2), respectively; Cs and Cc are soil surface resistance coefficient
and canopy resistance coefficient (dimensionless), respectively; λ is the latent heat of
evaporation (Jkg−1); ∆ is the slope of the saturation vapor pressure vs. temperature15

curve (kPaK−1); ρ is the air density (kgm−3); Cp is the specific heat capacity of dry air

(1013 Jkg−1 K−1); D and D0 (kPa) is the air water vapor pressure deficit at the refer-
ence height (3 m) and the canopy height, respectively; γ is the psychrometric constant
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(kPaK−1); rc
s and rs

s are the surface resistance for plant canopy and soil surface (sm−1),
respectively; rc

aand rs
a are aerodynamic resistances from the leaf to canopy height and

soil surface to canopy height (sm−1), and ra
a is aerodynamic resistances from canopy

height to reference height (sm−1). A and As (Wm−2) are the available energy input
above the canopy and above the soil surface, respectively, and are calculated as:5

A = Rn −G (12)

As = Rns −G (13)

where Rn and Rns are net radiation fluxes into the canopy and the substrate (Wm−2),
respectively; G is the soil heat flux (Wm−2). Rns was calculated using a Beer’s law10

relationship of the form:

Rns = Rn exp(−KALAI) (14)

in which KA is the extinction coefficient of light attenuation, and is approximately 0.41
for spring maize (Mo et al., 2000).15

The climate-related variables (i.e., λ, es, ∆, ρ and γ) in Eqs. (1)–(3) is calculated by
the formulas of Allen et al. (1998).

2.4 Calculation of resistances in the S–W model

The resistance network of the S–W model is shown in Fig. 2. In this paper, the three
aerodynamic resistance (i.e., ra

a , rc
a and rs

a) were calculated using the same approach20

suggested by Shuttleworth and Wallace (1985), Shuttleworth and Gurney (1990) and
Lhomme et al. (2012).

The canopy resistance (rc
s ), which is the equivalent resistance of all the individual

stomates in a canopy and depends on the environmental variables, can be calculated
using the Jarvis-type model (Jarvis, 1976)25
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rc
s =

rSTmin

2LAI
∏
i
Fi (Xi )

(15)

where rSTmin represents the minimal stomatal resistance of individual leaves under
optimal conditions. Fi (Xi ) is the stress function of a specific environmental variable Xi ,
with 0 ≤ Fi (Xi ) ≤ 1. Following Stewart (1998) and Verhoef and Allen (2000), the stress5

functions were expressed as:

F1(Rs) =
Rs

1000

1000+k1

Rs +k1
(16)

F2(Ta) =
(Ta − Ta,min)(Ta,max − Ta)(Ta,max−k2)/(k2−Ta,min)

(k2 − Ta,min)(Ta,max −k2)(Ta,max−k2)/(k2−Ta,min)
(17)

F3(D) = 1−k3D (18)

F4(θr) =


1 θr > θcr
(θr−θwp)

(θcr−θwp) θwp ≤ θr ≤ θcr

0 θr < θwp

(19)10

where k1 −k3 are constants (units see Table 1); Rs is the incoming solar radiation
(Wm−2); Ta is the air temperature (◦C) at the reference height; Ta,min and Ta,max are
the lower and upper temperatures limits (◦C), respectively, which are Ta values when
F2(Ta) = 0 and are set at values of 0 and 40 ◦C (Harris et al., 2004); θr is the actual15

volumetric soil water content in the root-zone at depth of 0–60 cm (m3 m−3); θwp is

water content at the wilting point (m3 m−3); and θcr is the critical water content at which
plant stress starts and was set as 0.30 m3 m−3 in this study.
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The soil surface resistances (rs
s ; Fig. 2) was expressed as a function of near-surface

soil water content (Sellers, 1992; Verhoef et al., 2006, 2012; Zhu et al., 2013):

rs
s = exp(b1 −b2

θs

θsat
) (20)

in which b1 and b2 are empirical constants (s m−1); θs is soil water content in the top5

layer of soil (at depth of 2 cm); θsat is the saturated soil water content (m3 m−3), which
was estimated empirically through the near-surface soil texture. In summary, there are
6 site- and species-specific parameters needed to be estimated in the S–W model
associated with soil and canopy resistances, which are b1, b2, rSTmin and k1 −k3.

2.5 Model calibration and evaluation10

A Bayesian approach was applied to simultaneously estimate the parameters associ-
ated with the soil (b1,b2) and canopy (rST min,k1,k2,k3) resistances in the S–W model
(van Oijen et al., 2005; Svensson et al., 2008; Zhu et al., 2011, 2013). The two dataset
used to simultaneously optimize the parameter values were: EC-measured half-hourly
evapotranspiration (λET; Wm−2) and microlysimeters-measured daily soil evaporation15

(E ; mmd−1).
Corresponding to each of the data sets (e.g., λET and E ), the model error ei (t)

(i = 1,2) is expressed by:

ei (t) = Oi (t)− fi (t) (21)
20

where Oi (t) and fi (t) is observed and modeled (Eqs. 1 and 9) values of the i th dataset
at time t, respectively. Assuming the model error ei (t) follows a Gaussian distribution
with a zero mean, the data likelihood function can be expressed by:

p(O|c) ∝ exp

{
−

m∑
i=1

1

2σ2
i

ni∑
t=1

(ei (t))
2

}
(22)
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where c is the parameter vector; O is the observed data sets; m is the number of
dataset (= 2 in this study); σ2

i (i = 1,2) is the measurement error variance of the i th
dataset; ni is the number of observations of i th dataset. Then with Bayes’ theorem, the
posterior distribution of parameters c is generated by:5

p(c|O) ∝ p(O|c)p(c) (23)

where p(c) represents prior probability distributions of parameters c, and p(c|O) is
the posterior distributions of parameters c. The posterior distribution was sampled us-
ing the Metropolis–Hasting (M–H) algorithm (Metropolis et al., 1953; Hastings, 1970),10

a version of the Markov Chain Monte Carlo (MCMC) technique. To generate a Markov
chain in the parameter space, the M–H algorithm was run by repeating two steps:
a proposing step and a moving step. In the proposing step, a candidate point cnew is
generated according to a proposal density P (cnew|ck−1), where ck−1 is the accepted
point at the previous step. In the moving step, point cnew is treated against the Metropo-15

lis criterion to examine if it should be accepted or rejected (see Zhu et al., 2011, 2013
for detailed description on MCMC sampling procedure). We ran at least three paral-
lel MCMC chains with 20 000 iterations each, evaluated the chains for convergence
(Gelman and Rubin, 1992), and thinned the chains (every 20th iteration) when appro-
priate to reduce within chain autocorrelation, thereby producing an independent sample20

of 3000 values for each parameter from the joint posterior distribution.
During the whole growing season, the measurements were split into two indepen-

dent dataset by taking alternate days. The model parameters were derived using one
dataset. Then the optimized S–W model was used with the second data set to predict
the different components of ET and these values were compared to the measured val-25

ues in the second dataset. The performance of the S–W model was evaluated using
the coefficient of determination of the linear regression between measured and esti-
mated values of water vapor fluxes, R2, representing how much the variation in the
observations was explained by the models. Also, the root mean square error (RMSE),
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mean bias error (MBE), index of agreement (IA) and model efficiency (EF) (Legates
and McCabe, 1999; Poblete-Echeverria and Ortega-Farias, 2009) were included in the
statistical analysis, which are calculated as follows:

RMSE =

√√√√1
n

n∑
t=1

[O(t)− f (t)]2 (24)

MBE =
1
n

n∑
t=1

[O(t)− f (t)] (25)5

IA = 1−

1
n

n∑
t=1

[O(t)− f (t)]2

n∑
t=1

[|O(t)−O|+ |f (t)−O|]2
(26)

EF = 1−

n∑
t=1

[O(t)− f (t)]2

n∑
t=1

[O(t)−O]2
(27)

where n is the total number of observations, O(t) is the observed values at time t, O is
the mean of the observed values, and f (t) is the simulation which was calculated using10

the posterior expectancy of parameter.

3 Results and discussion

3.1 Environmental and biological factors

Detailed information on the seasonality of key environmental and biological variables
is essential to assess seasonal variation in the actual ET and its partitioning. The15
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seasonal change in net solar radiation (Rn; MJ m−2 d−1), air temperature (Ta; ◦C), air
water vapor pressure deficit (D; kPa), wind speed (u, ms−1) at the height of 3 m, rain-
fall and irrigation (mm), soil water content (θ; m3 m−3), and leaf area index (LAI; m2 m−2)
was illustrated in Fig. 3. During the study period (DOY147-257), the daily mean Rn var-
ied from 2.6 to 18.5 MJ m−2 d−1 with an average value of 11.9 MJ m−2 d−1. The peaked5

values were recorded from the end of June to the middle of July (DOY180-195). The
variation of mean daily air temperature (Ta) has a similar trend to Rn, varying from 8.8
to 24.9 ◦C with an average value of around 19.0 ◦C. D exhibited large diurnal varia-
tion ranging from 0 to 3.5 kPa, and the daily meanD was relative small when the LAI
was larger than 3 m2 m−2 (DOY197-230). Daily mean wind speed (u) ranged from 0.510

to 3.2 ms−1, and was close to normal long-term values. Total precipitation during the
study period was 104.2 mm with eight events over 5.0 mm (Fig. 3). θ varied greatly over
the whole growing season. The variability of θ mainly depended on irrigation schedul-
ing of local government (irrigation quota and timing). Soil water content had a peak
value (about 0.35 m3 m−3) after irrigation and gradually reduced till the next irrigation15

(Fig. 3). The LAI showed a clear “one peak” pattern over the whole growing season
with relative high values of 3.5 m−2 m−2 from early July to late August (DOY184-221).

3.2 Posterior distribution of S–W model parameters

The posterior parameter distributions are shown as histograms in Fig. 4 and summa-
rized in Table 1 by posterior means and 95 % probability intervals. The results showed20

that the Bayesian calibration against the multiple dataset was in most cases successful
in reducing the assumed prior ranges of the parameters values. Among the param-
eters, rSTmin has the least posterior variability relative to its prior range, followed by
b1, b2, k2 (approximately symmetric with distinctive modes; Fig. 4), while parameters
k1 and k3 have relative large variability (widely spread on the prior bounds). Ortega-25

Farias et al. (2007) have demonstrated that the S–W model is very sensitive to errors
in rSTmin, and much less to uncertainties in other parameters. Thus, we thought that
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the key parameters in the S–W model were well estimated by the Bayesian method
against the multiple measuring dataset. In addition, the six calibrated parameters were
not significantly inter-correlated with each other except for the pair b1 and b2, which
was positively correlated with a correlation coefficient of 0.85.

The responses of soil surface resistances (rs
s ) to soil water content computed using5

our posterior mean b1 and b2 values were very similar to that calculated using equation
developed by Ortega-Farias et al. (2010) based on direct soil evaporation measure-
ments, but seemed to be more sensitive to changes in soil water contents compared
with some other studies (e.g., Sun, 1982; Sellers, 1992; Zhu et al., 2013; Fig. 5). The
posterior mean value of rSTmin from our study was very close to that (20 sm−1) reported10

for spring maize growing in northwest China obtained by using the least squares fitting
method (Li et al., 2013a). The variations of the minimal stomatal resistance (rSTmin) for
many natural and cultivated plantshave been widely investigated by previous studies
(Korner et al., 1979; Pospisilova and Solarova, 1980). Typical values for rSTmin vary
considerably from about 20–100 sm−1 for crops to 200–300 sm−1 for many types of15

trees. Thus, our results fell within the range of previous studies.

3.3 Model performance compared with measurements

Having parameterized the S–W model as described above, we ran the model to simu-
late the half-hourly λET (Eq. 1) and λE (Eq. 9) values (Wm−2). The daily estimations
of evapotranspiration (ET; mmd−1) and soil evaporation (E ; mmd−1) was obtained by20

summing up the half-hourly simulated values. The statistical analysis of observed vs.
estimated values of water vapor fluxes at different time-scales were summarized in
Table 2. These results indicated that the parameterized S–W model was able to pred-
icate λET on a half-hourly basis with values of R2, IA and EF equal to 0.83, 0.93
and 0.74, respectively. However, there still existed the difference between measured25

and modeled half-hourly λET values for the spring maize in the arid desert oasis. The
slope (0.84) of regressive equation between the measured and modeled half-hourly
λET values was lower than one (Table 2 and Fig. 6a), which indicated that the S–W
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model tended to underestimate the half-hourly λET with a MBE value of 24.2 Wm−2.
Ortega-Farias et al. (2010) also reported that the S–W model underestimated on half-
hourly time intervals compared the EC-measured λET over a drip-irrigated vineyard
in Mediterranean semiarid region during the growing season in 2006. On the contrary,
some studies showed that the S–W model overestimated half-hourly λET (e.g., Li et al.,5

2013a; Ortega-Farias et al., 2007; Zhang et al., 2008). Therefore, the performances of
the S–W model seemed to be variable for different crops and places, and there is
a need to identify the causes that induced the disagreements between observed and
modeled values (discussed below).

The fluctuation of measured and estimated daily ET and E was illustrated in Fig. 7.10

In this case, a good agreement between measured and estimated daily E was ob-
tained with values of R2, IA and EF equal to 0.82, 0.94 and 0.76 (Table 2). The points
in plots of measured-vs.-modeled daily E fell tightly along the 1 : 1 line (slope = 1.01
and intercept = 0.01 with RMSE = 0.05 and MBE = −0.01; Fig. 6b and Table 2). Thus,
we thought that the soil resistance in the S–W model was properly parameterized for15

the spring maize by the measured soil evaporation data. From Fig. 7, we can also
observed that the estimated daily ET generally fluctuated tightly with the measured
values. The values of RMSE, MBE, IA and EF were equal to 0.05, 0.14 mmd−1, 0.94
and 0.79, respectively (Table 2). However, great underestimations (> 0.5 mmd−1) were
observed on 12 days during the study period (111 days). For example, on 5 July, the20

estimated and measured daily ET was 2.9 and 4.3 mmd−1, respectively (Fig. 7). Thus,
the causes of the underestimations of ET by the S–W on these days needed to be
carefully checked based on detailed micrometeorological data. This work would help
us to modify the model in a correct way and improve the precision of prediction.
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3.4 Identification of the disagreement/agreement between observed and
modeled ET values

The diurnal variation of Rn, H and λET (measured and modeled) above the spring
maize ecosystem for some selected days was presented in Fig. 8. Resulting from the
high surface heterogeneities, one special phenomenon, known as the “oasis effect”5

(Lemon et al., 1957) or “cold island effect” (Wang et al., 1992; Zhang and Huang,
2004), was often observed on clear days in July and August in the study area and it
is characterized as follows: (1) H is very small and even negative (downward) in the
afternoon (Fig. 8a–c) due to the micro-scale advection of hot dry air over the desert
to crop surface in the oasis. For an example, on 5 July, H was continuously negative10

from 12 : 00 to 20 : 00 (Fig. 8a). A strong advection process can be distinctly detected
from the temperature and relative humidity profiles (Fig. 9a and b), in which the highest
temperature occurred at a height of 8–18 m; (2) measured actual λET often exceeded
(Fig. 8a) or was equal to (Figs. 8b and c) the local net radiation because of the added
energy in the form of downward fluxes of H to the ET process (Evett et al., 2012). Un-15

der such conditions, the S–W model significantly underestimated the actual ET values
due to the real atmospheric flows do not correspond to its assumption of horizontal
homogeneities (Rao et al., 1974). Thus, how to properly representing the advection
process in the S–W model should be paid special attentions in simulating ET over
crop ecosystems in arid desert oasis in the future studies. In addition to this situa-20

tion, slight underestimations were also observed on or shortly after rainy days (Fig. 7).
For example, the simulated half-hourly λET was lower than that measured by EC af-
ter the rainfall event occurred in 13:00 LT on 17 June (Fig. 8d). We thought that the
underestimations by the model on or shortly after rainy days were mainly due to ignor-
ing the direct evaporation of liquid water intercepted in the crop canopy, because no25

downward H and temperature inversion were observed on this day (Figs. 9c and d).
Until now, several canopy interception models have been developed (e.g., Rutter et al.,
1971; Mulder, 1985; Gash et al., 1995; Bouten et al., 1996). However, many of them
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were developed for simulating the rainfall interception by forest ecosystems, and their
suitability for crops need to be further investigated.

On the other hand, the diurnal variation of simulated half-hourly λET by the param-
eterized S–W model has a similar trend to the measurements on clear and advection-
absent days during the whole study periods (Fig. 8e–h). On these days, H was positive5

(upwards) at day time (Fig. 8e–h) and no temperature inversion was observed (Fig. 9e
and f). Thus, we thought that the parameterization schedule adopted in this study
worked well. It also demonstrated that the properly parameterized S–W model can be
used in simulating and partitioning ET for homogeneous land surface. Hu et al. (2009)
reported that the S–W model parameterized by using Monte Carlo method can suc-10

cessfully simulated ET at four uniform grasslands in China; our previous studies (Zhu
et al., 2013) also illustrated that parameterized S–W model can be used to simulate
and partition ET over a vast alpine grassland in Qinghai-Tibet Plateau.

4 Conclusions

This study illustrated the use of the Bayesian method to simultaneously parameterize15

a two-source ET model against the multiple measuring dataset for a crop ecosystem in
a desert oasis of northwest China. The posterior distributions of the model parameters
in most cases can be well constrained by the observations. Generally, the parameter-
ized model has a good performance in simulating and partitioning ET. However, under-
estimations were observed on days when micro-scale advection occurred. Therefore,20

in the future studies, special attentions should be given to proper descriptions of the
effects of advection on estimating ET for heterogeneous land surface. In addition, the
canopy interception model should be coupled with the two-source ET model in long-
term simulation.
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Table 1. Prior distributions and the parameter bounds for the S–W model. These values are
derived from the literature; the posterior parameter distribution estimated by MCMC are based
on observed data in our site, and are characterized by the mean and 95 % high-probability
intervals (Lower limit, Upper limit).

Parameter Prior Distribution Posterior Distribution

Lower Upper References Mean 95 % High-
Bound Bound Probability Interval

rSTmin (sm−1) 0 80 Noilhan and Planton (1989); 21.8 (20.2, 24.6)
Li et al. (2013a)

k1 (Wm−2) 0 500 Stewart (1998) 294.6 (42.5, 487.7)
k2 (◦C) 5 40 Ogink-Hendriks (1995) 25.6 (12.9,34.4)
k3 (kPa−1) 0 0.1 Stewart (1998) 0.02 (0, 0.07)
b1 (sm−1) 4 15 Sellers et al. (1992); 9.3 (8.4, 10.0)

Zhang (2012); Zhu et al. (2013)
b2 (sm−1) 0 8 Sellers et al. (1992); 6.2 (3.8, 7.4)

Zhang (2012) ; Zhu et al. (2013)

The bold number means that this parameter was well constrained by the data.
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Table 2. Statistical analysis of measured and estimated values of half-hourly evapotranspiration
(λET; Wm−2), daily soil evaporation (E ; mmd−1), and daily evapotranspiration (ET; mmd−1) for
the spring maize in arid desert oasis during the study period.

n Regressive equation R2 Mean Mean RMSE MBE IA EF
measured simulated

values values

λET (Wm−2) 3578 λETmodeled = 0.84λETmeasured +0.18 0.83 161.4 137.2 80.7 24.2 0.93 0.74
E (mmd−1) 56 Emodeled = 1.01Emeasured +0.01 0.82 0.26 0.28 0.05 −0.01 0.94 0.76
ET (mmd−1) 95 ETmodeled = 0.83ETmeasured +0.19 0.83 2.02 1.88 0.32 0.14 0.94 0.79

n = the sample number; R2 = the determination coefficient; RMSE= root mean square error; MBE=mean bias error between measured and modeled values;
IA= index of agreement; ET =model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and
Poblete-Echeverria and Ortega-Farias (2009).
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Fig. 1. Experimental location and instrumentation setting at Daman (DM) superstation.
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Fig. 2. Schematic diagram of the S–W model. From right to left, rc
s and rc

a are bulk resistances of
canopy stomatal and boundary layer (sm−1), respectively; rs

a and ra
a aerodynamic resistances

from soil to canopy and from canopy to reference height (sm−1), respectively; rs
s soil surface

resistance (sm−1). λT transpiration from canopy (Wm−2), λE evaporation from soil under plant
(Wm−2), and λET total evapotranspiration (Wm−2).
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Fig. 3. Seasonal variation in net solar radiation (Rn; MJ m−2 d−1), air temperature (Ta; ◦C), vapor
pressure deficit (D; kPa), wind speed (u; ms−1) at the height of 3 m, precipitation and irrigation
(mm), soil water content (θ; m3 m−3) and leaf are index (LAI; m2 m−2) during the study period in
the Daman Oasis.

769

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/741/2014/gmdd-7-741-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/741/2014/gmdd-7-741-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 741–775, 2014

Simultaneously
parameterize the ET
model by Bayesian

approach

G. F. Zhu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Histograms of samples from the posterior distributions of the parameters. The dashed
vertical lines indicate mean parameter values.
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Fig. 5. Comparisons of responses of soil surface resistance (rs
s sm−1) to soil surface water

contents (θ; m3 m−3).
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Fig. 6. (a) Plot of estimated evapotranspiration (λET; Wm−2) against observed values. The
regressions is: y = 0.84x+0.18 (R2 = 0.83); (b) plot of estimated daily soil evaporation (E ;
mmd−1) against measured data. The regressions is: y = 1.01x+0.01 (R2 = 0.82).
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Fig. 7. Seasonal variation in daily evapotranspiration (ET; mmd−1) and soil evaporation (E ;
mmday−1) measured by the EC system and microlysimeters and modeled by the S–W model
during the study period in Daman Oasis. Gap in the time series is caused either by the absence
of flux measurements or missing ancillary data.
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Fig. 8. Diurnal variations in net radiation flux (Rn; Wm−2), sensible heat flux (H ; Wm−2), and
modeled and measured evapotranspiration flux (λET; Wm−2). (a)–(c) Represented conditions
at which micro-scale advection occurred at 12:00, 15:00 and 17:00 Beijing Standard Time
(BST), respectively, (d) represented a rainy day, and (e)–(h) represented clear and advection-
absent days during the study period. Gap is caused either by the absence of flux measurements
or missing ancillary data.
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Fig. 9. The diurnal evolutions of temperature (Ta; ◦C) and relative humidity (RH; %) profiles
from 3 m to 40 m above the ground. Profiles of (a) Ta and (b) RH on 5 July, 2013. An obvious
advection process can be detected from 13:00 to 17:00 BST with high Ta and low RH layer
at the height of 8–18 m; profiles of (c) Ta and (d) RH on 17 June, 2013. A precipitation event
occurred at 13:00 and resulted in uniform vertical distributions of Ta and RH, but no temperature
inversion were observed; profiles of (e) Ta and (f) RH on 11 June, 2013. It represented a typical
clear and advection-absent day.
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