
 1 

Responses to comments Provided by Referee 1 

Parameter optimization by MCMC method for the evapotranspiration model is 

one of the best solutions for improving the estimation accuracy. Zhu et al. did 

an interesting work on simultaneous assimilation of two different data streams: 

30min evapotranspiration (ET) and daily evaporation (E), then finally gained 

the moderately good accordance between the simulations and the 

observations. The efforts proved a new feature for optimizing the canopy 

transpiration and soil evaporation parameters, and also brought the direction 

for further improvement of such ET model. 

Authors’ response: Thanks very much for your positive comments. 

 

Main comments: 

1. However, this paper is suffering from insufficient explanation on the 

optimization scheme.  

Authors’ response: According to your valuable suggestions, a detail 

explanation of the optimization scheme were added in our revised paper (Lines 

303-315, Pages 14-15): 

It was well recognized that efficiency of the M-H algorithm was strongly 

effected by the proposal distribution function. To find an effective proposal 

distribution new 1( | )kP 
c c , a test run of the M-H algorithm with 10, 000 simulations 

was made by using a uniform proposal distribution (Braswell et al., 2005): 

new 1 max min( )k r  c c c c                                             (26) 

where 1k
c  is the current accepted point; r is a random number uniformly 

distributed between -0.5 and +0.5; min
c and max

c are the lower and upper limits of 

parameter vector c . Based on the test run, we then constructed a normal proposal 

distribution new ( 1) 0( ,cov ( ))kN :c c c , where 0cov ( )c is the covariance matrix of the 

parameter vector c  from the initial test run (Xu et al., 2006).  

In addition, a detailed flowchart representing the basic scheme of the M-H 
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algorithm and the Matlab code were presented in Appendix B. 

 

2. … and on the optimization of which parameter reduced the uncertainty on 

model simulation. 

Authors’ response: We thought that it may be good to explain this problem by 

doing a parameter sensitivity analysis. Thus, in our revised paper a sensitivity 

analysis was conducted (see details in Appendix A). The results indicated that 

the most sensitive parameters in the S-W model was rSTmin, and followed by 

b1 , b2, k2 and k1. Other parameter had almost no effect on the variability in 

model output. We have stated it in our revised paper (Lines 374-381, Page 

18): 

The global sensitivity analysis with the first-order impact ratio (FOIR) values 

(Appendix C) reveal the importance of input parameters in affecting total ecosystem 

evapotranspiration. The results indicated that total ET responded sensitively to STminr , 

1b , 2b  and 2k  with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%, 

respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting 

that the variability in these parameters had almost no effect on the variability in model 

output.    

 

3. and on how individual measurement data of two data steams improved 

your model simulation. 

Authors’ response: According to your suggestion, two different assimilation 

schemes were conducted to evaluated on how individual measurement data of 

two data steams improved your model simulation. The two assimilation 

schemes were: (1) simultaneous assimilation all data sets including half-hourly 

ET (λET; W m-2) and daily soil evaporation (E; mm d-1); (2) only assimilation 

half-hourly ET (λET; W m-2). The detail comparisons between the two 

assimilation scheme were presented in Appendix B.  

4. The authors miss the explanations on the parameter optimization 
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processes and results. First, why don‟t you optimize other parameters for 

better estimation? Your former paper, Zhu et al. (2013), used gmax q50, 

d50, kq, ka more than this study. Explain the reason why you chose 6 

parameters for optimization in this study. 

Authors’ response: Firstly, the canopy resistance model in this two studies 

are different. In our former paper, the Leuning‟s type canopy resistance model 

(Leuning et al., 2008) were used. In this study, the Jarvis-type model (Jarvis, 

1976) was used. Thus, the parameters were different for these two different 

model.  

Secondly, we thought that parameters with really physical or biological 

meanings (e.g., KA) should be measured in site (Sauer et al., 2007) rather than 

to be estimated.  

Third, to avoiding the equifinality, a global sensitivity analysis was conducted to 

reveal the most sensitive parameters in the S-W model. The first-order impact 

ratio (FOIR) values for  STminr , 1b , 
2b  and 

2k  were 54.3%, 21.9%, 10.4% and 

8.5%, respectively. While FOIR values for some parameters (Tamin and Tamax) 

were less than 5% (see Appendix A).  

Thus, we chose STminr , 1b , 2b , and 1 3k k  as parameters, while other from 

literatures.  

References:  

Leuning, R., Zhang, Y.Q., Rajaud, A., Cleugh, H., Tu, K., 2008. A simple 

surface conductance model to estimate regional evaporation using MODIS leaf 

area index and the Penman–Monteith equation. Water Resour. Res. 44, 

W10419. http://dx.doi.org/10.1029/2007WR006562. 

Jarvis, P.G. 1976. The interpretation of the variations in leaf water potential and 

stomatal conductance found in canopies in the field. Philos. T. R. Soc. B., 273, 

563-610. 

Sauer, T.J., Singer, J.W., Prueger, J.H., DeSutter, T.M., Hatfield, J.L. 2007. 

Radiation balance and evaporation partitioning in a narrow-row soybean 

http://dx.doi.org/10.1029/2007WR006562
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canopy. Agriculture and Forest Meteorology, 145, 206-214. 

 

5. Second, how did you decide the measurement error variance, σ? 

Authors’ response: In our revised paper, the method to determine the error 

variance were given as (Lines 271-284, Pages 13-14):  

i  ( 1,2i  ) represents the residual errors, or standard deviation about model 

predicted output of the ith dataset. Here, we assumed 
i  is the same over the 

observation time for the ith data set (Braswell et al., 2005). Traditionally, i  can be 

included into the analysis explicitly (i.e., assuming i  is uniform over log i ; 

Gelman et al., 1995) and treated as one the model parameters, which yields a 

complete posterior distribution of i . However, this method artificially increased the 

parameter dimension of the problem and may result in unreasonable estimations of the 

parameter values (Kavetski et al., 2006). In this study, i  was estimated by using the 

analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find 

the value of i  that maximizes log( ( ( ) | ))ip O c  for a given parameter vector. By 

differentiating log( ( ( ) | ))ip O c  with respect to i , we can obtain: 

2

1

1
( ( ))

in
a

i i

ti

e t
n




                                                   (24) 

We then used a

i  to replace i  in the equations (22). 

 

6. Third, the arithmetic mean values from posterior parameter probability 

density were picked up as the optimized parameter numbers in this study. 

However, I think that the median values should be used for them although 

the mean and median would be the same if there is a perfect Gaussian 

probability distribution. However, normally it is not the case. So you should 

take the median value for the optimized parameter number. 

http://dict.cn/artificially


 5 

Authors’ response: According to your valuable suggestion, the median value 

was used as the optimized parameter (Lines 340-342, in Page 16): 

, ( )if t is the simulation which was calculated using the posterior median parameter 

values, and other parameter vectors selected from the parameter chains generated by 

the MCMC iteration (van Oijen et al., 2013).  

 

7. Fourth, you compare the range of posterior parameter values to those of 

other posterior parameter values. But, if you like to inter-compare the 

relative influence by each parameter optimization on reducing total ET 

error, you have to use the relative range of parameter values, by dividing 

the absolute parameter value range by posterior/prior parameter 

uncertainty value. 

Authors’ response: According to your suggestion, relative uncertainty 

reduction was added in our revised paper (Lines 370-372, Page 18): 

Parameters STminr , 1b , 
2b  and 2k  showed relatively large uncertainty reductions 

(defined as 1 CI / CIposterior prior , where CI  is the length of the 95% credible 

interval) (Fig. 5). 

 

8. This study assimilated daily E in addition to 30min ET, which is already 

used in your previous study on the Qinghai Tibetan Plateau (Zhu et al., 

2013). This is a good originality of this study. So I like to know how the 

estimation accuracy will change if you optimize single data (ET or E), and 

how the accuracy on E estimation is if only ET is assimilated, and vice 

versa. 

Authors’ response: To clearly investigate this interesting question, we 

compared two different assimilation scheme: (1) simultaneous assimilation all 

data sets including half-hourly ET (λET; W m-2) and daily soil evaporation (E; 
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mm d-1); (2) only assimilation half-hourly ET (λET; W m-2). (see Appendix B). 

Comparing with the two assimilation schemes, important differences occurred 

in estimates of the posterior distribution of parameters related to the soil 

surface resistance (
1b  and 

2b ; s m-1). Generally, tighter posterior distributions 

for parameters 
1b  and 

2b  were obtained by Scheme 1. For example, the 

values of uncertainty reduction for 
1b  and 

2b  in Scheme 1 (0.89 and 0.56, 

respectively) were higher than that in Scheme 2 (0.79 and 0.12, respectively). 

Thus, the daily soil evaporation data helped to well constrain estimates of 1b  

and 
2b . In addition, the six calibrated parameters by Scheme 1 were not 

significantly inter-correlated with each other (correlation coefficients lower than 

0.1), while for Scheme 2 the pairs 1b  and 
2b  and STminr  and 

2b  tended to be 

constrained together with correlation coefficients being 0.84 and 0.32, 

respectively.  

Overall, the simulations (half-hourly λET  and daily soil evaporation) of the 

S-W model optimized by using all data sets simultaneously were comparable 

to the measurements (see Fig. 6 in the Manuscript). For example, the slope of 

regressive equation between the measured and modeled half-hourly 

λET values for Scheme 1 was 0.84, with MBE of 24.2 W m-2, IA of 0.93 and EF 

of 0.74. A relatively good agreement between measured and estimated daily 

soil evaporation (E) was also obtained. The slope of regression equation was 

1.01, with MBE of –0.01 mm day-1, IA of 0.94 and EF of 0.76. When only 

EC-measured data were used (Scheme 2), the performances of the S-W 

model optimized by Scheme 2 on simulations of half-hourly λET were not 

significantly different from that optimized by Scheme 1. The regression 

equation between the measured λET  and the estimated λET from the S-W 
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model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m-2, IA of 0.67 

and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly 

underestimated the soil evaporation (E). The slope of regression equation 

between the measured and the estimated E was 0.59, with MBE of 0.11 mm 

day-1, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model 

properly partition the total ET into its different components using only the 

half-hourly λET  data, even thought the simulated values was in good 

agreement with measurements. 

 

9. For advection, you concluded that the underestimation by S-W model was 

induced by no representation of enhanced ET by such dry air advection 

so-called as an oasis effect. I guess that the hot/dry airflow effect by 

advection could be reflected by enhanced air temperature and enhanced 

vapor pressure deficit, which would give higher ET estimation by S-W 

model to some extent. 

Authors’ response: Yes, when the air gets hot and dry in the absences of 

inversion temperature layer, a higher ET was estimated by the S-W model. 

However, for heterogeneous land surface such as desert and oasis, advection 

were often observed. In desert region, the available energy is mainly 

dissipated as sensible heat to warm the air; In the oases on the other hand, 

water is generally not limited due to irrigation and it permits evapotranspiration 

freely. Thus, the oasis is cooler than the regional air in which it is embedded, 

and there is a continual air-to-oasis inversion temperature gradient driving a 

downward directed heat flux. The energy used to evapotranspiration is more 

than available solar radiation. Oke (1978) pointed that: this anomalous 

situation is explained by the fact that the atmosphere supplies sensible 

heat to the oasis surface. The interaction between the oasis and nearby 

desert were illustrated in Fig. S1.  

However, the advection process was neglected in the S-W model, and 
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underestimations of evapotranspiration were observed in our study in the 

presences of inversion temperature layer (Fig. 10 in our revised paper). 

 

Fig. S1 The interaction between desert and oasis (modified according to Hu, 

1994). 

References: 

Oke, T. R. Boundary layer Climates, Second ed. Mathuen, London, 1978. 

Hu, Y.Q.: Research advance about the energy budget and transportation of 

water vapour in the HEIFE area. Advance in Earth Science, 9(4), 30-34, 

1994. (in Chinese with English abstract). 

 

10. The S-W model is a nicely simple model to be applied for estimating ET in 

the sparsely-planted crop field to take into account the considerable soil 

evaporation, which could not be represented by widely-used 

Penman-Monteith model. However, the optimized S-W simulation shows 

that the relative contribution by soil evaporation on total ET was quite low 

(less than 0.1 for most of growing season), so that the S-W model is not 

necessarily required this time actually. 

Authors’ response: We fully agree with your comments. In this study, we 
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mainly to show that only using the EC-measured data it may be not proper in 

estimating model parameters, especially for parameters related the soil 

residence (Appendix B). We want that this study may be helpful to researches 

in doing field observations. 

 

Minor comments: 

1. Title: What does "Simultaneous parameterization" mean? Does it mean 

that 6 parameters are optimized concurrently? Either, do you mean that 

S-W model assimilates two data sets, λET and E, together at once? You 

modify the title to appeal the focal point of this research concerning such 

“simultaneous parameterization”. 

Authors’ response: The title was changed as: 

Simultaneously assimilating multivariate datasets into the two-source 

evapotranspiration model by Bayesian approach: Application to spring maize 

in an arid region of northwest China 

2. Page 742, Line 10, “a good agreement”: I do not think that the regression 

line‟s slope, 0.84, shows a good agreement. 

Authors’ response: “a good agreement” was changed as “a moderately good 

agreement” 

 

3. Page 742, Line 11-13: This is a speculation. You should not write in this 

way, which strongly affirms the advection although you did not measure it 

directly 

Authors’ response: The sentence was changed as: 

The causes of underestimations of ET by the S-W model was possibly attributed to 

the micro-scale advection. 

 

4. Page 742, Line 14, “accounted”: account? 

Authors’ response: The world “accounted” has been changed as “account”. 

 

5. Page 742, Line 15-16: This is a speculation again. 

Authors’ response: This sentence was changed as: 

Also, underestimations were observed on or shortly after rainy days, which may be 

due to direct evaporation of liquid water intercepted in the canopy. 

 

6. Page 743, Line 12, “has”: have? 

Authors’ response: the world “has” was changed as “have”. 

 

7. Page 744, Line 25, “The spring wheat”: How sparsely was it planted? 

Normally the S-W model is needed for the crop land where the crop is 

planted sparsely. But, you have not mentioned anything about the crop 
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density. You clarify it. 

Authors’ response: We have clarified it as (Lines 115-116, Page 6): 

Stand density of the spring maize is about 37 plants m2 with row spacing of 40 

cm and planting spacing of 7 cm. 

 

8. Page 745, Line 4-20: You have to address about the estimation accuracy 

or energy closure for eddy flux measurement, which could relate to the 

error range of assimilated data set. 

Authors’ response: According to your valuable suggestions, these issues 

were addressed (Lines 130-138, Pages 6 and 7): 

About 85% energy balance closure (the sum of H+λET against the available energy) 

was found in EC data (Liu et al., 2011). In addition, the flux uncertainties are directly 

related to the likelihood function of Bayesian inference (Section 2.5). Thus, 

determining the uncertainties is EC measurements is essential for proper parameter 

estimates. Recently, Wang et al. (2014) systemically studies the flux uncertainties of 

EC systems equipped in the HiWATER experiment. Generally, uncertainties for H  

( ( )r H ; W m
-2

) by using method of Mann and Lenschow (1994) tended to be 

( ) 0.14 2.7r H H   (R
2
=0.95), and uncertainties for λET  ( (λ )r ET ; W m

-2
) be 

(λ ) 0.13λ 6r ET ET    (R
2
=0.93) (Wang et al., 2014). 

9. Page 746, Line 8-9: The position of lysimeter installation is very important 

to think of estimation accuracy. If the lysimeter was installed just in the 

middle of rows, the soil evaporation located closer to row is missed. In this 

situation, when plant gets large, you may overestimate the E under the 

shades of leaves. It contributes to underestimate T by modeling due to 

adjusting the soil conductance to match the modeled E with the 

overestimated E by lysimeter. 

Authors’ response: Yes, we fully agree with your opinions. The equipment 

and filed observation was presented in the following figure. In our revised 

paper, we stated as (Lines 160-161, Page 8): 

….between crop rows (one in the middle of the rows and the other two close to 

plants on each side of the rows).   
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Fig. S2 The equipments and field observation during the study period 

 

10. Page 750, Section 2.5: Add a flow chart of data calibration and evaluation 

steps. 

Authors’ response: According to your valuable suggestion, a flow chart of 

data calibration were presented in our revised paper. In order to save pages of 

the paper, we presented it in Appendix B. It can be easily found by the 

readers as shown below (Fig. S3).  
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Fig. S3 Flowchart representing the basic scheme of the M-H algorithm. 

 

11. Page 750, Line 21, “is”: are? 

Authors’ response: It has been corrected 

 

12. Page 751, Line 2, σi2: How did you decide this number? It is a very 

important number, which decides the relative influence by each measured 

data in the assimilation process. So you have to write about it. 

Authors’ response: According to your suggestion, a detail descriptions were 

given in our revised paper as (Lines 271-284, Pages 13-14): 

i  ( 1,2i  ) represents the residual errors, or standard deviation about model 

predicted output of the ith dataset. Here, we assumed i  is the same over the 

observation time for the ith data set (Braswell et al., 2005). Traditionally, i  can be 

included into the analysis explicitly (i.e., assuming i  is uniform over log i ; 

Gelman et al., 1995) and treated as one the model parameters, which yields a 

complete posterior distribution of i . However, this method artificially increased the 

parameter dimension of the problem and may result in unreasonable estimations of the 

parameter values (Kavetski et al., 2006). In this study, i  was estimated by using the 

analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find 

the value of i  that maximizes log( ( ( ) | ))ip O c  for a given parameter vector. By 

differentiating log( ( ( ) | ))ip O c  with respect to i , we can obtain: 

2

1

1
( ( ))

in
a

i i

ti

e t
n




                                                   (24) 

We then used a

i  to replace i  in the equations (22). 

 

13. Page 751, Line 22-23: I do not understand this sentence. 

Authors’ response: The same question was also putted by the other two 

http://dict.cn/artificially
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referees. In our revised paper, these sentences were changed as (Lines 

323-326, Pages 15 and 16): 

Since the primary interest in application of the S-W model was to reproduce the 

pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during 

the whole study period, we used all available data to construct the likelihood function 

(equation 25) and to obtain the posterior distribution of the parameters. 

 

14. Page 751, Line 23-25: You should add the flowchart of this sequence. 

Authors’ response: These sentences have been deleted in our revised paper. 

 

15. Page 753, Section 3.2: There are several problems in this subsection. You 

did not make the proper explanation of results in many places. For ex., 

how did you calculate the corr. coefficient of 0.85? From what kind of data 

do you calculate this corr. coeff.? Another thing is that you did not make 

the discussion. At the end of paragraphs, you are finishing with the 

mention that the optimized parameters were within reported values. Is that 

all to say here? This is just a report, but discussion. You have to discuss 

more about why the optimized parameters fell into such reported ranges. 

And why did k1 and k3 have no Gaussian distribution? 

Authors’ response: (1) In our revised paper, the how did we calculate the 

corr. coefficient were explained and a table was presented in Appendix B. 

These sentences were changed as (Lines 385-389, Pages 18 and 19): 

In addition, the correlation coefficient between the posterior distribution of 

parameters can be used to find groups of parameters tend to be constrained together 

(Knorr and Kattge, 2005). In this study, the six calibrated parameters were not 

significantly inter-correlated with each other with correlation coefficients lower than 

0.1 (Appendix B).  

(2) According to the valuable suggestions form you and other referees, a 

Discussion section were added in our revised paper to explain the posterior 

distribution of optimized parameters.  

 When just using EC-measured λET data, a relative wider posterior 

distribution of 2b  was observed (see Appendix B). Thus, the daily soil 

evaporation data helped to well constrain estimates of 1b  and 2b . (Lines 

395-397, Page 19); 

 However, some parameters related to canopy surface resistance (i.e., k1 and 

k3) seemed to be not well updated (Fig. 4). This may be due to the fact that 

these parameters may be insensitive to the present available data sets. (Lines 
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404-407, Page 19) 

 However, even with all datasets (EC-measured λET and 

microlysimeters-measured daily E), some parameters related to canopy 

surface resistance seemed to be not well updated (Fig. 4). We thought that 

this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax, 

Tamin and KA) to the present available datasets. Thus, direct observations of 

plant transpiration using sap flow or stable isotope (δ2H and δ18O) 

technologies (see Williams et al., 2004), canopy temperature using infrared 

thermometer and continuous within- and above-canopy radiation using the 

four-component net radiometer (see Sauer et al., 2007) are needed in the 

future studies. (Lines 523-531, Page 25). 

 

16. Page 753, Line 24-25, “while ~”: k1 and k3 did not have a Gaussian 

distribution. Then you finally could not have the proper mean or median 

value, which should be located in the middle of parabola of parameter 

histograms. So it means that the optimization did not work for those two 

parameters. Another thing is that it proves that Transpiration was not 

sensitive to Rs and D while T was sensitive to Tair and soil moisture. 

Authors’ response: Yes, we fully agree with your comments. The posterior 

distributions of k1 and k3 seemed to be non-Gaussian. The median value may 

be not correct for these parameters. We explained why these parameters were 

not well updated as following: 

 However, some parameters related to canopy surface resistance (i.e., k1 and 

k3) seemed to be not well updated (Fig. 4). This may be due to the fact that 

these parameters may be insensitive to the present available data sets. (Lines 

404-407, Page 19) 

 However, even with all data sets (EC-measured λET and 

microlysimeters-measured daily E), some parameters related to canopy 

surface resistance seemed to be not well updated (Fig. 4). We thought that 

this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax, 

Tamin and KA) to the present available data sets. Thus, direct observations of 

plant transpiration using sap flow or stable isotope (δ
2
H and δ

18
O) 

technologies (see Williams et al., 2004), canopy temperature using infrared 

thermometer and continuous within- and above-canopy radiation using the 

four-component net radiometer are needed in the future studies. (Lines 

523-531, Page 25) 

Also, a sensitivity analysis was conducted in our revised paper (Lines 374-381, 

Page 18): 

The global sensitivity analysis with the first-order impact ratio (FOIR) values 

(Appendix A) reveal the importance of input parameters in affecting total ecosystem 

evapotranspiration. The results indicated that total ET responded sensitively to STminr , 

1b , 2b  and 2k  with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%, 
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respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting 

that the variability in these parameters had almost no effect on the variability in model 

output.   

 

 

17. Page 753, Line 25-27, “Ortega-Farias et al. (2007)~”: First, I do not 

understand what you are trying to say here. Second, I assume that you 

mean here that 95% probability intervals narrower than your prior 

parameter ranges and relatively clear Gaussian distribution in rstmin show 

those sensitivity of rstmin, and also that relatively wider parameter ranges 

in b1, b2 and k2 and no Gaussan distribution in k1 and k3 show less 

sensitivity to uncertainties in other parameters. If my assumptions are 

correct, I do not agree with them. You cannot estimate relative sensitivity of 

parameter only from the absolute range between max and min. You have 

to divide the absolute range by prior or posterior uncertainty of each 

parameter for comparison of relative influence by error. For ex., 

(p(95%ile)-p(5%ile))/Unc_p should be applied for this comparison. 

Authors’ response: The sentences “Ortega-Farias et al. (2007)~” were 

deleted in our revised paper, and they were changed as (Lines 374-381, Page 

18): 

The global sensitivity analysis with the first-order impact ratio (FOIR) values 

(Appendix A) reveal the importance of input parameters in affecting total ecosystem 

evapotranspiration. The results indicated that total ET responded sensitively to STminr , 

1b , 2b  and 2k  with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%, 

respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting 

that the variability in these parameters had almost no effect on the variability in model 

output. It is worth noting that the four highest sensitive parameters ( STminr , 1b , 2b  

and 2k ) also corresponded to the greatest degree of updating in the Bayesian 

inference. 

According to your suggestions, a relative uncertainty reductions of parameters 

were used in our revised paper (Lines 353-355, Page 17): 

Parameters STminr , 1b , 
2b  and 2k  showed relatively large uncertainty reductions 

(defined as 1 CI / CIposterior prior , where CI  is the length of the 95% credible 

interval) (Fig. 5). 

 

18. Page 754, Line 1, “estimated”: optimized? 

Authors’ response: Yes, it has been corrected. 
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19. Page 754, Line 2-4: You should explain more about the results, from which 

you can consider if there are the inter-correlations. In which Figure and 

Table can we see the corr. Coeff. Number of 0.85? And what does corr. 

Coefficient mean? There is no proper information about the corresponding 

results written here. You cannot confirm the inter-correlations without 

calculating the covariance in errors in each combination of two 

parameters. 

Authors’ response: According to your suggestion, we explained the results as 

(Lines 385-389, Pages 18 and 19): 

In addition, the correlation coefficient between the posterior distribution of 

parameters can be used to find groups of parameters tend to be constrained together 

(Knorr and Kattge, 2005). In this study, the six calibrated parameters were not 

significantly inter-correlated with each other with correlation coefficients lower than 

0.1 (Appendix B).  

 

20. Page 754, Line 13, “plantshave”: plants have? 

Authors’ response: Yes, it has been corrected. 

 

21. Page 754, Line 20, “was”: were? 

Authors’ response: Yes, it has been corrected. 

 

22. Page 754, Line 22, “were”: was? 

Authors’ response: Yes, it has been corrected. 

 

23. Page 754, Line 23, “predicate”: predict? 

Authors’ response: Yes, it has been corrected. 

 

24. Page 755, Line 21, “daily ET was”: daily ETs were? 

Authors’ response: Yes, it has been corrected. 

 

25. Page 756, Subsection 3.4: There should be great uncertainty in eddy flux 

measurement for ET and lysimeter measurement for E. So in this 

subsection you also have to discuss the possibility of containing the great 

unc. by the errors in measurement data. 

Authors’ response: According to your suggestion, the uncertainties of EC 

measurements were added in our revised paper: 

 In addition, the flux uncertainties are directly related to the likelihood 

function of Bayesian inference (Section 2.5). Thus, determining the 

uncertainties is EC measurements is essential for proper parameter estimates. 

Recently, Wang et al. (2014) systemically studies the flux uncertainties of EC 

systems equipped in the HiWATER experiment. Generally, uncertainties for 
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H  ( ( )r H ; W m
-2

) by using method of Mann and Lenschow (1994) tended 

to be ( ) 0.14 2.7r H H   (R
2
=0.95), and uncertainties for λET  

( (λ )r ET ; W m
-2

) be (λ ) 0.13λ 6r ET ET    (R
2
=0.93) (Wang et al., 

2014). (Lines 131-138, Pages 6 and 7); 

 The uncertainties of H  and λET increased with the flux magnitude (Fig. 

8), and tended to be approximately 14% and 13%, respectively (Wang et al., 

2014). The relative error for 
nR  was relatively small and estimated to be 

1.24% (Xu et al., 2013). (Lines 450-453, Page 21) 

In addition, the uncertainties of measurements were illustrated in Fig. 9.  

 

26. Page 756, Line 9, “micro-scale advection”: Did not you measure the lateral 

wind speed and direction to directly probe the advection? 

Authors’ response: Yes, we did not measure the lateral wind speed and 

direction to directly. However, this phenomenon has well been documented 

and measured in previous studies. Fox example, Oke (1978) has describe the 

oasis effect in his book as: Therefore there is a continual air-to-oasis inversion 

temperature gradient driving a downward directed heat flux, and the process is 

aided by air mass subsidence over the oasis. (Page 166); Hu (1994) had 

constructed the interaction between desert and oasis. In our revised paper 

these references were given, so readers can obtain the basic information 

about the oasis effect. 

 

27. Page 756, Line 18, “representing”: represent? 

Authors’ response: Yes, it has been corrected. 

 

28. Page 757, Line 20, “when micro-scale advection occurred”: You cannot 

conclude it yet. 

Authors’ response: The words „micro-scale advection‟ was changed as 

„oasis-effect‟.  

 

 

29. Page 769, Fig. 3: you have to add the signs “(a)” to “(f)” in panels and 

legends to identify the variable. 

Authors’ response: According to your valuable suggestion, the signs “(a)” to 

“(f)” in panels and legends to identify the variable were added in the figure. 

  

30. Page 775, Fig. 9: The color assignment of RH is not intuitive. I prefer that 

the red is dry and the blue is wet. 

Authors’ response: The color assignment of RH has been corrected 

according to your suggestion. 
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Responses to comments Provided by Referee 2 

 

 

 

General comments and overall evaluation: Bayesian statistics, based on 

probability theory, is a logical choice for model calibration; it provides 

parameter estimates by quantifying the uncertainties in the data and model 

structure. The authors employ Bayesian method to calibrate the 

Shuttleworth-Wallace model, using eddy-covariance evapotranspiration 

measurements and daily soil evaporation. The work is interesting but some 

technical aspects should be clarified and additional analyses should be carried 

out. 

Authors’ response: Thanks very much for your positive comments. 

 

General Comments: 

1. In order to test model performances the authors split the dataset in two 

parts by taking alternate measurements and using one sub-dataset for 

model calibration and the other for model evaluation. The authors claim 

that the sub-datasets are independent, but for an independent validation of 

the model data from different site should be used. If that is not possible, 

model evaluation would be more rigorous if the first half of the data is used 

for calibration and the second half for model validation, i.e. defining the 

sub-dataset using subsequent measurements and not alternate 

measurements. Finally parameter estimates reported in Table 1 and Figure 

4 should be obtained using the whole dataset, i.e. a new calibration should 

be carried out using all the available data. 

Authors’ response: The same question has been proposed by Referee 3. In 

our revised paper, these sentences were changed as (Lines 323-326, Pages 

15 and 16): 

Since the primary interest in application of the S-W model was to reproduce the 

pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during 
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the whole study period, we used all available data to construct the likelihood function 

(equation 25) and to obtain the posterior distribution of the parameters. 

 

2. Results from the Gelman and Rubin test should be reported at least in the 

text. By observing the marginal posterior distribution of parameter k1, k2 

and k3 it seems that convergence was not reached. 

Authors’ response: According to your valuable suggestion, the G-R test was 

reported in Appendix C. The figure below showed that the parameters tend to 

converge after 5000 iterations. 

 

Fig. B1 The evolution of GR diagnostic of convergence of MCMC. Four parallel 

chains with different initial values were used to calculate GR values. 

 

3. lines 318- 321. Sensitivity analysis are always conditional to the parameter 

space and the input data used in the analysis. I strongly suggest you to 

carry out a global sensitivity analysis (such as the Morris method) using 

the prior parameter ranges to understand which are the key parameters of 

the model in your case study. 

Authors’ response: According to your valuable suggestion, the global 
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sensitivity was conducted in Appendix A. The results indicated that the most 

sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. 

Other parameter had almost no effect on the variability in model output (Fig. B2).  

 

Fig. B2 The evolution of the first-order sensitivity indices. 

4. Which prior do you use? I suppose you were using a uniform prior with the 

minimum and maximum values of Table 1. Please, state it more clearly in 

the manuscript. 

Authors’ response: The chose of prior distribution was stated as (Lines 

252-253, Page 12): 

, which are chosen as uniform distributions with specified allowable ranges (Table 1). 

 

5. Uncertainty in the data is really important when using a Bayesian 

approach. How did you define the measurement errors of equation 22? 

Authors’ response: In our revised paper, the calculation of errors in equation 

22 were stated as (Lines 271-284, Pages 13 and 14): 

i  ( 1,2i  ) represents the residual errors, or standard deviation about model 

predicted output of the ith dataset. Here, we assumed i  is the same over the 

observation time for the ith data set (Braswell et al., 2005). Traditionally, i  can be 
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included into the analysis explicitly (i.e., assuming 
i  is uniform over log i ; 

Gelman et al., 1995) and treated as one the model parameters, which yields a 

complete posterior distribution of 
i . However, this method artificially increased the 

parameter dimension of the problem and may result in unreasonable estimations of the 

parameter values (Kavetski et al., 2006). In this study, 
i  was estimated by using the 

analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find 

the value of 
i  that maximizes log( ( ( ) | ))ip O c  for a given parameter vector. By 

differentiating log( ( ( ) | ))ip O c  with respect to 
i , we can obtain: 

2

1

1
( ( ))

in
a

i i

ti

e t
n




                                                   (24) 

We then used a

i  to replace i  in the equations (22). 

 

6. Why did you include 6 parameters in the calibration and not the whole 

parameter vector? And which values did you assign to the parameters not 

included in the calibration? Please provide the references. 

Authors’ response: According to your suggestion, a global sensitivity analysis 

was conducted in our revised paper (Appendix C). The most sensitive 

parameters were selected to optimized. Other parameter (KA, Tamin, Tamax) 

were cited form previous studies, and the references were provided: 

 in which AK is the extinction coefficient of light attenuation. It can be 

measured on site (see Sauer et al., 2007), and was set to be approximately 

0.41 for spring maize (Mo et al., 2000).(Lines 208-210, Page 10) 

 a,minT and a,maxT  are the lower and upper temperatures limits (
o
C), 

respectively, which are aT  values when 2 a( ) 0F T  and are set at values of 0 

http://dict.cn/artificially
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and 40 
o
C (Harris et al., 2004) (Lines 231-233) 

 

7. Which parameter vector did you use to generate model outputs? You 

should use the maximum a posteriori parameter vector. 

Authors’ response: The median value of the parameter vector was used to 

generate model output.  

 

8. Bayesian statistics allows to quantify uncertainties. Was the calibration 

effective in reducing uncertainties of model predictions? The posterior 

uncertainty of simulated ET and E are not shown and discussed. 

Authors’ response: Thanks for your valuable suggestions. The posterior 

uncertainty of simulated ET and E were presented in our revised paper. Please 

see Fig. 8 and Fig. 9. We also discussed in the paper: 

 Also, the 95% posterior prediction intervals of simulated soil E was narrow. 

(Lines 433-434, Page 21); 

 that the estimated daily ET generally fluctuated tightly with the measured 

values with relative narrow uncertainties (95% posterior predication 

intervals) (Lines 436-438, Page 21); 

 However, there are 12 days during the study period (111 days) with 

observations beyond the upper bounder of the 95% posterior predication 

intervals (Fig. 8) (Lines 440-442, Page 21); 

 simulated λET and E were comparable to the measurements with relatively 

narrow uncertainties (95% posterior predication intervals) (Lines 506-507, 

Page 24). 

 

9. The manuscript is relatively well written, but in my opinion the Results and 

discussion session should be slitted in two parts in order to provide more 

clear take-home messages. 

Authors’ response: According to your suggestion, a Discussion section was 
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added in our revised paper (Lines 281-548, Pages 23-26). 

 

Minor Comments: 

1. Abstract. Line: 31-33. “The posterior distributions…intervals.” This phrase 

is not clear what do you mean for well updated? 

Authors’ response: This sentence was changed as (Lines 31-33, Page 2): 

4 of the six main parameters were showed relatively larger uncertainty reductions 

(>50%), and their posterior distributions became approximately symmetric with 

distinctive modes 

2. Introduction. Line: 79-81. The main advantage of Bayesian method is that 

uncertainties can be properly quantified. Optimization algorithms can also 

be used to optimize parameters in the light of multiple data sources. 

Authors’ response: According to your suggestion, the sentence was changed 

as (Lines 78-81, Page 4): 

Secondly, as far as the parameterization method is concerned, abundant evidence has 

shown that the Bayesian method provides a powerful new tool to simultaneously 

optimize many or all model parameters against all available measurements, and to 

quantify the influences of uncertainties.   

 

3. Materials and methods. Line: 106-107. Which dryness index was used. 

Line: 136. “Air temperature and relative humidity”: Air temperature, 

relative humidity Line: 199.“Eqns.(1)-(3) is calculated”: Eqns.(1)-(3) are 

calculated 

Authors’ response: The sentence was changed as: 

the dryness index according to the World Atals of Desertification (UNEP, 1992) is 

15.9 

Other errors have been corrected according to your suggestions. 

4. Line: 256-264. Which MCMC algorithm did you use? From the description 

it seems to be the Metropolis algorithm and not the Metropolis-Hastings. 
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Authors’ response: The detail of MCMC algorithm was presented in Appendix 

A. The M-H algorithm was used in our study. Because the prior distribution was 

selected as uniform distribution, the M-H algorithm was indeed the same as 

the Metropolis algorithm. 

5. Results and discussion Line: 359. “In this case, a good agreement ...”: A 

good agreement Line: “On the other hand, the diurnal variation”: On the 

other hand must go after on one hand. 

Authors’ response: The words „On the other hand‟ were deleted in our 

revised paper. 
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Responses to comments Provided by Referee 3 

1. This is in general a well thought out and methodologically sound piece of 

work and the authors make a sufficient case that the work is novel for it to 

warrant publication. 

Authors’ response: Thanks very much for your positive comments. 

 

2. While there are no fundamental issues with the work there are a number of 

ways in which it could be improved. These are mainly regarding key pieces 

of information that are currently missing from the manuscript. 

The authors go to the trouble of conducting a Bayesian Calibration on six 

of the mode parameters which is excellent since rather than employing an 

optimisation routine to merely ‟tune‟ the model parameters they estimate 

the full conditional probability of the parameters being probable given the 

ET and E data. However, once the calibration is made only a single 

parameter vector is selected and all the subsequent analysis versus the 

data is based on results of that single vector. This is an opportunity missed 

since they already have all the information they need to report the 

influence of posterior parameter uncertainty on model outputs. This could 

be done by calculating the 5th and 95th quantiles from their 3000 member 

parameter sample for example. This would make for a far superior analysis 

of model-measurement differences since the model output can now be 

represented by the full calibrated posterior distribution not just a single run. 

Authors’ response: Thanks for your valuable suggestions. In our revised 

paper, model-measurement differences were analysed using the 5th and 95th 

quantiles from their 3000 member parameter sample. Please see Fig. 8 and 

Fig. 9. We also discussed in the paper: 

 Also, the 95% posterior prediction intervals of simulated soil E was narrow. 

(Line 422, Page 20); 

 that the estimated daily ET generally fluctuated tightly with the measured 

values with relative narrow uncertainties (95% posterior predication 
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intervals) (Lines 425-426, Page 20); 

 However, there are 12 days during the study period (111 days) with 

observations beyond the upper bounder of the 95% posterior predication 

intervals (Fig. 8) (Lines 428-430, Page 20); 

 simulated λET and E were comparable to the measurements with relatively 

narrow uncertainties (95% posterior predication intervals) (Lines 495-496, 

Page 23). 

 

3. The choice of an MCMC algorithm to sample the posterior is generally 

good one although assessing convergence requires special care as it is 

too easy to be fooled into believing that convergence has been obtained 

when in fact only a local maxima has been found. For this reason the 

manuscript is too light on details of the Gelman-Rubin numbers that were 

obtained that convinced the authors that the MCMC had converged. This 

should be reported especially since fig 4. k1, k2, k3 might suggest that 

convergence has not yet been reached. 

Authors’ response: According to your valuable suggestion, the G-R test was 

reported in Appendix C. The figure below showed that the parameters tend to 

converge after 5000 iterations. 

 

Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel 



 27 

chains with different initial values were used to calculate GR values. 

 

4. The authors should give details of why they chose the 6 parameters that 

they did to be calibrated. Ideally a calibration should include all model 

parameters and if a subset is selected perhaps for reasons of 

computational practicality then an objective method such as Morris should 

be used to select the most important parameters. 

Authors’ response: According to your valuable suggestion, the global 

sensitivity was conducted in Appendix A. The results indicated that the most 

sensitive parameters in the S-W model was rSTmin, and followed by b1 , b2, k2 and k1. 

Other parameter had almost no effect on the variability in model output (Fig. C2.  

 

Fig. C2 The evolution of the first-order sensitivity indices. 

5. In Bayesian Calibration the choice of the prior distribution is also important 

and should be discussed but this is currently missing. 

Authors’ response: According to your valuable suggestion, the influence of 

prior distribution on the simulation results was conducted in our revised paper 

(see Appendix A). As expected the simulated values of daily 

evapotranspiration and soil evaporation both showed larger uncertainties. 

Thus, there is a need to update the parameters based on observation 
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datasets. In our revised paper, the following sentences were stated (Lies 

252-258, Page 12): 

where ( )p c represents prior probability distributions of parameters c , which is chosen 

as uniform distributions with specified allowable ranges (Table 1). In general, the 

parameter ranges were wide enough to include the actual parameter values and to give 

the optimization freedom (Sack et al., 2006). In the test study, we run the S-W model 

using 4000 parameter vectors which were sampled from the prior distribution using 

Latin Hypercube Sampling (LHS) method (Iman and Helton, 1998), and found that 

the observed data in most case were in the range of predicted values (Appendix A).  

 

Fig. C3 Seasonal variation in daily evapotranspiration (ET; mm d
-1

) and soil 

evaporation (E; mm day
-1

) measured by the EC system and modeled by the S-W 

model using the prior distribution of parameters. Gap in the time series is caused 

either by the absence of flux measurements or missing ancillary data. 

 

6. The manuscript is also lacking details on the errors were used in the 

likelihood calculation to represent the random errors that were assigned to 

the measurements. This is gain an important omission as these errors 

should be discussed and justified on the asis of analyses or from literature. 

Authors’ response: In our revised paper, the calculation of errors were stated 

as (Lines 262-275, Page 13): 
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i  ( 1,2i  ) represents the residual errors, or standard deviation about model 

predicted output of the ith dataset. Here, we assumed 
i  is the same over the 

observation time for the ith data set (Braswell et al., 2005). Traditionally, 
i  can be 

included into the analysis explicitly (i.e., assuming 
i  is uniform over log i ; 

Gelman et al., 1995) and treated as one the model parameters, which yields a 

complete posterior distribution of 
i . However, this method artificially increased the 

parameter dimension of the problem and may result in unreasonable estimations of the 

parameter values (Kavetski et al., 2006). In this study, 
i  was estimated by using the 

analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find 

the value of 
i  that maximizes log( ( ( ) | ))ip O c  for a given parameter vector. By 

differentiating log( ( ( ) | ))ip O c  with respect to 
i , we can obtain: 
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We then used a

i  to replace i  in the equations (22). 

 

Detailed Comments: 

1. Throughout the manuscript the authors refer to "multiple measuring 

datasets". This doesn‟t work in English perhaps "multivariate datasets" 

might convey what the authors want? 

Authors’ response: Thanks for your detailed helps to us. According to your 

valuable suggestion, the words “multiple measuring datasets” were changed 

as “multivariate datasets” in our revised paper.  

2. Abstract: accounted -> account 

Authors’ response: It has been corrected. 

 

3. p743 line4 has good performances -> performs well 

http://dict.cn/artificially
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Authors’ response: It has been changed. 

 

4. p744 line8 in arid -> in the arid 

Authors’ response: It has been corrected. 

 

5. p745 line18 synchronously -> synchronous 

Authors’ response: It has been corrected. 

 

6. p746 line2 were-> was 

Authors’ response: It has been corrected. 

 

7. line7 delete was 

Authors’ response: It has been deleted 

 

8. p747 line13 coefficient -> coefficients 

Authors’ response: It has been corrected. 

 

9. line18 is -> are 

Authors’ response: It has been corrected. 

 

10. p748 line16 is -> are 

Authors’ response: It has been corrected. 

 

11. p750 line8 parameters needed -> parameters that needed 

Authors’ response: It has been corrected. 

12. line13 dataset -> datasets 

Authors’ response: It has been corrected (Line 286 in our revised paper). 

 

13. line17 The difference between the model and the observations should not 
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be called model error as if the observations are ‟truth‟. A better description 

is model data mismatch recognising that both the model and the data 

contain errors. Also see above you need to discuss how the observational 

random error is obtained. 

Authors’ response: According to your suggestion, the „model error‟ was 

changed as „model-data mismatch‟. 

The observational error was studied by Wang et al. (2014). In our revised 

paper, these errors were stated as (Lines 131-138, Pages 6 and 7): 

In addition, the flux uncertainties are directly related to the likelihood function of 

Bayesian inference (Section 2.5). Thus, determining the uncertainties is EC 

measurements is essential for proper parameter estimates. Recently, Wang et al. 

(2014) systemically studies the flux uncertainties of EC systems equipped in the 

HiWATER experiment. Generally, uncertainties for H  ( ( )r H ; W m
-2

) by using 

method of Mann and Lenschow (1994) tended to be ( ) 0.14 2.7r H H   (R
2
=0.95), 

and uncertainties for λET  ( (λ )r ET ; W m
-2

) be (λ ) 0.13λ 6r ET ET    (R
2
=0.93) 

(Wang et al., 2014) 

References: 

Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., Xu, Z.W.: Assessment of 

Uncertainties in Eddy Covariance Flux Measurement Based on Intensive 

Flux Matrix of HiWATER-MUSOEXE. IEEE Geosciences and Remote 

Sensing Letters, 2014, (under review). 

 

14. Line22 "assuming the model error follows a Gaussian" no this is not a 

correct interpretation of likelihood. The likelihood is formally the "chance of 

getting the observations given the parameters". Therefore the Gaussian in 

the likelihood represents the errors in the observation rather than the 

model. The idea here is that random observational error (as quantified by 

the sigma and the Gaussian) is stopping us from always obtaining the 
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observations from the parameters. The errors in the parameters are 

represented in the prior and as it stands this calibration estimates the 

probability of the parameters being correct given the observations 

assuming that this is the correct model. That is to say an assumption of the 

calibration is that the model is correct. We know this is wrong but the 

Bayesian Calibration does not explicitly represent this. Of course the 

model data mismatch in the likelihood does implicitly quantify both model 

and data errors but this is not the formal understanding of the likelihood. 

Indeed later on you go on to suggest possible model improvements. As 

future work I would advocate creating a new version of the model with 

those improvements and formally quantifying whether the new model is 

more likely using Bayesian analysis. See Bayesian Model Comparison in 

Van Oijen, M.; Reyer, C.; Bohn, F.J.; Cameron, D.R.; Deckmyn, G.; 

Flechsig, M.; Härkönen, S.; Hartig, F.; Huth, A.; Kiviste, A.; Lasch, P.; 

Mäkelä, A.; Mette, T.; Minunno, F.; Rammer, W.. 2013 Bayesian calibration, 

comparison and averaging of six forest models, using data from Scots pine 

stands across Europe. Forest Ecology and Management, 289. 255-268. 

10.1016/j.foreco.2012.09.043. 

Authors’ response: Thanks for your clear interception of the definition of the 

likelihood function. Also, thanks very much for your guides to us for the future 

studies. We will conduct some model comparison studies of different ET model 

in typical ecosystems (i.e., alpine grassland, alpine forest, arid farmland, and 

arid forest) in northwest China. According to your suggestion, the sentence 

was changed as (Lines 261-263, Pages 12 and 13): 

Assuming the model-data mismatch ( )ie t , which represents a relative 

“goodness-of-fit” measure for each possible parameter vector (van Oijen et al., 2011, 

2013) 

References: 

van Oijen, M., Cameron, D.R., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson, 

P.E., Kiese, R., Rahn, K.H., Werner, C., Yeluripati, J.B.: A Bayesian framework 

for model calibration, comparison and analysis: application to four models for the 

biogeochemistry of a Norway spruce forest. Agric. For. Meteor., 151(12), 
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1609-1621, 2011. 

van Oijen, M., Reyer, C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M., 

Härkönen, S., Hartig, F., Huth, A., Kiviste, A., Lasch, P., Mäkelä, A., Mette, T., 

Minunno, F., Rammer, W.: Bayesian calibration, comparison and averaging of six 

forest models, using data from Scots pine stands across Europe. Forest Ecol. 

Manag., 289, 255-268, 2013. 

 

 

15. p751 line10 formally I believe you are using the Metropolis algorithm rather 

than Metropolis-Hastings 

Authors’ response: The detail of MCMC algorithm was presented in Appendix 

B. The M-H algorithm was used in our study. Because the prior distribution was 

selected as uniform distribution, the M-H algorithm was indeed the same as 

the Metropolis algorithm. 

 

16. line14 Which distribution are you using for the proposal density 

(multivariate normal?) 

Authors’ response: In our revised paper, the proposal function was presented 

more clear (Lines 303-315, Pages 14 and 15): 

It was well recognized that efficiency of the M-H algorithm was strongly 

effected by the proposal distribution function. To find an effective proposal 

distribution new 1( | )kP 
c c , a test run of the M-H algorithm with 10, 000 simulations 

was made by using a uniform proposal distribution (Braswell et al., 2005): 

new 1 max min( )k r  c c c c                                             (26) 

where 1k
c  is the current accepted point; r is a random number uniformly 

distributed between -0.5 and +0.5; min
c and max

c are the lower and upper limits of 

parameter vector c . Based on the test run, we then constructed a normal proposal 
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distribution new ( 1) 0( ,cov ( ))kN :c c c , where 0cov ( )c is the covariance matrix of the 

parameter vector c  from the initial test run (Xu et al., 2006). The detailed 

description on MCMC sampling procedure and the code written in Matlab were 

presented in Appendix B. 

 

17. line22 I don‟t think you need to split the datasets in this way. Indeed the 

calibration would benefit from the inclusion of all of the data. The 

comparison against data that you make later on would be just as valid 

since this is more about identifying weaknesses in the structure of the 

model i.e. missing processes rather than parametrisation. 

Authors’ response: According to your valuable suggestion, these sentences 

were changed as (Lines 323-326, Pages 15 and 16): 

Since the primary interest in application of the S-W model was to reproduce the 

pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during 

the whole study period, we used all available data to construct the likelihood function 

(equation 25) and to obtain the posterior distribution of the parameters. 

 

18. line23 dataset -> datasets 

Authors’ response: This sentence has been deleted.  

 

19. line24 optimised -> calibrated 

Authors’ response: This sentence has been deleted.  

 

20. p752 line11 posterior expectancy? Assume you mean the expectation of 

the posterior (i.e. the mean). See comments above about representing the 

full posterior in your analysis rather than just one parameter vector. 

Authors’ response: Yes, it is the posterior median values of the parameters. 

The full posterior were also included in our analysis in the revised paper. 
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Please see Figs. 8 and 9. 

21. p753 line4 was -> are  

Authors’ response: It has been corrected. 

 

22. p754 line8 contents -> content 

Authors’ response: It has been corrected. 

 

23. line13 split plantshave 

Authors’ response: It has been split. 

 

24. line22 were -> are 

Authors’ response: It has been corrected. 

 

25. line23 predicate -> predict 

Authors’ response: It has been corrected. 

 

26. line25 reword: something like "However, significant differences exist 

between measured and modeled half-hourly ET values for the spring 

maize in the arid desert oasis." 

Authors’ response: Thanks, it has been corrected. 

 

27. line27 regressive -> the regression 

Authors’ response: It has been corrected. 

 

28. p755 line10 was -> is 

Authors’ response: It has been corrected. 

 

29. line17 observed -> observe 

Authors’ response: It has been corrected. 
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30. ine20 5 -> on the 5th of 

Authors’ response: It has been corrected. 

 

31. line22 needed -> needs 

Authors’ response: It has been corrected. 

 

32. p756 line4 was -> is 

Authors’ response: It has been corrected. 

 

33. line10 on the 5th of July 

Authors’ response: It has been corrected. 

 

34. line11 no gaps in time i.e. 12:00 20:00 

Authors’ response: The gaps in time were added in our revised paper. 

 

35. line17 flows do not -> flows that do not 

Authors’ response: It has been corrected. 

 

36. line18 representing -> represent 

Authors’ response: It has been corrected. 

 

37. line19 attentions -> attention 

Authors’ response: It has been corrected. 

 

38. Figure8: The text in this figure is currently too small 

Authors’ response: The size of this figure was 18cm×8cm.  

Finally, we want to express our deep appreciations to you for your 

patient helps in improving the quality of our paper. Thanks very much! 
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Appendix A 

A.1 Global Sensitivity Analysis 

To identify the key parameters that being responsible for most of the variability 

of the model outputs, a global sensitivity analysis were performed. Following Saltelli 

et al. (2008), the first-order sensitivity index 
iS  and total effect sensitivity index 

TiS  

are given as: 

Var Var[ ( | )]

Var( ) Var( )

ic i
i

E Y c
S

Y Y
                                           (B1) 

~[Var( | )]

Var( )

i
Ti i ijj i

E Y c
S S S

Y
    L                                  (B2) 

where Var
ic is the partial variance of ic  on output Y  and given by 

Var =Var[ ( | )]
ic iE Y c ; Var( )Y is the total unconditional output variance; ijS is the 

contribution to the total variance by the interactions between parameters ic  and jc ; 

~ic  denotes variation on all input parameters but ic ;  

A.2 Monte Carlo Simulations 

The Monte Carlo method was used to calculate Var( )Y , iS  and TiS . The 

procedure are listed as below (Saltelli et al., 2010): 

Step 1:  

     Generate two independent input parameter sampling matrices A  and B  with 

dimension N d , where N  is the sample size and d  is the number of input 

parameters; 

Step 2: 

     Build another N d  matrix i

BA  ( 1,2,i d L ) such that the ith column of i

BA  

is equal to the ith column of B , and the remaining columns are from A ; 

Step 3: 

     Calculate Var( )Y , iS  and TiS  using the following estimators: 
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     where denotes the estimate; µ0f is the estimated value of model output; The 

matrices A  and B are generated using the Latin Hypercube Sampling 

technique (Iman and Helton, 1988).  

A.3 Matlab Code for Global Sensitivity Analysis 

 

function [A,B]=LHSsample(N,d,interval) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Using the Latin Hypercube Sampling (LHS)technique (Iman and Helton, 1988) 

% to generate matrices A and B 

% Authors   : Zhu Gaofeng 

% Date      : March 19, 2014 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Description: 

% N         :    number of sample  

% d         :    dimension of parameter vector 

% Interval :   interval of prior distribution of paramter being d*2 matrix 

% A         :    matrix A being N*d 

% B         :    matrix B being N*d 

  

  

interval=[interval;interval]; 

  

% Generates a LHS M1 containing N samples and 2*d dimension 

M1=lhsdesign(N,2*d); 

  

for j=1:size(M1,2) 

    int=interval(j,:); 

for i=1:size(M1,1)  

%transform to parameter space 

        M(i,j)=unifinv(M1(i,j),int(1),int(2));  
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    end 

end 

A=M(:,1:d);             % the first d columns were designed to matrix A 

B=M(:,d+1:end);        % the last d columns were designed to matrix B 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model 

 

function 

LET=SWSA(rstmin,k1,k2,k3,b1,b2,Tamin,Tamax,KA,flag,F4,G,Rn,S,LAI,Ta,r

ho,D,SWC_2,delta,gamma,raa,ras,rac) 

      

% calculate rss 

thetas=0.45;    % saturated water content at the 20 cm depth in [m3 m-3]; 

  

rss=exp(b1-b2*SWC_2./thetas); 

  

% calculated rsc 

F1=(eps+S)*(1055+k1)./(1055*(S+k1));       % S:short wave radiation W m-2 

 

tao=(Tamax-k2)/(k2-Tamin); 

numerator=(Ta-Tamin).*(Tamax-Ta).^tao; 

denominator=(k2-Tamin).*(Tamax-k2).^tao; 

F2=numerator./denominator; 

F3=1-k3*D; 

rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4); 

  

  

% S-W model 

% specific heat capacity of the dry air in kJ/kg/K; 

Cp=1.013;   

Ra=(delta+gamma).*raa; 

Rs=(delta+gamma).*ras+gamma.*rss; 

Rc=(delta+gamma).*rac+gamma.*rsc; 

  

Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra))); 

Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra))); 

 

Rns=Rn.*exp(-KA.*LAI); 

  

A=Rn-G; 

As=Rns-G; 

  

ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gam

ma.*(1+rss./(raa+ras))); 
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ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*

(1+rsc./(raa+rac))); 

LE=Cs.*ETs; 

LT=Cc.*ETc; 

LET=LE+LT; 

  

D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp); 

E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras)); 

T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model 

% Main Program 

clc 

clear 

Nss=4000;                           % Sample numbers 

                            

  

  

% Prior parameter interval for rstmin, k1,k2,k3,b1,b2,Tamax,Tamin,KA 

interval=[1 80 

          0 500 

          20 40 

          0 .1 

          4 15 

          0 8 

          0 5 

          40 45 

          .2 .8]; 

dem=size(interval,1); % dimension of parameter vector 

  

% Generate matrices A and B using the LHS technique 

[Am,Bm]=LHSsample(Nss,dem,interval); 

  

  

% input meteorological data, Here we used the daily average data 

data=[108.1539915   125.3973438 -3.675183507    0.871684028 13.78421875 

64.39277778 844.5503472 17.07349201 26.71506701 2.832   256.97255   

253.5320313]; 

  

% Variables 

ET  =  data(1);           % w m-2 

Rn   =  data(2);           % w m-2 

G    =  data(3);           % w m-2 

u    =  data(4);           % m s-1 
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Ta   =  data(5);           % oC 

RH   =  data(6)/100;       % humidity  

P    =  data(7)/10;        % kPa 

SWC_2=  data(8)/100;      % m3 m-3 

SWC_r=  data(9)/100;      % m3 m-3 

LAI  =  data(10);          % m2 m-2; 

hc   =  data(11)/100;     % canopy height in m 

z    =  3;                % reference height in m 

S    =  data(12);          % solar radiation 

  

% calcualte wind speed at canopy height 

z0  =   0.13*hc;            % roughness lenght 

d   =   0.67*hc;            % zero plane displacement 

uh  =   u.*log((hc-d)./z0)./log((z-d)./z0); 

  

% Calculate meteorologic varibles 

lambda=2500.78-2.3601*Ta;      

  

% saturaed vapour pressure in kPa 

es=.6108*exp(17.27*Ta./(Ta+237.3)); 

% slope of pressure to temperature 

delta=4098*es./(Ta+237.3).^2; 

  

%air density 

Rd=287/1000;                    % the gas constant in kJ/kg/K 

ea=es.*RH; 

D=es-ea; 

rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P)); 

  

% 

Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K; 

epsilong=.622;           %the ratio between the mplecular weight of water 

vapor and air 

  

gamma=Cp*P./(lambda*epsilong); 

  

  

% calculate raa 

k=0.41;                                         % von K¨¢rm¨¢n constant 

% z0h=0.1*z0;                                     % roughness length to the 

heat flux in [m]; 

n=2.5;                                          % parameter in SW model 

% LAI >4  

raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc
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-d)).*(exp(n*(1-(d+z0)./hc))-1));  

% for bare surface 

z0s=0.01; 

ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;     % bare 

surface 

  

raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare; 

  

% calculate ras 

% LAI >4  

ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*

(1-(d+z0)./hc))); 

  

% for bare surface 

z0s=0.01; 

ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare; 

  

  

% calculate rac 

% method 1 

rb=50; 

rac=rb./(2*LAI); 

  

% calcualte F4 in canopy resistance model 

thetas=.45;                         % saturated SWC 

thetacr=0.75*thetas; 

thetaw=.11; 

for i=1:length(SWC_r) 

    if SWC_r(i)>thetacr 

        F4(i,1)=1; 

    elseif SWC_r(i)>thetaw 

        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw); 

    else 

        F4(i,1)=eps; 

    end 

end 

  

% calculate the sensitivity index 

sa1=0; 

sb1=0; 

ss1=zeros(1,dem); 



 43 

st1=zeros(1,dem); 

AB=zeros(1,dem); 

  

for j=1:Nss 

    

ETA=SWSA(Am(j,1),Am(j,2),Am(j,3),Am(j,4),Am(j,5),Am(j,6),Am(j,7),Am(j

,8),Am(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac

); 

    sa1=sa1+ETA; 

    sb1=sb1+ETA^2; 

     

    bfo(j,1)=sa1/j; 

    VY(j,1)=sb1/j-bfo(j,1)^2; 

     

    

ETB=SWSA(Bm(j,1),Bm(j,2),Bm(j,3),Bm(j,4),Bm(j,5),Bm(j,6),Bm(j,7),Bm(j

,8),Bm(j,9),flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac

);   

     

    for i=1:dem 

        AB=Am(j,:); 

        AB(i)=Bm(j,i);         

        

ETAB=SWSA(AB(1),AB(2),AB(3),AB(4),AB(5),AB(6),AB(7),AB(8),AB(9),flag,

F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

        ss1(i)=ETB*(ETAB-ETA)+ss1(i); 

        Si(j,i)=ss1(i)/(j*VY(j,1)); 

        st1(i)=st1(i)+(ETA-ETAB)^2; 

        ST(j,i)=st1(i)/(2*j*VY(j,1)); 

    end 

end 

  

% Create figure 

figure1 = figure('PaperType','a4letter','PaperSize',[20.98 29.68]); 

  

% Create axes 

axes1 = axes('Parent',figure1,'YScale','log','YMinorTick','on'); 

box('on'); 

hold('all'); 

  

% Create multiple lines using matrix input to semilogy 

semilogy1 = semilogy(Si); 

set(semilogy1(1),'DisplayName','{\itr}_{STmin}'); 

set(semilogy1(2),'DisplayName','{\itK}_1'); 
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set(semilogy1(3),'DisplayName','{\itK}_2'); 

set(semilogy1(4),'DisplayName','{\itK}_3'); 

set(semilogy1(5),'DisplayName','{\itb}_1'); 

set(semilogy1(6),'DisplayName','{\itb}_2'); 

set(semilogy1(7),'DisplayName','{\itT}_{min}'); 

set(semilogy1(8),'DisplayName','{\itT}_{max}'); 

set(semilogy1(9),'DisplayName','{\itK}_A'); 

  

% Create xlabel 

xlabel('Simulation'); 

  

% Create ylabel 

ylabel('{\itS}_{i}'); 

  

% Create legend 

legend1 = legend(axes1,'show'); 

set(legend1,'Position',[0.7141 0.3258 0.1121 0.2881]); 

     

% Create textbox 

annotation(figure1,'textbox','String',{'August'},'FontSize',14,... 

    'EdgeColor','none',... 

    'Position',[0.1387 0.8208 0.393 0.1009],... 

    'FitHeightToText',... 

    'on');         

         

save Si 

A.4 First-order sensitivity indices 

 

Fig. A1 The evolution of the first-order sensitivity indices. 
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Table A1 The first-order sensitivity index 
iS  for different parameters 

Parameter Si (%) Order 

rSTmin 54.3 1 

k1 4.2 5 

k2 8.5 4 

k3 0 9 

b1 21.9 2 

b2 10.4 3 

Tamin 0.3 7 

Tamax 0.12 8 

KA 2.84 6 

From Fig. A1 and Table A1, we can see that the most sensitive parameters in the 

S-W model was rSTmin, and followed by b1 , b2, k2 and k1. Other parameters with Si less 

than 5% had almost no effect on the variability in model output. In addition, we 

thought that some parameter such as KA (the extinction coefficient of light attenuation) 

has obviously physical meaning and should be measured directly on site (see Sauer et 

al., 2007). Thus, in our study, only six parameters were selected to be estimated in 

order to avoid equifinality or over-parameterization.  

Overall, the key parameters in the S-W model are rSTmin , b1 and b2 with the 

values of Si larger than 10%. Thus, proper estimations of these parameters have great 

influences in reducing the uncertainty on model simulation.  

 

A.5 Prior Uncertainty Quantification 

To derive from that the prior predictive uncertainty, 4000 parameter vectors were 

sampled from the prior uniform distribution using Latin Hypercube Sampling (LHS) 

method. The results indicated that the both simulated daily (ET; mm d
-1

) and soil 

evaporation (E; mm day
-1

) showed larger uncertainties (Fig. C2). Thus, there is an 

urgent need to optimize the parameters based on available datasets. 
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Fig. A2 Seasonal variation in daily evapotranspiration (ET; mm d
-1

) and soil evaporation (E; mm day
-1

) measured by the EC system and modeled 

by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or 

missing ancillary data.
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Appendix B 

Contents: 

Part 1: Baye’s Theorem 

Part 2: Multi-Source Data Set Optimization Scheme 

1.1 Metropolis-Hasting (M-H) Algorithm: 

1.2 Matlab Code for the M-H Algorithm: 

1.3 Results 

Part 3: Single Data Set Optimization Scheme 

2.1 Metropolis-Hasting (M-H) Algorithm: 

2.2 Matlab Code for the M-H Algorithm: 

2.3 Results 

Part 4: Comparisons Between Two Optimization Schemes 

This appendix show:  

(1) Description of Bayes’ Theorem 

(2) the optimization scheme of M-H algorithm using multi-source data set (Part 1) and 

single data set (Part 2);  

(2) The Matlab Code of the M-H algorithm using different assimilation scheme; 

(3) The differences between the two different assimilation schemes; 

 

The code can be used and tested freely. I would be great appreciations if you can cited 

our paper when using the code. 

Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the 

two-source evapotranspiration model by Bayesian approach: application to 

spring maize in an arid region of northwest China. Geosci. Model Dev. Discuss., 

7, 741–775. 
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PART 1: The Bayes’ Theorem  

A general description of the Bayesian probabilistic inversion is given by Bayes’ 

theorem (Box and Tiao, 1973) in a form of:   

( | ) ( )
( | ) ( | ) ( )

( | ) ( )

p O c p c
p c O p O c p c

p O c p c dc
 


                              (B1) 

in which ( )p c  is the prior probability density function (PDF) representing prior 

knowledge about parameter c ; ( | )p O c is the likelihood function, which defines the 

fit to the data for particular parameter set and also reflects the influence of the data on 

parameter identification; ( | ) ( )p O c p c dc is the probability of observations O , and 

( | )p c O is the posterior PDF of parameter c . Thus, the inverse problem can be 

related to the forward problem through a set of measurements and prior knowledge 

about the probability of the parameters.  

PART 2: Multi-Source Data Set Optimization Scheme 

2.1 Metropolis-Hasting (M-H) Algorithm: 

In practice, except for situations where ( | )p c Z  have very simple forms, it is 

not always possible to draw samples directly from ( | )p c Z . In such cases, the Markov 

Chain Monte Carlo (MCMC) method can be used to investigate the parameter space 

in the search for the posterior distribution (Geman et al., 1993; Gelfand and Smith, 

1990). The basic idea for the MCMC sampling is to design a Markov chain with 

( | )p c Z as the targeted stationary distribution. Once the chain has simulated for 

sufficiently long period samples in the chain will follow the stationary distribution, 

then one can collect the samples from the simulation and calculate various statistics 

associated with the posterior PDF from them. The Metropolis-Hastings (M-H) 
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algorithm (Metropolis et al., 1953; Hastings, 1970) is a type of MCMC technique that 

approximately obtains samples from the posterior distribution. A simple 

computational implementation of the M-H algorithm consists of the following steps: 

Step 1:  

Chose an arbitrary initial point (0)c  in the parameter space. 

Setp 2: 

Propose a candidate point newc according to a proposal distribution ( 1)( | )kq c c  ; 

In this study, the candidate parameter is generated by a uniform proposal 

distribution as: 

( 1) max min( ) /new kc c c c D                                      (A1) 

where maxc and minc specify the prior range of the parameter vector c ;  is a random 

number uniformly distributed between -0.5 and +0.5; D is a value controlling the 

proposing step size and was set to be 5.  

Step 3:  

     3.1 Calculate i  for a given parameter vector: 

For a given parameter vector c , we can simulate half-hourly λET (W m
-2

) and 

daily E (mm day
-1

) using equations (1) and (9) in the manuscript, which is 

labeled as ( )if t  (i=1 and 2), respectively. Form previous analysis, we can 

calculate i  as: 

     
2

1

1
( ) ( ( ) )

in
a

i i

ti

c e t
n




                                           (A2) 

( ) ( ) ( )i i ie t O t f t                                               (A3) 

     where ( )iO t  is observed values of the ith dataset [observed half-hourly λET 
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(W m
-2

) and daily E (mm day
-1

), respectively] at time t ; 
in  is the number of 

observations of the ith dataset.  

3.2 Calculate the likelihood function  

            

2

2
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     where m  is the number of dataset ( 2  in this study) ;   

Step 4:  

 Calculate the acceptance probability: 

             
( 1 )

( 1 ) ( 1 )

( ) ( | )
m i n {1 , }

( ) ( | )

n e w k n e w

k n e w t

L c q c c

L c q c c




 





                        (A5) 

     The ratio of likelihood is calculated under the candidate value of parameter to  

that calculated under preciously accepted value of parameter.  

Step 5:  

      Generate a random number r form the uniform distribution [0,1]U .  

       If r  , accept the proposal and set ( )k newc c ; otherwise set ( ) ( 1)k kc c  ; 

Step 6:  

       Repeat steps 2 and 5 until enough samples are obtained. 

The flowchart of the M-H algorithm was illustrated in Fig. B1. 
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Fig. B1 Flowchart representing the basic scheme of the M-H algorithm. 

 

2.2 Matlab Code for the M-H Algorithm: 

%% Matlab Code of two source evapotranspiration model 

function 

[LET,Emd]=SW(rstmin,k1,k2,k3,b1,b2,flag,F4,G,Rn,S,LAI,Ta,rho,D,SWC_2,

delta,gamma,raa,ras,rac) 

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Author:  Gaofeng Zhu; Xin Li et al 

%% Date:   March 17, 2014  

%% Address: Lanzhou University 

%% 

%% If there is a need for using the code, please cite the paper of the %% 

authors as: 

%% Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% 

the two-source evapotranspiration model by Bayesian approach:  

Initializing c(0), and calculating               (i=1, 2) and L(c(0)) using Eqns. (B2) and (B4), respectively(0)( )a

i c

Generating c(new) by the uniform proposal distribution using Eqn. (B1)

• Simulating the S-W model using parameter value c(new) to obtain fi(t) (i=1, 2);

• Comparing with observation values and getting ei(t) (i=1, 2);

• Obtaining               using Eqn. (B2);

• Calculating the likelihood function L(c(new)) using Eqn. B4

( )( )a new

i c

• Calculating the acceptance probability α using Eqn. B5;

• Generating a random number r~U(0,1); 

• if r≤α then c(k) =c(new); otherwise c(k) =c(k-1);

Convergence?

Or iteration completed?

No

Yes

Obtaining the posterior distribution of the parameters

Initializing c(0), and calculating               (i=1, 2) and L(c(0)) using Eqns. (B2) and (B4), respectively(0)( )a

i c

Generating c(new) by the uniform proposal distribution using Eqn. (B1)

• Simulating the S-W model using parameter value c(new) to obtain fi(t) (i=1, 2);

• Comparing with observation values and getting ei(t) (i=1, 2);

• Obtaining               using Eqn. (B2);

• Calculating the likelihood function L(c(new)) using Eqn. B4

( )( )a new

i c

• Calculating the acceptance probability α using Eqn. B5;

• Generating a random number r~U(0,1); 

• if r≤α then c(k) =c(new); otherwise c(k) =c(k-1);

Convergence?

Or iteration completed?

No

Yes

Obtaining the posterior distribution of the parameters
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%% application to spring maize in an arid region of northwest China. 

Geosci. %% Model Dev. Discuss., 7, 741–775 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%% Descriptions:  

%%%%%% Output variables  

%% LET   simulated half-hourly evapotranspiration in [w m-2] 

%% Emd   simulated daily soil evaporation in [mm d-1] 

%%%%%% parameter in resistance sub-model 

%% rstmin   minimal stomatal resistance in [s m-1] 

%% k1           parameter in eqn. 16 in the manuscript with unit [w m-2] 

%% k2    unit [oc] 

%% k3           unit [kPa-1] 

%% b1           parameter in soil surface resistance in [s m-1] 

%% b2           parameter in soil surface resistance in [s m-1] 

%%%%%% input driving variables  

%% F4    see eqn. (19) in the manuscript  

%% G    soil heat flux in [W m-2] 

%% Rn           net solar radiation in [W m-2] 

%% S            short-wave solar radiation in [W m-2] (Rs in eqn.16) 

%% LAI    leaf area index in [m2 m-2] 

%% Ta    air temperature in reference height in [oc] 

%% rho      air density in [kg m-3] 

%% D    air water vapor pressure deficit in [kPa] 

%% SWC_2       soil water content at the surface layer [m3 m-3] 

%% delta       slope of the saturation vapor pressure versus temperature 

curve [kPa K-1] 

%% gamma       psychrometric constant [kPa K-1] 

%% raa   aerodynamic resistances in [s m-1] 

%% ras  aerodynamic resistances in [s m-1] 

%% rac  aerodynamic resistances in [s m-1] 

 

 

 

%% Code of S-W model   %% 

%% calculate rss in [s m-1]  

thetas=0.45;   % saturated water content at the 20 cm depth in [m3 m-3]; 

rss=exp(b1-b2*SWC_2./thetas); 

  

%% calculated rsc in [s m-1] 

F1=(eps+S)*(1055+k1)./(1055*(S+k1));  % S:short wave radiation W m-2 

Tamin=0; 

Tamax=40; 
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tao=(Tamax-k2)/(k2-Tamin); 

numerator=(Ta-Tamin).*(Tamax-Ta).^tao; 

denominator=(k2-Tamin).*(Tamax-k2).^tao; 

F2=numerator./denominator; 

F3=1-k3*D; 

rsc=rstmin./(2*LAI.*F1.*F2.*F3.*F4); 

 

%% S-W model 

Cp=1.013;  % specific heat capacity of the dry air in kJ/kg/K; 

Ra=(delta+gamma).*raa; 

Rs=(delta+gamma).*ras+gamma.*rss; 

Rc=(delta+gamma).*rac+gamma.*rsc; 

  

Cs=1./(1+Rs.*Ra./(Rc.*(Rs+Ra))); 

Cc=1./(1+Rc.*Ra./(Rs.*(Rc+Ra))); 

KA=.41; 

Rns=Rn.*exp(-KA.*LAI); 

  

A=Rn-G; 

As=Rns-G; 

  

ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.*(A-As))./(raa+ras))./(delta+gam

ma.*(1+rss./(raa+ras))); 

ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As)./(raa+rac))./(delta+gamma.*

(1+rsc./(raa+rac))); 

 

LE=Cs.*ETs; 

LT=Cc.*ETc; 

LET=LE+LT;                         % total half-hourly ET in [W m-2]  

 

% air water vapor pressure deficit at the canopy height in [kPa]  

D0=D+(delta.*A-(delta+gamma).*LET).*raa./(rho.*Cp);  

 

% half-hourly soil evaporation in [W m-2] 

E=(delta.*As+rho.*Cp.*D0./ras)./(delta+gamma.*(1+rss./ras));  

 

% half-hourly canopy transpiration in [W m-2] 

T=(delta.*(A-As)+rho.*Cp.*D0./rac)./(delta+gamma.*(1+rsc./rac)); 

  

%% convert units of evaporation and transpiration from [W m-2] to [mm m-2] 

lambda=2500.78-2.3601*Ta;     

Em=E./lambda; 

Tm=T./lambda; 
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%% calculate the daily accumulative soil evaporation and transpiration %% 

in [mm day-1] 

for i=1:length(E)/48 

    Emd(i,1)=sum(Em((i-1)*48+1:i*48)); 

    Tmd(i,1)=sum(Tm((i-1)*48+1:i*48)); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the S-W model 

 

 

% Main Code  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%  

%% The main code used to calculate the posterior distribution of parameters 

%% Authors :   Gaofeng Zhu, Xin Li 

%% Date    :      March 17, 2014 

%% Address :    Lanzhou University 

%% Purpose :   using the M-H algorithm to explore the posterior 

%%   distribution   parameters in the S-W model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clc 

clear 

format long 

% load meteorological and biological driving data  

load data 

% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S 

% Variables 

ET   =  data(:,1);            % w m-2 

Rn    =  data(:,2);           % w m-2 

G     =  data(:,3);           % w m-2 

u     =  data(:,4);           % m s-1 

Ta    =  data(:,5);           % oC 

RH    =  data(:,6)/100;       % humidity  

P     =  data(:,7)/10;         % kPa 

SWC_2 =  data(:,8)/100;       % m3 m-3 

SWC_r =  data(:,9)/100;       % m3 m-3 

LAI   =  data(:,10);           % m2 m-2; 

hc    =  data(:,11)/100;       % canopy height in m 

z     =  3;                       % reference height in m 

S     =  data(:,12);          % solar radiation 

 

load Edaily      % measured soil evaporation in mm day-1 
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% calculate wind speed at canopy height 

z0  =   0.13*hc;             % roughness length 

d   =   0.67*hc;             % zero plane displacement 

uh  =   u.*log((hc-d)./z0)./log((z-d)./z0); 

  

% Calculate meteorological variables 

lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1  

  

% saturated vapor pressure in kPa 

es=.6108*exp(17.27*Ta./(Ta+237.3)); 

 

% slope of pressure to temperature 

delta=4098*es./(Ta+237.3).^2; 

  

% air density 

Rd=287/1000;                    % the gas constant in kJ/kg/K 

ea=es.*RH;       % actual vapor pressure in kPa 

D=es-ea;                         % air vapor pressure deficit in kPa 

 

% air density in kg m-3 

rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P)); 

  

Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K; 

epsilong=.622;         %the ratio of water vapor and air          

gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1) 

  

  

% calculate raa using equations from Shuttleworth and Wallace (1985)  

k=0.41;                          % von Karman constant 

% z0h=0.1*z0;                  % roughness length to the heat flux in [m]; 

n=2.5;                           % parameter in SW model 

% LAI >4  

raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc

-d)).*(exp(n*(1-(d+z0)./hc))-1));  

% for bare surface 

z0s=0.01; 

ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;      

%  

raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare; 

  

% calculate ras 

% LAI >4  

ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*
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(1-(d+z0)./hc))); 

% for bare surface 

z0s=0.01; 

ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

%   

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare; 

  

  

% calculate rac 

% method 1 

rb=50; 

rac=rb./(2*LAI); 

 

% method 2  

% w=6/100;                                    % leaf width in m 

% rb=(100/n)*(w./u)*(1-exp(-n/2)); 

% rac=rb./(2*LAI); 

  

% calcualte F4 in canopy resistance model 

thetas=.45;                                    % saturated SWC 

thetacr=0.75*thetas; 

thetaw=.11; 

for i=1:length(SWC_r) 

    if SWC_r(i)>thetacr 

        F4(i,1)=1; 

    elseif SWC_r(i)>thetaw 

        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw); 

    else 

        F4(i,1)=eps; 

    end 

end 

  

% Calculate observed daily ET 

ETo=ET./lambda; 

for i=1:length(ET)/48 

    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));     

end 

  

%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure 

 

% Parameter ranges of rsmin,k1,k2,k3,b1,b2, 

cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0; 

cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8; 
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% initialize parameter 

for i=1:length(cmin) 

    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters     

end 

  

[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,T

a,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

 

e1=LETo-ET; 

e2=Emdo-Edaily; 

sigma1=sqrt(sum(e1.^2)/length(LETo)); 

sigma2=sqrt(sum(e2.^2)/length(Emdo)); 

  

logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2)); 

logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2)); 

logL=logL1+logL2; 

  

nsim=30000;          % iteration length 

parameter=zeros(nsim,length(cmin)); 

sigma=zeros(nsim,2); 

 

% begian to iterate 

for i=1:nsim   

% generate new parameter vector 

rr=-.5+rand(1,length(cmin)); 

    cnew=co+rr.*(cmax-cmin)/5; 

     

    % simulate using new parameter vector    

[LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,

G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

     

    % calcualte model error for different data set 

    e1=LETo-ET; 

    e2=Emdo-Edaily; 

     

    % estimate sigma of different data set 

    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24 

    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24 

     

    % calclaute the log-likelihood of different data set  

    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);             

    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);             

     

    % calcualte the total log-likelihood   
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    logLnew=logL1+logL2;                                  % Eqn.23 

     

    % draw a rand number form uniform distribution   

    r=log(rand);                     

  

    if r<=logLnew-logL 

        parameter(i,:)=cnew; % save parameter vales used to draw statistics 

        logL=logLnew; 

        co=cnew; 

    else  

        parameter(i,:)=co;   % save parameter vales used to draw statistics 

    end 

    sigma(i,:)=[sigma1,sigma2];         % save sigma 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program 

 

The proposing efficiency of ( 1)( | )new kq c c   affects the efficiency of the 

algorithm, and hence should be properly designed to ensure a moderate sample 

acceptance rate. A rate of 23% is sometimes an optimal acceptance rate (Robert and 

Rosenthal, 1998). In our test study, the accepting rate using the uniform proposal 

function is generally low (~10%). Based on the test run, we constructed a normal 

distribution (0,cov( ))N c , where cov( )c is the diagonal matrix of the parameter with 

its diagonal being set to the estimated variances of the parameter c from the initial 

test run and zeros elsewhere. Then, we adopted the following proposal distribution: 

( 1) (0,cov( ))new kc c N c                                              (A6) 

Using this proposal distribution, the general acceptance rate can achieve between 

20-50%. The Matlab code was shown as following: 

function y=Generate(co,transT,eigV,cmin,cmax) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Purpose : using normal distribution to generate candidate 

% Author  : Gaofeng Zhu, Xin Li, et al., 

% Date    : March 17, 2014 

% the original code was developed by Xu et al., 2007; 
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% Please cited as: 

% Xu T., White L., Hui DF., Luo YQ. Global Biogeochemical Cycle, 20, GB2007,  

% dio:10.109/2005GB002468, 2006 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

co=co'; 

while(true)  

% 6:  the number of parameter  

cT=randn(6,1).*[sqrt(eigV(1,1));sqrt(eigV(2,2));sqrt(eigV(3,3));sqrt(

eigV(4,4));sqrt(eigV(5,5));sqrt(eigV(6,6))]; 

  

%generate a new configuration based on the estimated covariance matrix 

c_new =transT*(transT'*co+cT); 

 if c_new(1)>cmin(1)&c_new(1)<cmax(1)... 

        &c_new(2)>cmin(2)&c_new(2)<cmax(2)... 

        &c_new(3)>cmin(3)&c_new(3)<cmax(3)... 

        &c_new(4)>cmin(4)&c_new(4)<cmax(4)... 

        &c_new(5)>cmin(5)&c_new(5)<cmax(5)... 

        &c_new(6)>cmin(6)&c_new(6)<cmax(6)... 

        break 

    end 

end 

y=c_new'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the sub-model 

 

% Main Code  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%  

%% The main code used to calculate the posterior distribution of parameters 

%% Authors: Gaofeng Zhu, Xin Li 

%% Date:     March 17, 2014 

%% Adress:   Lanzhou University 

%% Purpose: using the M-H algorithm to explore the posterior distribution  

%%           parameters in the S-W model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clc 

clear 

format long 

% load meteorological and biological driving data  

load data 

% ET Rn Gs_1  WS_3m  Ta_3m  RH_3m  Press  Ms_2cm Ms_10cm LAI h S  

% Variables 

ET   =  data(:,1);            % w m-2 
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Rn    =  data(:,2);           % w m-2 

G     =  data(:,3);           % w m-2 

u     =  data(:,4);           % m s-1 

Ta    =  data(:,5);           % oC 

RH    =  data(:,6)/100;       % humidity  

P     =  data(:,7)/10;         % kPa 

SWC_2 =  data(:,8)/100;       % m3 m-3 

SWC_r =  data(:,9)/100;       % m3 m-3 

LAI   =  data(:,10);           % m2 m-2; 

hc    =  data(:,11)/100;       % canopy height in m 

z     =  3;                       % reference height in m 

S     =  data(:,12);          % solar radiation 

 

load Edaily      % measured soil evaporation in mm day-1 

 

% calculate wind speed at canopy height 

z0  =   0.13*hc;             % roughness length 

d   =   0.67*hc;             % zero plane displacement 

uh  =   u.*log((hc-d)./z0)./log((z-d)./z0); 

  

% Calculate meteorological variables 

lambda=2500.78-2.3601*Ta;    % the latent heat of evaporation in J kg-1  

  

% saturated vapor pressure in kPa 

es=.6108*exp(17.27*Ta./(Ta+237.3)); 

 

% slope of pressure to temperature 

delta=4098*es./(Ta+237.3).^2; 

  

% air density 

Rd=287/1000;                    % the gas constant in kJ/kg/K 

ea=es.*RH;       % actual vapor pressure in kPa 

D=es-ea;                         % air vapor pressure deficit in kPa 

 

% air density in kg m-3 

rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P)); 

  

Cp=1.013;               %specific heat capacity of the dry air in kJ/kg/K; 

epsilong=.622;         %the ratio of water vapor and air          

gamma=Cp*P./(lambda*epsilong);     % psychrometric constant (kPa K-1) 

  

  

% calculate raa using equations from Shuttleworth and Wallace (1985)  

k=0.41;                          % von Karman constant 
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% z0h=0.1*z0;                  % roughness length to the heat flux in [m]; 

n=2.5;                           % parameter in SW model 

% LAI >4  

raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc

-d)).*(exp(n*(1-(d+z0)./hc))-1));  

% for bare surface 

z0s=0.01; 

ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;      

%  

raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare; 

  

% calculate ras 

% LAI >4  

ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*

(1-(d+z0)./hc))); 

% for bare surface 

z0s=0.01; 

ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

%   

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare; 

  

  

% calculate rac 

% method 1 

rb=50; 

rac=rb./(2*LAI); 

 

% method 2  

% w=6/100;                                    % leaf width in m 

% rb=(100/n)*(w./u)*(1-exp(-n/2)); 

% rac=rb./(2*LAI); 

  

% calcualte F4 in canopy resistance model 

thetas=.45;                                    % saturated SWC 

thetacr=0.75*thetas; 

thetaw=.11; 

for i=1:length(SWC_r) 

    if SWC_r(i)>thetacr 

        F4(i,1)=1; 

    elseif SWC_r(i)>thetaw 

        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw); 

    else 

        F4(i,1)=eps; 
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    end 

end 

  

  

% Calculate observed daily ET 

ETo=ET./lambda; 

for i=1:length(ET)/48 

    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1));     

end 

  

%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure 

% Prior estimate of covariance matrix of parameters  

% it was obtained from previous uniform run 

 

cov_c=[0.9645 -0.0219 -0.3973 -0.0015 -0.0047 0.0314 

-0.0219 0.0247 -0.0852 0.0003 0.0171 0.0322 

-0.3973 -0.0852 5.3166 -0.0076 -0.0279 -0.0387 

-0.0015 0.0003 -0.0076 0.0003 0.0025 0.0065 

-0.0047 0.0171 -0.0279 0.0025 0.2524 0.6315 

0.0314 0.0322 -0.0387 0.0065 0.6315 1.6916]; 

[transT, eigV]=eig(cov_c); 

 

% Parameter ranges of rsmin,k1,k2,k3,b1,b2, 

cmin(1)=0;cmin(2)=0;cmin(3)=30;cmin(4)=0;cmin(5)=4;cmin(6)=0; 

cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8; 

  

% initialize parameter 

for i=1:length(cmin) 

    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters     

end 

  

[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,T

a,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

 

e1=LETo-ET; 

e2=Emdo-Edaily; 

sigma1=sqrt(sum(e1.^2)/length(LETo)); 

sigma2=sqrt(sum(e2.^2)/length(Emdo)); 

  

logL1=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2)); 

logL2=-length(Emdo)*log(sigma2)-sum(e2.^2/(2*sigma2^2)); 

logL=logL1+logL2; 

  

nsim=30000;          % iteration length 
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parameter=zeros(nsim,length(cmin)); 

sigma=zeros(nsim,2); 

 

% begian to iterate 

for i=1:nsim   

    % generate new parameter vector from normal destribution 

    cnew= Generate(co,transT,eigV,cmin,cmax); 

     

    % simulate using new parameter vector    

[LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,

G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

     

    % calcualte model error for different data set 

    e1=LETo-ET; 

    e2=Emdo-Edaily; 

     

    % estimate sigma of different data set 

    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24 

    sigma2=sqrt(sum(e2.^2)/length(Emdo));             % Eqn.24 

     

    % calclaute the log-likelihood of different data set  

    logL1=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);             

    logL2=-length(Emdo)*log(sigma2)-sum(e2.^2)/(2*sigma2^2);             

     

    % calcualte the total log-likelihood   

    logLnew=logL1+logL2;                                  % Eqn.23 

     

    % draw a rand number form uniform distribution   

    r=log(rand);                     

  

    if r<=logLnew-logL 

        parameter(i,:)=cnew; % save parameter vales used to draw statistics 

        logL=logLnew; 

        co=cnew; 

    else  

        parameter(i,:)=co;   % save parameter vales used to draw statistics 

    end 

    sigma(i,:)=[sigma1,sigma2];         % save sigma 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the main program 

2.3 Results of Multi-source Assimilation Scheme 

The results of 10,000 evolution of MCMC using multi-source data are shown in 
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Fig. B2 
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Fig. B2 The evolution of MCMC chain using the normal distribution proposal (left) 

and histograms of sample from posterior distribution (right) by using multi-source 

dataset
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The comparison between observed and simulated half-hourly evapotranspiration (W m
-2

) were illustrated in Fig. B3. The simulated values 

were obtained using the median values of the posterior parameter distribution. 

 

Fig. B3 Comparison between observed and simulated half-hourly evapotranspiration (W m
-2

). The regression lion between observed and 

simulated values was: y=0.84x+0.18 (R
2
=0.83)
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PART 3: Single Data Set Optimization Scheme  

3.1 M-H Algorithm: 

To investigate how the estimation accuracy and parameters vary, a test case was 

also run by using one single data set (the EC-measured half-hourly ET; W m
-2

). In this 

case, the likelihood function was set as: 

2
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( ) ( ) ( )e t O t f t                                                     (A8) 

where ( )O t is EC-observed half-hourly ET (W m
-2

); ( )f t is simulated ET values  (W 

m
-2

; Eqn.1 in the manuscript); ( )e t is the model error (W m
-2

); and   is the standard 

deviation on each data point. For a given parameter vector,   is estimated as 

(Braswell et al., 2005): 
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3.2 Matlab Code  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%  

%% The main code used to calculate the posterior distribution of parameters 

%% This scheme using only the EC-measured half-hourly ET data 

%% Authors: Gaofeng Zhu, Xin Li 

%% Date:     March 17, 2014 

%% Adress:   Lanzhou University 

%% Purpose: using the M-H algorithm to explore the posterior distribution  

%%           parameters in the S-W model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

clear 

  

format long 

load data 

% ET  Rn Gs_1  WS_3m  Ta_3m  RH_3m  P  Ms_2cm  Ms_10cm LAI h S  
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% Variables 

ET  =  data(:,1);            % w m-2 

Rn   =  data(:,2);           % w m-2 

G    =  data(:,3);           % w m-2 

u    =  data(:,4);           % m s-1 

Ta   =  data(:,5);           % oC 

RH   =  data(:,6)/100;       % humidity  

P    =  data(:,7)/10;        % kPa 

SWC_2=  data(:,8)/100;       % m3 m-3 

SWC_r=  data(:,9)/100;       % m3 m-3 

LAI  =  data(:,10);          % m2 m-2; 

hc   =  data(:,11)/100;     % canopy height in m 

z    =  3;                    % reference height in m 

S    =  data(:,12);         % solar radiation 

 

load Edaily     % measured soil evaporation in mm day-1 

 

% calculate wind speed at canopy height 

z0  =   0.13*hc;             % roughness length 

d   =   0.67*hc;             % zero plane displacement 

uh  =   u.*log((hc-d)./z0)./log((z-d)./z0); 

  

% Calculate meteorological variables 

lambda=2500.78-2.3601*Ta;      

  

% saturated vapour pressure in kPa 

es=.6108*exp(17.27*Ta./(Ta+237.3)); 

% slope of pressure to temperature 

delta=4098*es./(Ta+237.3).^2; 

  

%air density 

Rd=287/1000;                    % the gas constant in kJ/kg/K 

ea=es.*RH; 

D=es-ea; 

rho=P./(Rd*(Ta+273.14).*(1+.378*ea./P)); 

  

% 

Cp=1.013;                %specific heat capacity of the dry air in kJ/kg/K; 

%the ratio between the mplecular weight of water vapor and air 

epsilong=.622;          

  

gamma=Cp*P./(lambda*epsilong); 
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%% calculate raa 

k=0.41;                         % von Karman constant 

% z0h=0.1*z0;                  % roughness length to the heat flux in [m]; 

n=2.5;                          % parameter in SW model 

  

  

% LAI >4  

raa_inf=log((z-d)./z0)./(k*k*(u+eps)).*(log((z-d)./(hc-d))+hc./(n*(hc

-d)).*(exp(n*(1-(d+z0)./hc))-1));  

  

% for bare surface 

z0s=0.01; 

ras0=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

raa_bare=(log(z/z0s).*log(z/z0s))./(k*k*(u+eps))-ras0;  % bare surface 

  

%  

raa=.25*LAI.*raa_inf+.25*(4-LAI).*raa_bare; 

  

%% calculate ras 

% LAI >4  

ras_inf=log((z-d)./z0)./(k*k*(u+eps)).*hc./(n*(hc-d)).*(exp(n)-exp(n*

(1-(d+z0)./hc))); 

  

% for bare surface 

z0s=0.01; 

ras_bare=log(z/z0s).*log((d+z0)/z0s)./(k*k*(u+eps)); 

  

ras=.25*LAI.*ras_inf+.25*(4-LAI).*ras_bare; 

  

  

% calculate rac 

% method 1 

rb=50; 

rac=rb./(2*LAI); 

  

% w=6/100;                             % leaf width in m 

% rb=(100/n)*(w./u)*(1-exp(-n/2)); 

% rac=rb./(2*LAI); 

  

% calcualte F4 in canopy resistance model 

thetas=.45;                          % saturated SWC 

thetacr=0.75*thetas; 

thetaw=.11; 

for i=1:length(SWC_r) 
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    if SWC_r(i)>thetacr 

        F4(i,1)=1; 

    elseif SWC_r(i)>thetaw 

        F4(i,1)=(SWC_r(i)-thetaw)./(thetacr-thetaw); 

    else 

        F4(i,1)=eps; 

    end 

end 

  

  

% Calculate observed daily ET, E and T 

ETo=ET./lambda; 

for i=1:length(ET)/48 

    ETdaily(i,1)=sum(ETo((i-1)*48+1:i*48,1)); 

    Edaily(i,1)=ETdaily(i,1)*FracE(i,1); 

    Tdaily(i,1)=ETdaily(i,1)*FracT(i,1); 

end  

  

%%%%%%%%%%%%%%%%%%%%  M-H iteration procedure 

% Prior estimate of covariance matrix of parameters  

% it was obtained from test uniform run, which is similar to that used  

% in Part 1 

% 

  

cov_c=[2.649    -11.1951    0.4698  -0.011  -0.0843 0.5416 

-11.1951    12139.2934  -80.9997    0.3606  11.5584 23.4091 

0.4698  -80.9997    22.3938 -0.0033 0.3244  1.6035 

-0.011  0.3606  -0.0033 0.0006  0.0007  -0.0004 

-0.0843 11.5584 0.3244  0.0007  0.576   1.3829 

0.5416  23.4091 1.6035  -0.0004 1.3829  4.4452]; 

 

[transT, eigV]=eig(cov_c); 

  

% Parameter ranges of rsmin,k1,k2,k3,b1,b2, 

cmin(1)=0;cmin(2)=0;cmin(3)=20;cmin(4)=0;cmin(5)=4;cmin(6)=0; 

cmax(1)=80;cmax(2)=500;cmax(3)=40;cmax(4)=.1;cmax(5)=15;cmax(6)=8; 

  

% initialize parameter 

for i=1:length(cmin) 

    co(i)=cmin(i)+rand.*(cmax(i)-cmin(i));     % Initial paramerters     

end 

  

[LETo,Emdo]=SW(co(1),co(2),co(3),co(4),co(5),co(6),[],F4,G,Rn,S,LAI,T

a,rho,D,SWC_2,delta,gamma,raa,ras,rac); 
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% only ET data set was used here, that is different form Part 1 

e1=LETo-ET; 

sigma1=sqrt(sum(e1.^2)/length(LETo)); 

 

logL=-length(LETo)*log(sigma1)-sum(e1.^2/(2*sigma1^2)); 

 

nsim=10000;                                     % iteration length 

parameter=zeros(nsim,length(cmin)); 

sigma=zeros(nsim,2); 

  

% begian to iterate 

for i=1:nsim   

    % generate new parameter vector from normal destribution 

    cnew= Generate(co,transT,eigV,cmin,cmax); 

     

    % simulate using new parameter vector     

    

[LETo,Emdo]=SW(cnew(1),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,

G,Rn,S,LAI,Ta,rho,D,SWC_2,delta,gamma,raa,ras,rac); 

     

    % calcualte model error for ET data set 

    e1=LETo-ET; 

     

    % estimate sigma of ET data set 

    sigma1=sqrt(sum(e1.^2)/length(LETo));             % Eqn.24 

     

    % calclaute the log-likelihood  

    logLnew=-length(LETo)*log(sigma1)-sum(e1.^2)/(2*sigma1^2);            

   

     

    % draw a rand number form uniform distribution   

    r=log(rand);                     

  

    if r<=logLnew-logL 

        parameter(i,:)=cnew; % save parameter vales used to draw statistics 

        logL=logLnew; 

        co=cnew; 

    else  

        parameter(i,:)=co;   % save parameter vales used to draw statistics 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of the Main program 

3.3 Results  
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The results of 10,000 evolution of MCMC using single data are shown in Fig. B4 

(left). Comparing with multi-source assimilation scheme, we can see that the 

posterior distribution of soil resistance parameter (b1 and b2) varied 

wider.

 

Fig. B4 The evolution of MCMC chain using the normal distribution proposal (left) 

and histograms of sample from posterior distribution (right) by using single dataset. 



 73 

The slope (0.85) of the regression line between observed and simulated half-hourly ET for single data set assimilation scheme is slightly 

lower than that for multi-source data set assimilation scheme (0.86). Thus, we can conformed that that the multi-source data set 

assimilation scheme is more effective than the single data set scheme.  

 

Fig. B5 Comparison between observed and simulated half-hourly evapotranspiration (W m
-2

). The regression lion between observed and 

simulated values was: y=0.83x-1.65 (R
2
=0.75)
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PART 4: Comparisons Between Different Assimilation Schemes 

4.1 Posterior distributions of parameter for different assimilation schemes   

For Scheme 1 (simultaneously assimilate all data sets), STminr , 1b , 
2b  and 

2k  

showed relatively large uncertainty reductions (defined as 1 CI / CIposterior prior , where 

CI  is the length of the 95% credible interval) (Fig. B6), and their posterior 

distributions become approximately symmetric with distinctive modes, while 

parameters 1k  and 3k  have relative large variability (widely spread on the prior 

bounds) (Fig. B7a); For Scheme 2 (only assimilate EC data), only STminr , 1b  and 2k  

showed relatively large uncertainty reductions and tended to be approximately 

symmetric, while 
2b , 1k  and 3k  tended to span the entire prior range (Fig. B7b). 

Comparing with the two assimilation schemes, important differences occurred in 

estimates of the posterior distribution of parameters related to the soil surface 

resistance ( 1b  and 2b ; s m
-1

) (Fig. B6). Generally, tighter posterior distributions for 

parameters 1b  and 2b  were obtained by Scheme 1. For example, the values of 

uncertainty reduction for 1b  and 2b  in Scheme 1 (0.89 and 0.56, respectively) were 

higher than that in Scheme 2 (0.79 and 0.12, respectively). Thus, the daily soil 

evaporation data helped to well constrain estimates of 1b  and 2b . In addition, the six 

calibrated parameters by Scheme 1 were not significantly inter-correlated with each 

other (correlation coefficients lower than 0.1), while for Scheme 2 the pairs 1b  and 

2b  and STminr  and 2b  tended to be constrained together with correlation coefficients 

being 0.84 and 0.32, respectively (Table B1).  
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Fig. B6 Uncertainty reductions of parameters using different assimilation schemes 

 

Table B1 The correlation coefficient, derived form the posterior distribution of 

parameters using different assimilation schemes. 

rSTmin k1 k2 k3 b1 b2  

1 -0.004 -0.01 0.02 0.01 0.004 rSTmin 

 1 0.05 -0.04 -0.02 0.06 k1 

  1 -0.04 -0.07 0.07 k2 

EC data Only 1 0.05 -0.04 k3 

rSTmin 1   1 0.02 b1 

k1 -0.13 1   1 b2 

k2 -0.13 0.06 1    

k3 -0.15 0.02 0.01 1   

b1 -0.09 0.05 0.04 0.02 1  

b2 0.32 0.02 0.05 -0.03 0.84 1 

 rSTmin k1 k2 k3 b1 b2 

* the upper triangular matrix for Scheme 1; the lower triangular matrix for Scheme 2 
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Fig. B6 Histograms of samples from the posterior distributions of the parameters. The dashed vertical lines indicate mean parameter values. (a) 

Simultaneously assimilate all data sets, (b) EC-measured λET data only
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4.2 Comparisons of model performance for different assimilation schemes   

Having parameterized the S-W model by different assimilation schemes as 

described above, we ran the model to simulate the half-hourly λET (equation 1) and 

λE (equation 9) values (W m
-2

). The daily estimations of evapotranspiration (ET; mm 

d
-1

) and soil evaporation ( E ; mm d
-1

) were obtained by summing up the half-hourly 

simulated values. The statistical analysis of observed versus estimated values of water 

vapor fluxes at different time-scales for different assimilation schemes were 

summarized in Table B2. Overall, the simulations (half-hourly λET  and daily soil 

evaporation) of the S-W model optimized by using all data sets simultaneously 

(Scheme 1) were comparable to the measurements (see Fig. 6 in the Manuscript). For 

example, the slope of regressive equation between the measured and modeled 

half-hourly λET values for Scheme 1 was 0.84, with MBE of 24.2 W m
-2

, IA of 0.93 

and EF of 0.74. A relatively good agreement between measured and estimated daily 

soil evaporation (E) was also obtained. The slope of regression equation was 1.01, 

with MBE of –0.01 mm day
-1

, IA of 0.94 and EF of 0.76. When only EC-measured 

data were used (Scheme 2), the performances of the S-W model optimized by Scheme 

2 on simulations of half-hourly λET were not significantly different from that 

optimized by Scheme 1 (Fig. B7). The regression equation between the measured 

λET  and the estimated λET from the S-W model optimized by Scheme 2 was 0.83, 

with MBE of 30.5 W m
-2

, IA of 0.67 and EF of 0.13. However, the S-W model 

optimized by Scheme 2 significantly underestimated the soil evaporation (E). The 

slope of regression equation between the measured and the estimated E was 0.59, with 

MBE of 0.11 mm day
-1

, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W 

model properly partition the total ET into its different components using only the 

half-hourly λET  data, even thought the simulated values was in good agreement 

with measurements.    
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The fluctuation of measured and estimated daily ET and E by the two different 

assimilation schemes was illustrated in Fig. B8. For both assimilation schemes, the 

simulated daily ET generally fluctuated tightly with the measured values with relative 

narrow uncertainties (97% posterior predication intervals). Also, we can observed that 

the 97% posterior prediction interval of soil evaporation for Scheme 1 was narrower 

than that for Scheme 2 (Fig. B8). Thus, we thought that the soil resistance in the S-W 

model was properly parameterized for the spring maize by the method with the 

multiple data sets simultaneously assimilated. 

 

Fig. B7 Relationship between measured and estimated by Scheme 1 (a) 
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evapotranspiration ( λET ; W m
-2

), (b) daily soil evaporation (E; mm d
-1

). 

 

Fig. B8 Seasonal variation in daily evapotranspiration (ET; mm d-1) and soil 

evaporation (E; mm day-1) measured by the EC system and modeled by the S-W 

model during the study period in Daman Oasis. Gap in the time series is caused either 

by the absence of flux measurements or missing ancillary data. (a) Simultaneously 

assimilate all data sets, (b) EC-measured λET data only.
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Table B2 Statistical analysis of measured and estimated values of half-hourly evapotranspiration (λET; W m
-2

), daily soil evaporation (E; mm 

d
-1

), and daily evapotranspiration(ET; mm d
-1

) by different assimilation schemes for the spring maize in arid desert oasis during the study period. 
 n Regressive equation R

2
 Mean measured values  Mean simulated values RMSE MBE IA EF 

Scheme 1 
λET (W m

-2
) 3578 λETmodeled=0.84λETmeasured+0.18 0.83 161.4 137.2 80.7 24.2 0.93 0.74 

E (mm d
-1

) 56 Emodeled=1.01Emeasured +0.01 0.82 0.26 0.28 0.05 -0.01 0.94 0.76 

ET (mm d
-1

) 95 ETmodeled=0.83ETmeasured +0.19 0.83 2.02 1.88 0.32 0.14 0.94 0.79 

Scheme 2 
λET (W m

-2
) 3578 λETmodeled=0.83λETmeasured-1.65  0.75 161.4 142.4 89.1 30.5 0.90 0.70 

E (mm d
-1

) 56 λETmodeled=0.59λETmeasured+0.01 0.66 0.26 0.16 0.12 0.11 0.67 0.13 

ET (mm d
-1

) 95 λETmodeled=0.89λETmeasured+0.15 0.85 2.02 1.94 0.12 0.07 0.99 0.97 

n=the sample number; R
2
=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; IA= index of 

agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and 

Ortega-Farias (2009). 
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Appendix C 
C.1 Convergence of MCMC 
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where K is the number M-H parallel chains; N is the running length of M-H 

algorithm; ic is the ith component of the parameter vector c ; iB  and iW  denotes 

the between and within-run variances; and iGR  is the Gelman-Rubin (G-R) 

diagnostic of convergence of MCMC (Gelman and Rubin, 1992). 

The evolution of GR diagnostic of convergence of MCMC was shown in Fig. C1. 

We can see that the GR values for all parameters tended to be less than 1.1 after 5000 

iteration.  

 

Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel 

chains with different initial values were used to calculate GR values. 
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B.2 Matlab Code  

clc 

clear 

load Chain  

% Chain is the matrix than contain N running length, K parallel chains 

% it is a N*K matrix for parameter ci  

  

[N,K]=size(Chain);  

for k=1:K 

    ss=0; 

    for n=1:N 

        ss=ss+Chain(n,k); 

        cwb(n,k)=ss/n;               %calculate c.,k 

    end 

end  

 

for n=1:N 

    st=0; 

    for k=1:K 

        st=st+cwb(n,k); 

    end 

    cst(n)=st/K;                      % calculate c.,. 

end    

     

for n=1:N 

    sb=0; 

    for k=1:K 

        sb=sb+(cwb(n,k)-cst(n))^2; 

    end 

    B(n)=n*sb/(K-1);                   % calculated B 

end 

  

for k=1:K 

    sw=0; 

    for n=1:N 

        sw=sw+(Chain(n,k)-cwb(n,k))^2; 

        swc(n,k)=sw/(n-1); 

    end 

end 

  

for n=1:N 

    s1=0; 

    for k=1:K 

        s1=s1+swc(n,k); 
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    end 

    W(n,1)=s1/K;                        % calculated W 

end 

  

for n=1:N 

    GR(n,1)=sqrt((W(n)*(n-1)/n+B(n)/n)/W(n)); 

end 

 

 

 

 


