Responses to comments Provided by Referee 1

Parameter optimization by MCMC method for the evapotranspiration model is
one of the best solutions for improving the estimation accuracy. Zhu et al. did
an interesting work on simultaneous assimilation of two different data streams:
30min evapotranspiration (ET) and daily evaporation (E), then finally gained
the moderately good accordance between the simulations and the
observations. The efforts proved a new feature for optimizing the canopy
transpiration and soil evaporation parameters, and also brought the direction
for further improvement of such ET model.

Authors’ response: Thanks very much for your positive comments.

Main comments:

1. However, this paper is suffering from insufficient explanation on the
optimization scheme.

Authors’ response: According to your valuable suggestions, a detail

explanation of the optimization scheme were added in our revised paper (Lines

303-315, Pages 14-15):

It was well recognized that efficiency of the M-H algorithm was strongly
effected by the proposal distribution function. To find an effective proposal
distribution P(c™ |c*™?), a test run of the M-H algorithm with 10, 000 simulations
was made by using a uniform proposal distribution (Braswell et al., 2005):
c™ =" 4r(c™ —c™) (26)
where c** is the current accepted point; ris a random number uniformly

distributed between -0.5 and +0.5; ¢™and c™ are the lower and upper limits of
parameter vector c¢. Based on the test run, we then constructed a normal proposal
distribution ¢"™: N(c*™,cov’(c)), where cov®(c)is the covariance matrix of the

parameter vector ¢ from the initial test run (Xu et al., 2006).
In addition, a detailed flowchart representing the basic scheme of the M-H
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algorithm and the Matlab code were presented in Appendix B.

2. ... and on the optimization of which parameter reduced the uncertainty on
model simulation.

Authors’ response: We thought that it may be good to explain this problem by
doing a parameter sensitivity analysis. Thus, in our revised paper a sensitivity
analysis was conducted (see details in Appendix A). The results indicated that
the most sensitive parameters in the S-W model was rstmin, and followed by
b1, by, ko and k;. Other parameter had almost no effect on the variability in
model output. We have stated it in our revised paper (Lines 374-381, Page
18):

The global sensitivity analysis with the first-order impact ratio (FOIR) values

(Appendix C) reveal the importance of input parameters in affecting total ecosystem

evapotranspiration. The results indicated that total ET responded sensitively to 1.,

b, b, and k, with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%,

respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting
that the variability in these parameters had almost no effect on the variability in model

output.

3. and on how individual measurement data of two data steams improved
your model simulation.
Authors’ response: According to your suggestion, two different assimilation
schemes were conducted to evaluated on how individual measurement data of
two data steams improved your model simulation. The two assimilation
schemes were: (1) simultaneous assimilation all data sets including half-hourly
ET (\ET: W m™) and daily soil evaporation (E; mm d™); (2) only assimilation
half-hourly ET (AET: W m™). The detail comparisons between the two

assimilation scheme were presented in Appendix B.

4. The authors miss the explanations on the parameter optimization




processes and results. First, why don’t you optimize other parameters for
better estimation? Your former paper, Zhu et al. (2013), used gmax 50,
d50, kg, ka more than this study. Explain the reason why you chose 6
parameters for optimization in this study.
Authors’ response: Firstly, the canopy resistance model in this two studies
are different. In our former paper, the Leuning’s type canopy resistance model
(Leuning et al., 2008) were used. In this study, the Jarvis-type model (Jarvis,
1976) was used. Thus, the parameters were different for these two different
model.
Secondly, we thought that parameters with really physical or biological
meanings (e.g., Ka) should be measured in site (Sauer et al., 2007) rather than
to be estimated.
Third, to avoiding the equifinality, a global sensitivity analysis was conducted to

reveal the most sensitive parameters in the S-W model. The first-order impact

ratio (FOIR) values for  r.., b, b, and k, were 54.3%, 21.9%, 10.4% and

8.5%, respectively. While FOIR values for some parameters (Tamin and Tamax)

were less than 5% (see Appendix A).

Thus, we chose r; b, b,, and k —k, as parameters, while other from

Tmin 1
literatures.
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5. Second, how did you decide the measurement error variance, o?
Authors’ response: In our revised paper, the method to determine the error

variance were given as (Lines 271-284, Pages 13-14):

o, (i=12) represents the residual errors, or standard deviation about model
predicted output of the ith dataset. Here, we assumed o; is the same over the
observation time for the ith data set (Braswell et al., 2005). Traditionally, o; can be
included into the analysis explicitly (i.e., assuming o, is uniform over logo;;
Gelman et al.,, 1995) and treated as one the model parameters, which vyields a
complete posterior distribution of o, . However, this method artificially increased the
parameter dimension of the problem and may result in unreasonable estimations of the
parameter values (Kavetski et al., 2006). In this study, o; was estimated by using the
analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find
the value of o, that maximizes log(p(O;(-)|c)) for a given parameter vector. By

differentiating log(p(O;(:)|c)) with respectto o, we can obtain:

ot = /niZ(e (1)) (24)

We then used o toreplace o, inthe equations (22).

6. Third, the arithmetic mean values from posterior parameter probability
density were picked up as the optimized parameter numbers in this study.
However, | think that the median values should be used for them although
the mean and median would be the same if there is a perfect Gaussian
probability distribution. However, normally it is not the case. So you should

take the median value for the optimized parameter number.
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Authors’ response: According to your valuable suggestion, the median value

was used as the optimized parameter (Lines 340-342, in Page 16):

, f.(t)is the simulation which was calculated using the posterior median parameter
values, and other parameter vectors selected from the parameter chains generated by

the MCMC iteration (van Oijen et al., 2013).

7. Fourth, you compare the range of posterior parameter values to those of
other posterior parameter values. But, if you like to inter-compare the
relative influence by each parameter optimization on reducing total ET
error, you have to use the relative range of parameter values, by dividing
the absolute parameter value range by posterior/prior parameter
uncertainty value.

Authors’ response: According to your suggestion, relative uncertainty

reduction was added in our revised paper (Lines 370-372, Page 18):

Parameters ... b, b, and k, showed relatively large uncertainty reductions

(defined as 1-CI /Cl where CI is the length of the 95% credible

posterior prior ?

interval) (Fig. 5).

8. This study assimilated daily E in addition to 30min ET, which is already
used in your previous study on the Qinghai Tibetan Plateau (Zhu et al.,
2013). This is a good originality of this study. So I like to know how the
estimation accuracy will change if you optimize single data (ET or E), and
how the accuracy on E estimation is if only ET is assimilated, and vice

versa.

Authors’ response: To clearly investigate this interesting question, we
compared two different assimilation scheme: (1) simultaneous assimilation all

data sets including half-hourly ET (AET; W m™) and daily soil evaporation (E;




mm d™); (2) only assimilation half-hourly ET (AET: W m™). (see Appendix B).
Comparing with the two assimilation schemes, important differences occurred
in estimates of the posterior distribution of parameters related to the soil
surface resistance (b, and b,; s m™). Generally, tighter posterior distributions
for parameters b and b, were obtained by Scheme 1. For example, the

values of uncertainty reduction for b, and b, in Scheme 1 (0.89 and 0.56,

respectively) were higher than that in Scheme 2 (0.79 and 0.12, respectively).
Thus, the daily soil evaporation data helped to well constrain estimates of b,

and b,. In addition, the six calibrated parameters by Scheme 1 were not

significantly inter-correlated with each other (correlation coefficients lower than

0.1), while for Scheme 2 the pairs b, and b, and ry,,, and b, tended to be

Tmin
constrained together with correlation coefficients being 0.84 and 0.32,

respectively.

Overall, the simulations (half-hourly AET and daily soil evaporation) of the
S-W model optimized by using all data sets simultaneously were comparable
to the measurements (see Fig. 6 in the Manuscript). For example, the slope of
regressive equation between the measured and modeled half-hourly
AET values for Scheme 1 was 0.84, with MBE of 24.2 W m, I1A of 0.93 and EF
of 0.74. A relatively good agreement between measured and estimated daily
soil evaporation (E) was also obtained. The slope of regression equation was
1.01, with MBE of —0.01 mm day™, IA of 0.94 and EF of 0.76. When only
EC-measured data were used (Scheme 2), the performances of the S-W
model optimized by Scheme 2 on simulations of half-hourly AET were not
significantly different from that optimized by Scheme 1. The regression

equation between the measured AET and the estimated AET from the S-W




model optimized by Scheme 2 was 0.83, with MBE of 30.5 W m?, IA of 0.67
and EF of 0.13. However, the S-W model optimized by Scheme 2 significantly
underestimated the soil evaporation (E). The slope of regression equation
between the measured and the estimated E was 0.59, with MBE of 0.11 mm
day?, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W model
properly partition the total ET into its different components using only the
half-nourly AET data, even thought the simulated values was in good

agreement with measurements.

9. For advection, you concluded that the underestimation by S-W model was
induced by no representation of enhanced ET by such dry air advection
so-called as an oasis effect. | guess that the hot/dry airflow effect by
advection could be reflected by enhanced air temperature and enhanced
vapor pressure deficit, which would give higher ET estimation by S-W
model to some extent.

Authors’ response: Yes, when the air gets hot and dry in the absences of
inversion temperature layer, a higher ET was estimated by the S-W model.
However, for heterogeneous land surface such as desert and oasis, advection
were often observed. In desert region, the available energy is mainly
dissipated as sensible heat to warm the air; In the oases on the other hand,
water is generally not limited due to irrigation and it permits evapotranspiration
freely. Thus, the oasis is cooler than the regional air in which it is embedded,
and there is a continual air-to-oasis inversion temperature gradient driving a
downward directed heat flux. The energy used to evapotranspiration is more
than available solar radiation. Oke (1978) pointed that: this anomalous
situation is explained by the fact that the atmosphere supplies sensible
heat to the oasis surface. The interaction between the oasis and nearby
desert were illustrated in Fig. S1.

However, the advection process was neglected in the S-W model, and




underestimations of evapotranspiration were observed in our study in the
presences of inversion temperature layer (Fig. 10 in our revised paper).
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Fig. S1 The interaction between desert and oasis (modified according to Hu,
1994).
References:
Oke, T. R. Boundary layer Climates, Second ed. Mathuen, London, 1978.
Hu, Y.Q.: Research advance about the energy budget and transportation of
water vapour in the HEIFE area. Advance in Earth Science, 9(4), 30-34,

1994. (in Chinese with English abstract).

10. The S-W model is a nicely simple model to be applied for estimating ET in
the sparsely-planted crop field to take into account the considerable soil
evaporation, which could not be represented by widely-used
Penman-Monteith model. However, the optimized S-W simulation shows
that the relative contribution by soil evaporation on total ET was quite low
(less than 0.1 for most of growing season), so that the S-W model is not
necessarily required this time actually.

Authors’ response: We fully agree with your comments. In this study, we




mainly to show that only using the EC-measured data it may be not proper in
estimating model parameters, especially for parameters related the soil
residence (Appendix B). We want that this study may be helpful to researches

in doing field observations.

Minor comments:

1. Title: What does "Simultaneous parameterization” mean? Does it mean
that 6 parameters are optimized concurrently? Either, do you mean that
S-W model assimilates two data sets, AET and E, together at once? You
modify the title to appeal the focal point of this research concerning such
“simultaneous parameterization”.

Authors’ response: The title was changed as:

Simultaneously assimilating multivariate datasets into the two-source

evapotranspiration model by Bayesian approach: Application to spring maize

in an arid region of northwest China

2. Page 742, Line 10, “a good agreement”: | do not think that the regression
line’s slope, 0.84, shows a good agreement.

Authors’ response: “a good agreement” was changed as “a moderately good

agreement”

3. Page 742, Line 11-13: This is a speculation. You should not write in this
way, which strongly affirms the advection although you did not measure it
directly

Authors’ response: The sentence was changed as:

The causes of underestimations of ET by the S-W model was possibly attributed to

the micro-scale advection.

4. Page 742, Line 14, “accounted”: account?
Authors’ response: The world “accounted” has been changed as “account”.

5. Page 742, Line 15-16: This is a speculation again.

Authors’ response: This sentence was changed as:

Also, underestimations were observed on or shortly after rainy days, which may be
due to direct evaporation of liquid water intercepted in the canopy.

6. Page 743, Line 12, “has”. have?
Authors’ response: the world “has” was changed as “have”.

7. Page 744, Line 25, “The spring wheat”: How sparsely was it planted?
Normally the S-W model is needed for the crop land where the crop is
planted sparsely. But, you have not mentioned anything about the crop




density. You clarify it.
Authors’ response: We have clarified it as (Lines 115-116, Page 6):
Stand density of the spring maize is about 37 plants m? with row spacing of 40
cm and planting spacing of 7 cm.

8. Page 745, Line 4-20: You have to address about the estimation accuracy
or energy closure for eddy flux measurement, which could relate to the
error range of assimilated data set.

Authors’ response: According to your valuable suggestions, these issues

were addressed (Lines 130-138, Pages 6 and 7):

About 85% energy balance closure (the sum of H+AET against the available energy)

was found in EC data (Liu et al., 2011). In addition, the flux uncertainties are directly

related to the likelihood function of Bayesian inference (Section 2.5). Thus,
determining the uncertainties is EC measurements is essential for proper parameter
estimates. Recently, Wang et al. (2014) systemically studies the flux uncertainties of

EC systems equipped in the HIWATER experiment. Generally, uncertainties for H

(o,(H), W m?) by using method of Mann and Lenschow (1994) tended to be
o.(H)=0.14H +2.7 (R*=0.95), and uncertainties for AET (o, (AET); W m™) be

o, (AET) =0.13AET +6 (R?=0.93) (Wang et al., 2014).

9. Page 746, Line 8-9: The position of lysimeter installation is very important
to think of estimation accuracy. If the lysimeter was installed just in the
middle of rows, the soil evaporation located closer to row is missed. In this
situation, when plant gets large, you may overestimate the E under the
shades of leaves. It contributes to underestimate T by modeling due to
adjusting the soil conductance to match the modeled E with the
overestimated E by lysimeter.

Authors’ response: Yes, we fully agree with your opinions. The equipment

and filed observation was presented in the following figure. In our revised

paper, we stated as (Lines 160-161, Page 8):

....between crop rows (one in the middle of the rows and the other two close to

plants on each side of the rows).
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Fig. S2 The equipments and field observation during the study period

10. Page 750, Section 2.5: Add a flow chart of data calibration and evaluation
steps.

Authors’ response: According to your valuable suggestion, a flow chart of

data calibration were presented in our revised paper. In order to save pages of

the paper, we presented it in Appendix B. It can be easily found by the

readers as shown below (Fig. S3).

Initializing ¢©, and calculating o (¢”) (i=1, 2) and L(c®) using Egns. (B2) and (B4), respectively

v

Generating c™") by the uniform proposal distribution using Egn. (B1)

v

« Simulating the S-W model using parameter value ™ to obtain f;(t) (i=1, 2);

» Comparing with observation values and getting e;(t) (i=1, 2);

. Obtainingaia(c(nem)using Eqn. (B2);

» Calculating the likelihood function L(c™") using Eqn. B4

v

« Calculating the acceptance probability a using Eqn. B5;

« Generating a random number r~U(0,1);

« if r<a then c® =c(W): otherwise c®) =ckD:

Convergence?
Or iteration completed?

*YUD

Obtaining the posterior distribution of the parameters




Fig. S3 Flowchart representing the basic scheme of the M-H algorithm.

11. Page 750, Line 21, “is”: are?
Authors’ response: It has been corrected

12. Page 751, Line 2, 0i2: How did you decide this number? It is a very
important number, which decides the relative influence by each measured
data in the assimilation process. So you have to write about it.

Authors’ response: According to your suggestion, a detail descriptions were

given in our revised paper as (Lines 271-284, Pages 13-14):

o, (i=12) represents the residual errors, or standard deviation about model
predicted output of the ith dataset. Here, we assumed o; is the same over the
observation time for the ith data set (Braswell et al., 2005). Traditionally, o; can be
included into the analysis explicitly (i.e., assuming o; is uniform over logo;;
Gelman et al.,, 1995) and treated as one the model parameters, which vyields a
complete posterior distribution of o, . However, this method artificially increased the
parameter dimension of the problem and may result in unreasonable estimations of the
parameter values (Kavetski et al., 2006). In this study, o; was estimated by using the
analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find
the value of o; that maximizes log(p(O,()|c)) for a given parameter vector. By

differentiating log(p(O,(-)|c)) with respectto o,, we can obtain:

ot =, /niZ(e )" (24)

We then used o toreplace o, inthe equations (22).

13. Page 751, Line 22-23: | do not understand this sentence.
Authors’ response: The same question was also putted by the other two
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referees. In our revised paper, these sentences were changed as (Lines
323-326, Pages 15 and 16):

Since the primary interest in application of the S-W model was to reproduce the
pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during
the whole study period, we used all available data to construct the likelihood function
(equation 25) and to obtain the posterior distribution of the parameters.

14. Page 751, Line 23-25: You should add the flowchart of this sequence.
Authors’response: These sentences have been deleted in our revised paper.

15. Page 753, Section 3.2: There are several problems in this subsection. You
did not make the proper explanation of results in many places. For ex.,
how did you calculate the corr. coefficient of 0.85? From what kind of data
do you calculate this corr. coeff.? Another thing is that you did not make
the discussion. At the end of paragraphs, you are finishing with the
mention that the optimized parameters were within reported values. Is that
all to say here? This is just a report, but discussion. You have to discuss
more about why the optimized parameters fell into such reported ranges.
And why did k1 and k3 have no Gaussian distribution?

Authors’ response: (1) In our revised paper, the how did we calculate the

corr. coefficient were explained and a table was presented in Appendix B.

These sentences were changed as (Lines 385-389, Pages 18 and 19):

In addition, the correlation coefficient between the posterior distribution of
parameters can be used to find groups of parameters tend to be constrained together
(Knorr and Kattge, 2005). In this study, the six calibrated parameters were not
significantly inter-correlated with each other with correlation coefficients lower than

0.1 (Appendix B).

(2) According to the valuable suggestions form you and other referees, a
Discussion section were added in our revised paper to explain the posterior
distribution of optimized parameters.

® \When just using EC-measured AET data, a relative wider posterior

distribution of b, was observed (see Appendix B). Thus, the daily soil

evaporation data helped to well constrain estimates of b, and b,. (Lines

395-397, Page 19);

® However, some parameters related to canopy surface resistance (i.e., ky and
ks) seemed to be not well updated (Fig. 4). This may be due to the fact that
these parameters may be insensitive to the present available data sets. (Lines
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404-407, Page 19)

® However, even with all datasets (EC-measured AET and
microlysimeters-measured daily E), some parameters related to canopy
surface resistance seemed to be not well updated (Fig. 4). We thought that
this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax,
Tamin and KA) to the present available datasets. Thus, direct observations of
plant transpiration using sap flow or stable isotope (62H and 6180)
technologies (see Williams et al., 2004), canopy temperature using infrared
thermometer and continuous within- and above-canopy radiation using the
four-component net radiometer (see Sauer et al., 2007) are needed in the
future studies. (Lines 523-531, Page 25).

16. Page 753, Line 24-25, “while ~”: k1 and k3 did not have a Gaussian
distribution. Then you finally could not have the proper mean or median
value, which should be located in the middle of parabola of parameter
histograms. So it means that the optimization did not work for those two
parameters. Another thing is that it proves that Transpiration was not
sensitive to Rs and D while T was sensitive to Tair and soil moisture.

Authors’ response: Yes, we fully agree with your comments. The posterior

distributions of k1 and k3 seemed to be non-Gaussian. The median value may

be not correct for these parameters. We explained why these parameters were
not well updated as following:
® However, some parameters related to canopy surface resistance (i.e., ky and
ks) seemed to be not well updated (Fig. 4). This may be due to the fact that
these parameters may be insensitive to the present available data sets. (Lines
404-407, Page 19)
® However, even with all data sets (EC-measured AET and
microlysimeters-measured daily E), some parameters related to canopy
surface resistance seemed to be not well updated (Fig. 4). We thought that
this may be due to the insensitivities of these parameters (e.g., K1, k3, Tamax,
Tamin @and Kp) to the present available data sets. Thus, direct observations of
plant transpiration using sap flow or stable isotope (8°H and &'0)
technologies (see Williams et al., 2004), canopy temperature using infrared
thermometer and continuous within- and above-canopy radiation using the
four-component net radiometer are needed in the future studies. (Lines
523-531, Page 25)

Also, a sensitivity analysis was conducted in our revised paper (Lines 374-381,

Page 18):

The global sensitivity analysis with the first-order impact ratio (FOIR) values

(Appendix A) reveal the importance of input parameters in affecting total ecosystem

evapotranspiration. The results indicated that total ET responded sensitively to g

Tmin !

b, b, and k, with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%,
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respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting
that the variability in these parameters had almost no effect on the variability in model
output.

17. Page 753, Line 25-27, “Ortega-Farias et al. (2007)~": First, | do not
understand what you are trying to say here. Second, | assume that you
mean here that 95% probability intervals narrower than your prior
parameter ranges and relatively clear Gaussian distribution in rstmin show
those sensitivity of rstmin, and also that relatively wider parameter ranges
in bl, b2 and k2 and no Gaussan distribution in k1 and k3 show less
sensitivity to uncertainties in other parameters. If my assumptions are
correct, | do not agree with them. You cannot estimate relative sensitivity of
parameter only from the absolute range between max and min. You have
to divide the absolute range by prior or posterior uncertainty of each
parameter for comparison of relative influence by error. For ex.,
(p(95%ile)-p(5%ile))/Unc_p should be applied for this comparison.

Authors’ response: The sentences “Ortega-Farias et al. (2007)~" were

deleted in our revised paper, and they were changed as (Lines 374-381, Page

18):

The global sensitivity analysis with the first-order impact ratio (FOIR) values

(Appendix A) reveal the importance of input parameters in affecting total ecosystem

evapotranspiration. The results indicated that total ET responded sensitively to

Tmin !

b, b, and k, with FOIR values being 54.3%, 21.9%, 10.4% and 8.5%,

respectively. Other parameters exhibits relative low (<5%) FOIR values, suggesting
that the variability in these parameters had almost no effect on the variability in model

output. It is worth noting that the four highest sensitive parameters (I b, b,

Tmin !

and k,) also corresponded to the greatest degree of updating in the Bayesian

inference.
According to your suggestions, a relative uncertainty reductions of parameters
were used in our revised paper (Lines 353-355, Page 17):

Parameters r;... b, b, and k, showed relatively large uncertainty reductions

(defined as 1-CI /CI where CI is the length of the 95% credible

posterior prior ?

interval) (Fig. 5).

18. Page 754, Line 1, “estimated”: optimized?
Authors’response: Yes, it has been corrected.
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19. Page 754, Line 2-4: You should explain more about the results, from which
you can consider if there are the inter-correlations. In which Figure and
Table can we see the corr. Coeff. Number of 0.85? And what does corr.
Coefficient mean? There is no proper information about the corresponding
results written here. You cannot confirm the inter-correlations without
calculating the covariance in errors in each combination of two
parameters.

Authors’ response: According to your suggestion, we explained the results as

(Lines 385-389, Pages 18 and 19):

In addition, the correlation coefficient between the posterior distribution of
parameters can be used to find groups of parameters tend to be constrained together
(Knorr and Kattge, 2005). In this study, the six calibrated parameters were not
significantly inter-correlated with each other with correlation coefficients lower than

0.1 (Appendix B).

20. Page 754, Line 13, “plantshave”: plants have?
Authors’ response: Yes, it has been corrected.

21. Page 754, Line 20, “was”: were?
Authors’ response: Yes, it has been corrected.

22. Page 754, Line 22, “were”: was?
Authors’response: Yes, it has been corrected.

23. Page 754, Line 23, “predicate”: predict?
Authors’response: Yes, it has been corrected.

24. Page 755, Line 21, “daily ET was”: daily ETs were?
Authors’response: Yes, it has been corrected.

25. Page 756, Subsection 3.4: There should be great uncertainty in eddy flux
measurement for ET and lysimeter measurement for E. So in this
subsection you also have to discuss the possibility of containing the great
unc. by the errors in measurement data.

Authors’ response: According to your suggestion, the uncertainties of EC

measurements were added in our revised paper:
® In addition, the flux uncertainties are directly related to the likelihood

function of Bayesian inference (Section 2.5). Thus, determining the
uncertainties is EC measurements is essential for proper parameter estimates.
Recently, Wang et al. (2014) systemically studies the flux uncertainties of EC
systems equipped in the HIWATER experiment. Generally, uncertainties for
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H (o,(H), W m?) by using method of Mann and Lenschow (1994) tended
to be o,(H)=0.14H+2.7 (R*=0.95), and uncertainties for AET

(o.(\ET): W m?) be o (AET)=0.13AET +6 (R?=0.93) (Wang et al.,

2014). (Lines 131-138, Pages 6 and 7);
® The uncertainties of H and AET increased with the flux magnitude (Fig.
8), and tended to be approximately 14% and 13%, respectively (Wang et al.,

2014). The relative error for R, was relatively small and estimated to be

1.24% (Xu et al., 2013). (Lines 450-453, Page 21)
In addition, the uncertainties of measurements were illustrated in Fig. 9.

26. Page 756, Line 9, “micro-scale advection”: Did not you measure the lateral

wind speed and direction to directly probe the advection?
Authors’ response: Yes, we did not measure the lateral wind speed and
direction to directly. However, this phenomenon has well been documented
and measured in previous studies. Fox example, Oke (1978) has describe the
oasis effect in his book as: Therefore there is a continual air-to-oasis inversion
temperature gradient driving a downward directed heat flux, and the process is
aided by air mass subsidence over the oasis. (Page 166); Hu (1994) had
constructed the interaction between desert and oasis. In our revised paper
these references were given, so readers can obtain the basic information
about the oasis effect.

27. Page 756, Line 18, “representing”: represent?
Authors’response: Yes, it has been corrected.

28. Page 757, Line 20, “when micro-scale advection occurred”: You cannot
conclude it yet.

Authors’ response: The words ‘micro-scale advection’ was changed as

‘oasis-effect’.

29. Page 769, Fig. 3: you have to add the signs “(a)” to “(f)” in panels and
legends to identify the variable.

Authors’ response: According to your valuable suggestion, the signs “(a)” to

“(f)” in panels and legends to identify the variable were added in the figure.

30. Page 775, Fig. 9: The color assignment of RH is not intuitive. | prefer that
the red is dry and the blue is wet.

Authors’ response: The color assignment of RH has been corrected

according to your suggestion.
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Responses to comments Provided by Referee 2

General comments and overall evaluation: Bayesian statistics, based on
probability theory, is a logical choice for model calibration; it provides
parameter estimates by quantifying the uncertainties in the data and model
structure. The authors employ Bayesian method to calibrate the
Shuttleworth-Wallace model, using eddy-covariance evapotranspiration
measurements and daily soil evaporation. The work is interesting but some
technical aspects should be clarified and additional analyses should be carried
out.

Authors’ response: Thanks very much for your positive comments.

General Comments:

1. In order to test model performances the authors split the dataset in two
parts by taking alternate measurements and using one sub-dataset for
model calibration and the other for model evaluation. The authors claim
that the sub-datasets are independent, but for an independent validation of
the model data from different site should be used. If that is not possible,
model evaluation would be more rigorous if the first half of the data is used
for calibration and the second half for model validation, i.e. defining the
sub-dataset using subsequent measurements and not alternate
measurements. Finally parameter estimates reported in Table 1 and Figure
4 should be obtained using the whole dataset, i.e. a new calibration should

be carried out using all the available data.

Authors’ response: The same question has been proposed by Referee 3. In
our revised paper, these sentences were changed as (Lines 323-326, Pages
15 and 16):

Since the primary interest in application of the S-W model was to reproduce the
pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during
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the whole study period, we used all available data to construct the likelihood function
(equation 25) and to obtain the posterior distribution of the parameters.

2. Results from the Gelman and Rubin test should be reported at least in the
text. By observing the marginal posterior distribution of parameter k1, k2
and k3 it seems that convergence was not reached.

Authors’ response: According to your valuable suggestion, the G-R test was

reported in Appendix C. The figure below showed that the parameters tend to

converge after 5000 iterations.
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Fig. B1 The evolution of GR diagnostic of convergence of MCMC. Four parallel

chains with different initial values were used to calculate GR values.

3. lines 318- 321. Sensitivity analysis are always conditional to the parameter
space and the input data used in the analysis. | strongly suggest you to
carry out a global sensitivity analysis (such as the Morris method) using
the prior parameter ranges to understand which are the key parameters of
the model in your case study.

Authors’ response: According to your valuable suggestion, the global

19

0



sensitivity was conducted in Appendix A. The results indicated that the most

sensitive parameters in the S-W model was rstmin, and followed by b, b, ko and k.

Other parameter had almost no effect on the variability in model output (Fig. B2).

L L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Simulation

Fig. B2 The evolution of the first-order sensitivity indices.

4. Which prior do you use? | suppose you were using a uniform prior with the
minimum and maximum values of Table 1. Please, state it more clearly in
the manuscript.

Authors’ response: The chose of prior distribution was stated as (Lines

252-253, Page 12):

, Which are chosen as uniform distributions with specified allowable ranges (Table 1).

5. Uncertainty in the data is really important when using a Bayesian
approach. How did you define the measurement errors of equation 22?
Authors’ response: In our revised paper, the calculation of errors in equation

22 were stated as (Lines 271-284, Pages 13 and 14):

o, (i=12) represents the residual errors, or standard deviation about model
predicted output of the ith dataset. Here, we assumed o, is the same over the

observation time for the ith data set (Braswell et al., 2005). Traditionally, o, can be
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included into the analysis explicitly (i.e., assuming o, is uniform over logo;;
Gelman et al., 1995) and treated as one the model parameters, which vyields a
complete posterior distribution of o, . However, this method artificially increased the
parameter dimension of the problem and may result in unreasonable estimations of the
parameter values (Kavetski et al., 2006). In this study, o; was estimated by using the
analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find
the value of o; that maximizes log(p(O,(})|c)) for a given parameter vector. By

differentiating log(p(O,(-)|c)) with respectto o,, we can obtain:

ot =, /%Z(e 0 (24)

We then used o toreplace o, inthe equations (22).

6. Why did you include 6 parameters in the calibration and not the whole
parameter vector? And which values did you assign to the parameters not
included in the calibration? Please provide the references.

Authors’ response: According to your suggestion, a global sensitivity analysis

was conducted in our revised paper (Appendix C). The most sensitive

parameters were selected to optimized. Other parameter (Ka, Tamin, Tamax)

were cited form previous studies, and the references were provided:

® in which K, is the extinction coefficient of light attenuation. It can be
measured on site (see Sauer et al., 2007), and was set to be approximately

0.41 for spring maize (Mo et al., 2000).(Lines 208-210, Page 10)

e T

a,min

and T,. are the lower and upper temperatures limits (°C),

respectively, which are T, values when F,(T,)=0and are set at values of 0
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and 40 °C (Harris et al., 2004) (Lines 231-233)

7. Which parameter vector did you use to generate model outputs? You
should use the maximum a posteriori parameter vector.
Authors’ response: The median value of the parameter vector was used to

generate model output.

8. Bayesian statistics allows to quantify uncertainties. Was the calibration
effective in reducing uncertainties of model predictions? The posterior
uncertainty of simulated ET and E are not shown and discussed.

Authors’ response: Thanks for your valuable suggestions. The posterior

uncertainty of simulated ET and E were presented in our revised paper. Please

see Fig. 8 and Fig. 9. We also discussed in the paper:

® Also, the 95% posterior prediction intervals of simulated soil E was narrow.
(Lines 433-434, Page 21);

® that the estimated daily ET generally fluctuated tightly with the measured
values with relative narrow uncertainties (95% posterior predication
intervals) (Lines 436-438, Page 21);

® However, there are 12 days during the study period (111 days) with
observations beyond the upper bounder of the 95% posterior predication
intervals (Fig. 8) (Lines 440-442, Page 21);

® simulated AET and E were comparable to the measurements with relatively
narrow uncertainties (95% posterior predication intervals) (Lines 506-507,

Page 24).

9. The manuscript is relatively well written, but in my opinion the Results and
discussion session should be slitted in two parts in order to provide more
clear take-home messages.

Authors’ response: According to your suggestion, a Discussion section was
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added in our revised paper (Lines 281-548, Pages 23-26).

Minor Comments:

1. Abstract. Line: 31-33. “The posterior distributions...intervals.” This phrase
is not clear what do you mean for well updated?

Authors’ response: This sentence was changed as (Lines 31-33, Page 2):

4 of the six main parameters were showed relatively larger uncertainty reductions

(>50%), and their posterior distributions became approximately symmetric with

distinctive modes

2. Introduction. Line: 79-81. The main advantage of Bayesian method is that
uncertainties can be properly quantified. Optimization algorithms can also
be used to optimize parameters in the light of multiple data sources.

Authors’ response: According to your suggestion, the sentence was changed

as (Lines 78-81, Page 4):

Secondly, as far as the parameterization method is concerned, abundant evidence has

shown that the Bayesian method provides a powerful new tool to simultaneously

optimize many or all model parameters against all available measurements, and to

quantify the influences of uncertainties.

3. Materials and methods. Line: 106-107. Which dryness index was used.
Line: 136. “Air temperature and relative humidity”: Air temperature,
relative humidity Line: 199. “Eqns.(1)-(3) is calculated”: Egns.(1)-(3) are
calculated

Authors’ response: The sentence was changed as:

the dryness index according to the World Atals of Desertification (UNEP, 1992) is

15.9

Other errors have been corrected according to your suggestions.

4. Line: 256-264. Which MCMC algorithm did you use? From the description

it seems to be the Metropolis algorithm and not the Metropolis-Hastings.
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Authors’response: The detail of MCMC algorithm was presented in Appendix
A. The M-H algorithm was used in our study. Because the prior distribution was
selected as uniform distribution, the M-H algorithm was indeed the same as

the Metropolis algorithm.

5. Results and discussion Line: 359. “In this case, a good agreement ...”: A
good agreement Line: “On the other hand, the diurnal variation”: On the
other hand must go after on one hand.

Authors’ response: The words ‘On the other hand’ were deleted in our

revised paper.
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Responses to comments Provided by Referee 3

1. This is in general a well thought out and methodologically sound piece of
work and the authors make a sufficient case that the work is novel for it to
warrant publication.

Authors’ response: Thanks very much for your positive comments.

2. While there are no fundamental issues with the work there are a number of
ways in which it could be improved. These are mainly regarding key pieces
of information that are currently missing from the manuscript.

The authors go to the trouble of conducting a Bayesian Calibration on six
of the mode parameters which is excellent since rather than employing an
optimisation routine to merely 'tune’ the model parameters they estimate
the full conditional probability of the parameters being probable given the
ET and E data. However, once the calibration is made only a single
parameter vector is selected and all the subsequent analysis versus the
data is based on results of that single vector. This is an opportunity missed
since they already have all the information they need to report the
influence of posterior parameter uncertainty on model outputs. This could
be done by calculating the 5" and 95th quantiles from their 3000 member
parameter sample for example. This would make for a far superior analysis
of model-measurement differences since the model output can now be
represented by the full calibrated posterior distribution not just a single run.

Authors’ response: Thanks for your valuable suggestions. In our revised

paper, model-measurement differences were analysed using the 5th and 95th

guantiles from their 3000 member parameter sample. Please see Fig. 8 and

Fig. 9. We also discussed in the paper:
® Also, the 95% posterior prediction intervals of simulated soil E was narrow.

(Line 422, Page 20);
@ that the estimated daily ET generally fluctuated tightly with the measured

values with relative narrow uncertainties (95% posterior predication
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intervals) (Lines 425-426, Page 20);

® However, there are 12 days during the study period (111 days) with
observations beyond the upper bounder of the 95% posterior predication
intervals (Fig. 8) (Lines 428-430, Page 20);

® simulated AET and E were comparable to the measurements with relatively
narrow uncertainties (95% posterior predication intervals) (Lines 495-496,

Page 23).

3. The choice of an MCMC algorithm to sample the posterior is generally
good one although assessing convergence requires special care as it is
too easy to be fooled into believing that convergence has been obtained
when in fact only a local maxima has been found. For this reason the
manuscript is too light on details of the Gelman-Rubin numbers that were
obtained that convinced the authors that the MCMC had converged. This
should be reported especially since fig 4. k1, k2, k3 might suggest that
convergence has not yet been reached.

Authors’ response: According to your valuable suggestion, the G-R test was

reported in Appendix C. The figure below showed that the parameters tend to

converge after 5000 iterations.
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel
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chains with different initial values were used to calculate GR values.

4. The authors should give details of why they chose the 6 parameters that
they did to be calibrated. Ideally a calibration should include all model
parameters and if a subset is selected perhaps for reasons of
computational practicality then an objective method such as Morris should
be used to select the most important parameters.

Authors’ response: According to your valuable suggestion, the global

sensitivity was conducted in Appendix A. The results indicated that the most

sensitive parameters in the S-W model was rstmin, and followed by b;, b, ko and k.

Other parameter had almost no effect on the variability in model output (Fig. C2.
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Fig. C2 The evolution of the first-order sensitivity indices.

5. In Bayesian Calibration the choice of the prior distribution is also important
and should be discussed but this is currently missing.

Authors’ response: According to your valuable suggestion, the influence of

prior distribution on the simulation results was conducted in our revised paper

(see Appendix A). As expected the simulated values of daily

evapotranspiration and soil evaporation both showed larger uncertainties.

Thus, there is a need to update the parameters based on observation
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datasets. In our revised paper, the following sentences were stated (Lies

252-258, Page 12):
where p(c) represents prior probability distributions of parameters ¢, which is chosen

as uniform distributions with specified allowable ranges (Table 1). In general, the
parameter ranges were wide enough to include the actual parameter values and to give
the optimization freedom (Sack et al., 2006). In the test study, we run the S-W model
using 4000 parameter vectors which were sampled from the prior distribution using
Latin Hypercube Sampling (LHS) method (Iman and Helton, 1998), and found that

the observed data in most case were in the range of predicted values (Appendix A).
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Fig. C3 Seasonal variation in daily evapotranspiration (ET; mm d*) and soil
evaporation (E; mm day™) measured by the EC system and modeled by the S-W
model using the prior distribution of parameters. Gap in the time series is caused

either by the absence of flux measurements or missing ancillary data.

6. The manuscript is also lacking details on the errors were used in the
likelihood calculation to represent the random errors that were assigned to
the measurements. This is gain an important omission as these errors
should be discussed and justified on the asis of analyses or from literature.

Authors’ response: In our revised paper, the calculation of errors were stated

as (Lines 262-275, Page 13):
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o, (i=12) represents the residual errors, or standard deviation about model
predicted output of the ith dataset. Here, we assumed o; is the same over the
observation time for the ith data set (Braswell et al., 2005). Traditionally, o, can be
included into the analysis explicitly (i.e., assuming o, is uniform over logo;;
Gelman et al., 1995) and treated as one the model parameters, which yields a
complete posterior distribution of o, . However, this method artificially increased the
parameter dimension of the problem and may result in unreasonable estimations of the
parameter values (Kavetski et al., 2006). In this study, o, was estimated by using the
analytical method (Hurtt and Armstrong, 1996; Braswell et al., 2005), which is to find
the value of o; that maximizes log(p(O,(})|c)) for a given parameter vector. By

differentiating log(p(O,(-)|c)) with respectto o,, we can obtain:

ot =, /%Z(e ®) (24)

We then used o toreplace o; inthe equations (22).

Detailed Comments:

1. Throughout the manuscript the authors refer to "multiple measuring
datasets". This doesn’t work in English perhaps "multivariate datasets"
might convey what the authors want?

Authors’ response: Thanks for your detailed helps to us. According to your

valuable suggestion, the words “multiple measuring datasets” were changed

as “multivariate datasets” in our revised paper.

2. Abstract: accounted -> account

Authors’ response: It has been corrected.

3. p743line4 has good performances -> performs well
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Authors’response: It has been changed.

4. p744 line8in arid -> in the arid

Authors’ response: It has been corrected.

5. p745 linel8 synchronously -> synchronous

Authors’ response: It has been corrected.

6. p746 line2 were-> was

Authors’response: It has been corrected.

7. line7 delete was

Authors’ response: It has been deleted

8. p747 line13 coefficient -> coefficients

Authors’ response: It has been corrected.

9. linel8is -> are

Authors’ response: It has been corrected.

10. p748linel6 is -> are

Authors’ response: It has been corrected.

11. p750 line8 parameters needed -> parameters that needed
Authors’response: It has been corrected.
12. linel3 dataset -> datasets

Authors’response: It has been corrected (Line 286 in our revised paper).

13. linel7 The difference between the model and the observations should not
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be called model error as if the observations are ’truth’. A better description
is model data mismatch recognising that both the model and the data
contain errors. Also see above you need to discuss how the observational
random error is obtained.
Authors’ response: According to your suggestion, the ‘model error’ was
changed as ‘model-data mismatch’.
The observational error was studied by Wang et al. (2014). In our revised
paper, these errors were stated as (Lines 131-138, Pages 6 and 7):
In addition, the flux uncertainties are directly related to the likelihood function of
Bayesian inference (Section 2.5). Thus, determining the uncertainties is EC
measurements is essential for proper parameter estimates. Recently, Wang et al.

(2014) systemically studies the flux uncertainties of EC systems equipped in the

HIWATER experiment. Generally, uncertainties for H (o, (H); W m) by using
method of Mann and Lenschow (1994) tended to be o,(H)=0.14H +2.7 (R?=0.95),

and uncertainties for AET (o, (AET); Wm™) be o, (\ET)=0.13AET +6 (R*=0.93)

(Wang et al., 2014)

References:

Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., Xu, Z.W.: Assessment of
Uncertainties in Eddy Covariance Flux Measurement Based on Intensive
Flux Matrix of HIWATER-MUSOEXE. IEEE Geosciences and Remote

Sensing Letters, 2014, (under review).

14. Line22 "assuming the model error follows a Gaussian” no this is not a
correct interpretation of likelihood. The likelihood is formally the "chance of
getting the observations given the parameters"”. Therefore the Gaussian in
the likelihood represents the errors in the observation rather than the
model. The idea here is that random observational error (as quantified by

the sigma and the Gaussian) is stopping us from always obtaining the
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observations from the parameters. The errors in the parameters are
represented in the prior and as it stands this calibration estimates the
probability of the parameters being correct given the observations
assuming that this is the correct model. That is to say an assumption of the
calibration is that the model is correct. We know this is wrong but the
Bayesian Calibration does not explicitly represent this. Of course the
model data mismatch in the likelihood does implicitly quantify both model
and data errors but this is not the formal understanding of the likelihood.
Indeed later on you go on to suggest possible model improvements. As
future work | would advocate creating a new version of the model with
those improvements and formally quantifying whether the new model is
more likely using Bayesian analysis. See Bayesian Model Comparison in
Van Oijen, M.; Reyer, C.; Bohn, F.J.; Cameron, D.R.; Deckmyn, G;
Flechsig, M.; Harkénen, S.; Hartig, F.; Huth, A.; Kiviste, A.; Lasch, P,
Makela, A.; Mette, T.; Minunno, F.; Rammer, W.. 2013 Bayesian calibration,
comparison and averaging of six forest models, using data from Scots pine
stands across Europe. Forest Ecology and Management, 289. 255-268.

10.1016/).foreco.2012.09.043.

Authors’ response: Thanks for your clear interception of the definition of the
likelihood function. Also, thanks very much for your guides to us for the future
studies. We will conduct some model comparison studies of different ET model
in typical ecosystems (i.e., alpine grassland, alpine forest, arid farmland, and
arid forest) in northwest China. According to your suggestion, the sentence
was changed as (Lines 261-263, Pages 12 and 13):

Assuming the model-data mismatch e(t) , which represents a relative

“goodness-of-fit” measure for each possible parameter vector (van Oijen et al., 2011,
2013)
References:

van Oijen, M., Cameron, D.R., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson,
P.E., Kiese, R., Rahn, K.H., Werner, C., Yeluripati, J.B.: A Bayesian framework
for model calibration, comparison and analysis: application to four models for the

biogeochemistry of a Norway spruce forest. Agric. For. Meteor., 151(12),
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1609-1621, 2011.

van Qijen, M., Reyer, C., Bohn, F.J., Cameron, D.R., Deckmyn, G., Flechsig, M.,
H&akdnen, S., Hartig, F., Huth, A, Kiviste, A., Lasch, P., M&el§ A., Mette, T.,
Minunno, F., Rammer, W.: Bayesian calibration, comparison and averaging of six
forest models, using data from Scots pine stands across Europe. Forest Ecol.

Manag., 289, 255-268, 2013.

15. p751 linel0 formally | believe you are using the Metropolis algorithm rather
than Metropolis-Hastings

Authors’response: The detail of MCMC algorithm was presented in Appendix

B. The M-H algorithm was used in our study. Because the prior distribution was

selected as uniform distribution, the M-H algorithm was indeed the same as

the Metropolis algorithm.

16. linel4 Which distribution are you using for the proposal density
(multivariate normal?)
Authors’ response: In our revised paper, the proposal function was presented

more clear (Lines 303-315, Pages 14 and 15):

It was well recognized that efficiency of the M-H algorithm was strongly
effected by the proposal distribution function. To find an effective proposal
distribution P(c™ |c*?), a test run of the M-H algorithm with 10, 000 simulations
was made by using a uniform proposal distribution (Braswell et al., 2005):
c™ =" 4r(c™ —c™) (26)
where c** is the current accepted point; ris a random number uniformly
distributed between -0.5 and +0.5; ¢c™and c™are the lower and upper limits of

parameter vector c¢. Based on the test run, we then constructed a normal proposal
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new .

distribution ¢ N(c%™®,cov’(c)), where cov®(c)is the covariance matrix of the
parameter vector c¢ from the initial test run (Xu et al., 2006). The detailed

description on MCMC sampling procedure and the code written in Matlab were

presented in Appendix B.

17. line22 | don’t think you need to split the datasets in this way. Indeed the
calibration would benefit from the inclusion of all of the data. The
comparison against data that you make later on would be just as valid
since this is more about identifying weaknesses in the structure of the
model i.e. missing processes rather than parametrisation.

Authors’ response: According to your valuable suggestion, these sentences

were changed as (Lines 323-326, Pages 15 and 16):

Since the primary interest in application of the S-W model was to reproduce the

pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during

the whole study period, we used all available data to construct the likelihood function

(equation 25) and to obtain the posterior distribution of the parameters.

18. line23 dataset -> datasets

Authors’ response: This sentence has been deleted.

19. line24 optimised -> calibrated

Authors’ response: This sentence has been deleted.

20. p752 linell posterior expectancy? Assume you mean the expectation of
the posterior (i.e. the mean). See comments above about representing the
full posterior in your analysis rather than just one parameter vector.

Authors’ response: Yes, it is the posterior median values of the parameters.

The full posterior were also included in our analysis in the revised paper.
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Please see Figs. 8 and 9.
21. p753 line4 was -> are

Authors’response: It has been corrected.

22. p754 line8 contents -> content

Authors’ response: It has been corrected.

23. linel3 split plantshave

Authors’response: It has been split.

24. line22 were -> are

Authors’ response: It has been corrected.

25. line23 predicate -> predict

Authors’ response: It has been corrected.

26. line25 reword: something like "However, significant differences exist
between measured and modeled half-hourly ET values for the spring
maize in the arid desert oasis."

Authors’ response: Thanks, it has been corrected.

27. line27 regressive -> the regression

Authors’response: It has been corrected.

28. p755 linel0 was -> is

Authors’ response: It has been corrected.

29. linel7 observed -> observe

Authors’ response: It has been corrected.
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30. ine20 5 -> on the 5th of

Authors’ response: It has been corrected.

31. line22 needed -> needs

Authors’ response: It has been corrected.

32. p756 lined4 was -> is

Authors’ response: It has been corrected.

33. linel0 on the 5th of July

Authors’ response: It has been corrected.

34. linell no gaps in time i.e. 12:00 20:00

Authors’ response: The gaps in time were added in our revised paper.

35. linel7 flows do not -> flows that do not

Authors’ response: It has been corrected.

36. linel8 representing -> represent

Authors’ response: It has been corrected.

37. linel9 attentions -> attention

Authors’ response: It has been corrected.

38. Figure8: The text in this figure is currently too small

Authors’ response: The size of this figure was 18cm>8cm.

Finally, we want to express our deep appreciations to you for your

patient helps in improving the quality of our paper. Thanks very much!
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Appendix A
A.1 Global Sensitivity Analysis
To identify the key parameters that being responsible for most of the variability

of the model outputs, a global sensitivity analysis were performed. Following Saltelli

et al. (2008), the first-order sensitivity index S, and total effect sensitivity index S

are given as:

g - var _ VarfE(Y|c)]
" var(Y)  Var(Y)

(B1)

s,=5+Y s, +L = vatic,)l

j=i Tl Var(Y) (B2)

where Var, is the partial variance of ¢, on output Y and given by
Var, =Var[E(Y |¢;)]; Var(Y)is the total unconditional output variance; S;is the
contribution to the total variance by the interactions between parameters ¢, and c;;

c_, denotes variation on all input parameters butc, ;

A.2 Monte Carlo Simulations
The Monte Carlo method was used to calculate Var(Y),S; and S;. The
procedure are listed as below (Saltelli et al., 2010):
Step 1:
Generate two independent input parameter sampling matrices A and B with
dimension Nxd, where N isthe sample size and d is the number of input
parameters;

Step 2:
Build another Nxd matrix A, (i=12,L d)such that the ith column of A

is equal to the ith column of B, and the remaining columns are from A ;

Step 3:

Calculate Var(Y),S; and S using the following estimators:
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where ---denotes the estimate; #lis the estimated value of model output; The

matrices A and B are generated using the Latin Hypercube Sampling

technique (Iman and Helton, 1988).
A.3 Matlab Code for Global Sensitivity Analysis

% Using the Latin Hypercube Sampling (LHS)technique (Iman and Helton, 1988)

o

to generate matrices A and B

o

Authors : Zhu Gaofeng

o
O
U]
rt
(0]
=
Q
-
Q
oy
i
Nej
N
(@)
—
S

% Description:

% N number of sample

% d dimension of parameter vector

% Interval : interval of prior distribution of paramter being d*2 matrix
% A : matrix A being N*d

% B : matrix B being N*d

interval=[interval;intervall;

[

% Generates a LHS M1 containing N samples and 2*d dimension

Ml=lhsdesign (N, 2*d) ;

for j=l:size (M1, 2)
int=interval (j,:);
for i=l:size(M1l,1)
$transform to parameter space

M(i,j)=unifinv(M1l(i,Jj),int(1l),int(2));
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end

A=M(:,1:d); % the first d columns were designed to matrix A
B=M(:,d+1:end); % the last d columns were designed to matrix B

5555555555555 55%55%5%55%5%55%5%5%5%5%5%5%5%%5%5%5%%%5%%%%%%% End of the sub-model

function

LET=SWSA (rstmin, k1, %k2,k3,bl,b2,Tamin, Tamax,KA, flag,F¥4,G,Rn,S,LAI,Ta,r

ho,D,SWC 2,delta,gamma, raa, ras, rac)

% calculate rss

thetas=0.45; % saturated water content at the 20 cm depth in [m3 m-3];

rss=exp (b1-b2*SWC 2./thetas);
% calculated rsc
Fl=(eps+S)* (1055+k1l) ./ (1055* (S+k1)); % S:short wave radiation Wm-2

tao=(Tamax-k2)/ (k2-Tamin) ;
numerator=(Ta-Tamin) .* (Tamax-Ta) . "tao;
denominator=(k2-Tamin) .* (Tamax-k2) ."tao;
F2=numerator./denominator;

F3=1-k3*D;

rsc=rstmin./ (2*LAI.*F1.*F2.*F3.*F4) ;

o°

S-W model

% specific heat capacity of the dry air in kJ/kg/K;
Cp=1.013;

Ra=(deltatgamma) . *raa;
Rs=(deltatgamma) . *rastgamma.*rss;

Rc=(deltatgamma) . *ractgamma.*rsc;

Cs=1./(1+Rs.*Ra./ (Rc.* (Rs+Ra))) ;
Cc=1./(1+Rc.*Ra./ (Rs.* (Rc+Ra))) ;

Rns=Rn. *exp (-KA.*LATI);

A=Rn-G;
As=Rns-G;

ETs=(delta.*A+ (rho.*Cp.*D-delta.*ras.* (A-As)) ./ (raa+ras)) ./ (deltatgam

ma.* (l+rss./ (raa+tras)));
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ETc=(delta.*A+ (rho.*Cp.*D-delta.*rac.*As) ./ (raa+rac)) ./ (deltatgamma.*
(l+rsc./ (raatrac)));

LE=Cs.*ETs;

LT=Cc.*ETc;

LET=LE+LT;

DO=D+ (delta.*A- (delta+gamma) . *LET) .*raa./ (rho.*Cp) ;
E=(delta.*As+rho.*Cp.*D0./ras
T=(delta.* (A-As)+rho.*Cp.*DO0.

/ (deltat+gamma.* (l+rss./ras));

~ —
K.
Q
Q

)./ (deltat+gamma.* (1+rsc./rac));

00000000000000000000000000000000000000000000000
3555555355355 3%%5%%%55%%5%5%%%5%%%5%%%5%5%%5%5%%%%%%%%%%% End of the sub-model

= Main Program

clc
clear

Nss=4000; % Sample numbers

o

% Prior parameter interval for rstmin, k1,k2,k3,bl,b2,Tamax,Tamin, KA
interval=[1 80

0 500

20 40

0 .1

4 15

0 8

05

40 45

.2 .81;
dem=size (interval,l); % dimension of parameter vector
% Generate matrices A and B using the LHS technique

[Am, Bm]=LHSsample (Nss,dem, interval) ;

% input meteorological data, Here we used the daily average data
data=[108.1539915 125.3973438 -3.675183507 0.871684028 13.78421875
64.39277778 844.5503472 17.07349201 26.71506701 2.832 256.97255
253.5320313];

% Variables

ET = data(l); % W m-
Rn = data(2); S w

G = data(3); S w 2
u = data(4): S m s-—
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Ta = data(d); % oC
RH = data(6)/100; % humidity
P = data(7)/10; % kPa
SWC 2= data(8)/100; % m3 m-3
SWC r= data(9)/100; % m3 m-3
LAI = data(10); $ m2 m-2;
hc = data(11)/100; % canopy height in m
= 3; % reference height in m
S = data(1l2); % solar radiation

Q

% calcualte wind speed at canopy height

z0 = 0.13*hc; % roughness lenght
d = 0.67*hc; % zero plane displacement
uh = u.*log((hc-d)./z0)./log((z-d)./z0);

[}

% Calculate meteorologic varibles
lambda=2500.78-2.3601*Ta;

% saturaed vapour pressure in kPa
es=.6108*exp (17.27*Ta./ (Ta+237.3));

% slope of pressure to temperature
delta=4098*es./ (Ta+237.3) ."2;

%air density

Rd=287/1000; % the gas constant in kJ/kg/K
ea=es.*RH;

D=es-ea;

rho=P./ (Rd* (Ta+273.14) .* (1+.378%ea./P));

Cp=1.013; %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622; %the ratio between the mplecular weight of water

vapor and air

gamma=Cp*P./ (lambda*epsilong) ;

o)

% calculate raa

k=0.41; % von K'¢rm'¢n constant

% z0h=0.1*z0; % roughness length to the
heat flux in [m];

n=2.5; % parameter in SW model

% LATI >4

raa_inf=log((z-d)./z0) ./ (k*k* (uteps)) .* (log((z-d)./ (hc-d))+hc./ (n* (hc
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-d)) .* (exp (n* (1-(d+z0) ./hc))-1));
% for bare surface

z0s=0.01;

rasO0=log(z/z0s) .*1log((d+z0) /z0s) ./ (k*k* (uteps)) ;

raa bare=(log(z/z0s).*log(z/z0s)) ./ (k*k* (uteps))-ras0; % bare

surface

raa=.25*LAI.*raa inf+.25* (4-LATI) .*raa bare;
% calculate ras

$ LAI >4
ras_inf=log((z-d)./z0) ./ (k*k* (uteps)) .*hc./ (n* (hc-d)) .* (exp (n) —exp (n*
(1-(d+z0) ./hc)));

% for bare surface

z0s=0.01;
ras_bare=log(z/z0s).*log((d+z0)/z0s) ./ (k*k* (uteps));

ras=.25*LAI.*ras_inf+.25* (4-LAI) .*ras bare;

% calculate rac
% method 1
rb=50;
rac=rb./ (2*LAI);
% calcualte F4 in canopy resistance model
thetas=.45; % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=l:length(SWC r)
if SWC r(i)>thetacr
F4(i,1)=1;
elseif SWC r(i)>thetaw
F4(i,1)=(SWC_r(i)-thetaw) ./ (thetacr-thetaw);
else
F4 (i, 1l)=eps;
end
end
% calculate the sensitivity index
sal=0;
sb1l=0;

ssl=zeros (1l,dem);

42



stl=zeros (1l,dem);

AB=zeros (1,dem) ;

for j=1:Nss

ETA=SWSA(Am(j,1),Am(j,2),Am(3,3),Am(j,4),Am(j,5),Amn(j,6),Am(j,7),An(]
,8),Am(3j,9),flag,F4,G,Rn,S,LAI, Ta, rho,D,SWC_2,delta,gamma, raa, ras, rac
)

sal=sal+ETA;

sbl=sbl+ETA"2;

bfo(j,1)=sal/j;
VY (j,1)=sbl/j-bfo(3,1)"2;

ETB=SWSA (Bm(j,1),Bm(j,2),Bm(j,3),Bm(j,4),Bm(J,5),Bm(j,6),Bm(]j,7),Bm(]
,8),Bm(j,9),flag,F4,G,Rn,S,LAI, Ta, rho,D,SWC_2,delta,gamma, raa, ras, rac
) ;

for i=1:dem
AB=Am (3, :)
AB(i)=Bm(j,1);

ETAB=SWSA (AB(1),AB(2),AB(3),AB(4),AB(5),AB(6),AB(7),AB(8),AB(9),flag,
F4,G,Rn,S,LAI,Ta,rho,D,SWC 2,delta,gamma, raa, ras,rac);
ssl (1)=ETB* (ETAB-ETA) +ssl (i) ;
Si(j,1)=ssl(1)/(3*VY(3,1));
stl(i)=stl(i)+ (ETA-ETAB)"2;
ST (J,1)=stl(i)/(2*3*VY (], 1));
end
end
% Create figure
figurel = figure('PaperType', 'adletter', "PaperSize', [20.98 29.68]);
% Create axes
axesl = axes('Parent',6 figurel, 'YScale','log','YMinorTick', 'on");
box('on');
hold('all");
% Create multiple lines using matrix input to semilogy
semilogyl = semilogy (Si);
set (semilogyl (1), 'DisplayName', ' {\itr} {STmin}');
set (semilogyl (2), 'DisplayName', ' {\1tK} 1");
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set (semilogyl , 'DisplayName', '{\itK} 2");
set (semilogyl , 'DisplayName', '{\itK} 3"');

’

set (semilogyl , 'DisplayName', '{\itb} 1");

’

)
)
)
)
set (semilogyl

, 'DisplayName', '{\itT} {min}"');

set (semilogyl

( (3)
( (4)
( (5)

set (semilogyl (6), 'DisplayName', ' {\itb} 2'
( (7)
( (8), 'DisplayName', ' {\itT} {max}');
( (9)

set (semilogyl , 'DisplayName', '{\itK} A");

% Create xlabel
xlabel ('Simulation');
% Create ylabel
ylabel (' {\itS} {i}');
% Create legend

legendl = legend(axesl, 'show');

set (legendl, 'Position', [0.7141 0.3258 0.1121 0.2881]);

[}

% Create textbox

annotation (figurel, 'textbox', 'String', {"August'}, 'FontSize',14, ...

'EdgeColor', 'none', ...
'Position', [0.1387 0.8208 0.393 0.1009], ...
'FitHeightToText', ...

‘on');

save Si

A.4 First-order sensitivity indices

10-5 I | 1 1 1 1

1
0 500 1000 1500 2000 2500 3000
Simulation

Fig. Al The evolution of the first-order sensitivity indices.
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Table A1 The first-order sensitivity index S, for different parameters

Parameter Si (%) Order
IrsTmin 54.3 1
ky 4.2 5
ka 8.5 4
ks 0 9
by 21.9 2
b, 10.4 3
Tamin 0.3 7
Tamax 0.12 8
Ka 2.84 6

From Fig. Al and Table A1, we can see that the most sensitive parameters in the
S-W model was rstmin, and followed by b, , b,, k, and k;. Other parameters with S; less
than 5% had almost no effect on the variability in model output. In addition, we
thought that some parameter such as Ka (the extinction coefficient of light attenuation)
has obviously physical meaning and should be measured directly on site (see Sauer et
al., 2007). Thus, in our study, only six parameters were selected to be estimated in
order to avoid equifinality or over-parameterization.

Overall, the key parameters in the S-W model are rstmin, b: and b, with the
values of S; larger than 10%. Thus, proper estimations of these parameters have great

influences in reducing the uncertainty on model simulation.

A.5 Prior Uncertainty Quantification

To derive from that the prior predictive uncertainty, 4000 parameter vectors were
sampled from the prior uniform distribution using Latin Hypercube Sampling (LHS)
method. The results indicated that the both simulated daily (ET; mm d™) and soil
evaporation (E; mm day™) showed larger uncertainties (Fig. C2). Thus, there is an

urgent need to optimize the parameters based on available datasets.
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Fig. A2 Seasonal variation in daily evapotranspiration (ET; mm d*) and soil evaporation (E; mm day™) measured by the EC system and modeled
by the S-W model using the prior distribution of parameters. Gap in the time series is caused either by the absence of flux measurements or
missing ancillary data.
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Appendix B

Contents:
Part 1: Baye’s Theorem
Part 2: Multi-Source Data Set Optimization Scheme
1.1 Metropolis-Hasting (M-H) Algorithm:
1.2 Matlab Code for the M-H Algorithm:
1.3 Results
Part 3: Single Data Set Optimization Scheme
2.1 Metropolis-Hasting (M-H) Algorithm:
2.2 Matlab Code for the M-H Algorithm:
2.3 Results

Part 4: Comparisons Between Two Optimization Schemes

This appendix show:

(1) Description of Bayes’ Theorem

(2) the optimization scheme of M-H algorithm using multi-source data set (Part 1) and
single data set (Part 2);

(2) The Matlab Code of the M-H algorithm using different assimilation scheme;

(3) The differences between the two different assimilation schemes;

The code can be used and tested freely. | would be great appreciations if you can cited

our paper when using the code.

Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %% the
two-source evapotranspiration model by Bayesian approach: application to
spring maize in an arid region of northwest China. Geosci. Model Dev. Discuss.,

7, 741-775.
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PART 1: The Bayes’ Theorem
A general description of the Bayesian probabilistic inversion is given by Bayes’
theorem (Box and Tiao, 1973) in a form of:

_ pOI9R©)
PO oo lomterae

o p(O|c)p(c) (B1)

in which p(c) is the prior probability density function (PDF) representing prior
knowledge about parameter c; p(O|c)is the likelihood function, which defines the
fit to the data for particular parameter set and also reflects the influence of the data on
parameter identification; _[p(O|c)p(c)dc is the probability of observations O, and
p(c|O)is the posterior PDF of parameter c. Thus, the inverse problem can be
related to the forward problem through a set of measurements and prior knowledge

about the probability of the parameters.

PART 2: Multi-Source Data Set Optimization Scheme
2.1 Metropolis-Hasting (M-H) Algorithm:

In practice, except for situations where p(c|Z) have very simple forms, it is
not always possible to draw samples directly from p(c|Z). In such cases, the Markov
Chain Monte Carlo (MCMC) method can be used to investigate the parameter space
in the search for the posterior distribution (Geman et al., 1993; Gelfand and Smith,
1990). The basic idea for the MCMC sampling is to design a Markov chain with
p(c|Z)as the targeted stationary distribution. Once the chain has simulated for
sufficiently long period samples in the chain will follow the stationary distribution,
then one can collect the samples from the simulation and calculate various statistics

associated with the posterior PDF from them. The Metropolis-Hastings (M-H)
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algorithm (Metropolis et al., 1953; Hastings, 1970) is a type of MCMC technique that
approximately obtains samples from the posterior distribution. A simple
computational implementation of the M-H algorithm consists of the following steps:
Step 1:
Chose an arbitrary initial point ¢ in the parameter space.
Setp 2:
Propose a candidate point ¢™"according to a proposal distributionq(c|c*™);
In this study, the candidate parameter is generated by a uniform proposal
distribution as:
"™ =c* P 4y (c™ —c™)/D (A1)

max

wherec™ and c¢™" specify the prior range of the parameter vector C; yis a random
number uniformly distributed between -0.5 and +0.5; D is a value controlling the
proposing step size and was set to be 5.

Step 3:
3.1 Calculate o, for a given parameter vector:
For a given parameter vector ¢, we can simulate half-hourly AET (W m™) and
daily E (mm day™) using equations (1) and (9) in the manuscript, which is

labeled as f;(t) (i=1 and 2), respectively. Form previous analysis, we can

calculate o; as:

e 23 ) »2)

&) =0, - f,(t) (A3)
where O,(t) is observed values of the ith dataset [observed half-hourly AET
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(W m?) and daily E (mm day™), respectively] at time t; n, is the number of
observations of the ith dataset.

3.2 Calculate the likelihood function

ICR &)

T 1 267 o)
L(c) _1_1[]:1[ @Gia(c)e (A4)

where m is the number of dataset (=2 in this study) ;
Step 4:

Calculate the acceptance probability:

p(¢e alc®) e
E‘(ék—l§_ q(&ewlétl (A5)

a=min{

The ratio of likelihood is calculated under the candidate value of parameter to
that calculated under preciously accepted value of parameter.
Step 5:
Generate a random number r form the uniform distributionU[0,1] .
If r<a, accept the proposal and set c® =c™"; otherwise set ¢® =c*™?;
Step 6:

Repeat steps 2 and 5 until enough samples are obtained.

The flowchart of the M-H algorithm was illustrated in Fig. B1.
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Initializing c©, and calculating o (c?) (i=1, 2) and L(c®) using Egns. (B2) and (B4), respectively

v

Generating c™W by the uniform proposal distribution using Eqn. (B1)

Y

« Simulating the S-W model using parameter value c("™" to obtain f;(t) (i=1, 2);
» Comparing with observation values and getting e;(t) (i=1, 2);
. Obtainingo.ia(cmew)) using Eqn. (B2);

» Calculating the likelihood function L(c™") using Eqn. B4

v

« Calculating the acceptance probability a using Eqgn. B5;
« Generating a random number r~U(0,1);

« if r<<a then c® =c(ew): otherwise c®) =ck-1:

Convergence?
Or iteration completed?

Obtaining the posterior distribution of the parameters

Fig. B1 Flowchart representing the basic scheme of the M-H algorithm.

2.2 Matlab Code for the M-H Algorithm:

%% Matlab Code of two source evapotranspiration model
function
[LET, Emd]=SW(rstmin, k1, k2, k3,bl,b2, flag,F4,G,Rn,S,LAIL,Ta, rho,D,SWC 2,

delta,gamma, raa,ras, rac)

o o 0000000000000000000000000000000000000000000000000000000
3% 55%5%5%5%5%5%5%5%5%555555%5%5%555%5555555555%55555555%5%55%5%5%5%5%5%5%5%5%5%5%%
%% Author: Gaofeng Zhu; Xin Li et al

%% Date: March 17, 2014

%% Address: Lanzhou University

o o

[SRe]

3% If there is a need for using the code, please cite the paper of the %%
authors as:
%% Zhu GF, Li X, Su YH, et al., 2014. Simultaneous parameterization of %%

the two-source evapotranspiration model by Bayesian approach:
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Geosci. %% Model Dev. Discuss., 7, 741-775

0000000000000000000000000000000000

$%%%%% Output variables

%% LET simulated half-hourly evapotranspiration in [w m-2]
%% Emd simulated daily soil evaporation in [mm d-1]

%%%%%% parameter in resistance sub-model

%% rstmin minimal stomatal resistance in [s m-1]

%% k1l parameter in egn. 16 in the manuscript with unit [w m-2]
$% k2 unit [oc]

%% k3 unit [kPa-1]

%% bl parameter in soil surface resistance in [s m-1]

%% b2 parameter in soil surface resistance in [s m-1]
$%%%%% input driving variables

%% F4 see egn. (19) in the manuscript

%% G soil heat flux in [W m-2]

%% Rn net solar radiation in [W m-2]

%% S short-wave solar radiation in [W m-2] (Rs in eqgn.16)
%% LAI leaf area index in [m2 m-2]

%% Ta air temperature in reference height in [oc]

%% rho air density in [kg m-3]

%% D air water vapor pressure deficit in [kPa]

%% SWC 2 soilil water content at the surface layer [m3 m-3]

%% delta slope of the saturation vapor pressure versus temperature

curve [kPa K-1]

%% gamma psychrometric constant [kPa K-1]

%% raa aerodynamic resistances in [s m-1]
%% ras aerodynamic resistances in [s m-1]
%% rac aerodynamic resistances in [s m-1]

o\°

% Code of S-W model %%

%% calculate rss in [s m-1]

thetas=0.45; % saturated water content at the 20 cm depth in [m3 m-3];
rss=exp (b1l-b2*SWC 2./thetas);

%% calculated rsc in [s m-1]
Fl=(eps+S) * (1055+k1) ./ (1055* (S+kl)); % S:short wave radiation W m-2
Tamin=0;

Tamax=40;
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tao= (Tamax-k2) / (k2-Tamin) ;
numerator=(Ta-Tamin) .* (Tamax-Ta) . tao;
denominator=(k2-Tamin) .* (Tamax-k2) ."tao;
F2=numerator./denominator;

F3=1-k3*D;

rsc=rstmin./ (2*LAI.*F1.*F2.*F3.*F4) ;

Cp=1.013; % specific heat capacity of the dry air in kJ/kg/K;
Ra=(deltatgamma) . *raa;
Rs=(deltatgamma) . *ras+tgamma.*rss;

Rc=(deltatgamma) . *ractgamma.*rsc;

Cs=1./(1+Rs.*Ra./ (Rc.* (Rs+Ra)));
Cc=1./(1+Rc.*Ra./ (Rs.* (Rc+Ra))) ;
KA=.41;

Rns=Rn. *exp (-KA.*LATI) ;

A=Rn-G;
As=Rns-G;

ETs=(delta.*A+(rho.*Cp.*D-delta.*ras.* (A-As)) ./ (raatras)) ./ (deltatgam
ma.* (l+rss./ (raatras)));
ETc=(delta.*A+(rho.*Cp.*D-delta.*rac.*As) ./ (raatrac)) ./ (deltatgamma.*

(l+rsc./ (raatrac)));

LE=Cs.*ETs;
LT=Cc.*ETc;
LET=LE+LT; % total half-hourly ET in [W m-2]
% alr water vapor pressure deficit at the canopy height in [kPa]

D0=D+ (delta.*A- (deltatgamma) . *LET) . *raa./ (rho.*Cp) ;

% half-hourly soil evaporation in [W m-2]

E=(delta.*As+rho.*Cp.*D0./ras) ./ (deltatgamma.* (1+rss./ras));

% half-hourly canopy transpiration in [W m-2]

T=(delta.* (A-As)+rho.*Cp.*D0./rac) ./ (deltatgamma.* (1+rsc./rac));

%% convert units of evaporation and transpiration from [Wm-2] to [mm m-2]
lambda=2500.78-2.3601*Ta;

Em=E./lambda;

Tm=T./lambda;
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%% calculate the daily accumulative soil evaporation and transpiration %%
in [mm day-1]
for i=1:1length(E) /48

Emd(i,1l)=sum(Em((i-1)*48+1:1*48));

Tmd (i, 1)=sum(Tm((i-1)*48+1:1*48));

end
000000000000000000000000000000000000000000000000O00
5555555559595 9%59%50%59%59%59%50%59%59%59%59%59%59%59%5%%5%%%%s End of the S-W model
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The main code used to calculate the posterior distribution of parameters

o
o

Authors : Gaofeng Zhu, Xin Li
Date : March 17, 2014

o
o

o
o

Address : Lanzhou University

o
o

Purpose : using the M-H algorithm to explore the posterior

o
o

distribution parameters in the S-W model

o

©000000000000000000000000000000000000000000000000000000000
C0000000000000000000000000000000000000000000000000000000D0

o

000000000
©00000000

o

clc

clear
format long
% load meteorological and biological driving data

load data

% ET Rn Gs 1 WS 3m Ta 3m RH 3m Press Ms 2cm Ms 10cm LAI h S

$ Variables

ET = data(:,1); % w m-—

Rn = data(:,2); S w

G = data(:,3); S w

u = data(:,4); % m s-—

Ta = data(:,5):; % oC

RH = data(:,6)/100; % humidity

P = data(:,7)/10; % kPa

SWC 2 = data(:,8)/100; % m3 m-3

SWC r = data(:,9)/100; % m3 m-3

LAT = data(:,10); $ m2 m-2;

hc = data(:,11)/100; % canopy height in m

z = 33 % reference height in m
S = data(:,12); % solar radiation

load Edaily % measured soil evaporation in mm day-1
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% calculate wind speed at canopy height

z0 = 0.13*hc; % roughness length
d = 0.67*hc; % zero plane displacement
uh = u.*log((hc-d)./z0)./log((z-d)./z0);

% Calculate meteorological variables

lambda=2500.78-2.3601*Ta; % the latent heat of evaporation in J kg-1
% saturated vapor pressure in kPa
es=.6108*exp (17.27*Ta./ (Ta+237.3));
% slope of pressure to temperature
delta=4098*es./ (Ta+237.3)."2;

o)

% alir density

Rd=287/1000; % the gas constant in kJ/kg/K
ea=es.*RH; % actual vapor pressure in kPa
D=es-ea; % ailr vapor pressure deficit in kPa

o)

% air density in kg m-3
rho=P./ (Rd* (Ta+273.14) .* (1+.378%ea./P));

Cp=1.013; %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622; %the ratio of water vapor and air
gamma=Cp*P./ (lambda*epsilong) ; % psychrometric constant (kPa K-1)

o)

% calculate raa using equations from Shuttleworth and Wallace (1985)

k=0.41; % von Karman constant

% z0h=0.1%2z0; % roughness length to the heat flux in [m];
n=2.5; % parameter in SW model

% LATI >4

raa_inf=log((z-d)./z0) ./ (k*k* (uteps)) .* (log((z-d) ./ (hc-d))+hc./ (n* (hc
-d)) .* (exp(n* (1-(d+z0)./hc))-1));

% for bare surface

z0s=0.01;

rasO=log(z/z0s) .*log((d+z0) /z0s) ./ (k*k* (u+eps)) ;

raa bare=(log(z/z0s).*log(z/z0s)) ./ (k*k* (uteps))-ras0;

o
°

raa=.25*LAI.*raa inf+.25* (4-LAI) .*raa bare;
% calculate ras

$ LAI >4
ras_inf=log((z-d)./z0) ./ (k*k* (uteps)) .*hc./ (n* (hc-d)) .* (exp (n) -exp (n*
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(1-(d+z0) ./hc)));
% for bare surface

z0s=0.01;

ras_bare=log(z/z0s) .*log((d+z0)/z0s) ./ (k*k* (uteps));

o3
°

ras=.25*LAI.*ras inf+.25* (4-LAI) .*ras bare;

% calculate rac
% method 1
rb=50;

rac=rb./ (2*LAI);

o

method 2

w=6/100; $ leaf width in m
rb=(100/n) * (w./u) * (1-exp(-n/2)) ;

rac=rb./ (2*LAI);

o0 oo

o

o)

% calcualte F4 in canopy resistance model
thetas=.45; % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC r)
if SWC r(i)>thetacr
Fd4(i,1)=1;
elseif SWC r(i)>thetaw
F4(i,1)=(SWC_r(i)-thetaw) ./ (thetacr-thetaw);
else
F4(i,1)=eps;
end

end

% Calculate observed daily ET
ETo=ET./lambda;
for i=1:1length(ET) /48

ETdaily(i,1)=sum(ETo ((i-1)*48+1:1*48,1));

end
$%5%5%%%%%%%%%%%%%%%%% M-H iteration procedure
% Parameter ranges of rsmin, kl,k2,k3,bl,b2,

cmin (1)=0;cmin (2)=0;cmin (3)=30;cmin(4)=0;cmin(5)=4;cmin (6)=0;

cmax (1)=80;cmax (2)=500;cmax (3)=40;cmax(4)=.1;cmax (5)=15;cmax (6)=8;
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% initialize parameter
for i=1l:length(cmin)
co(i)=cmin(i)+rand.* (cmax (i) -cmin(i)); % Initial paramerters

end

[LETo, Emdo]=SW(co(l),co(2),co(3),co(4),co(5),co(06),[],F4,G,Rn,S,LAIL, T

a,rho,D,SWC 2,delta,gamma, raa, ras, rac);

el=LETo-ET;

e2=Emdo-Edaily;

sigmal=sqrt (sum(el.”2)/length (LET0)) ;
sigma2=sqgrt (sum(e2.”2) /length (Emdo)) ;

logLl=-length (LETo) *1log(sigmal) -sum(el.”2/ (2*sigmal”2)) ;
logL2=-length (Emdo) *1log (sigma2) -sum(e2."2/ (2*sigma2”2)) ;
logL=logLl+loglL2;

nsim=30000; % 1teration length
parameter=zeros (nsim, length (cmin)) ;
sigma=zeros (nsim,2);
% begian to iterate
for i=l:nsim
% generate new parameter vector
rr=-.5+rand (1, length (cmin)) ;
cnew=co+rr.* (cmax-cmin) /5;
% simulate using new parameter vector
[LETo,Emdo]=SW (cnew (1), cnew(2),cnew(3),cnew(4),cnew(5),cnew(6),[],F4,

G,Rn, S,LAI,Ta,rho,D,SWC 2,delta,gamma, raa,ras,rac);

% calcualte model error for different data set
el=LETo-ET;
e2=Emdo-Edaily;

o)

% estimate sigma of different data set

sigmal=sqrt (sum(el.”2) /length (LETO0)) ; % Egn.24
sigma2=sqrt (sum(e2.”2) /length (Emdo) ) ; % Eqn.24

% calclaute the log-likelihood of different data set
logLl=-length (LETo) *1log (sigmal) -sum(el.”2)/ (2*sigmal”2) ;
logL2=-length (Emdo) *1og (sigma2) -sum(e2."2)/ (2*sigma2”2) ;

% calcualte the total log-likelihood
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logLnew=logLl+logL2; % Eqn.23
% draw a rand number form uniform distribution

r=1log (rand) ;

if r<=logLnew-logL

parameter (i, :)=cnew; % save parameter vales used to draw statistics

logL=loglLnew;

co=cnew;
else
parameter (i, :)=co; % save parameter vales used to draw statistics
end
sigma (i, :)=[sigmal,sigmaZ2]; % save sigma
end

53%5%%%5%5%%5%%%5%5%%%5%%%5%%%5%%5%53%5%3%5%3%%5%%%% End of the Main program

The proposing efficiency of q(c™ |c®“™®) affects the efficiency of the
algorithm, and hence should be properly designed to ensure a moderate sample
acceptance rate. A rate of 23% is sometimes an optimal acceptance rate (Robert and
Rosenthal, 1998). In our test study, the accepting rate using the uniform proposal
function is generally low (~10%). Based on the test run, we constructed a normal
distribution N(0,cov(c)), where cov(c)is the diagonal matrix of the parameter with
its diagonal being set to the estimated variances of the parameter cfrom the initial
test run and zeros elsewhere. Then, we adopted the following proposal distribution:
c" =c™® + N(0, cov(c)) (AB)

Using this proposal distribution, the general acceptance rate can achieve between

20-50%. The Matlab code was shown as following:

o°

Purpose : using normal distribution to generate candidate

o°

Author : Gaofeng Zhu, Xin Li, et al.,
Date : March 17, 2014

o°

¢ the original code was developed by Xu et al., 2007;
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XuT., White L., Hui DF., Luo YQ. Global Biogeochemical Cycle, 20, GB2007,

dio:10.109/2005GB002468,
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’

sgrt (eigV (3, 3))
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End of the sub-model
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break
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co'
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end
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c new'
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%generate a new configuration based on the estimated covariance matrix

if ¢ new(l)>cmin(l) &c new (l)<cmax (1) ...

eigV(4,4))
c_new

co
o
E]
cT
end
y=
E]

while (true)

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

Xin Li
2014
Lanzhou University

Gaofeng Zhu,

March 17,
parameters in the S-W model

Authors

%% The main code used to calculate the posterior distribution of parameters
Adress

%% Purpose: using the M-H algorithm to explore the posterior distribution
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1)

data (

load meteorological and biological driving data

load data
ET Rn Gs 1 WS 3m Ta 3m RH 3m Press
Variables

format long

clc
clear
ET

o)
o)



Rn = data(:,2);

= data(:,3);

= data(:,4);
Ta = data(:,5);
RH = data(:,6)/100;
P = data(:,7)/10;
SWC 2 = data(:,8)/100;
SWC r = data(:,9)/100;
LAI = data(:,10);
hc = data(:,11)/100;
z = 3;
S = data(:,12);

load Edaily

o)

% w m-2

% w m-2

% m s-1

% oC

% humidity

% kPa

% m3 m-3

% m3 m-3

% m2 m-2;

% canopy height in m
% reference height in m

% solar radiation

% measured soil evaporation in mm day-1

% calculate wind speed at canopy height

z0 = 0.13*hc; % roughness length
d = 0.67*hc; % zero plane displacement
uh =  u.*log((hc-d)./z0)./log((z-d)./z0);

% Calculate meteorological variables

lambda=2500.78-2.3601*Ta; %

o)

% saturated vapor pressure in

the latent heat of evaporation in J kg-1

kPa

es=.6108*exp (17.27*Ta./ (Ta+237.3));

o)

delta=4098*es./ (Ta+237.3) .72;

o)

% air density

Rd=287/1000; %
ea=es.*RH; B
D=es-ea; %

o)

% air density in kg m-3

% slope of pressure to temperature

the gas constant in kJ/kg/K
actual vapor pressure in kPa

air vapor pressure deficit in kPa

rho=P./ (Rd* (Ta+273.14) .* (1+.378%ea./P));

Cp=1.013; %specific heat capacity of the dry air in kJ/kg/K;
epsilong=.622; %the ratio of water wvapor and air

gamma=Cp*P./ (lambda*epsilong) ;

o)

k=0.41; 3

o)

% psychrometric constant (kPa K-1)

% calculate raa using equations from Shuttleworth and Wallace (1985)

von Karman constant
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% z0h=0.1%z0; % roughness length to the heat flux in [m];
n=2.5; % parameter in SW model

% LAI >4
raa_inf=log((z-d)./z0) ./ (k*k* (uteps)) .* (log((z-d)./ (hc-d))+hc./ (n* (hc
-d)) .*(exp(n* (1-(d+z0) ./hc))-1));

% for bare surface

z0s=0.01;

rasO=log(z/z0s) .*log((d+z0) /z0s) ./ (k*k* (u+eps)) ;

raa bare=(log(z/z0s).*log(z/z0s)) ./ (k*k* (uteps))-ras0;
raa=.25*LAI.*raa inf+.25* (4-LAI) .*raa bare;

% calculate ras

% LATI >4
ras_inf=log((z-d)./z0) ./ (k*k* (uteps)) .*hc./ (n* (hc-d)) .* (exp (n) —exp (n*
(1-(d+z0)./hc)));

% for bare surface

z0s=0.01;

ras_bare=log(z/z0s) .*log((d+z0)/z0s) ./ (k*k* (uteps));

%

ras=.25*LAI.*ras_ inf+.25* (4-LAI) .*ras bare;

% calculate rac
% method 1
rb=50;

rac=rb./ (2*LAI);

o\°

method 2

w=6/100; % leaf width in m
rb=(100/n) * (w./u) * (l—exp (-n/2)) ;

rac=rb./ (2*LAI);

o oo

o\°

% calcualte F4 in canopy resistance model
thetas=.45; % saturated SWC
thetacr=0.75*thetas;
thetaw=.11;
for i=1:length(SWC r)
if SWC r(i)>thetacr
F4(i,1)=1;
elseif SWC r(i)>thetaw
F4(i,1)=(SWC_r(i)-thetaw) ./ (thetacr-thetaw);
else

F4(i,1)=eps;
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end

end

o)

% Calculate observed daily ET
ETo=ET./lambda;

for i=1:1length(ET) /48
ETdaily(i,1l)=sum(ETo((i-1)*48+1:1*48,1));

end

3%%%5%5%%5%%%%5%5%%5%%%%%% M-H iteration procedure
% Prior estimate of covariance matrix of parameters

% it was obtained from previous uniform run

cov_c=[0.9645 -0.0219 -0.3973 -0.0015 -0.0047 0.0314
-0.0219 0.0247 -0.0852 0.0003 0.0171 0.0322
-0.3973 -0.0852 5.3166 -0.0076 -0.0279 -0.0387

-0.0015 0.0003 -0.0076 0.0003 0.0025 0.0065

-0.0047 0.0171 -0.0279 0.0025 0.2524 0.6315

0.0314 0.0322 -0.0387 0.0065 0.6315 1.6916];

[transT, eigV]=eig(cov _c);

% Parameter ranges of rsmin, kl,k2,k3,bl,b2,

cmin (1)=0;cmin (2)=0;cmin (3)=30;cmin(4)=0;cmin(5)=4;cmin (6)=0;

cmax (1)=80;cmax (2)=500;cmax (3)=40;cmax(4)=.1;cmax (5)=15;cmax (6)=8;

% initialize parameter
for i=1l:length (cmin)

co(i)=cmin(i)+rand.* (cmax (i) -cmin(i)); % Initial paramerters

end

[LETo,Emdo]=SW(co(l),co(2),co(3),co(4),co(5),co(06),[],F4,G,Rn,S,LAIL, T

a,rho,D,SWC_2,delta,gamma, raa, ras,rac);

el=LETo-ET;

e2=Emdo-Edaily;

sigmal=sqrt (sum(el.”2)/length (LET0)) ;
sigma2=sqrt (sum(e2.”2) /length (Emdo)) ;

logLl=-length (LETo) *1log (sigmal) -sum(el.”2/ (2*sigmal”2)) ;
logL2=-length (Emdo) *1og (sigma2) -sum(e2."2/ (2*sigma2”2)) ;

logL=logLl+loglL2;

nsim=30000; % iteration length
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parameter=zeros (nsim, length (cmin)) ;
sigma=zeros (nsim,2);
% begian to iterate
for i=l:nsim

% generate new parameter vector from normal destribution
cnew= Generate(co,transT,eigV,cmin, cmax) ;
% simulate using new parameter vector
[LETo,Emdo]=SW (cnew(l),cnew(2),cnew(3),cnew(4),cnew(5),cnew(06), [],F4,
G,Rn,S,LAI,Ta,rho,D,SWC 2,delta,gamma, raa,ras,rac);

% calcualte model error for different data set
el=LETo-ET;
e2=Emdo-Edaily;
% estimate sigma of different data set
sigmal=sqrt (sum(el.”2) /length (LETO)) ; % Egn.24
sigma2=sqrt (sum(e2.”2) /length (Emdo) ) ; % Eqgn.24

% calclaute the log-likelihood of different data set
logLl=-length (LETo) *1log (sigmal) -sum(el.”"2)/ (2*sigmal”2) ;
logL2=-length (Emdo) *1og (sigma2) -sum(e2."2)/ (2*sigma2"2) ;

% calcualte the total log-likelihood
logLnew=logLl+logL2; % Egqn.23
% draw a rand number form uniform distribution

r=log (rand) ;

if r<=logLnew-logL
parameter (i, :)=cnew; % save parameter vales used to draw statistics
logL=logLnew;
co=cnew;
else
parameter (i, :)=co; % save parameter vales used to draw statistics
end

o)

sigma (i, :)=[sigmal,sigmaZ2]; % save sigma

35555553 %5%5%5%5%5%%5%5%5%5%5%%%5%5%5%%5%%%%5%%%%%% End of the main program

2.3 Results of Multi-source Assimilation Scheme

The results of 10,000 evolution of MCMC using multi-source data are shown in
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Fig. B2 The evolution of MCMC chain using the normal distribution proposal (left)
and histograms of sample from posterior distribution (right) by using multi-source

dataset
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The comparison between observed and simulated half-hourly evapotranspiration (W m?) were illustrated in Fig. B3. The simulated values

were obtained using the median values of the posterior parameter distribution.

%400_ m ‘J L Observed 1ET (Wm?) _
0 |
o AL AR MW HUERp

500 1000 1500 2000 2500 3000
Observation data series

Fig. B3 Comparison between observed and simulated half-hourly evapotranspiration (W m). The regression lion between observed and

simulated values was: y=0.84x+0.18 (R*=0.83)
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PART 3: Single Data Set Optimization Scheme
3.1 M-H Algorithm:

To investigate how the estimation accuracy and parameters vary, a test case was
also run by using one single data set (the EC-measured half-hourly ET; W m™). In this

case, the likelihood function was set as:

1 (9“’3
J_a (A7)
e(t) =O(t)— f (1) (A8)

L=p(Olc)= H

where O(t) is EC-observed half-hourly ET (W m?); f(t)is simulated ET values (W
m2; Eqn.1 in the manuscript); e(t)is the model error (W m?):; and o is the standard
deviation on each data point. For a given parameter vector, o is estimated as

(Braswell et al., 2005):

o= /%i(e(t))z (A9)

%% The main code used to calculate the posterior distribution of parameters
%% This scheme using only the EC-measured half-hourly ET data
%% Authors: Gaofeng Zhu, Xin Li

%% Date: March 17, 2014
%% Adress: Lanzhou University

%% Purpose: using the M-H algorithm to explore the posterior distribution

%% parameters in the S-W model

format long
load data
% ET Rn Gs 1 WS 3m Ta 3m RH 3m P Ms 2cm Ms 10cm LAI h S
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% Variables

ET = data(:,1); $ w m-—

Rn = data(:,2); S w

G = data(:,3); S w 2

u = data(:,4); S m s-—

Ta = data(:,5); % oC

RH = data(:,6)/100; % humidity

P = data(: 7)/10 % kPa

SWC 2= data(:,8)/100; % m3 m-3

SWC r= data(:,9)/100; % m3 m-3

LATI = data(:,10); $ m2 m-2;

he = data(:,11)/100; % canopy height in m
z = 3; % reference height in m
S = data(:,12); % solar radiation

o

load Edaily measured soil evaporation in mm day-1

% calculate wind speed at canopy height

z0 = 0.13*hc; % roughness length
d = 0.67*%hc; % zero plane displacement
uh = u.*log((hc-d)./z0)./log((z-d)./z0)

% Calculate meteorological variables

lambda=2500.78-2.3601*Ta;

% saturated vapour pressure in kPa
=.6108*exp(17.27*Ta./ (Ta+237.3));

% slope of pressure to temperature
delta=4098*es./ (Ta+237.3)."2

%air density

Rd=287/1000; % the gas constant in kJ/kg/K
ea=es.*RH;

D=es-ea;

rho=P./ (Rd* (Ta+273.14) .* (1+.378%*ea./P))

Cp=1.013; %specific heat capacity of the dry air in kJ/kg/K;
%the ratio between the mplecular weight of water vapor and air

epsilong=.622;

gamma=Cp*P./ (lambda*epsilong) ;
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%% calculate raa

k=0.41; % von Karman constant

% z0h=0.1*z0; % roughness length to the heat flux in [m];
n=2.5; % parameter in SW model

% LAI >4

raa_inf=log((z-d)./z0) ./ (k*k* (uteps)) .* (log((z-d)./ (hc-d))+hc./ (n* (hc
-d)) .*(exp(n* (1-(d+z0) ./hc))-1));

% for bare surface

z0s=0.01;
rasO0=log(z/z0s) .*1log ((d+z0) /z0s) ./ (k*k* (u+teps)) ;

raa bare=(log(z/z0s).*log(z/z0s)) ./ (k*k* (uteps))-ras0; % bare surface

%

raa=.25*LAI.*raa inf+.25* (4-LAI) .*raa bare;

%% calculate ras

% LAI >4
ras_inf=log((z-d)./z0) ./ (k*k* (uteps)) .*hc./ (n* (hc-d)) .* (exp (n) -exp (n*
(1-(d+z0)./hc)));

% for bare surface

z0s=0.01;

ras_bare=log(z/z0s).*log((d+z0)/z0s) ./ (k*k* (uteps));

ras=.25*LAI.*ras_inf+.25* (4-LAI) .*ras _bare;

o)

% calculate rac
% method 1
rb=50;

rac=rb./ (2*LAI);

X

% w=6/100; % leaf width in m
> rb=(100/n)* (w./u) * (1-exp(-n/2));
rac=rb./ (2*LATI) ;

o

o\°

o)

% calcualte F4 in canopy resistance model
thetas=.45; % saturated SWC
thetacr=0.75*thetas;

thetaw=.11;

for i=1:length(SWC r)
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if SWC r(i)>thetacr
F4(i,1)=1;
elseif SWC r(i)>thetaw
F4(i,1)=(SWC_r(i)-thetaw) ./ (thetacr-thetaw);
else
F4(i,1)=eps;
end

end

% Calculate observed daily ET, E and T

ETo=ET./lambda;

for i=1:1ength(ET) /48
ETdaily(i,1)=sum(ETo ((i-1)*48+1:1*48,1));
Edaily(i,1)=ETdaily (i, 1) *FracE (i, 1);
Tdaily(i,1)=ETdaily (i, 1) *FracT(i,1);

end

00 0000000000000 0000O0 4 4
35%%%5%%%5%%%%%%%%%%%%s M-H iteration procedure

o\°

Prior estimate of covariance matrix of parameters

o\°

it was obtained from test uniform run, which is similar to that used

o\°

in Part 1

cov_c=[2.649 -11.1951 0.4698 -0.011 -0.0843 0.5416
-11.1951 12139.2934 -80.9997 0.3606 11.5584 23.4091
0.4698 -80.9997 22.3938 -0.0033 0.3244 1.6035

-0.011 0.3606 -0.0033 0.0006 0.0007 -0.0004

-0.0843 11.5584 0.3244 0.0007 0.576 1.3829

0.5416 23.4091 1.6035 -0.0004 1.3829 4.4452];

[transT, eigV]=eig(cov_c);
% Parameter ranges of rsmin,kl,k2,k3,bl,b2,
cmin (1)=0;cmin (2)=0;cmin (3)=20;cmin(4)=0;cmin(5)=4;cmin (6)=0;
cmax (1)=80;cmax (2)=500;cmax (3)=40;cmax(4)=.1;cmax (5)=15;cmax (6)=8;
% initialize parameter
for i=1l:length (cmin)
co(i)=cmin(i)+rand.* (cmax (i) -cmin (1)) ; % Initial paramerters

end

[LETo,Emdo]=SW(co(1l),co(2),co(3),co(4),co(5),co(06),[],F4,G,Rn,S,LAI,T

a,rho,D,SWC_2,delta,gamma, raa, ras, rac);
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Q

% only ET data set was used here, that is different form Part 1
el=LETo-ET;
sigmal=sqgrt (sum(el.”2)/length (LET0)) ;

logL=-length (LETo) *log (sigmal)-sum(el.”2/ (2*sigmal”"2)) ;

nsim=10000; % 1teration length
parameter=zeros (nsim, length (cmin)) ;
sigma=zeros (nsim,2);
% begian to iterate
for i=l:nsim

% generate new parameter vector from normal destribution
cnew= Generate(co, transT,eigV,cmin, cmax) ;

o)

% simulate using new parameter vector

[LETo,Emdo]=SW (cnew(l),cnew(2),cnew(3),cnew(4),cnew(5),cnew(6), [],F4,
G,Rn,S,LAI,Ta, rho,D,SWC 2,delta,gamma, raa,ras,rac);

% calcualte model error for ET data set
el=LETo-ET;
% estimate sigma of ET data set

sigmal=sqrt (sum(el.”2)/length (LETO)) ; % Egn.24

% calclaute the log-likelihood
logLnew=-length (LETo) *log (sigmal) -sum(el.”2)/ (2*sigmal”"2) ;

o)

% draw a rand number form uniform distribution

r=log (rand) ;

if r<=logLnew-logL
parameter (i, :)=cnew; % save parameter vales used to draw statistics

logL=1logLnew;

co=cnew;
else
parameter (i, :)=co; % save parameter vales used to draw statistics
end
end
F555%5%5%5%5%5%5%%%%%%%%%%%%5%5%5%5%5%5%5%5%5%5%%%%%%%% End of the Main program
3.3 Results
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The results of 10,000 evolution of MCMC using single data are shown in Fig. B4
(left). Comparing with multi-source assimilation scheme, we can see that the

posterior distribution of soil resistance parameter (b; and by) varied

wider.
—~ 50 10000
2 40 g
£ S 5000
b (I
=" 20 )
0 5000 10000 20 30 40 50
500 4000
400 9
£
£
< 100 £
0
0 5000 10000 0 200 400
2000
>
n 2
Q
< S 1000
X o
L
0
0 5000 10000 20 30 40
1000
= o)
© c
< g
o
o [)
x o
0 5000 10000 0 0.05 0.1
15 2000
< >
£
» 10 %1000
< o
5 0
0 5000 10000 8 9 10 11
o)
c
(0]
3
o
g
[T
0
0 5000 10000 0 2 4 6 8

Fig. B4 The evolution of MCMC chain using the normal distribution proposal (left)

and histograms of sample from posterior distribution (right) by using single dataset.
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The slope (0.85) of the regression line between observed and simulated half-hourly ET for single data set assimilation scheme is slightly
lower than that for multi-source data set assimilation scheme (0.86). Thus, we can conformed that that the multi-source data set

assimilation scheme is more effective than the single data set scheme.
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Fig. B5 Comparison between observed and simulated half-hourly evapotranspiration (W m). The regression lion between observed and

simulated values was: y=0.83x-1.65 (R?=0.75)
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PART 4: Comparisons Between Different Assimilation Schemes

4.1 Posterior distributions of parameter for different assimilation schemes

For Scheme 1 (simultaneously assimilate all data sets), ry,.,. b, b, and k,

showed relatively large uncertainty reductions (defined as 1—ClI /CI where

posterior prior !

Cl is the length of the 95% credible interval) (Fig. B6), and their posterior
distributions become approximately symmetric with distinctive modes, while
parameters k, and k, have relative large variability (widely spread on the prior

bounds) (Fig. B7a); For Scheme 2 (only assimilate EC data), only r; b and Kk,

Tmin
showed relatively large uncertainty reductions and tended to be approximately
symmetric, while b,, k; and k, tended to span the entire prior range (Fig. B7D).
Comparing with the two assimilation schemes, important differences occurred in
estimates of the posterior distribution of parameters related to the soil surface
resistance (b, and b,; s m™) (Fig. B6). Generally, tighter posterior distributions for
parameters b, and b, were obtained by Scheme 1. For example, the values of
uncertainty reduction for b, and b, in Scheme 1 (0.89 and 0.56, respectively) were
higher than that in Scheme 2 (0.79 and 0.12, respectively). Thus, the daily soil
evaporation data helped to well constrain estimates of b, and b,. In addition, the six
calibrated parameters by Scheme 1 were not significantly inter-correlated with each
other (correlation coefficients lower than 0.1), while for Scheme 2 the pairs b, and

b, and g and b, tended to be constrained together with correlation coefficients

Tmin

being 0.84 and 0.32, respectively (Table B1).
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Fig. B6 Uncertainty reductions of parameters using different assimilation schemes

Table B1 The correlation coefficient, derived form the posterior distribution of

parameters using different assimilation schemes.

I'sTmin kl

1 -0.004
1

EC data Only

I'sTmin 1

ky -0.13

ky -0.13

ks -0.15

b1 -0.09

b, 0.32
I'sTmin

k
-0.01
0.05
1

0.06
0.02
0.05
0.02
Ky

ks
0.02
-0.04
-0.04
1

0.01
0.04
0.05
k2

by
0.01
-0.02
-0.07
0.05
1

0.02
-0.03
ks

b,

0.004
0.06
0.07
-0.04
0.02

1

0.84

by

I'sTmin

1
b,

* the upper triangular matrix for Scheme 1; the lower triangular matrix for Scheme 2
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Fig. B6 Histograms of samples from the posterior distributions of the parameters. The dashed vertical lines indicate mean parameter values. (a)

Simultaneously assimilate all data sets, (b) EC-measured AET data only
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4.2 Comparisons of model performance for different assimilation schemes

Having parameterized the S-W model by different assimilation schemes as
described above, we ran the model to simulate the half-hourly AET (equation 1) and
AE (equation 9) values (W m). The daily estimations of evapotranspiration (ET; mm
d™) and soil evaporation (E; mm d™) were obtained by summing up the half-hourly
simulated values. The statistical analysis of observed versus estimated values of water
vapor fluxes at different time-scales for different assimilation schemes were
summarized in Table B2. Overall, the simulations (half-hourly AET and daily soil
evaporation) of the S-W model optimized by using all data sets simultaneously
(Scheme 1) were comparable to the measurements (see Fig. 6 in the Manuscript). For
example, the slope of regressive equation between the measured and modeled
half-hourly AET values for Scheme 1 was 0.84, with MBE of 24.2 W m?, IA of 0.93
and EF of 0.74. A relatively good agreement between measured and estimated daily
soil evaporation (E) was also obtained. The slope of regression equation was 1.01,
with MBE of —0.01 mm day™, IA of 0.94 and EF of 0.76. When only EC-measured
data were used (Scheme 2), the performances of the S-W model optimized by Scheme
2 on simulations of half-hourly AET were not significantly different from that
optimized by Scheme 1 (Fig. B7). The regression equation between the measured
AET and the estimated AET from the S-W model optimized by Scheme 2 was 0.83,
with MBE of 30.5 W m™?, IA of 0.67 and EF of 0.13. However, the S-W model
optimized by Scheme 2 significantly underestimated the soil evaporation (E). The
slope of regression equation between the measured and the estimated E was 0.59, with
MBE of 0.11 mm day™, IA of 0.67 and EF of 0.13. Thus, we can not ensure the S-W
model properly partition the total ET into its different components using only the
half-hourly AET data, even thought the simulated values was in good agreement

with measurements.
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The fluctuation of measured and estimated daily ET and E by the two different
assimilation schemes was illustrated in Fig. B8. For both assimilation schemes, the
simulated daily ET generally fluctuated tightly with the measured values with relative
narrow uncertainties (97% posterior predication intervals). Also, we can observed that
the 97% posterior prediction interval of soil evaporation for Scheme 1 was narrower
than that for Scheme 2 (Fig. B8). Thus, we thought that the soil resistance in the S-W
model was properly parameterized for the spring maize by the method with the

multiple data sets simultaneously assimilated.
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evapotranspiration (AET ; W m™), (b) daily soil evaporation (E; mm d™).

Daily water vapour flux (mm day‘1)
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Fig. B8 Seasonal variation

in daily evapotranspiration (ET; mm d-1) and soil

evaporation (E; mm day-1) measured by the EC system and modeled by the S-W

model during the study period in Daman Oasis. Gap in the time series is caused either

by the absence of flux measurements or missing ancillary data. (a) Simultaneously

assimilate all data sets, (b) EC-measured AET data only.
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Table B2 Statistical analysis of measured and estimated values of half-hourly evapotranspiration (\ET; W m™), daily soil evaporation (E; mm
d™), and daily evapotranspiration(ET; mm d™) by different assimilation schemes for the spring maize in arid desert oasis during the study period.

n Regressive equation R Mean measured values Mean simulated values RMSE MBE |IA EF

Scheme 1

AET (W m™) 3578  AET modeled=0.84AET measurea+0.18 0.83 1614 137.2 80.7 24.2 093 0.74
E (mmd™?) 56 Emodeled=1.01Emeasured +0.01 082 0.26 0.28 0.05 -0.01 094 0.76
ET (mmd?) 95 ET modeted=0.83ET neasured +0.19 0.83 2.02 1.88 0.32 0.14 0.94 0.79
Scheme 2

AET (W m™) 3578  AET modeted=0.83ME T easured-1.65 0.75 1614 142.4 89.1 305 0.90 0.70
E (mmd™?) 56 AET modeled=0.59AE T measurea+0.01 0.66 0.26 0.16 0.12 0.11 0.67 0.13
ET (mmd?) 95 AET modeled=0.89E T measurea+0.15 0.85 2.02 1.94 0.12 0.07 0.99 0.97

n=the sample number; R°=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; 1A= index of
agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and

Ortega-Farias (2009).
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C.1 Convergence of MCMC

N & -k -
B=— Ci —Ci
S e

Wi = N(K — 1)22@' =

k=1 n=1

GR :\/Wi(N ~1)/N+B,/N
VM

where K is the number M-H parallel chains;

Appendix C

2

algorithm; c; is the ith component of the parameter vector c;

the between and within-run variances; and GR,

diagnostic of convergence of MCMC (Gelman and Rubin, 1992).

N is the running length of M-H

B, and W, denotes

is the Gelman-Rubin (G-R)

The evolution of GR diagnostic of convergence of MCMC was shown in Fig. C1.

We can see that the GR values for all parameters tended to be less than 1.1 after 5000

iteration.
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Fig. C1 The evolution of GR diagnostic of convergence of MCMC. Four parallel

chains with different initial values were used to calculate GR values.
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B.2 Matlab Code

clc

clear

load Chain

% Chain is the matrix than contain N running length, K parallel chains

[

% it is a N*K matrix for parameter ci

[N,K]=size (Chain) ;
for k=1:K
ss=0;
for n=1:N
ss=ss+Chain (n, k) ;
cwb (n, k)=ss/n; %$calculate c.,k
end

end

for n=1:N
st=0;
for k=1:K
st=st+cwb (n, k) ;
end
cst(n)=st/K; % calculate c.,.

end

for n=1:N
sb=0;
for k=1:K
sb=sb+ (cwb (n, k) —cst (n)) *2;
end
B(n)=n*sb/ (K-1); % calculated B

end

for k=1:K
sw=0;
for n=1:N
sw=sw+ (Chain (n, k) -cwb (n, k))"2;
swc (n, k)=sw/ (n-1) ;
end

end

for n=1:N
s1=0;
for k=1:K

sl=sl+swc(n, k);
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end
W(n,1l)=sl/K;

end

for n=1:N

Q

°

calculated W

GR(n,1l)=sqgrt ((W(n)*(n-1)/n+B(n)/n)/W(n));

end
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