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Abstract 26 

Based on direct measurements of half-hourly canopy evapotranspiration (ET; W m
-2

) 27 

using the eddy covariance (EC) system and daily soil evaporation (E; mm d
-1

) using 28 

microlysimeters over a crop ecosystem in arid northwest China from 27 May to 14 29 

Sep. in 2013, a Bayesian method was used to simultaneously parameterize the soil 30 

surface and canopy resistances in the Shuttleworth-Wallace (S-W) model. 4 of the six 31 

parameters showed relatively larger uncertainty reductions (>50%), and their posterior 32 

distributions became approximately symmetric with distinctive modes. There was a 33 

moderately good agreement between measured and simulated values of half-hourly 34 

ET and daily E with a linear regression being y=0.84x+0.18 (R
2
=0.83) and 35 

y=1.01x+0.01 (R
2
=0.82), respectively. The causes of underestimations of ET by the 36 

S-W model was possibly attributed to the micro-scale advection, which can contribute 37 

an added energy in the form of downward sensible heat fluxes to the ET process. 38 

Therefore, the advection process should be taken into account in simulating ET in 39 

heterogeneous land surface. Also, underestimations were observed on or shortly after 40 

rainy days, which may be due to direct evaporation of liquid water intercepted in the 41 

canopy. Thus, the canopy interception model should be coupled to the S-W model in 42 

the long-term ET simulation. 43 

   44 

Keywords: Bayesian statistics, Crop evapotranspiration, Shuttleworth-Wallace model, 45 

Maize, Arid region 46 

 47 
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1 Introduction 48 

In agriculture ecosystem, more than 90% of all water inputs is lost by 49 

evapotranspiration (ET) (Morison et al., 2008), which is defined as the sum of water 50 

loss by evaporation (E) from soil and transpiration (T) from plants (Rana and Katerji, 51 

2000). E and T are influenced by different abiotic and biotic factors (Wang and Yakir, 52 

2000), and the contributions of E and T to the total ecosystem ET are highly variable 53 

in space and time (Ferretti et al., 2003). Thus, accurate measurement or estimation of 54 

ET and its components (E and T) is essential for many applications in agriculture, 55 

such as irrigation scheduling, drainage, and yield forecasts (Wallace and Verhoef, 56 

2000; Flumignan et al., 2011; Sun et al., 2012). The Shuttleworth-Wallace model 57 

(S-W model) (Shuttleworth and Wallace, 1985) takes the interactions between the 58 

fluxes from soil and canopy into account, and is physically sound and rigorous. 59 

Previous studies have proved that it performs well for row crops such as maize, wheat, 60 

cotton, sorghun and vine (Stannard, 1993; Tourula and Heikinheimo, 1998; 61 

Anadranistakis et al., 2000; Teh, et al., 2001; Lund and Soegaard, 2003; Kato et al., 62 

2004; Ortega-Farias et al., 2007; Zhang et al., 2008).  63 

Despite these studies, there are still some insufficiencies in the application of the 64 

S-W model (Hu et al., 2009; Zhu et al., 2013). First, the S-W model is sensitive to the 65 

errors in the values of canopy and soil resistances (Lund and Soegaard, 2003). 66 

Previous studies mainly focused on the parameterization of the canopy resistance 67 

(Hanan and Prince, 1997; Samanta et al., 2007; Zhu et al., 2013) , and less attentions 68 

have been committed to the parameterization of the soil surface resistance (Sellers et 69 
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al., 1992; van de Griend and Owe, 1994; Villagarcía et al., 2010). In crop ecosystem, 70 

E may contribute significantly to the total ET when leaf area index (LAI) is low 71 

(Lund and Soegaard, 2003; Zhang et al., 2008). Thus, simultaneous parameterization 72 

of the canopy and soil resistances in the S-W model, based on direct measurement of 73 

ET and its components by using a combination of micro-meteorological (e.g. eddy 74 

covariance methods, Bowen ratio), hydrological (e.g. chambers, microlysimeters) and 75 

eco-physiological techniques (e.g. sap-flow, stable isotopes) (Williams et al., 2004; 76 

Scott et al., 2006), is important to reduce the model error. However, such studies are 77 

relative rare or non-existent. Secondly, as far as the parameterization method is 78 

concerned, abundant evidence has shown that the Bayesian method provides a 79 

powerful new tool to simultaneously optimize many or all model parameters against 80 

all available measurements, and to quantify the influence of uncertainties (Clark and 81 

Gelfand, 2006). Although some pioneering efforts have been made (e.g. Samanta et 82 

al., 2007; Zhu et al., 2013), the Bayesian method has been much less frequently used 83 

in parameterization of ET model than in the other environmental sciences (van Oijen 84 

et al., 2005). Moreover, the Bayesian method, to our knowledge, has not been used to 85 

simultaneously optimized the parameters of the S-W model against multivariate 86 

datasets (section 2.5). Finally, arid northwest China, one of the driest area in the world 87 

(Zhu et al., 2007, 2008), is characterized by a widely distributed desert/Gobi 88 

interspersed with many oases in different sizes and shapes. Land surface processes of 89 

this heterogeneous region are much complex than in other regions (Zhang and Huang, 90 

2004). Thus, the applicability of the S-W model in such regions need to be 91 
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investigated in details.  92 

Based on direct measurements of different components of ET obtained by using 93 

the eddy covariance technique and microlysimeters over a spring maize field in the 94 

arid region of northwest China from 27 May to 14 September in 2013, the objectives 95 

of the present study were to: (1) simultaneously parameterize the S-W model using 96 

the Bayesian method against multivariate datasets; (2) verify the performances of the 97 

S-W model, and identify the causes of failure and success in simulating ET over the 98 

crop ecosystem in arid desert oasis of northwest China. It is expected that this study 99 

can not only promote the developments of ET model parameterization, but also help 100 

us to find a proper direction in modifying the S-W model used in arid regions. 101 

2 Materials and methods 102 

2.1  Study site 103 

The study site is located in Daman (DM) Oasis, in the middle Heihe River Basin, 104 

Gansu province, China (100
o 

22‟ 20‟‟ E, 38
o 

51‟ 20‟‟ N; 1556 m a. s. l; Fig.1). The 105 

annual average temperature and precipitation was 7.2 
o
C and 125 mm (1960-2000), 106 

respectively. The potential evaporation is around 2365 mm year
-1

, and the dryness 107 

index according to the World Atals of Desertification (UNEP, 1992) is 15.9. The soil 108 

type is silt clay loam on the surface and silt loam in the deeper layer.  109 

The study area has an agricultural development history of over 2000 years owing 110 

to its flat terrain, adequate sunlight and convenient water resources from Qilian 111 

Mountains. The main crops in the DM Oasis are spring wheat and maize. The spring 112 

wheat (Triticum aestivum L.) is generally sown in the later March and harvested in the 113 
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middle 10 days of July, while the maize (Zea mays L.) is sown in the late April and 114 

harvested in the middle 10 days of September. Stand density of the spring maize is 115 

about 37 plants m
2
 with row spacing of 40 cm and planting spacing of 7 cm.  116 

2.2 Measurements and data processing 117 

The field observation systems at this site were constructed in May 2013 as part 118 

of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project 119 

(See details in Li et al., 2013b). The fluxes of sensible heat (H), latent heat (λET ) and 120 

carbon dioxide were measured at the height 4.5 m using the eddy covariance (EC) 121 

system (Liu et al., 2013, manuscript in preparation), which consists of an open-path 122 

infrared gas analyzer (Li-7500, LiCor Inc., Lincoln, NE, USA) and a 3D sonic 123 

anemometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA). The EC data were 124 

sampled at a frequency of 10 Hz by a data logger (CR5000, Campbell Scientific Inc.), 125 

and then were processed with an average time of 30 min. Post-processing calculations, 126 

using EdiRe software, included spike detection, lag correction of H2O/CO2 relative to 127 

the vertical wind component, sonic virtual temperature conversion, planar fit 128 

coordinate rotation, the WPL density fluctuation correction and frequency response 129 

correction (Xu et al., 2014). About 85% energy balance closure (the sum of H+λET 130 

against the available energy) was found in EC data (Liu et al., 2011). In addition, the 131 

flux uncertainties are directly related to the likelihood function of Bayesian inference 132 

(Section 2.5). Thus, determining the uncertainties is EC measurements is essential for 133 

proper parameter estimates. Recently, Wang et al. (2014) systemically studies the flux 134 

uncertainties of EC systems equipped in the HiWATER experiment. Generally, 135 
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uncertainties for H  ( ( )r H ; W m
-2

) by using method of Mann and Lenschow (1994) 136 

tended to be ( ) 0.14 2.7r H H   (R
2
=0.95), and uncertainties for λET  ( (λ )r ET ; 137 

W m
-2

) be (λ ) 0.13λ 6r ET ET    (R
2
=0.93) (Wang et al., 2014). Data gaps due to 138 

instrument malfunction, power failure and bad weather conditions were filled using 139 

artificial neural network (ANN) and mean diurnal variations (MDV) methods (Falge 140 

et al., 2001). The ANN method was applied when the synchronous meteorological 141 

data were available; otherwise, the MDV method was used. The gap-filling data were 142 

used only to analyze the seasonal and annual variations in ET. 143 

Continuous complementary measurements also included standard 144 

hydro-meteorological variables. Rainfall was measuring using a tipping bucket rain 145 

gauge (TE525MM, Campbell Scientific Instruments Inc.). Air temperature, relative 146 

humidity (HMP45C, Vaisala Inc., Helsinki, Finland) and wind speed/direction (034B, 147 

Met One Instruments, Inc. USA) were measured at heights of 3, 5, 10 15, 20, 30 and 148 

40 m above the ground. Downward and upward solar and longwave radiation (PSP, 149 

The EPPLEY Laboratory Inc., USA) and photosynthetic photon flux density (PPFD) 150 

(LI-190SA, LI-COR Inc.) were measured at height of 6 m. Soil temperature 151 

(Campbell-107, Campbell Scientific Instruments Inc.) and moisture (CS616, 152 

Campbell Scientific Instruments Inc.) was measured at 0.02, 0.04, 0.1, 0.2, 0.4, 0.8, 153 

1.2 and 1.6 m depths. Three heat flux plates (HFT3, Campbell Scientific Instruments 154 

Inc.) were randomly buried at the depths of 0.01 m.  The average soil heat fluxes 155 

were calculated using the three randomly buried plates. These data were logged every 156 

10 min by a digital micrologger (CR23X, Campbell Scientific Inc.) equipped with an 157 
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analog multiplexer (AM416) used for sampling and logging data.  158 

Daily soil evaporation was measured using three microlysimeters  randomly 159 

placed between crop rows (one in the middle of the rows and the other two close to 160 

plants on each side of the rows). The microlysimeters with an internal diameter of 10 161 

cm and a depth of 20 cm were filled with an intact soil core and pushed into soil with 162 

the top slightly above the soil surface (Daamen et al., 1993; Liu et al., 2002). The 163 

average weight loss of these microlysimeters measured using electronic scales with 164 

0.01 g precision was nearly equal to soil evaporation. In order to keep the soil 165 

moisture in microlysimeters similar to that between the rows, the soil in the 166 

microlysimeters was replaced daily or every two days.  167 

Leaf area index (LAI) was measured using AM300 portable leaf area meter 168 

(ADC BioScientific Ltd., UK). The fraction of land cover ( f ) was estimated by 169 

measuring the projected crop canopy area of selected stands in corresponding field 170 

plot. LAI, f  and crop height were measured approximately every 10 days during 171 

the growing season, and the gaps were linearly interpolated to daily interval.  172 

2.3 Description of the S-W model 173 

In the S-W model, the ecosystem evapotranspiration ( λET ; W m
-2

) is separated 174 

into evaporation from the soil surface ( λE ; W m
-2

) and transpiration from the 175 

vegetation canopy ( λT ; W m
-2

) (Fig. 2), which are calculated as (Shuttleworth and 176 

Wallace, 1985; Lhomme et al., 2012):  177 

s s c cλET=λ +λ ET ETE T C C         (1) 178 

s a s

p a s a a

s s a s

s a a

[ ( )] / ( )
ET

[1 / ( )]

A C D r A A r r

r r r





    


  
                   (2) 179 
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                                           (11) 188 

where sET  and cET  are terms to describe evaporation from soil and transpiration 189 

from the plant (W m
-2

), respectively; sC  and cC  are soil surface resistance and 190 

canopy resistance coefficients (dimensionless), respectively; λ  is the latent heat of 191 

evaporation (J kg
-1

);   is the slope of the saturation vapor pressure versus 192 

temperature curve (kPa K
-1

);   is the air density (kg m
-3

); pC  is the specific heat 193 

capacity of dry air (1013 J kg
-1

 K
-1

); D and 0D  (kPa) are the air water vapor 194 

pressure deficit at the reference height (3 m) and the canopy height, respectively;  is 195 

the psychrometric constant (kPa K
-1

); c

sr  and s

sr  are the surface resistance for plant 196 

canopy and soil surface (s m
-1

), respectively; c

ar and s

ar  are aerodynamic resistances 197 

from the leaf to canopy height and soil surface to canopy height (s m
-1

), and a

ar  is 198 
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aerodynamic resistances from canopy height to reference height (s m
-1

). A  and
sA  199 

(W m
-2

) are the available energy input above the canopy and above the soil surface, 200 

respectively, and are calculated as: 201 

nA R G                                                          (12) 202 

s nsA R G                                                         (13) 203 

where nR and nsR are net radiation fluxes into the canopy and the substrate (W m
-2

), 204 

respectively; G is the soil heat flux (W m
-2

). nsR was calculated using a Beer's law 205 

relationship of the form: 206 

)LAIexp( Anns KRR                                                (14) 207 

in which AK is the extinction coefficient of light attenuation. It can be measured on 208 

site (see Sauer et al., 2007), and was set to be approximately 0.41 for spring maize 209 

(Mo et al., 2000). 210 

The climate-related variables (i.e., λ , se ,  ,   and  ) in Eqns. (1)-(3) are 211 

calculated by the formulas of Allen et al. (1998).                               212 

2.4  Calculation of resistances in the S-W model 213 

The resistance network of the S-W model is shown in Fig. 2. In this paper, the 214 

three aerodynamic resistance (i.e., a

ar , c

ar  and s

ar ) were calculated using the same 215 

approach suggested by Shuttleworth and Wallace (1985), Shuttleworth and Gurney 216 

(1990) and Lhomme et al. (2012). 217 

The canopy resistance ( c

sr ), which is the equivalent resistance of all the 218 

individual stomates in a canopy and depends on the environmental variables, can be 219 

calculated using the Jarvis-type model (Jarvis, 1976)  220 
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c STmin
s

2LAI ( )i i

i

r
r

F X



                                                 (15) 221 

where STminr represents the minimal stomatal resistance of individual leaves under 222 

optimal conditions. ( )i iF X is the stress function of a specific environmental variable 223 

iX , with 0 ( ) 1i iF X  . Following Stewart (1998) and Verhoef and Allen (2000), the 224 

stress functions were expressed as: 225 

s 1
1 s

s 1

1000
( )

1000

R k
F R
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                                              (16) 226 
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                               (19) 229 

where 1 3k k  are constants (units see Table 1); sR  is the incoming solar radiation 230 

(W m
-2

); aT  is the air temperature (
o
C) at the reference height; a,minT and a,maxT  are 231 

the lower and upper temperatures limits (
o
C), respectively, which are aT  values when 232 

2 a( ) 0F T  and are set at values of 0 and 40 
o
C (Harris et al., 2004); r  is the actual 233 

volumetric soil water content in the root-zone at depth of 0-60 cm (m
3
 m

-3
); wp  is 234 

water content at the wilting point (m
3 

m
-3

); and cr  is the critical water content  (m
3 

235 

m
-3

) at which plant stress starts. The values of wp  and cr  are set as 0.11 m
3
 m

-3 
236 

and 0.30 m
3
 m

-3 
for sandy loam in the study area (Zhao et al., 2010).  237 

The soil surface resistances ( s

sr ; Fig. 2) was expressed as a function of 238 

near-surface soil water content (Sellers, 1992; Verhoef et al., 2006, 2012; Zhu et al., 239 



12 

 

2013): 240 

s s
s 1 2

sat

exp( )r b b



                                                     (20)                                                241 

in which 1b  and 2b  are empirical constants (s m
-1

); 
s  is soil water content in the 242 

top layer of soil (at depth of 2cm); 
sat is the saturated soil water content (m

3
 m

-3
),  243 

which was estimated empirically through the near-surface soil texture. In summary, 244 

there are 6 site- and species-specific parameters that needed to be estimated in the 245 

S-W model associated with soil and canopy resistances, which are 1b , 2b , STminr  and 246 

1 3k k  (see Appendix A).  247 

2.5 Bayesian inference framework and assimilation scheme  248 

With Bayes‟ theorem (a complete description was presented in Appendix B), the 249 

posterior distribution of parameters c  is generated by: 250 

( | ) ( | ) ( )p p pO Oc c c                                               (21) 251 

where ( )p c represents prior probability distributions of parameters c , which is chosen 252 

as uniform distributions with specified allowable ranges (Table 1). In general, the 253 

parameter ranges were wide enough to include the actual parameter values and to give 254 

the optimization freedom (Sack et al., 2006). In the test study, we run the S-W model 255 

using 4000 parameter vectors which were sampled from the prior distribution using 256 

Latin Hypercube Sampling (LHS) method (Iman and Helton, 1998), and found that 257 

the observed data in most case were in the range of predicted values (Appendix A); 258 

( | )p O c  is the likelihood function, which reflects the influence of the observation 259 

datasets on parameter identification; and ( | )p Oc  is the posterior distribution after 260 

Bayesian inference conditioned on available observations O .  261 
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For each dataset (e.g., λET and E), the model-data mismatch ( )ie t  ( 1,2i  ), 262 

which represents a relative “goodness-of-fit” measure for each possible parameter 263 

vector (van Oijen et al., 2011, 2013), is expressed by:  264 

( ) ( ) ( )i i ie t O t f t                                                    (22) 265 

where ( )iO t  and ( )if t  are observed and modeled (equations (1) or (9)) values of the 266 

ith dataset at time t , respectively. Assuming the model-data mismatch ( )ie t follows a 267 

Gaussian distribution with a zero mean, the likelihood function for the ith dataset 268 

( ( )i O ) can be expressed by: 269 

2

2

( ( ))

2

1

1
( ( ) | ) e

2

i
i

i

e tn

i

t i

p








 O c                                         (23) 270 

where in  is the number of observations of the ith dataset; i  ( 1,2i  ) represents 271 

the residual errors, or standard deviation about model predicted output of the ith 272 

dataset. Here, we assumed i  is the same over the observation time for the ith 273 

dataset (Braswell et al., 2005). Traditionally, i  can be included into the analysis 274 

explicitly (i.e., assuming i  is uniform over log i ; Gelman et al., 1995) and treated 275 

as one the model parameters, which yields a complete posterior distribution of i . 276 

However, this method artificially increased the parameter dimension of the problem 277 

and may result in unreasonable estimations of the parameter values (Kavetski et al., 278 

2006). In this study, i  was estimated by using the analytical method (Hurtt and 279 

Armstrong, 1996; Braswell et al., 2005), which is to find the value of i  that 280 

maximizes log( ( ( ) | ))ip O c  for a given parameter vector. By differentiating 281 

log( ( ( ) | ))ip O c  with respect to i , we can obtain: 282 

http://dict.cn/artificially
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2

1

1
( ( ))

in
a

i i

ti

e t
n




                                                   (24) 283 

We then used a

i  to replace 
i  in the equations (22). 284 

The likelihood function for the multivariate datasets, ( | )p Oc , used for 285 

parameter estimation is then defined as the product of the individual ( ( ) | )ip O c ‟s 286 

(Richardson et al., 2010): 287 

2

2

( ( ))

2

1 1 1

1
( | ) ( ( ) | )

2

i
i

i

e tnm m

i

i i t i

p p e






  

   O c O c                            (25) 288 

where m  is the number of dataset; When a particular dataset ( )i O was not being 289 

used in the optimization, we simply set the corresponding likelihood function 290 

( ( ) | )ip O c  to 1. Thus, this framework can be easily used when additional 291 

observations are available. In this studies, the two datasets used to simultaneously 292 

optimize the parameter values were: EC-measured half-hourly evapotranspiration 293 

(λET; Wm
-2

) and microlysimeters-measured daily soil evaporation (E; mm d
-1

). 294 

2.6 Metropolis-Hasting algorithm and convergence test 295 

The posterior distribution was sampled using the Metropolis–Hasting (M-H) 296 

algorithm (Metropolis et al., 1953; Hastings, 1970), a version of the Markov Chain 297 

Monte Carlo (MCMC) technique. To generate a Markov chain in the parameter space, 298 

the M-H algorithm was run by repeating two steps: a proposing step and a moving 299 

step. In the proposing step, a candidate point new
c  is generated according to a 300 

proposal distribution new 1( | )kP 
c c , where 1k

c  is the accepted point at the previous 301 

step. In the moving step, point new
c  is treated against the Metropolis criterion to 302 

examine if it should be accepted or rejected. It was well recognized that efficiency of 303 
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the M-H algorithm was strongly effected by the proposal distribution function. To find 304 

an effective proposal distribution new 1( | )kP 
c c , a test run of the M-H algorithm with 305 

10, 000 simulations was made by using a uniform proposal distribution (Braswell et 306 

al., 2005): 307 

new 1 max min( )k r  c c c c                                             (26) 308 

where 1k
c  is the current accepted point; r is a random number uniformly 309 

distributed between -0.5 and +0.5; min
c and max

c are the lower and upper limits of 310 

parameter vector c  (Table 1). Based on the test run, we then constructed a normal 311 

proposal distribution new ( 1) 0( ,cov ( ))kN :c c c , where 0cov ( )c is the covariance 312 

matrix of the parameter vector c  from the initial test run (Xu et al., 2006). The 313 

detailed description on MCMC sampling procedure and the code written in Matlab 314 

were presented in Appendix B. 315 

We ran at least four parallel MCMC chains with 20,000 iterations each, 316 

evaluated the chain convergence using the Gelman-Rubin (G-R) diagnostic method 317 

(Gelman and Rubin, 1992) (Appendix C), and thinned the chains (every 20th iteration) 318 

when appropriate to reduce within chain autocorrelation, thereby producing an 319 

independent sample of 3000 values for each parameter from the joint posterior 320 

distribution.   321 

2.6 Evaluation of model output estimates 322 

Since the primary interest in application of the S-W model was to reproduce the 323 

pattern of water vapour fluxes from different sources (i.e., soil and vegetation) during 324 

the whole study period, we used all available data to construct the likelihood function 325 
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(equation 25) and to obtain the posterior distribution of the parameters. Then, the 326 

performance of the S-W model was evaluated using the coefficient of determination 327 

of the linear regression between measured and estimated values of water vapor 328 

fluxes, 2R , representing how much the variation in the observations was explained by 329 

the models. Also, the root mean square error (RMSE), mean bias error (MBE), index 330 

of agreement (IA) and model efficiency (EF) (Legates and McCabe, 1999; 331 

Poblete-Echeverria & Ortega-Farias, 2009) were included in the statistical analysis, 332 

which are calculated as follows: 333 

2

1

1
RMSE [ ( ) ( )]

in

i i

ti

O t f t
n 

                                          (26) 334 

1

1
MBE [ ( ) ( )]

in

i i

ti

O t f t
n 

                                              (27) 335 

2

1

2

1

[ ( ) ( )]

IA 1

[| ( ) | | ( ) |]

i

i

n

i i

t

n

i i i i

t

O t f t
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                                  (28) 336 

2

1

2

1

[ ( ) ( )]

EF 1

[ ( ) ]

i

i

n

i i

t

n

i i

t

O t f t

O t O







 






                                            (29) 337 

where in  is the total number of observations of the ith dataset; ( )iO t is the observed 338 

values at time t  of the ith dataset, iO  is the mean of the observed value of the ith 339 

dataset, and ( )if t is the simulation which was calculated using the posterior median 340 

parameter values, and other parameter vectors selected from the parameter chains 341 

generated by the MCMC iteration (van Oijen et al., 2013). 342 

3 Results  343 
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3.1 Environmental and biological factors 344 

Detailed information on the seasonality of key environmental and biological 345 

variables is essential to assess seasonal variation in the actual ET and its partitioning. 346 

The seasonal change in net solar radiation ( nR ; MJ m
-2

 d
-1

), air temperature ( aT ; 
o
C), 347 

air water vapor pressure deficit ( D ; kPa), wind speed ( u , m s
-1

) at the height of 3 m, 348 

rainfall and irrigation (mm), soil water content ( ; m
3
 m

-3
), and leaf area index (LAI; 349 

m
2
 m

-2
) are illustrated in Fig. 3. During the study period (DOY147-257), the daily 350 

mean nR  varied from 2.6 to 18.5 MJ m
-2

 d
-1

 with an average value of 11.9 MJ m
-2

 d
-1

. 351 

The peaked values were recorded from the end of June to the middle of July 352 

(DOY180-195). The variation of mean daily air temperature ( aT ) has a similar trend 353 

to nR , varying from 8.8 to 24.9 
o
C with an average value of around 19.0 

o
C. D  354 

exhibited large diurnal variation ranging from 0 to 3.5 kPa, and the daily mean D was 355 

relative small when the LAI was larger than 3 m
2
 m

-2
 (DOY197-230). Daily mean 356 

wind speed ( u ) ranged from 0.5 to 3.2 m s
-1

, and was close to normal long-term 357 

values. Total precipitation during the study period was 104.2 mm with eight events 358 

over 5.0 mm (Fig. 3).   varied greatly over the whole growing season. The 359 

variability of   mainly depended on irrigation scheduling of local government 360 

(irrigation quota and timing). Soil water content had a peak value (about 0.35 m
3
 m

-3
) 361 

after irrigation and gradually reduced till the next irrigation (Fig. 3). The LAI showed 362 

a clear „one peak‟ pattern over the whole growing season with relative high values of 363 

3.5 m
-2

 m
-2 

from early July to late August (DOY184-221).  364 

3.2 Posterior distribution of S-W model parameters 365 
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The posterior parameter distributions are shown as histograms in Fig. 4 and 366 

summarized in Table 1 by posterior medians and 95% probability intervals. The 367 

results showed that the Bayesian calibration against the multivariate datasets was in 368 

most cases successful in reducing the assumed prior ranges of the parameters values. 369 

Parameters STminr , 1b , 
2b  and 

2k  showed relatively large uncertainty reductions 370 

(defined as 1 CI / CIposterior prior , where CI  is the length of the 95% credible interval) 371 

(Fig. 5), and their posterior distributions became approximately symmetric with 372 

distinctive modes, while parameters 1k  and 3k  have relative large variability 373 

(widely spread on the prior bounds) (Fig. 4). The global sensitivity analysis with the 374 

first-order impact ratio (FOIR) values (Appendix A) reveals the importance of input 375 

parameters in affecting total ecosystem evapotranspiration. The results indicated that 376 

total ET responded sensitively to STminr , 1b , 2b  and 2k  with FOIR values being 377 

54.3%, 21.9%, 10.4% and 8.5% (Appendix A), respectively. Other parameters 378 

exhibits relative low (<5%) FOIR values, suggesting that the variability in these 379 

parameters had almost no effect on the variability in model output. It is worth noting 380 

that the four highest sensitive parameters ( STminr , 1b , 2b  and 2k ) also corresponded 381 

to the greatest degree of updating in the Bayesian inference. Thus, we thought that the 382 

key parameters in the S-W model were well optimized by the Bayesian method 383 

against the multivariate datasets. In addition, the correlation coefficient between the 384 

posterior distribution of parameters can be used to find groups of parameters tend to 385 

be constrained together (Knorr and Kattge, 2005). In this study, the six calibrated 386 

parameters were not significantly inter-correlated with each other with correlation 387 
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coefficients lower than 0.1 (Appendix B).  388 

The responses of soil surface resistances ( s

sr ) to soil water content computed 389 

using our posterior mean 1b  and 
2b values were very similar to that calculated using 390 

equation developed by Ortega-Farias et al. (2010) based on direct soil evaporation 391 

measurements, but seemed to be more sensitive to changes in soil water content 392 

compared with some other studies (e.g., Sun, 1982; Sellers, 1992; Zhu et al., 2013; 393 

Fig. 6). When just using EC-measured λET data, a relative wider posterior distribution 394 

of 2b  was observed (see Appendix B). Thus, the daily soil evaporation data helped to 395 

well constrain estimates of 1b  and 2b . The posterior mean value of STminr  from our 396 

study was very close to that  (20 s m
-1

) reported for spring maize growing in 397 

northwest China obtained by using the least squares fitting method(Li et al., 2013a). 398 

The variations of the minimal stomatal resistance ( STminr ) for many natural and 399 

cultivated plants have been widely investigated by previous studies (Korner et al., 400 

1979; Pospisilova and Solarova, 1980). Typical values for STminr  vary considerably 401 

from about 20-100 s m
-1 

for crops to 200-300 s m
-1 

for many types of trees. Thus, our 402 

results fell within the range of previous studies. However, some parameters related to 403 

canopy surface resistance (i.e., k1 and k3) seemed to be not well updated (Fig. 4). This 404 

may be due to the fact that these parameters may be insensitive to the present 405 

available datasets. 406 

3.3 Model performance compared with measurements 407 

Having parameterized the S-W model as described above, we ran the model to 408 

simulate the half-hourly λET (equation 1) and λE (equation 9) values (W m
-2

). The 409 
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daily estimations of evapotranspiration (ET; mm d
-1

) and soil evaporation ( E ; mm d
-1

) 410 

were obtained by summing up the half-hourly simulated values. The statistical 411 

analysis of observed versus estimated values of water vapor fluxes at different 412 

time-scales are summarized in Table 2. These results indicated that the parameterized 413 

S-W model was able to predict λET on a half-hourly basis with values of R
2
, IA and 414 

EF equal to 0.83, 0.93 and 0.74, respectively. However, significant differences exist 415 

between measured and modeled half-hourly λET values for the spring maize in the 416 

arid desert oasis. The slope (0.84) of regression equation between the measured and 417 

modeled half-hourly λET values was lower than one (Table 2 and Fig. 7a), which 418 

indicated that the S-W model tended to underestimate the half-hourly λET with a 419 

MBE value of 24.2 W m
-2

. Ortega-Farias et al. (2010) also reported that the S-W 420 

model underestimated on half-hourly time intervals compared the EC-measured λET  421 

over a drip-irrigated vineyard in Mediterranean semiarid region during the growing 422 

season in 2006. On the contrary, some studies showed that the S-W model 423 

overestimated half-hourly λET (e.g., Li et al., 2013a; Ortega-Farias et al., 2007; 424 

Zhang et al., 2008). Therefore, the performances of the S-W model seemed to be 425 

variable for different crops and places, and there is a need to identify the causes that 426 

induced the disagreements between observed and modeled values (discussed below).  427 

The fluctuation of measured and estimated daily ET and E is illustrated in Fig. 8. 428 

In this case, a good agreement between measured and estimated daily E was obtained 429 

with values of R
2
, IA and EF equal to 0.82, 0.94 and 0.76 (Table 2). The points in 430 

plots of measured-versus-modeled daily E fell tightly along the 1:1 line (slope=1.01 431 
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and intercept=0.01 with RMSE=0.05 and MBE=-0.01; Fig. 7b and Table 2). Also, the 432 

95% posterior prediction intervals of simulated soil E was narrow. Thus, we thought 433 

that the soil resistance in the S-W model was properly parameterized for the spring 434 

maize by the measured soil evaporation data. From Fig. 8, we can also observe that 435 

the estimated daily ET generally fluctuated tightly with the measured values with 436 

relative narrow uncertainties (95% posterior predication intervals). The values of 437 

RMSE, MBE, IA and EF were equal to 0.05, 0.14 mm d
-1

, 0.94 and 0.79, respectively 438 

(Table 2). However, there are 12 days during the study period (111 days) with 439 

observations beyond the upper bounder of the 95% posterior predication intervals (Fig. 440 

8). For example, on the 5
th

 of July, the estimated using the median values of the 441 

parameters and measured daily ETs were 2.9 and 4.3 mm d
-1

, respectively (Fig. 8). 442 

Thus, the causes of the underestimations of ET by the S-W on these days needs to be 443 

carefully checked based on detailed micrometeorological data. This work would help 444 

us to modify the model in a correct way and improve the precision of prediction. 445 

3.4 Identification of the disagreement/agreement between observed and modeled 446 

ET values 447 

The diurnal variation of nR , H  and λET  (measured and modeled) above the 448 

spring maize ecosystem for some selected days is presented in Fig. 9. The 449 

uncertainties of H  and λET increased with the flux magnitude (Fig. 9), and tended 450 

to be approximately 14% and 13%, respectively (Wang et al., 2014). The relative error 451 

for nR  was relatively small and estimated to be 1.24% (Xu et al., 2013). Resulting 452 

from the high surface heterogeneities, one special phenomenon, known as the “oasis 453 
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effect”  (Lemon et al., 1957; Oke, 1978) or “cold island effect” (Wang et al., 1992; 454 

Zhang and Huang, 2004), was often observed on clear days in July and August in the 455 

study area and it is characterized as follows: (1) H is very small and even negative 456 

(downward) in the afternoon (Figs. 9a-c) due to the micro-scale advection of hot dry 457 

air over the desert to crop surface in the oasis (Oke, 1978; Hu et al., 1994). For an 458 

example, on the 5
th

 of July, H was continuously negative from 12 : 00 to 20 : 00 (Fig. 459 

9a). A strong advection process can be distinctly detected from the temperature and 460 

relative humidity profiles (Figs. 10a and 10b), in which the highest temperature 461 

occurred at a height of 8-18 m; (2) measured actual λET often exceeded (Fig. 9a) or 462 

was equal to (Figs. 9b and 9c) the local net radiation because of the added energy in 463 

the form of downward fluxes of H to the ET process (Evett et al., 2012). Under such 464 

conditions, the S-W model significantly underestimated the actual ET values due to 465 

the real atmospheric flows that do not correspond to its assumption of horizontal 466 

homogeneities (Rao et al., 1974). Thus, how to properly represent the advection 467 

process in the S-W model should be paid special attention in simulating ET over crop 468 

ecosystems in arid desert oasis in the future studies. In addition to this situation, slight 469 

underestimations were also observed on or shortly after rainy days (Fig. 8). For 470 

example, the simulated half-hourly λET was lower than that measured by EC after the 471 

rainfall event occurred in 13 : 00 on 17 June (Fig. 9d). We thought that the 472 

underestimations by the model on or shortly after rainy days were mainly due to 473 

ignoring the direct evaporation of liquid water intercepted in the crop canopy, because 474 

no downward H and temperature inversion were observed on this day (Figs. 10c and 475 
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10d). Until now, several canopy interception models have been developed (e.g., Rutter 476 

et al., 1971; Mulder, 1985; Gash et al., 1995; Bouten et al., 1996). However, many of 477 

them were developed for simulating the rainfall interception by forest ecosystems, and 478 

their suitability for crops need to be further investigated. 479 

The diurnal variation of simulated half-hourly λET by the parameterized S-W 480 

model has a similar trend to the measurements on clear and advection-absent days 481 

during the whole study periods (Figs. 9e-h). On these days, H was positive (upwards) 482 

at day time (Figs. 9e-h ) and no temperature inversion was observed (Figs. 10e and 483 

10f). Thus, we thought that the parameterization schedule adopted in this study 484 

worked well. It also demonstrated that the properly parameterized S-W model can be 485 

used in simulating and partitioning ET for homogeneous land surface. Hu et al. (2009) 486 

reported that the S-W model parameterized by using Monte Carlo method can 487 

successfully simulated ET at four uniform grasslands in China; Our previous studies 488 

(Zhu et al., 2013) also illustrated that parameterized S-W model can be used to 489 

simulate and partition ET over a vast alpine grassland in Qinghai-Tibet Plateau.   490 

4 Discussion 491 

The assessment of model errors remains an outstanding challenge in Hydrology 492 

(Beven, 2008). Identifying the uncertainties related to model parameter and structure 493 

needs to take on a prominent position in the hydrological modeling (Bastola et al., 494 

2011; Brigode et al., 2013). An important issue in identifying the parameter 495 

uncertainty is equifinality, where different parameters of the same model yield similar 496 

results, and so can be difficult to distinguish which is correct (see Franks et al., 1997). 497 
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A variety of recent studies corroborated the multi-objective calibration against the 498 

multiple (orthogonal; see Winsemius et al.. 2006) datasets can produce a robust 499 

parameter estimates (e.g., Engeland et al., 2006; Fenicia et al., 2007; Moussa and 500 

Chahinian, 2009; Richardson et al., 2010; Hrachowitz et al., 2013). In this study, we 501 

constructed a Bayesian inference framework to constrain the model parameters using 502 

the EC-measured ET and microlysimeters-measured daily E datasets simultaneously. 503 

The results indicated that 4 of the six main parameters were considerably updated, and 504 

simulated λET and E were comparable to the measurements with relatively narrow 505 

uncertainties (95% posterior predication intervals). Using just EC-measured ET data  506 

in our test study (see Appendix B), the optimized S-W model on the simulations of 507 

λET were not significantly different from that optimized by multivariate datasets 508 

procedure, but it significantly underestimated E with great uncertainties (Appendix B). 509 

Thus, we can not ensure the S-W model optimized using only the EC-measured ET 510 

data can properly partition the total ET into its different components (soil evaporation 511 

and plant transpiration), even thought the simulated λET values were in good 512 

agreement with measurements. Limited success in estimating process-based model 513 

parameters using EC-measured data alone were also reported in previous studies (e.g., 514 

Wang et al., 2001; Knorr and Kattge, 2005; Richardson et al., 2010).  515 

With the developments of observation technologies and strategies, major steps 516 

forwards have been made in extracting a wide variety of environmental data 517 

(Hrachowitz et a., 2013). Thus, it is critical to assess to what extent the uncertainty in 518 

model parameters and model predictions is reduced by the use of additional data and 519 
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what new observation is required. The Bayesian inference framework used in this 520 

study provided a convenient way to simultaneously constrain model parameters when 521 

the new observation datasets are available. However, even with all datasets 522 

(EC-measured λET and microlysimeters-measured daily E), some parameters related 523 

to canopy surface resistance seemed to be not well updated (Fig. 4). We thought that 524 

this may be due to the insensitivities of these parameters (e.g., k1, k3, Tamax, Tamin and 525 

KA) to the present available datasets. Thus, direct observations of plant transpiration 526 

using sap flow or stable isotope (δ
2
H and δ

18
O) technologies (see Williams et al., 527 

2004), canopy temperature using infrared thermometer and continuous within- and 528 

above-canopy radiation using the four-component net radiometer (see Sauer et al., 529 

2007) are needed in the future studies. 530 

The method, as implemented here, used all observations simultaneously to 531 

constrain parameters and obtain an optimal match between data and model. After 532 

parameter optimizing, the main source of model error can be attributed to the model 533 

structure. Thus, this method facilitates the detection of the model structural failures. 534 

Until now, numerous models, retaining the S-W model as basis, have been developed 535 

for estimating ET or its different components, and they tended to be more and more 536 

complex (see Lhomme et al., 2012). However, increasing model complexity is always 537 

accompanied by a great danger of equifinality and large uncertainties in forward runs 538 

(Beven et al., 1989; Franks and Beven, 1997). Most importantly, we must ensure that 539 

we are on the right direction in modifying the model. In this study, we found that the 540 

S-W model applied in arid areas generally failed when local advection occurred (Fig. 541 
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9). Thus, we thought that the main structural error of the S-W model as well as its 542 

various extensions comes from the ignorance of the effects of advection on the ET 543 

processes. A potential solution is to add the additional energy (negative H) to the 544 

available energy term defined in equation 12 (see Parlange and Katul, 1992).  545 

The distribution of the model-minus-observation residuals, through the 546 

likelihood function, may also have an influence on the estimation of posterior 547 

parameter distributions (Raupach et al., 2005). However, a priori assessment of these 548 

errors may be not easy (Beven, 2001). Fig. 11 shows the distribution of the residuals 549 

between simulated and observed datasets. The results indicated that the 550 

model-minus-observation departures of half-hourly λET flux was better approximated 551 

by a double-exponential distribution, which was in agreement with previous studies 552 

(Hollinger and Richardson, 2005; Richardson et al., 2006). Thus, the two-tower 553 

approach (Hollinger and Richardson, 2005), which can give a prior estimates of the 554 

flux data uncertainties, should be applied in the Bayesian inference in future studies. 555 

The Cauchy distribution gave a more appropriate approximation for the daily E 556 

departures. However, the Cauchy distribution may be not a good choice for the 557 

purpose of Bayesian inference, since its first four moments are undefined (Richardson 558 

et al., 2008).  559 

5 Conclusions 560 

This study illustrated the use of the Bayesian method to simultaneously 561 

parameterize a two-source ET model against the multivariate datasets for a crop 562 

ecosystem in a desert oasis of northwest China. The posterior distributions of the 563 
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model parameters in most cases can be well constrained by the observations. 564 

Generally, the parameterized model has a good performance in simulating and 565 

partitioning ET. However, underestimations were observed on days when the 566 

„oasis-effect‟ occurred. Therefore, in the future studies, special attentions should be 567 

given to proper descriptions of the effects of advection on estimating ET for 568 

heterogeneous land surface. In addition, the canopy interception model should be 569 

coupled with the two-source ET model in long-term simulation.    570 
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Figure Lists: 894 

Fig. 1 Experimental location and instrumentation setting at Daman (DM) superstation.  895 

Fig. 2 Schematic diagram of the S-W model. From right to left, c

sr  and c

ar  are bulk 896 

resistances of canopy stomatal and boundary layer (s m
-1

), respectively; s

ar  and a

ar  897 

aerodynamic resistances from soil to canopy and from canopy to reference height (s 898 

m
-1

), respectively; s

sr  soil surface resistance (s m
-1

). λT transpiration from canopy 899 

(W m
-2

), λE evaporation from soil under plant (W m
-2

), and λET total 900 

evapotranspiration (W m
-2

). 901 

Fig. 3 Seasonal variation in (a) net solar radiation ( nR ; MJ m
-2

 d
-1

), (b) air 902 

temperature ( aT ; 
o
C), (c) vapor pressure deficit ( D ; kPa), (d) wind speed (u ; m s

-1
) at 903 

the height of 3 m, (e) precipitation and irrigation (mm), soil water content (θ, m
3
 m

-3
) 904 

at 4, 10 20 and 40 cm depth, and (f) leaf are index (LAI; m
2
 m

-2
) during the study 905 

period in the Daman Oasis.  906 

Fig. 4 Histograms of samples from the posterior distributions of the parameters. The 907 

dashed vertical lines indicate median parameter values.  908 

Fig. 5 Relative uncertainty reductions in the length of 95% credible interval form 909 

prior to posterior distribution.  910 

Fig. 6 Comparisons of responses of soil surface resistance ( s

sr  s m
-1

) to soil surface 911 

water contents ( ; %) . 912 

Fig. 7 (a) Plot of estimated evapotranspiration ( λET ; W m
-2

) against observed values. 913 

The regressions is: 0.84 0.18y x   ( 2 0.83R  ); (b) Plot of estimated daily soil 914 

evaporation (E; mm d
-1

) against measured data. The regressions is: 1.01 0.01y x   915 
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( 2 0.82R  ). 916 

Fig. 8 Seasonal variation in daily evapotranspiration (ET; mm d
-1

) and soil 917 

evaporation (E; mm day
-1

) measured by the EC system and modeled by the S-W 918 

model during the study period in Daman Oasis. Gap in the time series is caused either 919 

by the absence of flux measurements or missing ancillary data. 920 

Fig. 9 Diurnal variations in net radiation flux ( nR ; W m
-2

), sensible heat flux (H; W 921 

m
-2

), and modeled and measured evapotranspiration flux ( λET ;W m
-2

). (a)-(c) 922 

represented conditions at which micro-scale advection occurred at 12:00, 15:00 and 923 

17:00 Beijing Standard Time (BST) , respectively, (d) represented a rainy day, and 924 

(e)-(h) represented clear and advection-absent days during the study period. Gap is 925 

caused either by the absence of flux measurements or missing ancillary data. Modeled 926 

λET was presented as median ± 95% posterior predication intervals.    927 

Fig. 10 The diurnal evolutions of temperature (Ta; 
o
C) and relative humidity (RH; %) 928 

profiles from 3 m to 40 m above the ground. (a) on 5 Jul. 2013. An obvious advection 929 

process can be detected from 13:00 to 17:00 BST with high temperature and low RH 930 

layer at the height of 8-18 m; (b) on 17 Jun. 2013. A precipitation event occurred at 931 

13:00 and resulted in uniform vertical distributions of Ta and RH, but no temperature 932 

inversion were observed; (c) on 11 Jun. 2013. It represented a typical clear and 933 

advection-absent day.   934 

Fig. 11 Histograms depicting the frequency distribution of the 935 

model-minus-observation departures for (a) half-hourly λET (W m
-2

) and (b) daily 936 

soil evaporation E (mm day
-1

). 937 



44 

 

Table 1 Prior distributions and the parameter bounds for the S-W model. These values are derived from the literature; The posterior parameter distribution estimated 938 

by MCMC are based on observed data in our site, and are characterized by the mean and 95% high-probability intervals (Lower limit, Upper limit). 939 

 940 

Parameter Prior Distribution Posterior Distribution 

Lower Bound Upper Bound References Median 95% High-Probability Interval   

rSTmin (s m
-1

) 0 80 Noilhan and Planton (1989); Li et al. (2013a) 21.8 (20.2, 24.6) 

k1 (W m
-2

) 0 500 Stewart (1998) 294.6 (42.5, 487.7) 

k2 (
o
C) 5 40 Ogink-Hendriks (1995) 25.6 (12.9,34.4) 

k3 (kPa
-1

) 0 0.1 Stewart (1998) 0.02 (0, 0.07) 

b1 (s m
-1

) 4 15 Sellers et al. (1992); Zhang (2012); Zhu et al., (2013) 9.3 (8.4, 10.0) 

b2 (s m
-1

) 0 8 Sellers et al. (1992); Zhang (2012) ; Zhu et al., (2013) 6.2 (3.8, 7.4) 

The bold number means that this parameter was well constrained by the data. 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 
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Table 2 Statistical analysis of measured and estimated using the median parameter values half-hourly evapotranspiration (λET; W m
-2

), daily soil evaporation (E; 949 

mm d
-1

), and daily evapotranspiration(ET; mm d
-1

) for the spring maize in arid desert oasis during the study period. 950 

 n Regressive equation R
2
 Mean measured values  Mean simulated values RMSE MBE IA EF 

λET (W m
-2

) 3578 λETmodeled=0.84λETmeasured+0.18 0.83 161.4 137.2 80.7 24.2 0.93 0.74 

E (mm d
-1

) 56 Emodeled=1.01Emeasured +0.01 0.82 0.26 0.28 0.05 -0.01 0.94 0.76 

ET (mm d
-1

) 95 ETmodeled=0.83ETmeasured +0.19 0.83 2.02 1.88 0.32 0.14 0.94 0.79 

n=the sample number; R
2
=the determination coefficient; RMSE=root mean square error; MBE=mean bias error between measured and modeled values; IA= index 951 

of agreement; ET= model efficiency. These statistical parameters are calculated using formulas given by Legates and McCabe (1999) and Poblete-Echeverria and 952 

Ortega-Farias (2009). 953 
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