10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Efficient performance of the Met Office Unified Model v8.2

on Intel Xeon partially used nodes

I. Bermous, P. Steinle

Centre for Australian Weather and Climate Research, the Australian Bureau of Meteorology,

Melbourne, Australia

Correspondence to: I. Bermous (i.bermous@bom.gov.au)

Abstract

The atmospheric Unified Model (UM) developed at the UK Met Office is used for weather
and climate prediction by forecast teams at a number of international meteorological centres
and research institutes on a wide variety of hardware and software environments. Over its 25
year history the UM sources have been optimised for better application performance on a
number of High Performance Computing (HPC) systems including NEC SX vector
architecture systems and recently the IBM Power6/Power7 platforms. Understanding the
influence of the compiler flags, Message Passing Interface (MPI) libraries and run
configurations is crucial to achieving the shortest elapsed times for a UM application on any
particular HPC system. These aspects are very important for applications that must run within
operational time frames. Driving the current study is the HPC industry trend since 1980 for
processor arithmetic performance to increase at a faster rate than memory bandwidth. This
gap has been growing especially fast for multicore processors in the past 10 years and it can
have significant implication for the performance and performance scaling of memory
bandwidth intensive applications, such as the UM. Analysis of partially used nodes on Intel
Xeon clusters is provided in this paper for short and medium range weather forecasting
systems using global and limited-area configurations. It is shown that on the Intel Xeon based
clusters the fastest elapsed times and the most efficient system usage can be achieved using

partially committed nodes.

mailto:i.bermous@bom.gov.au

© 00 N oo o B~ W N

[EEN
o

11
12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27

28
29
30
31
32

1 Introduction

The Unified Model (UM) numerical modelling system (Brown et al., 2012) is used for short
and medium range weather forecasting, for both high resolution weather modelling and for
relatively coarser climate modelling. Such modelling software requires relatively powerful
High Performance Computing (HPC) systems to support operational forecast production.
Typically the computing systems have a peak performance comparable to the computer
systems included in the TOP500 list released every 6 months. Since September 2009 the UM
has been used in the Numerical Weather Prediction (NWP) component of the Australian
Community Climate and Earth System Simulator (ACCESS; Puri et al., 2010) at the

Australian Bureau of Meteorology (BoM).

Current operational systems at BoM are based on the UM version 7.5 (vn7.5) and the next
operational systems upgrade will be based on UM vn8.2. The latter version therefore was

used for the work described here.

UM versions include both science and performance upgrades, and extensive evaluation of
both types of changes in development mode is required prior to operational implementation.
In addition, changes to these systems have major consequences for many downstream
applications. For these reasons changing UM versions for operational systems is only done

every one to two years at the BoM.

Leading HPC systems have from tens of thousands to several million very powerful cores.
Since 1980 the trend in HPC development has been for the available processor performance to
increase at a greater rate than the available memory bandwidth (Graham et al., 2005, pp.106—
108). The authors concluded that a growing gap between processor and memory performance
could become a serious constraint in performance scaling for memory bound applications.
The gap between processor performance and memory bandwidth has been growing especially
quickly for multicore processors in the past 10 years (Wellein et al., 2012). This gap forces
the cores on a node to compete for the same memory causing resource contention, which can

become a major problem for memory intensive applications such as the UM.

Increasing the resolution of numerical models is one of the key approaches to improving
forecast accuracy. However, in an operational setting these models are constrained to run
within a fixed elapsed time on available computing resources. Increasing resolution requires
increased computation and therefore the performance efficiency (from herein just referred to

as efficiency) as measured by the run time on a given number of cores.

10
11
12
13

14

15

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31

Finding the most efficient usage of the system for a particular application and the shortest
elapsed times varies depending on whether the application is run on all node cores (fully
committed case) or on a subset of the cores available on each node (partially committed
case). The placement of the threads and/or Message Passing Interface (MPI) processes across
partially committed nodes (sockets) also needs to be done carefully taking into consideration

all shared resources available to these cores.

Another practical aspect of the performance analysis discussed in the paper is to estimate
whether the coming upgrade for the BoM’s operational models will be feasible given the

operational time windows and available HPC resources.

The performance analysis described here shows that on some modern HPC systems the
shortest run times can be achieved with the usage of partially committed nodes. The concept
of using partial nodes for UM applications allows reduced resource contention and improves

application performance (Bermous et al., 2013).

2 Description of the models

Regular upgrades to operational NWP systems are driven by the improvements made in both
the NWP software and the underlying science. The BoM is currently planning for the next
APS2 (Australian Parallel Suite 2) upgrade. The operational suite combines a number of short
and medium range weather forecasting systems based on the UM software. These systems
include the global NWP system (ACCESS-G), the regional NWP system (ACCESS-R,
12km), the tropical-cyclone forecast system (ACCESS-TC) and several city forecast-only
systems (ACCESS-C).

The current APS1 weather forecasting operational systems are based on UM vn7.5 for the
global (NMOC, 2012) and vn7.6 for the city systems (BoM, 2013). At this stage it is planned
that the operational weather forecasting software in APS2 will be upgraded to at least UM
vn8.2. This software includes improvements to physical parameterisations, computational
performance and performance scaling. Most of the scaling improvement is due to the
introduction of asynchronous 1/0. With this upgrade the model resolutions for the Global and
City models will be increased. An increase in the model resolutions presents a challenge to fit
the model runs into the required operational time windows. As a result an initial analysis of

the performance measurements of the models is needed. In the current paper we will consider

o N oo o b~

10
11
12
13
14
15
16

17

18
19
20
21
22
23
24
25
26

27
28
29
30

two types of the weather forecasting models: a medium range N512L70 Global model and a

short range, limited area “City” model.

2.1 Global N512L70 model

The resolution of the currently operational Global N320 (40km) model with 70 vertical levels
in APS1 will be upgraded to N512 (25km), 70 levels in APS2. With a finite difference
discretisation of the UM mathematical model the latest Global model has a horizontal grid of
West-East x South-North of 1024 x 769. The existing "New Dynamics" dynamical core with

semi-implicit and semi-Lagrangian time integration (Davies et al., 2005) was used.

The operational systems run 4 times daily with two runs for 3 and two runs for 10 days. In
this paper performance scaling analysis for a 3 model day simulation with a 10min time step
was used. With the operational model settings this system produces 137GB of output data.
With relatively large amount of 1/O, performance of the N512 global model and especially its
performance scalability is significantly affected by the 1/0 cost at high core counts.
Improvements in the scalability can be achieved with the usage of the asynchronous 1/0
feature (Selwood, 2012) introduced into the model sources from UM release vn7.8. The 1/0

servers functionality has been continually improving since then.

2.2 UKV city model

APS1 ACCESS-C operational systems nested in the ACCESS-R cover 5 Australian major
city domains: Adelaide, Brisbane (South-East Queensland), Perth, Sydney and
Victoria/Tasmania (Melbourne, Hobart). Each domain in the APS1 ACCESS-C has a
horizontal resolution of approximately 4km with 70 vertical levels. The corresponding short
range city models are set to run 36 hour forecasts 4 times daily. A significant horizontal
resolution increase is planned for the APS2 upgrade by reducing the horizontal resolution
from 4km to either 1.5km or 2.2km. As a result some initial performance analysis for the city
models is required to find the most efficient run configurations and arrangement within the

operational run-time schedule.

In this paper an example of a short-range limited-area forecasting is taken from a 1.5 km
high-resolution system for Sydney domain (Steinle et al., 2012). The experimental system
was created in 2012 and it is currently running 24 times per day. The range of the forecasts

provided by the system varies between 12 and 39 hours. The corresponding atmospheric

o 01~ wWwN

~

10
11
12

13

14
15
16
17

18
19
20
21
22
23

24

25

26
27

model is nested within the N512L.70 global model and based on the UM vn8.2 sources using
its variable resolution version (the UKV) with the "New Dynamics™ dynamical core.

The UKV modelling concept includes a high resolution of 1.5km in the inner domain, a
relatively coarse resolution of 4km near the boundary of the main domain and a transition
zone of using a variable grid size connecting the inner domain of 1.5 km with the "outer”

domain of 4 km.

The Sydney UKV model had a horizontal grid of E-W x N-S of 648x720 with 70 vertical
levels. The related forecast job was set to run a 25-hour simulation with a time step of 50 s
giving in total 1800 time steps for a run. The 1/O in the job producing only 18 GB per run of
the output data is relatively small in comparison to the size of 1/0 in the global model job.
Therefore the usage of 1/O servers does not have any major impact on the job performance,

even when a large number of cores are utilised.

2.2.1 UKV decomposition constraints

The MPI decomposition in the Unified Model is based on horizontal domain decomposition
where each subdomain (MPI process) includes a full set of vertical levels. Within the
computational core of the UM, OpenMP is generally used to parallelise loops over vertical

dimension.

Due to semi-Lagrangian dynamics implementation, the halo size for each sub-domain limits
the maximum number of sub-domains in each direction. With the halo size of 10 grid points
used in this study and the horizontal grid size of 648x720, the corresponding limits for the
MPI decomposition sizes were 42 in the West-East direction and 48 in the South-North
direction. Another constraint in the UM model implementation is that the decomposition size
in the West-East direction must be an even number.

3 Description of HPC clusters and software used

This section includes hardware specifications and details of the software environment for the
HPC clusters used.

o B~ W DN

© 00 N O

10

11
12
13

14
15
16
17
18
19

20

21
22

23

24
25
26
27
28

29
30

3.1 Hardware: specifications of HPC clusters

Numerical results have been obtained on three HPC clusters with Intel® Xeon® processors.
The first Constellation Cluster (Solar) with Intel Nehalem processors was installed by Oracle
(Sun) in 2009. This system was upgraded by Oracle to a new cluster (Ngamai) with Sandy
Bridge processors in 2013.

In addition to the Ngamai system, the BoM also has access to a Fujitsu system (Raijin)
installed at the National Computational Infrastructure (NCI) at the Australian National
University (ANU) in Canberra, and it is also based on Intel Sandy Bridge processors. The
NCI system at 1.2 Pflops was the fastest HPC system in Australia in 2013. Technical
characteristics of these three systems are provided in Table 1.

A node Byte/Flop value in the table was calculated as a ratio of the node maximum memory
bandwidth and the node peak performance. For the newer Ngamai and Raijin systems this

ratio is less than half of that for Solar. All three clusters have Lustre file systems.

It should be noted that turbo boost was enabled in Basic Input/Output System (BIOS) on
Raijin only. As per Intel turbo boost 2.0 technology processor can run at above its base
operating frequency which is provided in Table 1 (“Node processor cores” line). Having idle
cores on processor, power that would have consumed by these idle cores can be redirected to
the utilised cores allowing them to run at higher frequencies. Based on the turbo boost
additional multipliers a Base Clock Rate (BCLK) can be calculated. For example, we have

BCLK=(3.3GHz-2.6GHz)/7=100MHz

and utilised cores operate at 2.6GHz + 5*BCLK = 3.1GHz if an application is run on 6 cores

from 8 cores available on each Raijin processor.

3.2 Software: compiler, MPI library

With the UM vn8.2 sources separate executables were required for each model type: global
and limited-area. The Intel compiler version 12.1.8.273 was used to produce UKV
executables. In order for the global N512L70 system to use the UM async I/O features the
Intel 14.0.1.106 compiler release was needed to avoid crashes due to interaction between the
older compiler and the new 1/0 code.

On the BoM HPC systems an open source implementation of MP1 (OpenMPI) was the only

library available. The Intel MPI library was available on Raijin; however, testing showed a

6

10

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25

26
27
28
29
30

10-20% degradation in performance in comparison with OpenMPI. For this reason and to
maintain compatibility between the NCI and BoM systems, OpenMPI was used for all

comparisons presented below.

The UKV executable was built with OpenMPI 1.6.5. The usage of a UM async 1/O feature
requires at least SERIALIZED thread safety level. Therefore the OpenMPI 1.7.4 library was
needed to enable the async 1/O feature of UM vn8.2.

3.3 Intel compiler options

The Fortran and C sources of the UM were compiled on Sandy Bridge systems Raijin and

Ngamai with the following Intel compiler options

-g —traceback -xavx -03 —-fp-model precise (1)

Option -03 specifies the highest optimisation level with the Intel compiler. Combination of
“-g —traceback” options was required in order to get information on a failed subroutine
call sequence in case of a run time crash problem. The usage of these two options had no
impact on the application performance. Bit reproducibility of the numerical results on a rerun
is a critical requirement for the BoM operational systems. For this purpose compilation flag
“—fp-model precise” (Corden et al., 2012) was used in spite of causing between 5% to
10% penalty in the UM model performance. An additional pair of compilation options “-1i8
—-r8” was used to compile Fortran sources of the UM. These options make integer, logical,
real and complex variables 8 bytes long. Option -openmp was specified to compile all model
sources and to link the corresponding object files to produce executables used for
MPI1/OpenMP hybrid parallelism.

Due to a very limited capacity for non-operational jobs on the BoM operational system,
Ngamai, the testing and evaluation of the forecast systems prior their operational
implementation is predominantly performed on the relatively larger Raijin system. The BoM

share on Raijin is 18.9%.

Code generated by the compiler option -xHost targets the processor type on which it is
compiled. On the old Solar Nehalem chip based system, this was equivalent to compiling with
-xssed . 2. During the porting stage of our executables to the new Sandy Bridge Ngamai
and Raijin systems, in order to ensure compatibility of executables across these machines, the

-xHost compiler option used on Solar was replaced with the compilation flag —xavx for

7

A W NN

© 00 ~N o O

10
11

12
13
14

15

16

17
18
19

20
21
22
23

24
25
26
27
28
29
30

31

advanced vector extensions supporting up to 256-bit vector data and available for Intel Xeon
Processor E5 family. It was confirmed, as expected, that adding the -xHost compiler option
to the set of compilation options (1) did not have any impact on either the numerical results or

the model performance.

Compatibility of binaries across systems was achieved by having the same Intel compiler
revisions and OpenMPI library versions on the both Ngamai and Raijin systems as well as
system libraries dynamically linked to the executables at run time. Note that the usage of Intel
compilers and MPI libraries on all systems is via the environment modules package
(http://modules.sourceforge.net). It was found empirically that using Intel compiler options
(1) as described above provided both compatibility of the executables between the systems

and reproducibility of the numerical results between Ngamai and Raijin.

General COMmunications (GCOM) library which provides the interface to MPI
communication libraries is supplied with the UM sources. GCOM version 4.2 used with UM

vn8.2 was compiled with a lower —02 optimisation level.

4 Description of the performance results

Jobs were submitted from login nodes to compute nodes, and job scheduling was done via
Sun Grid Engine (SGE) software on Ngamai (earlier on Solar) and Portable Batch Systems

Professional Edition (PBS Pro) job scheduler on Raijin.

All model runs were made on very busy multi-user systems using the standard normal
queue and a shared Lustre file system for 1/0 with a potential impact of the I/O contention on
the performance results. At the same time each model run used exclusive nodes without being

effected by suspend and resume functionality on the systems.

Fluctuations in the elapsed times were usually around 3-5%, but they were up to 50% in 3—
5% of the runs. This was particularly noticeable on the Raijin system which had consistent
utilisation above 95%. Support staff at NCI (D. Roberts) investigated this problem. It was
found that if cached memory is not being freed when a Non-Uniform Memory Access
(NUMA) node has run out of memory, any new memory used by a program is allocated on
the incorrect NUMA node and as a result slowing down access. The UM is particularly

sensitive to this issue. An environment setting of

OMPI MCA hwloc base mem alloc policy=local only (2)

© 00 N o o B~ W N B

10
11
12
13
14

15
16
17
18

19

20
21
22
23

24

25
26
27
28
29
30
31

was recommended to include in the batch jobs running UM applications. Setting (2) forces all
MPI processes to allocate memory on the correct NUMA node, but if the NUMA node is
filled, the page file will be used. As a result the usage of (2) greatly improved stability of the
run times on Raijin. Addressing these findings on Ngamai, it appeared that (2) was a default
setting on that system. The best run times were initially taken from 3 or 4 runs. If this initial
estimate appeared to be an outlier from the estimated performance scaling curve, further runs
were made. It is noteworthy that the fluctuations in elapsed times were much higher on all
systems when more than 2000 cores were used. The cause of these large fluctuations was not

investigated.

Choosing the best timing from a number of runs has been shown to provide reliable
estimates of timings under operational conditions — use of the highest priority queue and
dedicated file systems to avoid I/O contention and reserved and exclusive use of sufficient
nodes to run operational systems. These arrangements result in variations in elapsed times of

a few percent.

Starting from the old Solar system it was found that for 1/O performance improvement
especially for applications with relatively heavy 1/0 in order of at least tens of gigabytes
Lustre striping had to be used. Based on the experimentation done on all three systems, Lustre

striping with a stripe count of 8 and a stripe size of 4M in a form of
1fs setstripe -s 4M -c 8 <run directory>

was used to optimize I/O performance. Here <run_directory> is a directory where all output
files are produced during a model run. One of the criteria on whether striping parameters were
set to near optimal values was based on the consistency of the produced elapsed times for an

application running on a relatively busy system.

4.1 UKV performance results

Due to an earlier development of the Unified Model system at the end of 1980's - beginning
1990's on a massively parallel (MPP) system on which each CPU had its own memory,
initially the model had only a single level of parallelism using MPI. With the appearance of
symmetric multi-processor (SMP) systems in the 1990's and Open Multiprocessing (OpenMP)
software the hybrid MP1/OpenMP parallel programming concept which combines MPI across
the system nodes and multithreading with OpenMP within a single node was introduced. This

concept uses the shared address space within a single node. From the mid 2000's starting from

9

0o N oo o B~ W N P

10
11
12
13
14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29
30
31

release 7.0 the hybrid parallel programming paradigm was introduced in the UM code and
since then the OpenMP implementation has been consistently improving in the model. Most
recent studies (Sivalingam, 2014) showed that even with UM vn8.6 the OpenMP code
coverage is limited. Furthermore the efficiency of pure MPI versus the hybrid parallelism
depends on the implementation, the nature of a given problem, the hardware components of
the cluster, the network and the available software (compilers, libraries) and the number of
cores used. As a result, there is no guarantee hybrid parallelism will improve performance for

every model configuration.

4.1.1 Pure MPI vs MPI/OpenMP hybrid

Comparison of the best elapsed times produced by running the UKV model with the usage of
pure MPI and MPI1/OpenMP hybrid parallelism on Raijin and Ngamai is given in Figs 1 and 2
correspondingly. For simplicity the elapsed times are provided for 4 different decompositions
starting from the usage of 384 cores with a stride of 384. The run decompositions were 16x24,
24x32, 32x36 and 32x48 with pure MPI usage. In case of the hybrid parallelism, two
OpenMP threads were used and the related run configurations using the same number of cores
as in the pure MPI case were 2x6x32, 2x12x32, 2x16x36 and 2x16x48, where the first value
is the number of threads used. Fig.1 and Fig.2 include results for two cases: fully and partially
committed nodes. With partially committed nodes the application was running with the same
decomposition as in the fully committed node case, but only a part of each node was used: 8

cores from 12 on Ngamai and 12 cores from 16 cores on Raijin.

With the use of partially committed nodes, the placement/binding of cores to the
nodes/sockets should be done in a symmetrical way to give the same number of free cores on
each socket. This allows for a better usage of the shared L3 cache on each socket.

Based on the performance results plotted in Fig.2, the usage of pure MPI gives shorter
elapsed times than with the usage of the hybrid parallelism for all decompositions on Ngamai.
Fig.1 shows that a similar conclusion can be made for the elapsed times obtained on Raijin,
excluding the last point with the usage of 1536 cores. At the same time the shortest elapsed
times on Raijin are achieved using pure MPI on partially committed nodes (12 cores-per-
node) for the whole range of the used cores. Due to the limited proportion of the UM code
that can exploit OpenMP, the use of more than 2 threads (3 or 4) showed no improvement in
the performance efficiency.

10

17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32

Comparing the actual set of the obtained elapsed times between the two systems with the
usage of pure MPI on fully committed nodes of (2604; 1480; 1103; 942) s on Ngamai and
(2587; 1484; 1131; 1010) s on Raijin shows that the model performance on Raijin is slightly
worse than on Ngamai. At the same time comparing the corresponding elapsed times of
(2282; 1288; 947; 844) s on Ngamai and (2125; 1167; 857; 720) s on Raijin with the usage of
partially committed nodes for pure MPI, performance and especially performance scaling is
better on Raijin. For the same decomposition of 32x48 the elapsed time of 720 s on 2048
reserved cores on Raijin is 14.7% better than the corresponding elapsed time of 844 s
obtained on Ngamai on 2304 reserved cores. This improvement reduces with the number of
cores used, with only a 6.9% faster time for a decomposition of 16x24. Contributing factors to
this include the Raijin cores being slightly faster than Ngamai cores and turbo boost was not
enabled in BIOS on Ngamai. With the use of partially committed nodes, memory contention
between the processes/threads running on the same node is reduced, improving performance
for memory intensive applications. At the same time enabling turbo boost can increase
processor performance substantially, reaching peak speeds of up to 3.1 GHz on Raijin using

12 cores-per-node.

On Raijin the usage of 8 out of 16 cores with hybrid parallelism and 2 OpenMP threads
showed between 16.6% (for high core counts) to 31.0% (for low core counts) slower run
times in the 768-3072 reserved core range in comparison with the corresponding results
obtained using pure MPI. On Ngamai the usage of half committed (6 cores from 12 cores)
nodes with the hybrid parallelism gives two possible configurations for running an
application. Firstly there is the symmetrical case with 1 MPI process and 3 OpenMP threads
running on each socket. Another option is the non-symmetrical case with 2 MPI processes
running on one socket and 1 MPI process running on another socket with 2 threads per each
MPI process. Taking into account the limited OpenMP coverage in the UM vn8.2 sources,
tests using hybrid parallelism with a symmetrical case of 3 threads or an asymmetrical case
with 2 threads on half committed nodes were not performed on Ngamai.

4.1.2 Fully committed nodes vs partially committed nodes

Elapsed times for the UKV model with pure MPI usage on partially committed nodes on all 3
systems are provided in Fig.3- Fig.8. Each pair of figures (Fig.3-4 for Raijin; Fig.5-6 for Solar
and Fig.7-8 for Ngamai) shows speedup as a function of the number of cores actually used as

well as a function of the reserved cores (i.e. total number of cores allocated to the run, both

11

0o N oo o B~ W N P

10
11
12
13
14

15

16

17
18
19

20
21
22
23
24
25
26
27
28
29

used and unused). The performance relative to the number of reserved cores is the most
important metric, however performance relative to the “Number of used cores” provides
additional information on the value of reducing the number of active cores per node. This
extra information is particularly relevant to circumstances where the elapsed time is more
important than using nodes as efficiently as possible. Examples include climate runs and cases
where other restrictions mean that the number of nodes available is not a significant constraint
on an application's run time. The related performance information cannot be easily seen on

the graph using the "Number of reserved cores"” metric.

For example, a 12 cores-per-node case on Raijin and a 6 cores-per-node case on Solar each
reserved full nodes (16 and 8 cores respectively), but left a quarter of cores unused. This
indicates a requirement of specifying by 1/3 of more cores using —npersocket or -
npernode option of the mpirun command in comparison with the fully committed case
using the same run configuration. In the example of running the model with pure MPI on

Raijin and using 12 cores per node the following options
mpirun --npersocket 6 -mca orte num sockets 2 \
-mca orte num cores 8

were used in the mpirun command with OpenMPI 1.6.5. The last two options specify the
number of sockets on a node and the number of cores on each socket. These options were

required to avoid bugs found in the OpenMPI 1.6.5 software.

Fig.3 shows the value of partially committed nodes on Raijin where using 12 cores-per-
node significantly improves the model scaling. This improvement generally increases as the
number of active cores increases. The improvement reaches 28.5% the performance of using
1728 fully committed nodes. The usage of 8 cores-per-node on Raijin gives an additional
performance improvement in comparison with the 12 cores-per-node case varying from
16.8% at 96 cores to 9.6% at 1728 cores. Examining the same performance results on the
reserved cores basis as in Fig.4 shows that it is more efficient to use 12 cores-per-node than
fully committed nodes just with over 768 cores. On 768 reserved cores the 12 cores-per-node
case has value of 1495 s for a 24x24 decomposition and the fully committed node case has

value of 1484 s for a 24x32 decomposition.

12

w N -

© 0o N o o1 b~

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32

Fig. 5 shows that the usage of partially committed nodes on Solar improves the runtimes
with 6 cores-per-node by 6.9-16.5% and a further reduction of 8.2-11.0% is achieved with the
usage of 4 cores-per-node.

The speedup curves as a function of used cores on Ngamai shown in Fig.7 indicate that the
model runs 10.4-14.6% faster with 8 cores-per-node. Unlike the other two systems (Raijin
and Solar), the use of half utilised nodes with 6 cores-per-node on Ngamai gives only a very
modest reduction of no more than 5.3%. These latter results indicate that a reduction in
memory contention with the 6 cores-per-node case has almost no impact over using 8 cores-

per-node.

Speedup curves as functions of the reserved cores for Solar (Fig. 6) and Ngamai (Fig. 8)
show that unlike Raijin, the efficiency gains on partial nodes were not achieved on up to 1152
reserved cores on Solar and 1728 on Ngamai. A relatively poor UKV performance on partial
nodes especially on Ngamai system in comparison with Raijin was due to unavailability of
turbo boost on that system. Turbo boost would allow active cores to run at up to 16% higher
clock speeds with the usage of 8 cores-per-node on Ngamai.

The shortest run times using fully committed nodes on Ngamai and Raijin with the usage of
up to 1728 cores were achieved on a decomposition of 36x48 with pure MPI. The largest
allowable decomposition under the constraints provided in Sect. 2.2.1 is 42x48 on 2016
cores. Increasing the number of cores from 1728 to 2016 provides further improvements in
the elapsed times of 1.7% on Ngamai and 2.2% on Raijin. This indicates that the
corresponding performance scaling have not begun to level off at the largest allowed
decomposition of 42x48. At the same time, with the use of partially committed nodes on
Raijin, an elapsed time of 950 s obtained on fully committed nodes for a 36x48
decomposition can be improved by: 28.5% (679 s) on 2304 reserved cores with 12 cores-per-

node or 35.4% (614 s) on 3456 reserved cores with 8 cores-per-node.

The above mentioned constraint of 2016 cores on fully committed nodes is applied for pure
MPI only. With the usage of hybrid parallelism and 2 OpenMP threads on fully committed
nodes performance of the model is still improving when the number of cores is increasing
from 1536 for decomposition of 16x48 to 3072 for a decomposition of 32x48 but the
corresponding run times are still greater than the run times obtained with pure MPI on partial
nodes using the same number of reserved cores. For example, the use of multithreading with 2

OpenMP threads and decomposition of 30x48 on 3072 cores gives an elapsed time of 669sec.

13

o N oo o b~

10
11
12

13

14
15
16
17

18
19
20
21
22

23
24
25
26
27
28
29
30

This run time is improved by 9.1% (608 s) with the use of pure MPI for a decomposition of

40x48 run on 10 cores-per-node with the same 3072 cores.

4.2 N512L70 performance results

As mentioned earlier, the UM async 1/O feature (Selwood, 2012) was used to obtain good
performance and especially performance scaling when running the model on more than 1000
cores. Using the UM multithreaded 1/O servers feature, all model runs were made with 2
OpenMP threads. The usage of 3 or even 4 threads showed no improvement in model

performance.

Elapsed times from runs without 1/0 were used as a target for the async 1/O case. The run
times with full 1/0 in the fully committed node case were within 5%-10% of those without
I/0. Note that on a very busy such as Raijin system some improvement in the run times for a

few cases were achieved using different from (2) Lustre striping parameters, namely
lfs setstripe -s 8M -c <number of IO servers> <run directory>

As in the previous case (2) the values for the Lustre stripe count and the stripe size were
found experimentally. Performance results for the model were obtained with up to 3500 cores
on Ngamai. Due to large variations in the run times with over 4500 cores on Raijin, the

related model performance results are provided for only up to 3840 cores.

The best elapsed times obtained on Raijin are provided in Table 2, where the 1/0O servers
configuration of (m x n) included in the third column of the table have the following
meaning: m is a number of the 1/O server groups, n is a number of I/O tasks per server. For up
to 2688 cores the best performance was achieved on fully committed nodes. For 3072 or more

cores the best performance results were achieved using partially committed nodes.

Performance scaling of the model as a function of a number of the reserved cores for fully
committed node case, 12 cores-per-node and 8 cores-per-node cases is shown in Fig.9. The
curves clearly show that the most efficient system usage with 3072 cores or higher is achieved
running the application on partially committed nodes with 12 cores on each node from 16
available. The curves corresponding to 12 cores-per-node and 8 cores-per-node cases show a
reasonably good scaling of the model with the usage of up to 4000 cores. Note that using
partially committed nodes the model performance is slightly worse when core usage is in the
range 384 to 2688.

14

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32

The best elapsed times obtained on Ngamai are provided in Table 3. On this system in
contrast with Raijin, the most efficient usage is achieved using fully committed nodes.
Performance scaling of the model as a function of a number of the reserved cores for fully
committed node case and with the usage of 8 cores-per-node case is provided on Fig.10. For
the fully committed node case a relatively good performance scaling is achieved with the
usage of up to 1920 cores, after that performance scaling degrades slowly with the usage of
2304 and 2688 cores and levels out by 3072 cores. Based on the elapsed times produced with
the usage of up to 2688 cores, the most efficient usage of the system is with fully committed
nodes. At the same time the usage of 8 cores-per-node for up to 3456 reserved cores has
relatively good performance scaling and from the efficiency point of view runs with 3072
reserved cores and higher should use partially committed nodes. Our expectations are that this

efficiency in partial used nodes could be improved if turbo boost was enabled.

Performance results for a 6 cores-per-node case are not presented in Fig.10. As discussed at
the end of Sect. 4.1.2 there are two possible run configurations for this case. With
symmetrical usage of 3 threads per MPI process run on each socket, the model performance
was even worse in comparison with the fully committed node case. At the same time the non-
symmetrical usage with 3 MPI processes and 2 threads gave similar performance results as in

the 8 cores-per-node case.

5 Conclusions

With a trend in the HPC industry of decreasing the Byte/Flop ratio especially on multicore
processors and increasing the number of cores per CPU, the most efficient system usage by
memory intensive applications can be achieved with the usage of partially committed nodes.
In other words, the following factors such as increasing memory bandwidth per active core,
reduction in the communication time using less MPI processes and active cores running at
higher clock speeds with turbo boost can more than compensate for the reduced number of
cores in action. This approach can improve an application performance and most importantly
the application performance scaling. A conclusion on whether a specific application should be
running on fully or partially committed nodes depends on the application itself as well as on
the base operating frequency of the processor and memory bandwidth available per core.
Other factors such as availability of turbo boost, hyper-threading and type of node

interconnect on the system can also influence the best choice. This study showed that both the

15

A W N

ol

10
11
12
13

14
15
16
17
18
19

20

21

22
23
24
25
26

27
28
29

30

regional and global models can run faster if partially committed nodes are used on Raijin. At
the same time taking into an account the similarities between Raijin and Ngamai systems,
there is a reasonable expectation that a similar affect would have been achieved on Ngamai if

turbo boost would be available on this system.

The usage of partially committed nodes can further reduce elapsed times for an application

when the corresponding performance scaling curve has flattened.

Another example when the use of partially committed nodes can reduce run times is when
the performance scaling has not flattened but the number of used cores cannot be increased
due to other constraints in the application. This case was illustrated by the UKV model
example in Sect. 4.1.2. This approach can be used for climate models based on the UM
sources and run at a relatively low horizontal resolution. As per the results of this Sect. 4.1.2
the usage of partial nodes can reduce elapsed times significantly. This has a very important

practical value for climate research experiments that require many months to complete.

The approach of using partially committed nodes for memory bandwidth-bound
applications can have a significant practical value for efficient HPC system usage. In addition,
this can also ensure the lowest elapsed times for production runs of time critical systems. This
approach is a very quick method for providing major performance improvements. In contrast,
achieving similar improvements through code related optimisation can be very time

consuming and may not even be as productive.

Code availability

The Met Office Unified Model is available for use under licence. The Australian Bureau of
Meteorology and CSIRO are licensed to use the UM in collaboration with the Met Office to
undertake basic atmospheric process research, produce forecasts, develop the UM code and
build and evaluate Earth System models. For further information on how to apply for a

licence see http://www.metoffice.qov.uk/research/collaboration/um-collaboration.

The Supplement related to this article is available online at
doi:10.5194/gmdd-7-7395-2014-supplement.

16

http://www.metoffice.gov.uk/research/collaboration/um-collaboration

[EEN

© 00 N o O b~ w DN

10

11

12
13

14
15
16

17
18
19
20

21
22
23
24

25
26

27
28
29

Acknowledgements

The authors thank Yi Xiao (BoM) for providing the UM job settings used in the paper; Robert
Bell (CSIRO), Paul Selwood (UK Met Office), Gary Dietachmayer (BoM) and Martyn
Corden (Intel) for their useful comments; Jorg Henrichs (Oracle, Australia), Dale Roberts
(NCI, ANU) and Ben Menadue (NCI, ANU) for continuous application support provided on
all systems. A useful discussion with Dale Roberts on the Lustre striping parameter settings
helped improve elapsed times for a few configurations where the original settings gave small
anomalies (a few percent) in scaling results. We thank two anonymous reviewers for the

recommendations to improve the original version of the manuscript.

References

Bermous, 1., Henrichs, J., and Naughton, M., 2013: Application performance improvement by

use of partial nodes to reduce memory contention. CAWCR Research Letters, 9, 19-22.

Brown, A.R., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A., 2012: Unified
modelling and prediction of weather and climate: a 25 year journey. Bull. Am. Meteorol.
Soc., 93, 1865-1877.

Corden, M., Kreitzer, D.: Consistency of Floating-Point Results using the Intel® Compiler or
Why doesn’t my application always give the same answer? available at:
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-
intel-compiler (last access: 3 September 2014), 2012.

Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M.H., Staniforth, A., White, A. A. and
Wood, N. 2005: A new dynamical core for the Met Office's global and regional modelling
of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 131, 1759-
1782.

Graham, S.L., Snir, M., and Patterson, C.A., 2005: Getting Up To Speed: The Future Of

Supercomputing. National Academies Press, 289pp.

NMOC Operations Bulletin Number 93, available at:
http://www.bom.gov.au/australia/charts/bulletins/apob93.pdf
(last access: 3 September 2014), 2012.

17

o 01~ WN P

10
11

12
13
14
15

16
17
18

19
20
21
22

23
24
25

26
27
28
29

30

Puri, K., Xiao, Y., Sun, X., Lee, J., Engel, C., Steinle, P., Le, T., Bermous, I., Logan, L.,
Bowen, R., Sun, Z., Naughton, M., Roff, G., Dietachmayer, G., Sulaiman, A., Dix, M.,
Rikus, L., Zhu, H., Barras, V., Sims, H., Tingwell, C., Harris, B., Glowacki, T.,
Chattopadhyay, M., Deschamps, L., Le Marshall, J., 2010: Preliminary results from
Numerical Weather Prediction implementation of ACCESS. CAWCR Research Letters, 5,
15-22.

Selwood, P.: The Met Office Unified Model I/O Server, ENES Workshop: Scalable 10 in

climate models, available at: https://verc.enes.org/computing/hpc-collaborations/parallel-i-
o/workshop-scalable-io-in-climate-

models/presentations/Unified_Model 10_Server_Paul_Selwood.ppt/view (last access: 3
September 2014), 2012.

Sivalingam, K.: Porting and optimisation of MetUM on ARCHER, The 16th ECMWF
Workshop on High Performance Computing in Meteorology, available at:
http://www.ecmwf.int/sites/default/files/HPC-WS-Sivalingam.pdf (last access: 28 January
2015), 2014

Staniforth, A., and Wood, N. 2008: Aspects of the dynamical core of a nonhydrostatic, deep-
atmosphere, unified weather and climate-prediction model. Journal of Computational
Physics, Volume 227, Issue 7, 3445-3464.

Steinle, P., Xiao, Y., Rennie, S., Wang, X.: SREP Overview: Meso-scale Modelling and Data
Assimilation, available at:

http://cawcr.gov.au/research/esm/Modelling_WS/10 _MEW/Steinle_P.pdf (last access: 3
September 2014), 2012

The Australian Bureau of Meteorology (BoM): NMOC Operations Bulletin Number 99,
available at: http://www.bom.gov.au/australia/charts/bulletins/apob99.pdf
(last access: 3 September 2014), 2013.

Wellein, G., Hager, G., Kreutzer, M.: Programming Techniques for Supercomputers: Modern
Processors, available at:
https://wiki.engr.illinois.edu/download/attachments/217842128/performance-
bandwidth.pdf?version=1&modificationDate=1359049396000

(last access: 3 September 2014), 2012.

18

http://cawcr.gov.au/research/esm/Modelling_WS/10_MEW/Steinle_P.pdf
https://wiki.engr.illinois.edu/download/attachments/217842128/performance-bandwidth.pdf?version=1&modificationDate=1359049396000
https://wiki.engr.illinois.edu/download/attachments/217842128/performance-bandwidth.pdf?version=1&modificationDate=1359049396000

1 Table 1. Intel Xeon Compute System Comparison.

Solar, BoM Ngamai, BoM Raijin, NCI (ANU)
Processor type Intel Xeon X5570 Intel Xeon E5-2640 Intel Xeon E5-2670
Number of 576 576 3592
compute nodes
Total number of 4608 6912 57472
cores
InfiniBand QDR QDR FDR
interconnect
Memory size per 24GB 64GB 32GB on 2395 nodes
node (67%)

64GB on 1125 nodes
(31%)

128GB on 72 nodes (2%)

Node processor 2X(2.93GHz, 4-core) 2x(2.5GHz, 6-core) 2X(2.6GHz, 8-core)

cores

Max turbo 3.333GHz 3GHz 3.3GHz
frequency

Node cache size 2x8MB 2x15MB 2x20MB
Memory type DDR3-1333MHz DDR3-1333MHz DDR3-1600MHz
Number of 3 4 4

memory channels

Node peak 85 GFlops 240 GFlops 332.8 GFlops

performance (base)

Node max memory 64 GB/s 85.3 GB/s 102.4 GBI/s
bandwidth
Byte/Flop 0.753 0.355 0.308

19

Turbo boost 2/2/3/3 3/3/4/4/5/5 4/4/5/516/6/7/7
additional

multipliers

Turbo boost OFF OFF ON
Usage of hyper No No No
threading

20

1 Table 2. The best elapsed times for N512L.70 on Raijin using 2 threads.

Total reserved Decomposition I/O servers Cores used Elapsed time
cores configuration per node (sec)
384 8x23 2x4 16 2881
768 12x31 2X6 16 1575
1152 14x40 2x8 16 1131
1536 16x47 2x8 16 927
1920 16x59 2x8 16 802
2304 18x63 2x8 16 701
2688 20x66 2x12 16 640
3072 18x63 2x8 12 603
3584 20x66 2x12 12 543

1
2

Table 3. The best elapsed times for N512L.70 on Ngamai using 2 threads on fully committed

nodes.
Total reserved Decomposition I/O servers Elapsed time

cores configuration (sec)

384 8x23 2x4 3068

768 12x31 2x6 1639
1152 14x40 2x8 1217
1536 16x47 2x8 1026
1920 18x52 2x12 877
2304 18x63 2x9 805
2688 20x66 2x12 759
3072 22x69 2x9 756

22

A W

UKV on Raijin

3000

2500 K

N

o

o

o
L

——PI
== P[+OpenMP

=—d—MPI, 12 cores

=M P[+OpenMP, 12 cores

Elapsed time (sec)

—_—
o))
o
o

1000

500
384

768 1152

Number of used cores

Figure 1. Elapsed times for the UKV model runs on Raijin versus the number cores actually

used in each run.

23

A W

UKV on Ngamai

3500

3000 k

2500 ‘&

=——=\PI
== MPI[+OpenMP
—#—MPI, 8 cores

=M P[+OpenMP, 8 cores

Elapsed time (sec)

IR\ N
\\

1000

500 .
384 768

1152

Number of used cores

1536

Figure 2. Elapsed times for the UKV model runs on Ngamai versus the number cores actually

used in each run.

24

A W

16

14

12

10

Speedup
[es]

Figure 3. Speedup as a function of number of used cores on Raijin. Speedup was calculated

UKV on Raijin

P

//

/

//
Yy

-t 16 cores
—@—12 cores
—ir—5 cores

=i ideal case

0

192

384

576 768 960 1152

Number of used cores

1344 1536

1728

in relation to the elapsed time of 9523 s obtained for a 96 core run on fully committed nodes.

25

o b~ W

UKV on Raijin

16 A /
14 /
12
10
o
3
¢ 8 /\ /
o
@ 6 == 15 cores |
/ == 12 cores
4 —f COres |
= deal case
2
0 T T T T T T T T
0 384 768 1152 1536 1920 2304 2688 3072

Number of reserved cores

3456

Figure 4. Speedup as a function of number of reserved cores on Raijin. Speedup was

calculated in relation to the elapsed time of 9523 s obtained for a 96 core run on fully

committed nodes.

26

A W

UKV on Solar

K

e
~

Speedup

B

——6 cores

N W kR 01N OO O

—t—4 cores

=i ideal case

0 192 384 576

Number of used cores

768 960 1152

Figure 5. Speedup as a function of number of used cores on Solar. Speedup was calculated in

relation to the elapsed time of 11488 s obtained for a 96 core run on fully committed nodes.

27

o b~ W

UKV on Solar

10 /
9 y |
7
o
o
1 S
@ 5
/ —¢—8 cores
4
/ —B—6 cores
3
/ —t—4 cores
2
/ —eideal case
1 _
0 .

o

384

768 1152 1536

Number of reserved cores

1920

Figure 6. Speedup as a function of number of reserved cores on Solar. Speedup was

calculated in relation to the elapsed time of 11488 s obtained for a 96 core run on fully

committed nodes.

28

A W

UKV on Ngamai

14 /
12
10
o
3
g 8
o
(73]
6 —t—12 cores
== cores
4 —&r—0 cores
5 = ideal case
0 .

0 384 768 1152 1536

Number of used cores

Figure 7. Speedup as a function of number of used cores on Ngamai. Speedup was calculated

in relation to the elapsed time of 9608 s obtained for a 96 core run on fully committed nodes.

29

o b~ W

UKV on Ngamai

14
12 A /
10
o
'g /
g 8
&
6 - —4—12 cores L
=8 cores
4 e COrES]
5 = ideal case
O T T T T T T T T
0 384 768 1152 1536 1920 2304 2688 3072

Number of reserved cores

3456

Figure 8. Speedup as a function of number of reserved cores on Ngamai. Speedup was

calculated in relation to the elapsed time of 9608 s obtained for a 96 core run on fully

committed nodes.

30

o b~ W

NS512L70 on Raijin

6 N

5 / /.
. /
]
T
]
e
o 3

—¢— 16 cores
5 —f@—12 cores |
/ —t—8 cores
1 - e @l case
0 I I I I
0 768 1536 2304 3072 3840

Number of reserved cores

Figure 9. Speedup as a function of number of reserved cores on Raijin. Speedup was
calculated in relation to the elapsed time of 2881 s obtained for a 384 core run on fully

committed nodes.

31

N512L70 on Ngamai

5
4

o3

=

o

T

(]

(7]

o 2

w =t 12 COres

== cores

1 = [deal case
0

0 768 1536 2304 3072

Number of reserved cores

Figure 10. Speedup as a function of number of reserved cores on Ngamai. Speedup was
calculated in relation to the elapsed time of 3068 s obtained for a 384 core run on fully

committed nodes.

32

