Manuscript gmd-2014-198

Original Title: Simulation of groundwater and surface water over the continental US using a hyperresolution, integrated hydrologic model.

Current Title: A high resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3.

2-Feb-15 Dr Jeff Neal Lecturer Topical Editor (Hydrology) - Geoscientific Model Development School of Geographical Sciences University of Bristol

Dear Jeff:

We have respectfully submitted a revised manuscript for the submission gmd-2014-198. We provided detailed replies to all three sets of comments (R1, R2 and the ED) using the online interactive system. We also provided a PDF of all the changes (highlighted in red, using word's mark-up system) from the version of the manuscript sent for typesetting on 16-Oct-14 and this current, revised version. Where possible, we have tried to connect revisions to the manuscript to the reviewer comment replies, but given the interactive process this is somewhat challenging so we would like to draw your attention to the following general areas of revision:

- 1. Title: as you see above, we have revised the title given the concerns regarding the use of the term 'hyperresolution'. We have also changed other language throughout the manuscript to be consistent with this change.
- 2. Intent. While we feel that our work is well-motivated, we have added text throughout the manuscript to futher clarify our intented outcomes.
- 3. Uncertainty and data limitations. We have added language about data limitations and uncertainty throughout the manuscript; introduction, discussion and conclusions.
- 4. Typographical. We have increased font sizes on figures, fixed references etc.

We appreciate the time and effort put in by both reviewers. Reviewer 1 was very complementary and provided quite constructive comments, all of which have been reflected by revisions in the updated manuscript. We were dissapointed by the unprofessional tone of Reviewer 2 and their attempts to distort our work and it's intent. As you will see in our replies, many of the comments by this reviewer were not accurate: we did address uncertainty in the original manscript ("no mention of uncertainty"), did not overstate the goodness of fit ("with fits like these what could possibly be wrong"), etc. Still, we have made every effort to both clarify our perspective and expand our discussion of limitations. Unfortunately, based on the tenor of R2's comments it is apparent that we have fundamentally different viewpoints and it seems unlikely that our responses or revisions will change their opinion regarding publication. We feel there will

be tremendous interest in this work, which has been viewed at least 239 times (downloaded at least 116 as a PDF) while under discussion. We reiterate that this is a novel contribution and that no-other comprehesive model at such high resolution over such large scales exists.

We thank you for your time and attention to this matter. We are happy to answer any additional questions you might have, and we look forward to hearing your decision on the status of this manuscript.

Sincerely, Reed

Reed M. Maxwell, Ph.D. Professor Department of Geology and Geologic Engineering Colorado School of Mines 1500 Illinois St. Golden, Co 80401

1 2	<u>A high resolution simulation</u> of groundwater and surface water over <u>most of the continental US</u> with the integrated hydrologic model ParFlow v3	Reed Maxwell 2/2/2015 5:06 AM
3		Deleted: Simulation
4	Reed M Maxwell ^{1*} , Laura E Condon ¹ , Stefan J Kollet ²	Reed Maxwell 2/2/2015 5:06 AM Deleted: using a hyperresolution,
5 6	¹ Hydrologic Science and Engineering Program, Integrated GroundWater Modeling Center, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA	
7	² Centre for High-Performance Scientific Computing in Terrestrial Systems, Institute for Bio- and	
8 9	Geosciences, Agrosphere (IBG-3), Research Centre Jülich, Jülich, DE	
10	*correspondence to: Reed M Maxwell, rmaxwell@mines.edu	
11		
12 13	Abstract Interactions between surface and groundwater systems are well-established theoretically and	
15	incractions between surface and groundwater systems are wen-established incoreneany and	
14	observationally. While numerical models that solve both surface and subsurface flow equations	
15	in a single framework (matrix) are increasingly being applied, computational limitations have	
16	restricted their use to local and regional studies. Regional or watershed_scale simulations have	Reed Maxwell 2/2/2015 5:06 AM
17	been effective tools in understanding hydrologic processes, however there are still many	Deleted: ,
18	questions, such as the adaptation of water resources to anthropogenic stressors and climate	
19	variability, that need to be answered across large spatial extents at high resolution. In response	
20	to this 'grand challenge' in hydrology, we present the results of a parallel, integrated hydrologic	
21	model simulating surface and subsurface flow at high spatial resolution (1km) over much of	
22	continental North America (~6,300,000 or 6.3M km ²). These simulations provide <u>integrated</u>	
23	predictions of hydrologic states and fluxes, namely water table depth and streamflow, at very	Reed Maxwell 2/2/2015 5:06 AM
24	large scale and high resolution. The physics-based modeling approach used here requires limited	Deleted: unprecedented Reed Maxwell 2/2/2015 5:06 AM
25	parameterizations and relies only on more fundamental inputs, such as topography,	Deleted: physically
26	hydrogeologic properties and climate forcing. Results are compared to observations and provide	
27	mechanistic insight into hydrologic process interaction. This study demonstrates both the	
28	feasibility of continental scale integrated models and their utility for improving our	
29	understanding of large-scale hydrologic systems; the combination of high resolution and large	
30	spatial extent facilitates novel analysis of scaling relationships using model outputs.	
	1	

36 Introduction

37	There is growing evidence of feedbacks between groundwater, surface water and soil	
38	moisture that moderate land-atmospheric energy exchanges, and impact weather and climate	
39	(Maxwell et al. 2007; Anyah et al. 2008; Kollet and Maxwell 2008; Maxwell and Kollet 2008;	
40	Jiang et al. 2009; Rihani et al. 2010; Maxwell et al. 2011; Williams and Maxwell 2011; Condon	
41	et al. 2013; Taylor et al. 2013). While local observations and remote sensing can now detect	
42	changes in the hydrologic cycle from small to very large spatial scales (e.g. Rodell et al. 2009),	
43	theoretical approaches to connect and scale hydrologic states and fluxes from point	
44	measurements to the continental scales are incomplete. In this work, we present integrated	
45	modeling as one means to bridge this gap via numerical experiments.	
46	Though introduced as a concept in the literature almost half a century ago (Freeze and	
47	Harlan 1969), integrated hydrologic models that solve the surface and subsurface systems	
48	simultaneously have only been a reality for about a decade (VanderKwaak and Loague 2001;	
49	Jones et al. 2006; Kollet and Maxwell 2006). Since their implementation, integrated hydrologic	
50	models have been successfully applied to a wide range of watershed-scale studies (see Table 1 in	
51	Maxwell et al. 2014) successfully capturing observed surface and subsurface behavior (Qu and	
52	Duffy 2007; Jones et al. 2008; Sudicky et al. 2008; Camporese et al. 2010; Shi et al. 2013),	
53	diagnosing stream-aquifer and land-energy interactions (Maxwell et al. 2007; Kollet and	
54	Maxwell 2008; Rihani et al. 2010; Condon et al. 2013; Camporese et al. 2014), and building our	
55	understanding of the propagation of perturbations such as land-cover and anthropogenic climate	
56	change throughout the hydrologic system (Maxwell and Kollet 2008; Goderniaux et al. 2009;	
57	Sulis et al. 2012; Mikkelson et al. 2013).	

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** (Maxwell et al. 2007;

Reed Maxwell 2/2/2015 5:06 AM Deleted: ; Kollet and Maxwell 2008; Maxwell and Kollet 2008; Jiang et al. 2009; Rihani et al. 2010; Maxwell et al. 2011; Williams and Maxwell 2011; Condon et al. 2013; Taylor et al. 2013)

64 Prior to this work, computational demands and data constraints have limited the 65 application of integrated models to regional domains. Advances in parallel solution techniques, 66 numerical solvers, supercomputer hardware, and additional data sources have only recently made large-scale, high-resolution simulation of the terrestrial hydrologic cycle technically feasible 67 68 (Kollet et al. 2010; Maxwell 2013). As such, existing large scale studies of the subsurface have 69 focused on modeling groundwater independently (Fan et al. 2007; Miguez-Macho et al. 2007; 70 Fan et al. 2013) and classifying behavior with analytical functions (Gleeson et al. 2011). 71 Similarly, continental scale modeling of surface water has utilized tools with simplified 72 groundwater systems that do not capture lateral groundwater flow and model catchments as 73 isolated systems (Maurer et al. 2002; Döll et al. 2012; Xia et al. 2012) despite the fact that lateral flow of groundwater has been shown to be important across scales (Krakauer et al. 2014). While 74 75 much has been learned from previous studies, the focus on isolated components within what we 76 know to be an interconnected hydrologic system is a limitation than can only be addressed with 77 an integrated approach. 78 The importance of groundwater surface water interactions in governing scaling behavior 79 of surface and subsurface flow from headwaters to the continent has yet to be fully characterized. 80 Indeed, one of the purposes for building an integrated model is to better understand and predict 81 the nature of hydrologic connections across scales and throughout a wide array of physical and 82 climate settings. Arguably, this is not possible utilizing observations, because of data scarcity 83 and the challenges observing 3D groundwater flow across a wide range of scales. For example,

84 the scaling behavior of river networks is well known (Rodriguez-Iturbe and Rinaldo 2001), yet

open questions remain about the quantity, movement, travel time, and spatial and temporal 86 scaling of groundwater and surface water at the continental scale. Exchange processes and flow

85

Reed Maxwell 2/2/2015 5:06 AM Deleted: the

Reed Maxwell 2/2/2015 5:06 AM Deleted: . Despite Reed Maxwell 2/2/2015 5:06 AM Deleted: (Nir et al. 2014)

Reed Maxwell 2/2/2015 5:06 AM Deleted: scale

91	near the land surface are strongly non-linear, and heterogeneity in hydraulic properties exist at all
92	spatial scales. As such, a formal framework for connecting scales in hydrology (Wood 2009)
93	needs to account for changes in surface water and groundwater flow from the headwaters to the
94	mouth of continental river basins. We propose that integrated, physics-based hydrologic models
95	are a tool for providing this understanding, solving fundamental non-linear flow equations at
96	high spatial resolution while numerically scaling these physical processes up to a large spatial
97	extent i.e. the continent.
98	In this study, we simulate surface and subsurface flow at high spatial resolution (1km)
99	over much of continental North America (6.3M km ²), which is itself considered a grand
100	challenge in hydrology (e.g. Wood et al. 2011; Gleeson and Cardiff 2014), The domain is
101	constructed entirely of available datasets including topography, soil texture and hydrogeology
102	This simulation solves surface and subsurface flow simultaneously and takes full advantage of
103	massively parallel, high-performance computing. The results presented here should be viewed as
104	a sophisticated numerical experiment, designed to diagnose physical behavior and evaluate
105	scaling relationships. While this is not a calibrated model that is intended to match observations
106	perfectly, we do verify that behavior is realistic by comparing to both groundwater and surface
107	water observations.
108	The paper is organized as follows: first a brief description of the model equations are
109	provided including a description of the input variables and observational datasets used for model
110	comparison; next model simulations are compared to observations in a number of ways, and then
111	used to understand hydrodynamic characteristics and to describe scaling.
112	

113

Reed Maxwell 2/2/2015 5:06 AM Deleted: (~6,300,000 or Reed Maxwell 2/2/2015 5:06 AM Deleted: .

Reed Maxwell 2/2/2015 5:06 AM

Deleted: The domain is constructed entirely of available datasets including topography, soil texture and hydrogeology. Results are compared to observations, and used

120 Methods

121	The model was constructed using the integrated simulation platform ParFlow (Ashby and	
122	Falgout 1996; Jones and Woodward 2001; Kollet and Maxwell 2006) utilizing the terrain	Reed Maxwell 2/2/2015 5:06 AM
123	following grid capability (Maxwell 2013). ParFlow is a physically based model that solves both	Deleted: ; Jones and Woodward 2001; Ke and Maxwell 2006)
124	the surface and subsurface systems simultaneously. In the subsurface ParFlow solves the mixed	
125	form of Richards' equation for variably saturated flow (Richards 1931) in three spatial	
126	dimensions given as:	
127	$S_s S_w(h) \frac{\partial h}{\partial t} + \phi S_w(h) \frac{\partial S_w(h)}{\partial t} = \nabla \cdot \mathbf{q} + q_r(x, z) \qquad (1)$	
128	where the flux term $\mathbf{q} [LT^{-1}]$ is based on Darcy's law:	
129	$\mathbf{q} = -\mathbf{K}_{s}(\mathbf{x})k_{r}(h)[\nabla(h+z)\cos\theta_{x} + \sin\theta_{x}] $ (2)	
130	In these expressions, h is the pressure head [L]; z is the elevation with the z-axis specified as	
131	upward [L]; $\mathbf{K}_{s}(\mathbf{x})$ is the saturated hydraulic conductivity tensor [LT ⁻¹]; k_{r} is the relative	
132	permeability [-]; S_s is the specific storage $[L^{-1}]$; ϕ is the porosity [-]; S_w is the relative saturation [-	
133]; q_r is a general source/sink term that represents transpiration, wells, and other fluxes $[T^{-1}]$; and	
134	θ [-] is the local angle of slope, in the <i>x</i> and <i>y</i> directions and may be written as	
135	$\theta_x = \tan^{-1} S_x$ and $\theta_y = \tan^{-1} S_y$. Note that we assume that density and viscosity are both	
136	constant, although ParFlow can simulate density and viscosity-dependent flow (Kollet et al.	Reed Maxwell 2/2/2015 5:06 AM
137	2009). The van Genuchten (1980) relationships are used to describe the relative saturation and	Deleted: though this assumption is not necessarily needed in
138	permeability functions ($S_w(h)$ and $k_r(h)$ respectively). These functions are highly nonlinear and	
139	characterize changes in saturation and permeability with pressure.	
140	Overland flow is represented in ParFlow by the two-dimensional kinematic wave	
141	equation resulting from application of continuity conditions for pressure and flux (Kollet and	
142	Maxwell 2006):	

147	$\mathbf{k} \cdot \left(-\mathbf{K}_{s}(\mathbf{x})k_{r}(h) \cdot \nabla(h+z)\right) = \frac{\partial \ h,0\ }{\partial t} - \nabla \cdot \ h,0\ \mathbf{v}_{sw} + \lambda q_{r}(\mathbf{x})$	(3)
-----	---	-----

148	In this equation \mathbf{v}_{sw} is the two-dimensional, depth-averaged surface water velocity [LT ⁻¹] given
149	by manning's equation; h is the surface ponding depth [L] the same h as is shown in Equation 1.
150	Note that $ h, 0 $ indicates the greater value of the two quantities in Equation 3. This means that
151	if $h < 0$ the left hand side of this equation represents vertical fluxes (e.g. in/exfiltration) across
152	the land surface boundary and is equal to $q_r(\mathbf{x})$ and a general source/sink (e.g. rainfall, ET) rate
153	$[LT^{-1}]$ with λ being a constant equal to the <u>inverse of the</u> vertical grid spacing $[L^{-1}]$. This term is
154	then entirely equivalent to the source/sink term shown in Equation 1 at the ground surface where
155	k is the unit vector in the vertical, again defining positive upward coordinates. If $h > 0$ then the
156	terms on the right hand side of Equation 3 are active water that is routed according to surface
157	topography (Kollet and Maxwell 2006).
158	The nonlinear, coupled equations of surface and subsurface flow presented above are
159	solved in a fully-implicit manner using a parallel Newton-Krylov approach (Jones and
160	Woodward 2001; Kollet and Maxwell 2006; Maxwell 2013). Utilizing a globally-implicit
161	solution allows for interactions between the surface and subsurface flow system to be explicitly
162	resolved. While this yields a very challenging computational problem, ParFlow is able to solve
163	large complex systems by utilizing a multigrid preconditioner (Osei-Kuffuor et al. ; Ashby and
164	Falgout 1996) and taking advantage of highly scaled parallel efficiency out to more than 1.6 x
165	10 ⁴ processors (Kollet et al. 2010; Maxwell 2013).
166	Physically this means that ParFlow solves saturated subsurface flow (i.e. groundwater),
167	unsaturated subsurface flow (i.e. the vadose zone) and surface flow (i.e. streamflow) in a
168	continuum approach within a single matrix. Thus, complete non-linear interactions between all

169 system components are simulated without *a priori* specification of what types of flow occur in

6

Reed Maxwell 2/2/2015 5:06 AM

Deleted: (Osei-Kuffuor et al. ; Reed Maxwell 2/2/2015 5:06 AM

Deleted: Physically this means that ParFlow solves saturated subsurface flow (i.e. groundwater), unsaturated subsurface flow (i.e. the vadose zone) and surface flow (i.e. streamflow) in a continuum approach within a single matrix. Thus, complete non-linear interactions between all system components are simulated without a priori specification of what types of flow occur in any given portion of the grid. Streams form purely based on hydrodynamic principles governed by recharge, topography, hydraulic conductivity and flow parameters, when water is ponded due to either excess infiltration (surface fluxes exceed the infiltration capacity) or excess saturation (subsurface exfiltration to the surface system). Groundwater converges in topographic depressions and unsaturated zones may be shallow or deep depending upon recharge and lateral flows.

- 191 any given portion of the grid. Streams form purely based on hydrodynamic principles governed
- 192 by recharge, topography, hydraulic conductivity and flow parameters, when water is ponded due
- 193 to either excess infiltration (surface fluxes exceed the infiltration capacity, e.g. Horton 1933) or
- excess saturation (subsurface exfiltration to the surface system, e.g. Dunne 1983) for further
- 195 discussion see Kirkby (1988) and Beven (2004) for example. Groundwater converges in
- 196 topographic depressions and unsaturated zones may be shallow or deep depending upon recharge
- 197 and lateral flows.

198 The physically based approach used by ParFlow is similar to other integrated hydrologic

- 199 models such as Hydrogeosphere (Therrien et al. 2012), PIHM (Kumar et al. 2009) and CATHY
- 200 (Camporese et al. 2010). This is a distinct contrast to more conceptually-based models that may
- 201 not simulate lateral groundwater flow or simplify the solution of surface and subsurface flow by
- 202 defining regions of groundwater or the stream-network prior to the simulation. In such models,
- 203 groundwater surface water interactions are often captured as one-way exchanges (i.e. surface
- 204 water loss to groundwater) or parameterized with simple relationships (i.e. functional
- 205 relationships to impose the relationship between stream head and baseflow). The integrated
- approach used by ParFlow eliminates the need for such assumptions and allows the
- 207 interconnected groundwater surface water systems to evolve dynamically based only on the
- 208 governing equations and the properties of the physical system. The approach used here requires
- 209 robust numerical solvers (Maxwell 2013; Osei-Kuffuor et al. 2014) and exploits high-
- 210 performance computing (Kollet et al. 2010) to achieve high resolution, large extent simulations.

7

- 211
- 212
- 213

Reed Maxwell 2/2/2015 5:06 AM Deleted: with Reed Maxwell 2/2/2015 5:06 AM Deleted: may Reed Maxwell 2/2/2015 5:06 AM Deleted: .

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** curves

218 Domain Setup

219	In this study, the model and numerical experiment was directed at the Continental US	Reed Maxwell 2/2/2015 5:06 AM
220	(CONUS) using the terrain following grid framework (Maxwell 2013) for a total thickness of	Deleted: for
221	102m over 5 model layers. The model was implemented with a lateral resolution of 1km with	Reed Maxwell 2/2/2015 5:06 AM Deleted: was constructed
222	nx=3342, ny=1888 and five vertical layers with 0.1, 0.3, 0.6, 1.0 and 100m discretization for a	
223	total model dimensions of 3,342 by 1,888 by 0.102 km and 31,548,480 total compute cells. The	
224	model domain and input data sets are shown in Figure 1. All model inputs were re-projected to	
225	have an equal cell-size of $\frac{1 \times 1 \text{ km}}{2}$ as shown in Figure 1. Topographic slopes (S_x and S_y) were	Reed Maxwell 2/2/2015 5:06 AM
226	calculated from the Hydrosheds digital elevation model (Figure 1b) and were processed using the	Deleted: 1km
227	r.watershed package in the GRASS GIS platform. Surface roughness values were constant 10 ⁻⁵	
228	[h m- ^{1/3}] outside of the channels and varied within the channel as a function of average	
229	watershed slope. Over the top 2m of the domain, hydraulic properties from soil texture	
230	information of SSURGO were applied and soil properties were obtained from Schaap and Leij	
231	(1998). Note that two sets of soil categories were available. The upper horizon was applied over	
232	the top 1m (the top three model layers) and the bottom one over the next 1m (the fourth model	
233	layer). Figures 1a and c show the top and bottom soil layers of the model. The deeper subsurface	
234	(i.e. below 2m) was constructed from a global permeability map developed by Gleeson et al.	
235	(2011). These values (Gleeson et al. 2011) were adjusted to reduce variance (Condon and	
236	Maxwell 2013; Condon and Maxwell 2014) and to reflect changes in topography using the e-	
237	folding relationship empirically-derived in (Fan et al. 2007): $\alpha = e^{-\frac{50}{f}}$ where $f = \frac{a}{\left(1+b*\sqrt{S_x^2+S_y^2}\right)}$	
238	. For this analysis $a=20$, $b=125$ and the value of 50 [m] was chosen to reflect the midpoint of the	
239	deeper geologic layer in the model. Larger values of α reduced the hydraulic conductivity	

240 categorically, that is by decreasing the hydraulic conductivity indicator values in regions of

244 steeper slope. Figure 1e maps the final conductivity values used for simulation. Note that this 245 complex subsurface dataset is assembled from many sources, and is subject to uncertainty. As 246 such there are breaks across dataset boundaries, commonly at State or Province and International 247 political delineations. The fidelity and resolution of the source information used to formulate this 248 dataset also changes across these boundaries yielding some interfaces in property values, 249 All input datasets are a work in progress and should be continually improved. However, 250 we feel it is important to continue numerical experiments with the data that is currently available. 251 while keeping in mind the limitations associated with every model input. Shortcomings in 252 hydrogeological data sets reflect the lack of detailed unified hydrogeological information that 253 can be applied in high resolution continental models. This constitutes a significant source of 254 uncertainty, which needs to be assessed, quantified and ultimately reduced in order to arrive at 255 precise predictions. Still, it should be noted that the purpose of this work is to demonstrate the 256 feasibility of integrated modeling to explicitly represent processes across many scales of spatial 257 variability. By focusing on large-scale behaviors and relationships we limit the impact uncertain 258 inputs. 259 No-flow boundary conditions were imposed on all sides of the model except the land 260 surface, where the free-surface overland flow boundary condition was applied. For the surface 261 flux, a Precipitation-Evapotranspiration (P-E, or potential recharge) product was derived from a 262 combination of precipitation and model-simulated evaporation and transpiration fluxes for a 263 product very similar to Maurer et al. (2002), shown in Figure 1d. The model was initialized dry and the P-E forcing was applied continuously at the land surface until the balance of water 264

265 (difference between total outflow and P-E) was less than 3% of storage. For all simulations a

9

Reed Maxwell 2/2/2015 5:06 AM Deleted:

Reed Maxwell 2/2/2015 5:06 AM
Deleted:
Reed Maxwell 2/2/2015 5:06 AM
Deleted: Still
Reed Maxwell 2/2/2015 5:06 AM
Deleted: modeling
Reed Maxwell 2/2/2015 5:06 AM
Deleted: to understand
Reed Maxwell 2/2/2015 5:06 AM
Deleted: and assess their impact on
Reed Maxwell 2/2/2015 5:06 AM
Deleted: predictions
Reed Maxwell 2/2/2015 5:06 AM
Deleted: and

274 <u>nonlinear tolerance of 10^{-5} and a linear tolerance of 10^{-10} were used to ensure proper model</u>

275 <u>convergence.</u>

276	While this study employs state of the art modeling techniques, it is important to note that
277	the numerical simulation of this problem is <u>far from being</u> trivial. Simulations were split over
278	128 divisions in the x-direction and 128 in the y-direction and run on 16,384 compute-cores of an
279	IBM BG/Q supercomputer (JUQUEEN) located at the Jülich Supercomputing Centre, Germany.
280	These processor splits resulted in approximately 2,000 unknowns per compute core; a relatively
281	small number, yet ParFlow's scaling was still good (better than 60% efficiency) due to the non-
282	symmetric preconditioner used (Maxwell 2013). The reason for this is the special architecture of
283	JUQUEEN with only 256MB of memory per core and relatively slow clock rate. Additionally,
284	code performance was improved using efficient preconditioning of the linear system (Osei-
285	Kuffuor et al.). The steady-state flow field was accomplished over several steps. Artificial
286	dampening was applied to the overland flow equations early in the simulation during water table
287	equilibration. Dampening was subsequently decreased and removed entirely as simulation time
288	progressed. Large time steps (10,000h) were used initially and were decreased (to 1h) as the
289	stream network formed and overland flow became more pronounced with reduced dampening.
290	The entire simulation utilized approximately 2.5M core hours of compute time, which resulted in
291	less than 1 week of wall-clock time (approximately 150 hours) given the large core counts and
292	batch submission process.
293	Model results were <u>checked for plausibility</u> against available observations of streamflow
294	and hydraulic head (the sum of pressure head and gravitational potential). Observed streamflow
295	values were extracted from a spatial dataset of current and historical U.S. Geological Survey

296 (USGS) stream gages mapped to the National Hydrography Dataset (NHD) (Stewart et al.,

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** still non-

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** validated

299	2006). The entire dataset includes roughly 23,000 stations, of which just over half (13,567) fall	
300	within the CONUS domain. For each station, the dataset includes location, drainage area,	
301	sampling time period and flow characteristics including minimum, maximum, mean and a range	
302	of percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) compiled from the USGS gage	
303	records. For comparison, stations without a reported drainage area, stations not located on or	
304	adjacent to a river cell in ParFlow, and stations whose drainage area were not within twenty	
305	percent of the calculated ParFlow drainage area were filtered out. This resulted in 4,736 stations	
306	for comparison. The 50 th percentile values for these stations are shown in Figure 2a. Note that	
307	these observations are not naturalized, i.e. no attempt is made to remove dams and diversions	
308	along these streams and rivers, however some of these effects will be minimized given the longer	
309	temporal averages. Hydraulic head observations of groundwater at more than 160,000 locations	
310	were assembled by Fan et al. (Fan et al. 2007; Fan et al. 2013), Figure 2b plots the	Reed Maxwell 2/2/2015 5:06 AM
311	corresponding water table depth at each location calculated as the difference between elevation	Deleted:
312	and hydraulic head. Note that these observations include groundwater pumping (most wells are	
313	drilled for extraction rather than purely observation),	Reed Maxwell 2/2/2015 5:06 AM
314		Deleted:
315	Results and Discussion	
316	Figures 3 and 4 plot simulated streamflow and water table depth, respectively, over much	Reed Maxwell 2/2/2015 5:06 AM
317	of continental North America, both on a log scale for flow (Figure 3) and water table depth	Deleted: . Reed Maxwell 2/2/2015 5:06 AM
318	(Figure 4). Figure 3 shows a complex stream network with flow rates spanning many orders of	Formatted: Indent: First line: 0.5"
319	magnitude. Surface flows originate in the headwaters (or recharge zones) creating tributaries that	
320	join to form the major river systems in North America. Note, as discussed previously that the	
321	locations for flowing streams are not enforced in ParFlow but form due to ponded water at the	

325	surface (i.e. values of $h > 0$ in the top layer of the model in Equations 1-3). Overland flow is
326	promoted both by topographic convergence, and surface and subsurface flux; however, with this
327	formulation there is no requirement that all potential streams support flow. Thus, the model
328	captures the generation of the complete stream network without specifying the presence and
329	location of rivers in advance, but rather by allowing channelized flow to evolve as a result of
330	explicitly simulated non-linear physical processes.
331	The insets in Figure 3 demonstrate multiscale detail ranging from the continental river
332	systems to the first-order headwaters. In Figure 4, water table depth also varies over five orders
333	of magnitude. Whereas aridity drives large-scale differences in water table depth (Figure 1d), at
334	smaller scales, lateral surface and subsurface flow processes clearly dominate recharge and
335	subsurface heterogeneity (see insets to Figure 4). Water tables are deeper in the more arid
336	western regions, and shallower in the more humid eastern regions of the model. However, areas
337	of shallow water table exist along arid river channels and water table depths greater than 10m
338	exist in more humid regions. Note that this is a pre-development simulation, thus, results do not
339	include any anthropogenic water management features such as groundwater pumping, surface
340	water reservoirs, irrigation or urbanization, all of which are present in the observations. Many
341	of these anthropogenic impacts have been implemented into the ParFlow modeling framework
342	(Ferguson and Maxwell 2011; Condon and Maxwell 2013; Condon and Maxwell 2014). While
343	anthropogenic impacts are clearly influential on water resources, a baseline simulation allows for
344	a comparison between the altered and unaltered systems in future.
345	Next we compare the results of the numerical experiment to observations. As noted
346	previously, this is not a calibrated model. Therefore, the purpose of these comparisons is to
347	provide a plausibility check of model behavior and physical processes. Figure 5 plots observed

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** novelly

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** , although many

350	and simulated hydraulic head and streamflow for the dataset shown in Figure 2. Hydraulic head
351	(Figure 5a) is plotted (as opposed to water table depth) as it is the motivating force for lateral
352	flow in the simulation; it includes both the topography and pressure influences on the final
353	solution. We see a very close agreement between observations and model simulations, though
354	given the large range in hydraulic heads the goodness of fit may be somewhat driven by the
355	underlying topography. Additional metrics and comparisons are explored below. Simulated
356	streamflow (Figure 5b) also agrees closely with observations. There is some bias, particularly
357	for smaller flows, (which we emphasize by plotting in log scale), which also exhibit more scatter
358	than larger flows, and are likely due to the 1km grid resolution employed here. Larger flows are
359	more integrated measures of the system and might be less sensitive to resolution or local
360	heterogeneity in model parameters. We see this when linear least squared statistics are computed
361	where the R^2 value increases to 0.8.
362	Figure 6 plots histograms of predicted and observed water table depth (a), hydraulic head
363	(b), median (50th percentile) flow and 75th percentile flows (c-d). The hydraulic head shows
364	good agreement between simulated and observed (Figure 6b). While hydraulic head is the
365	motivation for lateral flow and has been used in prior comparisons (e.g. Fan et al 2007) both
366	observed and simulated values are highly dependent on the local elevation. Figure 6a plots the
367	water table depth below ground surface, or the difference between local elevation and
368	groundwater. Here we see the simulated water table depths are shallower than the observed,
369	something observed in prior simulations of large-scale water table depth (Fan et al 2013). The
370	observed water tables may include anthropogenic impacts, namely groundwater pumping, while
371	the model simulations do not and this is a likely cause for this difference. Also, because
372	groundwater wells are usually installed for extraction purposes there is no guarantee that the

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** obscured.

Reed Maxwell 2/2/2015 5:06 AM Deleted: , Reed Maxwell 2/2/2015 5:06 AM Deleted: may be

376 groundwater observations are an unbiased sample of the system as a whole. Figure 6c plots the 377 steady-state derived flow values compared to median observed flow values and Figure 6d plots 378 these same steady-state simulated flows compared to the 75th percentile of the observed transient 379 flow at each station. While the ParFlow model provides a robust representation of runoff 380 generation processes, the steady-state simulations average event flows. We see the model 381 predicts greater flow than the 50th percentile observed flows (Figure 6c) and good agreement 382 between the model simulations and the 75th percentile observed flows (Figure 6d). This 383 indicates a potentially wet bias in the forcing, which might also explain the shallower water table 384 depths. 385 Figures 7 and 8 compare observed and simulated flows and water table depths for each of 386 the major basin encompassed by the model. Water tables are generally predicted to be shallower 387 in the model than observations with the exception of the Upper and Lower Colorado which 388 demonstrate better agreement between model simulations and observations than other basins. 389 These histograms agree with a visual inspection of Figures 2b and 4 which also indicate deeper 390 observed water tables. Figure 8 indicates that simulated histograms of streamflow also predict 391 more flow than the observations. This might indicate that the P-E forcing is too wet. However, 392 a comparison of streamflow for the Colorado Watershed, where water table depths agree (Figure 393 8 e and g) and flows are overpredicted, (Figure 7 e and g), indicates a more complex set of 394 interactions than basic water balance driven by forcing.

395 To better diagnose model processes, model inputs are compared with model simulation

396 outputs over example regions chosen to isolate the impact of topographic slope, forcing and

397 hydraulic conductivity on subsurface-surface water hydrodynamics. We do this as a check to see

398 if and how this numerical experiment compares to real observations. It is important to use a

Reed Maxwell 2/2/2015 5:06 AM Deleted:

400	range of measures of success that might be different from that used in a model calibration where
401	inadequacies in model parameters and process might be muted while tuning the model to better
402	match observations. Figure 9 juxtaposes slope, potential recharge, surface flow, water table
403	depth, hydraulic conductivity and a satellite image composite also at 1km resolution (the NASA
404	Blue Marble image, (Justice et al. 2002)) and facilitates a visual diagnosis of control by the three
405	primary model inputs. While the model was run to steady-state and ultimately all the potential
406	recharge has to exit the domain as discharge, the distribution and partitioning between
407	groundwater and streams depends on the slope and hydraulic conductivity. Likewise, while
408	topographic lows create the potential for flow convergence, it is not a model requirement that
409	these will develop into stream loci. Figure 9 demonstrates some of these relationships quite
410	clearly over a portion of the model that transitions from semi-arid to more humid conditions as
411	the North and South Platte River systems join the Missouri. As expected changes in slope yield
412	flow convergence, however, this figure also shows that as recharge increases from west to east
413	(X > 1700 km, panel c) the model generally predicts shallower water tables and greater stream
414	density (panels d and e, respectively). Conversely, in localized areas of decreased P-E (e.g. 700
415	< Y < 900 km specifically south of the Platte River) water tables increase and stream densities
416	decrease. The satellite image (panel f) shows increases in vegetation that correspond to
417	shallower water tables and increased stream density.
418	Hydraulic conductivity also has a significant impact on water table depth and stream
419	network density. In areas of greater recharge in the eastern portion of Figure 9c, regions with
420	larger hydraulic conductivity (panel b) show decreased stream network density and increased
421	water table depths. This is more clearly demonstrated in Figure 10 (a region in the upper

422 Missouri) where, except for the northeast corner, recharge is uniformly low. Slopes are also

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** this create a

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** , somewhat counter intuitively,

425	generally low (panel a), yet hydraulic conductivities show a substantial increase due to a change	
426	in datasets between state and country boundaries (panel b, $X > 1250$ km, $Y > 1400$ km). The	
427	relative increase in hydraulic conductivity decreases hydraulic gradients under steady state	
428	conditions and generally increases water table depth, which in turn decreases stream network	
429	density. This change in hydraulic conductivity yields a decrease in the formation of stream	
430	networks resulting in an increase in water table depth. Thus, hydraulic conductivity has an	
431	important role in partitioning moisture between surface and subsurface flow, also under steady-	Reed Maxwell 2/2/2015 5:06 AM
432	state conditions. While mass balance requires that overall flow must be conserved, larger	Deleted: even
433	conductivity values allow this flow to be maintained within the subsurface while lower	
434	conductivities force the surface stream network to maintain this flow. In turn, stream networks	
435	connect regions of varying hydrodynamic conditions and may result in locally infiltrating	
436	conditions creating a losing-stream to recharge groundwater. This underscores the connection	
437	between input variables and model predictions, an equal importance of hydraulic conductivity to	
438	recharge in model states and the need to continually improve input datasets.	
439	Finally, the connection between stream flow and drainage area is a classical scaling	
440	relationship (Rodriguez-Iturbe and Rinaldo 2001), which usually takes the power law form	
441	$Q = kA^n$, where Q is volumetric streamflow [L ³ T ⁻¹], A is the contributing upstream area [L ²] and k	
442	$[LT^{-1}]$ and <i>n</i> are empirical constants. While this relationship has been demonstrated for	
443	individual basins and certain flow conditions (Rodriguez-Iturbe and Rinaldo 2001), generality	
444	has not been established (Glaster 2009). Figure <u>11a</u> plots simulated streamflow as a function of	Deed Mayyell 2/2/2045 5:06 AM
445	associated drainage area on log-log axes, and Figure, <u>11b</u> plots the same variables for median	Reed Maxwell 2/2/2015 5:06 AM Deleted: 10a Reed Maxwell 2/2/2015 5:06 AM
446	observed streamflow from more than 4,000 gaging stations. While no single functional	Reed Maxwell 2/2/2015 5:06 AM Deleted: 10b
447	relationship is evident from this plot, there is a striking maximum limit of flow as a function of	

451 drainage area with a continental scaling coefficient of n = 0.84. Both Figures 11a and b are 452 colored by aridity index (AI), the degree of dryness of a given location. Color gradients that 453 transition from blue (more humid) to red (more arid) show that humid basins fall along the 454 maximum flow-discharge line, while arid basins have less discharge and fall below this line. For 455 discharge observations (Figure 11b) the same behavior is observed, where more humid stations 456 fall along the n=0.9 line and more arid stations fall below this line. Essentially this means that in 457 humid locations, where water is not a limiting factor, streamflow scales most strongly with 458 topography and area. Conversely arid locations fall below this line because flow to streams is 459 limited by groundwater storage.

460

461 Conclusions

462 Here we present the results of an integrated, multiphysics-based hydrologic simulation 463 covering much of Continental North America at hyperresolution (1km). This numerical 464 experiment provides a consistent theoretical framework for the analysis of groundwater and surface water interactions and scaling from the headwaters to continental scale $(10^{0}-10^{7} \text{ km}^{2})$. 465 466 The framework exploits high performance computing to meet this grand challenge in hydrology 467 (Wood et al. 2011; Gleeson and Cardiff 2014; Bierkens et al. 2015). We demonstrate that 468 continental-scale, integrated hydrologic models are feasible and can reproduce observations and 469 the essential features of streamflow and groundwater. Results show that scaling of surface flow 470 is related to both drainage area and aridity. These results may be interrogated further to 471 understand the role of topography, subsurface properties and climate on groundwater table and 472 streamflow, and used as a platform to diagnose scaling behavior, e.g. surface flow from the 473 headwaters to the continent.

Reed Maxwell 2/2/2015 5:06 AM Deleted: 10a

Reed Maxwell 2/2/2015 5:06 AM Deleted: 10b

Reed Maxwell 2/2/2015 5:06 AM **Deleted:** simulation

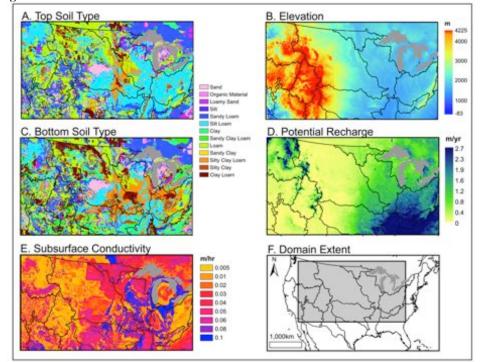
477	These presented results are a first-step in high resolution, integrated, continental-scale	
478	simulation. We simulate an unaltered, or pre-development scenario of groundwater and surface	
479	water flows, under steady-state conditions. As such, the discussion focuses on the physical	Reed
480	controls of groundwater surface water interactions and scaling behavior; however there are	Delete
481	obvious limitations to this scenario, and these simulations. Clearly reservoir management,	Reed
482	groundwater pumping, irrigation, diversion and urban expansion all shape modern hydrology.	Delete
483	Work has been undertaken to include these features within the ParFlow framework at smaller	
484	scales (Ferguson and Maxwell 2011; Ferguson and Maxwell 2012; Condon and Maxwell 2013;	
485	Condon and Maxwell 2014) and an important next step is to scale the impacts out to the	
486	continent.	
487	Additionally, the steady-state simulation does not take into consideration temporal	
488	dynamics or complex land-surface processes, also important in determining the quantity and	
489	fluxes of water. These limitations can all be addressed within the current modeling framework	
490	but require transient simulations and additional computational resources. Model performance is	
491	also limited by the quality of available input datasets. As noted throughout the discussion,	
492	existing datasets are subject to uncertainty and are clearly imperfect. As improved subsurface	
493	characterization becomes available, this information can be used to better inform models, and	Reed
494	fully understand the propagation of uncertainty in these types of numerical experiments (e.g.	Delete
495	Maxwell and Kollet 2008; Kollet 2009). However, while the magnitudes of states and fluxes may	
496	change with improved datasets, the overall trends and responses predicted here are not likely to	
497	change, within the confines of the numerical experiment. While there are always improvements	Reed
498	to be made, these simulations represent a critical first step in understanding coupled surface	Delete

Reed Maxwell 2/2/2015 5:06 AM Deleted:

- 503 subsurface hydrologic processes and scaling at continental scales resolving variances over four
- 504 for orders of spatial scales.
- 505 This study highlights the utility of high performance computing in addressing the grand
- 506 challenges in hydrological sciences and represents an important advancement in our
- 507 understanding of hydrologic scaling in continental river basins. By providing an integrated
- 508 model we open up a useful avenue of research to bridge physical processes across spatial scales
- 509 in a hydrodynamic, physics-based upscaling framework.
- 510

511 Code Availability

- 512 ParFlow is an open-source, modular, parallel integrated hydrologic platform freely available via
- 513 the GNU LPGL license agreement. ParFlow is developed by a community led by the Colorado
- 514 School of Mines and F-Z Jülich with contributors from a number of other institutions. Specific
- 515 versions of ParFlow are archived with complete documentation and may be downloaded¹ or
- 516 checked-out from a commercially hosted, free SVN repository; v3, r693 was the version used in
- 517 this study. The input data and simulations presented here will be made available and may be
- 518 obtained by contacting the lead author via email.
- 519


¹ http://inside.mines.edu/~rmaxwell/maxwell_software.shtml

Reed Maxwell 2/2/2015 5:06 AM Deleted: large Reed Maxwell 2/2/2015 5:06 AM Deleted: extent

Reed Maxwell 2/2/2015 5:06 AM Deleted:

524 Figures

525 526

Figure 1. Maps of top soil type (a), elevation (masl) (b), bottom soil type (c), potential recharge,

527 P-E, (m/y) (d), saturated hydraulic conductivity (m/h) (e) over the model domain (f).

528

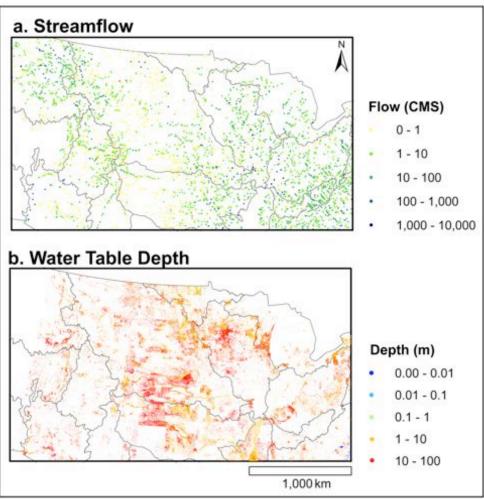
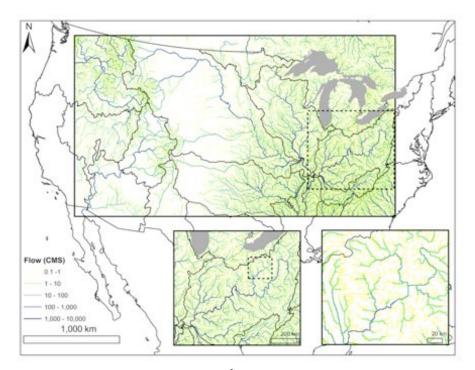
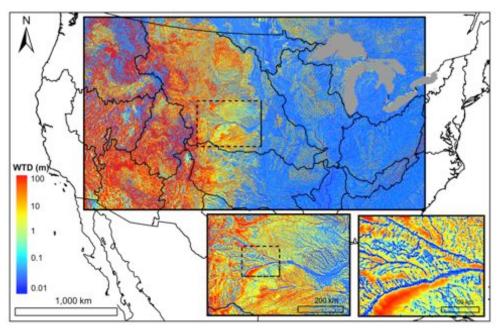
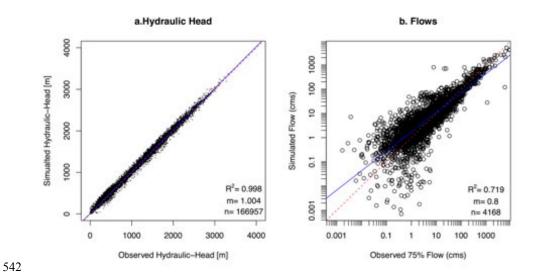
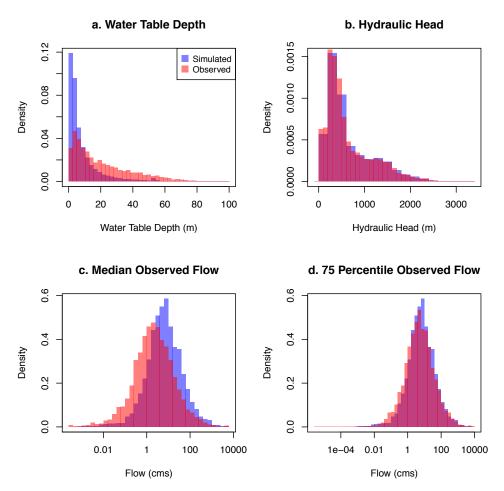


Figure 2. Plot of observed streamflow (a) and observed water table depth (b).

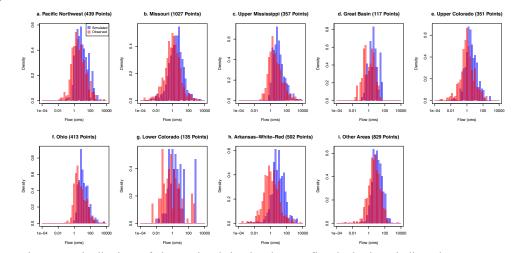



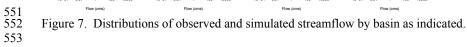

Figure 3. Map of simulated surface flow (m^3/s) over the CONUS domain with two insets zooming into the Ohio river basin. Colors represent surface flow in log scale and line widths

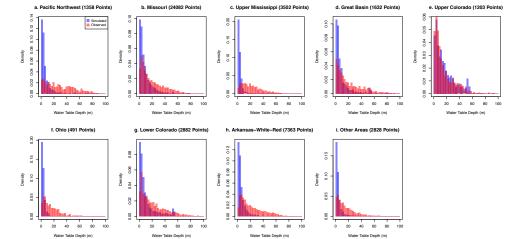
vary slightly with flow for the first two panels.



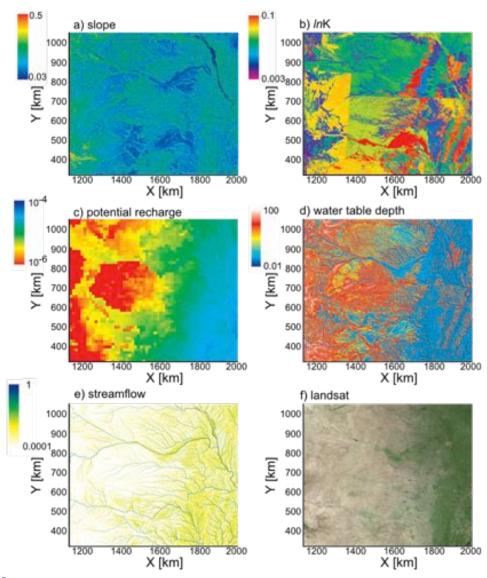
538 539 540 541 Figure 4. Map of water table depth (m) over the simulation domain with two insets zooming into the North and South Platte River basin, headwaters to the Mississippi. Colors represent depth in log scale (from 0.01 to 100m).

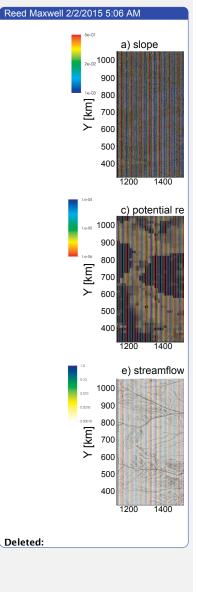

543 Figure 5. Scatterplots of simulated v. observed hydraulic head (a) and surface flow (b).

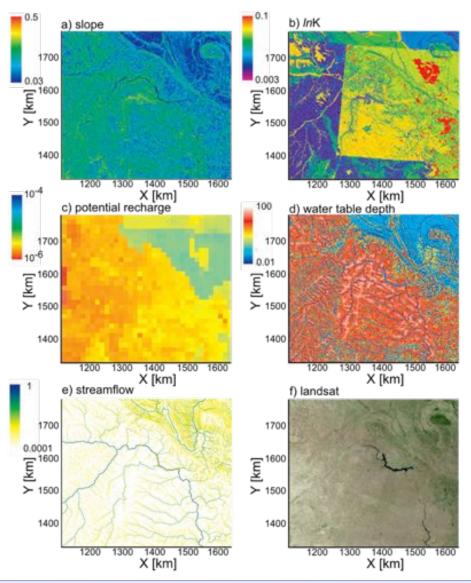


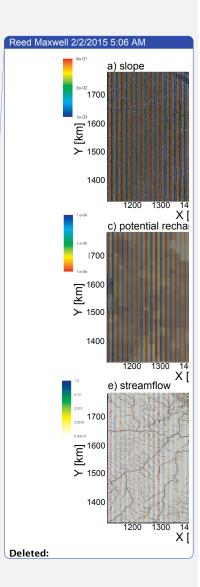


546 Figure 6. Histograms of simulated and observed water table depth (a), hydraulic head (b), median observed flow (c) and 75^{th} percentile observed flow (d).



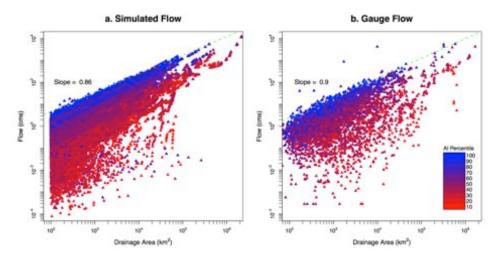



5 Figure 8. Distributions of observed and simulated water table depth by basin as indicated.

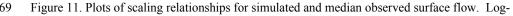


557 Figure 9. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water
table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the
Platte River basin.

Reed Maxwell 2/2/2015 5:06 AM Deleted:



564 Figure 10. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water


table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the

566 Upper Missouri basin.

568 569 570 571 572 scale plots of surface flow as a function of contributing drainage area derived from the model simulation (a) and observations (b). Individual symbols are colored by aridity index (AI) with

blue colors being humid and red colors being arid in panels (a) and (b).

573 574 575

576	
577	References
578	
579	Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan and A. Robock (2008). "Incorporating
580	water table dynamics in climate modeling: 3. Simulated groundwater influence on
581	coupled land-atmosphere variability." Journal of Geophysical Research-Atmospheres
582	113 (D7): 15,
583	Ashby, S. F. and R. D. Falgout (1996). "A parallel multigrid preconditioned conjugate gradient
584	algorithm for groundwater flow simulations." Nuclear Science and Engineering 124(1):
585	145-159,
586	Beven, K. (2004). "Robert e. Horton's perceptual model of infiltration processes." Hydrological
587	Processes 18(17): 3447-3460,
588	Bierkens, M. F. P., V. A. Bell, P. Burek, N. Chaney, L. E. Condon, C. H. David, A. de Roo, P.
589	Döll, N. Drost, J. S. Famiglietti, M. Flörke, D. J. Gochis, P. Houser, R. Hut, J. Keune, S.
590	Kollet, R. M. Maxwell, J. T. Reager, L. Samaniego, E. Sudicky, E. H. Sutanudjaja, N.
591	van de Giesen, H. Winsemius and E. F. Wood (2015). "Hyper-resolution global
592	hydrological modelling: What is next?" Hydrological Processes 29 (2): 310-320,
593	10.1002/hyp.10391
594	Camporese, M., C. Paniconi, M. Putti and S. Orlandini (2010). "Surface-subsurface flow
595	modeling with path-based runoff routing, boundary condition-based coupling, and
596	assimilation of multisource observation data." <u>Water Resources Research</u> 46(2): W02512,
597	10.1029/2008wr007536
598	Camporese, M., C. Paniconi, M. Putti and S. Orlandini (2010). "Surface-subsurface flow
599	modeling with path-based runoff routing, boundary condition-based coupling, and
600	assimilation of multisource observation data." Water Resour. Res. 46(2): W02512, doi:
601	10.1029/2008wr007536
602	Camporese, M., D. Penna, M. Borga and C. Paniconi (2014). "A field and modeling study of
603	nonlinear storage-discharge dynamics for an alpine headwater catchment." Water
604	Resources Research 50 (2): 806-822, 10.1002/2013wr013604
605	Condon, L. E. and R. M. Maxwell (2013). "Implementation of a linear optimization water
606	allocation algorithm into a fully integrated physical hydrology model." Advances in
607	Water Resources 60(0): 135-147, http://dx.doi.org/10.1016/j.advwatres.2013.07.012
608	Condon, L. E. and R. M. Maxwell (2014). "Feedbacks between managed irrigation and water
609	availability: Diagnosing temporal and spatial patterns using an integrated hydrologic
610	model." Water Resources Research 50(3): 2600-2616, 10.1002/2013wr014868
611	Condon, L. E., R. M. Maxwell and S. Gangopadhyay (2013). "The impact of subsurface
612	conceptualization on land energy fluxes." Advances in Water Resources 60(0): 188-203,
613	http://dx.doi.org/10.1016/j.advwatres.2013.08.001
614	Döll, P., H. Hoffmann-Dobrev, F. T. Portmann, S. Siebert, A. Eicker, M. Rodell, G. Strassberg
615	and B. R. Scanlon (2012). "Impact of water withdrawals from groundwater and surface
616	water on continental water storage variations." - 59,Äi60(- 0): - 156,
617	Dunne, T. (1983). "Relation of field studies and modeling in the prediction of storm runoff."
618	Journal of Hydrology 65(1,Äi3): 25-48, http://dx.doi.org/10.1016/0022-1694(83)90209-3
619	Fan, Y., H. Li and G. Miguez-Macho (2013). "Global patterns of groundwater table depth."
620	Science 339(6122): 940-943, 10.1126/science.1229881

Reed Maxwell 2/2/2015 5:06 AM

Deleted: Camporese, M., C. Paniconi, M. Putti and S. Orlandini (2010). "Surfacesubsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data." <u>Water Resour. Res.</u> 46(2): W02512, doi: 10.1029/2008wr007536.

- Fan, Y., G. Miguez-Macho, C. P. Weaver, R. Walko and A. Robock (2007). "Incorporating
 water table dynamics in climate modeling: 1. Water table observations and equilibrium
 water table simulations." Journal of Geophysical Research-Atmospheres 112(D10): -,
- Ferguson, I. M. and R. M. Maxwell (2011). "Hydrologic and land–energy feedbacks of
 agricultural water management practices." <u>Environmental Research Letters</u> 6(-1),
 doi:10.1088/1748-9326/6/1/014006
- 634 Ferguson, I. M. and R. M. Maxwell (2012). "Human impacts on terrestrial hydrology: Climate
 635 change versus pumping and irrigation." Environmental Research Letters 7(4): 044022,
- Freeze, R. A. and R. L. Harlan (1969). "Blueprint for a physically-based, digitally-simulated
 hydrologic response model." Journal of Hyrology 9: 237-258,
- Glaster, J. C. (2009). "Testing the linear relationship between peak annual river discharge and
 drainage area using long-term usgs river gauging records." <u>Geological Society of</u>
 America Special Papers **451**: 159-171, 10.1130/2009.2451(11)
- 641 Gleeson, T. and M. Cardiff (2014). "The return of groundwater quantity: A mega-scale and
 642 interdisciplinary "future of hydrogeology"?" <u>Hydrogeolgy Journal</u>: 4, 10.1007/s10040 643 013-0998-8
- 644 Gleeson, T., L. Marklund, L. Smith and A. H. Manning (2011). "Classifying the water table at
 645 regional to continental scales." <u>Geophysical Research Letters</u> 38(L05401): 6,
 646 10.1029/2010GL046427
- 647 Gleeson, T., L. Smith, N. Moosdorf, J. Hartmann, H. H. Dürr, A. H. Manning, L. P. H. van Beek
 648 and A. M. Jellinek (2011). "Mapping permeability over the surface of the earth."
 649 <u>Geophysical Research Letters</u> 38(2): L02401, 10.1029/2010gl045565
- Goderniaux, P., S. Brouyère, H. J. Fowler, S. Blenkinsop, R. Therrien, P. Orban and A.
 Dassargues (2009). "Large scale surface,äisubsurface hydrological model to assess
 climate change impacts on groundwater reserves." Journal of Hydrology 373(1,Äi2):
 122-138, http://dx.doi.org/10.1016/j.jhydrol.2009.04.017
- Horton, R. E. (1933). "The role of infiltration in the hydrologic cycle." Transactions-American
 Geophysical Union 14: 446-460,
- Jiang, X., G. Y. Niu and Z. L. Yang (2009). "Impacts of vegetation and groundwater dynamics
 on warm season precipitation over the central united states." Journal of Geophysical
 <u>Research</u> 114: 15,
- Jones, J. E. and C. S. Woodward (2001). "Newton-krylov-multigrid solvers for large-scale,
 highly heterogeneous, variably saturated flow problems." <u>Advances in Water Resources</u>
 24(7): 763-774,
- Jones, J. P., E. A. Sudicky, A. E. Brookfield and Y. J. Park (2006). "An assessment of the tracerbased approach to quantifying groundwater contributions to streamflow." <u>Water Resour.</u> Res. 42, 10.1029/2005wr004130
- Jones, J. P., E. A. Sudicky and R. G. McLaren (2008). "Application of a fully-integrated surface subsurface flow model at the watershed-scale: A case study." <u>Water Resources Research</u>
 44(3): W03407, 10.1029/2006wr005603
- Justice, C. O., J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P.
 Roy and J. T. Morisette (2002). "An overview of modis land data processing and product status." <u>Remote Sensing of Environment</u> 83(1,Äi2): 3-15,
- 671 http://dx.doi.org/10.1016/S0034-4257(02)00084-6
- 672 Kirkby, M. (1988). "Hillslope runoff processes and models." Journal of Hydrology 100(1,Äi3):
- 673 <u>315-339</u>, http://dx.doi.org/10.1016/0022-1694(88)90190-4

- Kollet, S. J. (2009). "Influence of soil heterogeneity on evapotranspiration under shallow water
 table conditions: Transient, stochastic simulations." Environmental Research Letters 4(3):
 9,
- Kollet, S. J., I. Cvijanovic, D. Schüttemeyer, R. M. Maxwell, A. F. Moene and B. P. (2009).
 "The influence of rain sensible heat, subsurface heat convection and the lower
 temperature boundary condition on the energy balance at the land surface." <u>Vadose Zone</u>
 Journal 8(4): 12.
- Kollet, S. J. and R. M. Maxwell (2006). "Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model."
 Advances in Water Resources 29(7): 945-958,
- Kollet, S. J. and R. M. Maxwell (2008). "Capturing the influence of groundwater dynamics on
 land surface processes using an integrated, distributed watershed model." <u>Water</u>
 Resources Research 44(W02402): 18, doi:10.1029/2007WR006004
- Kollet, S. J., R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken and C.
 Simmer (2010). "Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources." <u>Water Resources Research</u>
 46(W04201): -, Doi 10.1029/2009wr008730
- Krakauer, N. Y., H. Li and Y. Fan (2014). "Groundwater flow across spatial scales: Importance
 for climate modeling." Environmental Research Letters 9(3): 034003.
- Kumar, M., C. J. Duffy and K. M. Salvage (2009). "A second order accurate, finite volume
 based, integrated hydrologic modeling (fihm) framework for simulation of surface and
 subsurface flow." <u>Vadose Zone Journal</u>,
- Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier and B. Nijssen (2002). "A long-term hydrologically based dataset of land surface fluxes and states for the conterminous united states*." Journal of Climate 15(22): 3237-3251, 10.1175/1520-0442(2002)015<3237:althbd>2.0.co;2
- Maxwell, R. M. (2013). "A terrain-following grid transform and preconditioner for parallel,
 large-scale, integrated hydrologic modeling." <u>Advances in Water Resources</u> 53: 109-117,
 http://dx.doi.org/10.1016/j.advwatres.2012.10.001
- Maxwell, R. M., F. K. Chow and S. J. Kollet (2007). "The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations." <u>Advances in Water Resources</u> 30(12): 2447-2466, Doi 10.1016/J.Advwatres.2007.05.018
- Maxwell, R. M. and S. J. Kollet (2008). "Interdependence of groundwater dynamics and land energy feedbacks under climate change." <u>Nature Geosci</u> 1(10): 665-669,
- Maxwell, R. M. and S. J. Kollet (2008). "Quantifying the effects of three-dimensional subsurface
 heterogeneity on hortonian runoff processes using a coupled numerical, stochastic
 approach." Advances in Water Resources 31(5): 807-817,
- Maxwell, R. M., J. D. Lundquist, J. D. Mirocha, S. G. Smith, C. S. Woodward and A. F. B.
 Tompson (2011). "Development of a coupled groundwater-atmospheric model." <u>Monthly</u>
 <u>Weather Review</u> doi: 10.1175/2010MWR3392(139): 96-116,
- 715 Maxwell, R. M., M. Putti, S. Meyerhoff, J.-O. Delfs, I. M. Ferguson, V. Ivanov, J. Kim, O.
- 716 Kolditz, S. J. Kollet, M. Kumar, S. Lopez, J. Niu, C. Paniconi, Y.-J. Park, M. S.
- 717 Phanikumar, C. Shen, E. A. Sudicky and M. Sulis (2014). "Surface-subsurface model
- 718 intercomparison: A first set of benchmark results to diagnose integrated hydrology and
- 719 feedbacks." <u>Water Resources Research</u> **50**(2): 1531-1549, 10.1002/2013wr013725

Reed Maxwell 2/2/2015 5:06 AM Moved (insertion) [1]

- Miguez-Macho, G., Y. Fan, C. P. Weaver, R. Walko and A. Robock (2007). "Incorporating
 water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture
 simulation." Journal of Geophysical Research-Atmospheres 112(D13): -,
- 723 Mikkelson, K. M., R. M. Maxwell, I. Ferguson, J. D. Stednick, J. E. McCray and J. O. Sharp 724 (2013). "Mountain pine beetle infestation impacts: Modeling water and energy budgets at
- the hill-slope scale." <u>Ecohydrology</u> 6(1): 64-72, 10.1002/eco.278
 Osei-Kuffuor, D., R. M. Maxwell and C. S. Woodward "Improved numerical solvers for implicit
- resolution, D., R. M. Marwen and C. S. Woodward Improved numerical sorvers for i
- Osei-Kuffuor, D., R. M. Maxwell and C. S. Woodward (2014). "Improved numerical solvers for implicit coupling of subsurface and overland flow." Advances in Water Resources 74(0): 185-195, http://dx.doi.org/10.1016/j.advwatres.2014.09.006
- Qu, Y. and C. J. Duffy (2007). "A semidescrete finite volume formulation for multiprocess
 watershed simulation." <u>Water Resources Research</u> 43(W08419): 18,
 doi:10.1029/2006WR005752
- Richards, L. A. (1931). "Capillary conduction of liquids in porous mediums." <u>Physics</u> 1: 318-333,
- Rihani, J. F., R. M. Maxwell and F. K. Chow (2010). "Coupling groundwater and land surface
 processes: Idealized simulations to identify effects of terrain and subsurface
 heterogeneity on land surface energy fluxes." <u>Water Resour. Res.</u> 46: 1-14,
 doi:10.1029/2010WR009111
- Rodell, M., I. Velicogna and J. S. Famiglietti (2009). "Satellite-based estimates of groundwater
 depletion in india." <u>Nature</u> 460(7258): 999-1002,
- Rodriguez-Iturbe, I. and A. Rinaldo (2001). <u>Fractal river basins: Chance and self-organization</u>,
 Cambridge University Press.
- Schaap, M. G. and F. J. Leij (1998). "Database-related accuracy and uncertainty of pedotransfer
 functions." <u>Soil Science</u> 163(10): 765-779,
- Shi, Y., K. J. Davis, C. J. Duffy and X. Yu (2013). "Development of a coupled land surface
 hydrologic model and evaluation at a critical zone observatory." Journal of
 Hydrometeorology 14(5): 1401-1420, 10.1175/jhm-d-12-0145.1
- Sudicky, E., J. Jones, Y.-J. Park, A. Brookfield and D. Colautti (2008). "Simulating complex
 flow and transport dynamics in an integrated surface-subsurface modeling framework."
 Geosciences Journal 12(2): 107-122, 10.1007/s12303-008-0013-x
- Sulis, M., C. Paniconi, M. Marrocu, D. Huard and D. Chaumont (2012). "Hydrologic response to multimodel climate output using a physically based model of groundwater/surface water interactions." <u>Water Resources Research</u> 48(12): W12510, 10.1029/2012wr012304
- Taylor, R. G., B. Scanlon, P. Doll, M. Rodell, R. van Beek, Y. Wada, L. Longuevergne, M.
 Leblanc, J. S. Famiglietti, M. Edmunds, L. Konikow, T. R. Green, J. Chen, M. Taniguchi,
- 758 M. F. P. Bierkens, A. MacDonald, Y. Fan, R. M. Maxwell, Y. Yechieli, J. J. Gurdak, D.
- M. Allen, M. Shamsudduha, K. Hiscock, P. J. F. Yeh, I. Holman and H. Treidel (2013).
 "Ground water and climate change." Nature Clim. Change 3(4): 322-329,
- Therrien, R., E. Sudicky, Y. Park and R. McLaren (2012). Hydrogeosphere: A three-dimensional numerical modelling describing fully-
- 763 integrated subsurface and surface flow and transport. User guide. Waterloo, Ontario, Canada,
- 764 Aquanty Inc.

Reed Maxwell 2/2/2015 5:06 AM Deleted: Nir, Y. K., L. Haibin and F. Ying

Letters 9(3): 034003,

Reed Maxwell 2/2/2015 5:06 AM Moved up [1]: (2014). "Groundwater flow across spatial scales: Importance for climate modeling." Environmental Research

- van Genuchten, M. T. (1980). "A closed-form equation for predicting the hydraulic conductivity
 of unsaturated soils." Soil Science Society of America Journal 44(5): 892-898,
- VanderKwaak, J. E. and K. Loague (2001). "Hydrologic-response simulations for the r-5
 catchment with a comprehensive physics-based model." <u>Water Resources Research</u>
 37(4): 999-1013,
- Williams, J. L. and R. M. Maxwell (2011). "Propagating subsurface uncertainty to the
 atmosphere using fully-coupled, stochastic simulations." Journal of Hydrometeorology,
 doi:10.1175/2011JHM1363.1

Wood, B. D. (2009). "The role of scaling laws in upscaling." <u>Advances in Water Resources</u>
 32(5): 723-736, <u>http://dx.doi.org/10.1016/j.advwatres.2008.08.015</u>

- Wood, E. F., J. K. Roundy, T. J. Troy, L. P. H. van Beek, M. F. P. Bierkens, E. Blyth, A. de Roo,
 P. Döll, M. Ek, J. Famiglietti, D. Gochis, N. van de Giesen, P. Houser, P. R. Jaffé, S.
 Kollet, B. Lehner, D. P. Lettenmaier, C. Peters-Lidard, M. Sivapalan, J. Sheffield, A.
 Wade and P. Whitehead (2011). "Hyperresolution global land surface modeling: Meeting
 a grand challenge for monitoring earth's terrestrial water." <u>Water Resources Research</u>
- 785 **47**(5): W05301, 10.1029/2010wr010090
- Xia, Y., K. Mitchell, M. Ek, B. Cosgrove, J. Sheffield, L. Luo, C. Alonge, H. Wei, J. Meng, B.
 Livneh, Q. Duan and D. Lohmann (2012). "Continental-scale water and energy flux
 analysis and validation for north american land data assimilation system project phase 2
 (nldas-2): 2. Validation of model-simulated streamflow." Journal of Geophysical
- 790 <u>Research: Atmospheres</u> **117**(D3): D03110, 10.1029/2011jd016051
- 791 792