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Abstract 12 
Interactions between surface and groundwater systems are well-established theoretically and 13 

observationally. While numerical models that solve both surface and subsurface flow equations 14 

in a single framework (matrix) are increasingly being applied, computational limitations have 15 

restricted their use to local and regional studies. Regional or watershed-scale simulations have 16 

been effective tools in understanding hydrologic processes, however there are still many 17 

questions, such as the adaptation of water resources to anthropogenic stressors and climate 18 

variability, that need to be answered across large spatial extents at high resolution.  In response 19 

to this ‘grand challenge’ in hydrology, we present the results of a parallel, integrated hydrologic 20 

model simulating surface and subsurface flow at high spatial resolution (1km) over much of 21 

continental North America (~6,300,000 or 6.3M km2). These simulations provide integrated 22 

predictions of hydrologic states and fluxes, namely water table depth and streamflow, at very 23 

large scale and high resolution.  The physics-based modeling approach used here requires limited 24 

parameterizations and relies only on more fundamental inputs, such as topography, 25 

hydrogeologic properties and climate forcing. Results are compared to observations and provide 26 

mechanistic insight into hydrologic process interaction.  This study demonstrates both the 27 

feasibility of continental scale integrated models and their utility for improving our 28 

understanding of large-scale hydrologic systems; the combination of high resolution and large 29 

spatial extent facilitates novel analysis of scaling relationships using model outputs. 30 
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Introduction 36 

There is growing evidence of feedbacks between groundwater, surface water and soil 37 

moisture that moderate land-atmospheric energy exchanges, and impact weather and climate 38 

(Maxwell et al. 2007; Anyah et al. 2008; Kollet and Maxwell 2008; Maxwell and Kollet 2008; 39 

Jiang et al. 2009; Rihani et al. 2010; Maxwell et al. 2011; Williams and Maxwell 2011; Condon 40 

et al. 2013; Taylor et al. 2013).  While local observations and remote sensing can now detect 41 

changes in the hydrologic cycle from small to very large spatial scales (e.g. Rodell et al. 2009), 42 

theoretical approaches to connect and scale hydrologic states and fluxes from point 43 

measurements to the continental scales are incomplete. In this work, we present integrated 44 

modeling as one means to bridge this gap via numerical experiments.  45 

Though introduced as a concept in the literature almost half a century ago (Freeze and 46 

Harlan 1969), integrated hydrologic models that solve the surface and subsurface systems 47 

simultaneously have only been a reality for about a decade (VanderKwaak and Loague 2001; 48 

Jones et al. 2006; Kollet and Maxwell 2006).  Since their implementation, integrated hydrologic 49 

models have been successfully applied to a wide range of watershed-scale studies (see Table 1 in 50 

Maxwell et al. 2014) successfully capturing observed surface and subsurface behavior (Qu and 51 

Duffy 2007; Jones et al. 2008; Sudicky et al. 2008; Camporese et al. 2010; Shi et al. 2013), 52 

diagnosing stream-aquifer and land-energy interactions (Maxwell et al. 2007; Kollet and 53 

Maxwell 2008; Rihani et al. 2010; Condon et al. 2013; Camporese et al. 2014), and building our 54 

understanding of the propagation of perturbations such as land-cover and anthropogenic climate 55 

change throughout the hydrologic system (Maxwell and Kollet 2008; Goderniaux et al. 2009; 56 

Sulis et al. 2012; Mikkelson et al. 2013).  57 
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Prior to this work, computational demands and data constraints have limited the 64 

application of integrated models to regional domains.  Advances in parallel solution techniques, 65 

numerical solvers, supercomputer hardware, and additional data sources have only recently made 66 

large-scale, high-resolution simulation of the terrestrial hydrologic cycle technically feasible 67 

(Kollet et al. 2010; Maxwell 2013). As such, existing large scale studies of the subsurface have 68 

focused on modeling groundwater independently (Fan et al. 2007; Miguez-Macho et al. 2007; 69 

Fan et al. 2013) and classifying behavior with analytical functions (Gleeson et al. 2011). 70 

Similarly, continental scale modeling of surface water has utilized tools with simplified 71 

groundwater systems that do not capture lateral groundwater flow and model catchments as 72 

isolated systems (Maurer et al. 2002; Döll et al. 2012; Xia et al. 2012),despite the fact that lateral 73 

flow of groundwater has been shown to be important across scales (Krakauer et al. 2014).  While 74 

much has been learned from previous studies, the focus on isolated components within what we 75 

know to be an interconnected hydrologic system is a limitation than can only be addressed with 76 

an integrated approach. 77 

The importance of groundwater surface water interactions in governing scaling behavior 78 

of surface and subsurface flow from headwaters to the continent has yet to be fully characterized. 79 

Indeed, one of the purposes for building an integrated model is to better understand and predict 80 

the nature of hydrologic connections across scales and throughout a wide array of physical and 81 

climate settings.  Arguably, this is not possible utilizing observations, because of data scarcity 82 

and the challenges observing 3D groundwater flow across a wide range of scales. For example, 83 

the scaling behavior of river networks is well known (Rodriguez-Iturbe and Rinaldo 2001), yet 84 

open questions remain about the quantity, movement, travel time, and spatial and temporal 85 

scaling of groundwater and surface water at the continental scale. Exchange processes and flow 86 
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near the land surface are strongly non-linear, and heterogeneity in hydraulic properties exist at all 91 

spatial scales. As such, a formal framework for connecting scales in hydrology (Wood 2009) 92 

needs to account for changes in surface water and groundwater flow from the headwaters to the 93 

mouth of continental river basins. We propose that integrated, physics-based hydrologic models 94 

are a tool for providing this understanding, solving fundamental non-linear flow equations at 95 

high spatial resolution while numerically scaling these physical processes up to a large spatial 96 

extent i.e. the continent. 97 

In this study, we simulate surface and subsurface flow at high spatial resolution (1km) 98 

over much of continental North America (6.3M km2), which is itself considered a grand 99 

challenge in hydrology (e.g. Wood et al. 2011; Gleeson and Cardiff 2014). The domain is 100 

constructed entirely of available datasets including topography, soil texture and hydrogeology 101 

This simulation solves surface and subsurface flow simultaneously and takes full advantage of 102 

massively parallel, high-performance computing.  The results presented here should be viewed as 103 

a sophisticated numerical experiment, designed to diagnose physical behavior and evaluate 104 

scaling relationships. While this is not a calibrated model that is intended to match observations 105 

perfectly, we do verify that behavior is realistic by comparing to both groundwater and surface 106 

water observations. 107 

The paper is organized as follows: first a brief description of the model equations are 108 

provided including a description of the input variables and observational datasets used for model 109 

comparison; next model simulations are compared to observations in a number of ways, and then 110 

used to understand hydrodynamic characteristics and to describe scaling. 111 

 112 

 113 
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Methods 120 

The model was constructed using the integrated simulation platform ParFlow (Ashby and 121 

Falgout 1996; Jones and Woodward 2001; Kollet and Maxwell 2006) utilizing the terrain 122 

following grid capability (Maxwell 2013).  ParFlow is a physically based model that solves both 123 

the surface and subsurface systems simultaneously. In the subsurface ParFlow solves the mixed 124 

form of Richards’ equation for variably saturated flow (Richards 1931) in three spatial 125 

dimensions given as:  126 

!!!! ℎ !!
!" + !"! ℎ !!! !

!" = ∇ ∙ !+ !!(!, !) (1)  127 

where the flux term q [LT-1] is based on Darcy’s law:  128 

 ! = −!! ! !! ℎ ∇ ℎ + ! cos!! + sin!!  (2) 129 

In these expressions, h is the pressure head [L]; z is the elevation with the z-axis specified as 130 

upward [L]; Ks(x) is the saturated hydraulic conductivity tensor [LT-1]; kr is the relative 131 

permeability [-]; Ss is the specific storage [L-1]; φ is the porosity [-]; Sw is the relative saturation [-132 

]; qr is a general source/sink term that represents transpiration, wells, and other fluxes [T-1]; and 133 

θ [-] is the local angle of slope, in the x and y directions and may be written as 134 

 !! = tan!! !! and !! = tan!! !!. Note that we assume that density and viscosity are both 135 

constant, although ParFlow can simulate density and viscosity-dependent flow (Kollet et al. 136 

2009).  The van Genuchten (1980) relationships are used to describe the relative saturation and 137 

permeability functions (Sw(h) and kr(h) respectively).  These functions are highly nonlinear and 138 

characterize changes in saturation and permeability with pressure. 139 

 Overland flow is represented in ParFlow by the two-dimensional kinematic wave 140 

equation resulting from application of continuity conditions for pressure and flux (Kollet and 141 

Maxwell 2006):  142 
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! ∙ −!! ! !! ℎ ∙ ∇ ℎ + ! = ! !,!
!" − ∇ ∙ ℎ, 0 !!" + !!!(!) (3) 147 

In this equation vsw  is the two-dimensional, depth-averaged surface water velocity [LT-1] given 148 

by manning’s equation; h is the surface ponding depth [L] the same h as is shown in Equation 1. 149 

Note that ℎ, 0  indicates the greater value of the two quantities in Equation 3.  This means that 150 

if h < 0 the left hand side of this equation represents vertical fluxes (e.g. in/exfiltration) across 151 

the land surface boundary and is equal to qr(x) and a general source/sink (e.g. rainfall, ET) rate 152 

[LT-1] with λ being a constant equal to the inverse of the vertical grid spacing [L-1]. This term is 153 

then entirely equivalent to the source/sink term shown in Equation 1 at the ground surface where 154 

k is the unit vector in the vertical, again defining positive upward coordinates.  If h > 0 then the 155 

terms on the right hand side of Equation 3 are active water that is routed according to surface 156 

topography (Kollet and Maxwell 2006). 157 

 The nonlinear, coupled equations of surface and subsurface flow presented above are 158 

solved in a fully-implicit manner using a parallel Newton-Krylov approach (Jones and 159 

Woodward 2001; Kollet and Maxwell 2006; Maxwell 2013). Utilizing a globally-implicit 160 

solution allows for interactions between the surface and subsurface flow system to be explicitly 161 

resolved. While this yields a very challenging computational problem, ParFlow is able to solve 162 

large complex systems by utilizing a multigrid preconditioner (Osei-Kuffuor et al. ; Ashby and 163 

Falgout 1996) and taking advantage of highly scaled parallel efficiency out to more than 1.6 x 164 

104 processors (Kollet et al. 2010; Maxwell 2013).   165 

Physically this means that ParFlow solves saturated subsurface flow (i.e. groundwater), 166 

unsaturated subsurface flow (i.e. the vadose zone) and surface flow (i.e. streamflow) in a 167 

continuum approach within a single matrix. Thus, complete non-linear interactions between all 168 

system components are simulated without a priori specification of what types of flow occur in 169 
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any given portion of the grid.  Streams form purely based on hydrodynamic principles governed 191 

by recharge, topography, hydraulic conductivity and flow parameters, when water is ponded due 192 

to either excess infiltration (surface fluxes exceed the infiltration capacity, e.g. Horton 1933) or 193 

excess saturation (subsurface exfiltration to the surface system, e.g. Dunne 1983) for further 194 

discussion see Kirkby (1988) and Beven (2004) for example. Groundwater converges in 195 

topographic depressions and unsaturated zones may be shallow or deep depending upon recharge 196 

and lateral flows.  197 

 The physically based approach used by ParFlow is similar to other integrated hydrologic 198 

models such as Hydrogeosphere (Therrien et al. 2012), PIHM (Kumar et al. 2009) and CATHY 199 

(Camporese et al. 2010). This is a distinct contrast to more conceptually-based models that may 200 

not simulate lateral groundwater flow or simplify the solution of surface and subsurface flow by 201 

defining regions of groundwater or the stream-network prior to the simulation. In such models, 202 

groundwater surface water interactions are often captured as one-way exchanges (i.e. surface 203 

water loss to groundwater) or parameterized with simple relationships (i.e. functional 204 

relationships to impose the relationship between stream head and baseflow). The integrated 205 

approach used by ParFlow eliminates the need for such assumptions and allows the 206 

interconnected groundwater surface water systems to evolve dynamically based only on the 207 

governing equations and the properties of the physical system.  The approach used here requires 208 

robust numerical solvers (Maxwell 2013; Osei-Kuffuor et al. 2014) and exploits high-209 

performance computing (Kollet et al. 2010) to achieve high resolution, large extent simulations. 210 

 211 

 212 

 213 
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Domain Setup 218 

In this study, the model and numerical experiment was directed at the Continental US 219 

(CONUS) using the terrain following grid framework (Maxwell 2013) for a total thickness of 220 

102m over 5 model layers. The model was implemented with a lateral resolution of 1km with 221 

nx=3342, ny=1888 and five vertical layers with 0.1, 0.3, 0.6, 1.0 and 100m discretization for a 222 

total model dimensions of 3,342 by 1,888 by 0.102 km and 31,548,480 total compute cells.  The 223 

model domain and input data sets are shown in Figure 1. All model inputs were re-projected to 224 

have an equal cell-size of 1x1km as shown in Figure 1.  Topographic slopes (Sx and Sy) were 225 

calculated from the Hydrosheds digital elevation model (Figure 1b) and were processed using the 226 

r.watershed package in the GRASS GIS platform.  Surface roughness values were constant 10-5 227 

[h m-1/3] outside of the channels and varied within the channel as a function of average 228 

watershed slope.  Over the top 2m of the domain, hydraulic properties from soil texture 229 

information of SSURGO were applied and soil properties were obtained from Schaap and Leij 230 

(1998) .  Note that two sets of soil categories were available. The upper horizon was applied over 231 

the top 1m (the top three model layers) and the bottom one over the next 1m (the fourth model 232 

layer).  Figures 1a and c show the top and bottom soil layers of the model. The deeper subsurface 233 

(i.e. below 2m) was constructed from a global permeability map developed by Gleeson et al. 234 

(2011). These values (Gleeson et al. 2011) were adjusted to reduce variance (Condon and 235 

Maxwell 2013; Condon and Maxwell 2014) and to reflect changes in topography using the e-236 

folding relationship empirically-derived in (Fan et al. 2007): ! = !!
!"
!  where ! = !

!!!∗ !!!!!!!
 237 

. For this analysis a=20, b=125 and the value of 50 [m] was chosen to reflect the midpoint of the 238 

deeper geologic layer in the model.  Larger values of α reduced the hydraulic conductivity 239 

categorically, that is by decreasing the hydraulic conductivity indicator values in regions of 240 
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steeper slope. Figure 1e maps the final conductivity values used for simulation.  Note that this 244 

complex subsurface dataset is assembled from many sources and is subject to uncertainty.  As 245 

such there are breaks across dataset boundaries, commonly at State or Province and International 246 

political delineations. The fidelity and resolution of the source information used to formulate this 247 

dataset also changes across these boundaries yielding some interfaces in property values. 248 

All input datasets are a work in progress and should be continually improved.  However, 249 

we feel it is important to continue numerical experiments with the data that is currently available, 250 

while keeping in mind the limitations associated with every model input.  Shortcomings in 251 

hydrogeological data sets reflect the lack of detailed unified hydrogeological information that 252 

can be applied in high resolution continental models. This constitutes a significant source of 253 

uncertainty, which needs to be assessed, quantified and ultimately reduced in order to arrive at 254 

precise predictions. Still, it should be noted that the purpose of this work is to demonstrate the 255 

feasibility of integrated modeling to explicitly represent processes across many scales of spatial 256 

variability. By focusing on large-scale behaviors and relationships we limit the impact uncertain 257 

inputs.  258 

No-flow boundary conditions were imposed on all sides of the model except the land 259 

surface, where the free-surface overland flow boundary condition was applied.  For the surface 260 

flux, a Precipitation-Evapotranspiration (P-E, or potential recharge) product was derived from a 261 

combination of precipitation and model-simulated evaporation and transpiration fluxes for a 262 

product very similar to Maurer et al. (2002), shown in Figure 1d.  The model was initialized dry 263 

and the P-E forcing was applied continuously at the land surface until the balance of water 264 

(difference between total outflow and P-E) was less than 3% of storage.  For all simulations a 265 
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nonlinear tolerance of 10-5 and a linear tolerance of 10-10 were used to ensure proper model 274 

convergence. 275 

While this study employs state of the art modeling techniques, it is important to note that 276 

the numerical simulation of this problem is far from being trivial. Simulations were split over 277 

128 divisions in the x-direction and 128 in the y-direction and run on 16,384 compute-cores of an 278 

IBM BG/Q supercomputer (JUQUEEN) located at the Jülich Supercomputing Centre, Germany.  279 

These processor splits resulted in approximately 2,000 unknowns per compute core; a relatively 280 

small number, yet ParFlow’s scaling was still good (better than 60% efficiency) due to the non-281 

symmetric preconditioner used (Maxwell 2013). The reason for this is the special architecture of 282 

JUQUEEN with only 256MB of memory per core and relatively slow clock rate. Additionally, 283 

code performance was improved using efficient preconditioning of the linear system (Osei-284 

Kuffuor et al.). The steady-state flow field was accomplished over several steps. Artificial 285 

dampening was applied to the overland flow equations early in the simulation during water table 286 

equilibration. Dampening was subsequently decreased and removed entirely as simulation time 287 

progressed.  Large time steps (10,000h) were used initially and were decreased (to 1h) as the 288 

stream network formed and overland flow became more pronounced with reduced dampening.  289 

The entire simulation utilized approximately 2.5M core hours of compute time, which resulted in 290 

less than 1 week of wall-clock time (approximately 150 hours) given the large core counts and 291 

batch submission process. 292 

 Model results were checked for plausibility against available observations of streamflow 293 

and hydraulic head (the sum of pressure head and gravitational potential). Observed streamflow 294 

values were extracted from a spatial dataset of current and historical U.S. Geological Survey 295 

(USGS) stream gages mapped to the National Hydrography Dataset (NHD) (Stewart et al., 296 

Reed Maxwell� 2/2/2015 5:06 AM
Deleted: still non-297 

Reed Maxwell� 2/2/2015 5:06 AM
Deleted: validated298 



 

11 

2006). The entire dataset includes roughly 23,000 stations, of which just over half (13,567) fall 299 

within the CONUS domain.  For each station, the dataset includes location, drainage area, 300 

sampling time period and flow characteristics including minimum, maximum, mean and a range 301 

of percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) compiled from the USGS gage 302 

records.  For comparison, stations without a reported drainage area, stations not located on or 303 

adjacent to a river cell in ParFlow, and stations whose drainage area were not within twenty 304 

percent of the calculated ParFlow drainage area were filtered out. This resulted in 4,736 stations 305 

for comparison.  The 50th percentile values for these stations are shown in Figure 2a.  Note that 306 

these observations are not naturalized, i.e. no attempt is made to remove dams and diversions 307 

along these streams and rivers, however some of these effects will be minimized given the longer 308 

temporal averages.  Hydraulic head observations of groundwater at more than 160,000 locations 309 

were assembled by Fan et al.  (Fan et al. 2007; Fan et al. 2013). Figure 2b plots the 310 

corresponding water table depth at each location calculated as the difference between elevation 311 

and hydraulic head. Note that these observations include groundwater pumping (most wells are 312 

drilled for extraction rather than purely observation). 313 

 314 

Results and Discussion 315 

Figures 3 and 4 plot simulated streamflow and water table depth, respectively, over much 316 

of continental North America, both on a log scale for flow (Figure 3) and water table depth 317 

(Figure 4). Figure 3 shows a complex stream network with flow rates spanning many orders of 318 

magnitude. Surface flows originate in the headwaters (or recharge zones) creating tributaries that 319 

join to form the major river systems in North America. Note, as discussed previously that the 320 

locations for flowing streams are not enforced in ParFlow but form due to ponded water at the 321 
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surface (i.e. values of h>0 in the top layer of the model in Equations 1-3).  Overland flow is 325 

promoted both by topographic convergence, and surface and subsurface flux; however, with this 326 

formulation there is no requirement that all potential streams support flow. Thus, the model 327 

captures the generation of the complete stream network without specifying the presence and 328 

location of rivers in advance, but rather by allowing channelized flow to evolve as a result of 329 

explicitly simulated non-linear physical processes.   330 

The insets in Figure 3 demonstrate multiscale detail ranging from the continental river 331 

systems to the first-order headwaters. In Figure 4, water table depth also varies over five orders 332 

of magnitude.  Whereas aridity drives large-scale differences in water table depth (Figure 1d), at 333 

smaller scales, lateral surface and subsurface flow processes clearly dominate recharge and 334 

subsurface heterogeneity (see insets to Figure 4).  Water tables are deeper in the more arid 335 

western regions, and shallower in the more humid eastern regions of the model.  However, areas 336 

of shallow water table exist along arid river channels and water table depths greater than 10m 337 

exist in more humid regions.  Note that this is a pre-development simulation, thus, results do not 338 

include any anthropogenic water management features such as groundwater pumping, surface 339 

water reservoirs, irrigation or urbanization—all of which are present in the observations.  Many 340 

of these anthropogenic impacts have been implemented into the ParFlow modeling framework 341 

(Ferguson and Maxwell 2011; Condon and Maxwell 2013; Condon and Maxwell 2014).  While 342 

anthropogenic impacts are clearly influential on water resources, a baseline simulation allows for 343 

a comparison between the altered and unaltered systems in future. 344 

Next we compare the results of the numerical experiment to observations. As noted 345 

previously, this is not a calibrated model. Therefore, the purpose of these comparisons is to 346 

provide a plausibility check of model behavior and physical processes. Figure 5 plots observed 347 
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and simulated hydraulic head and streamflow for the dataset shown in Figure 2.  Hydraulic head 350 

(Figure 5a) is plotted (as opposed to water table depth) as it is the motivating force for lateral 351 

flow in the simulation; it includes both the topography and pressure influences on the final 352 

solution.  We see a very close agreement between observations and model simulations, though 353 

given the large range in hydraulic heads the goodness of fit may be somewhat driven by the 354 

underlying topography.  Additional metrics and comparisons are explored below.  Simulated 355 

streamflow (Figure 5b) also agrees closely with observations.  There is some bias, particularly 356 

for smaller flows (which we emphasize by plotting in log scale), which also exhibit more scatter 357 

than larger flows, and are likely due to the 1km grid resolution employed here.  Larger flows are 358 

more integrated measures of the system and might be less sensitive to resolution or local 359 

heterogeneity in model parameters.  We see this when linear least squared statistics are computed 360 

where the R2 value increases to 0.8. 361 

Figure 6 plots histograms of predicted and observed water table depth (a), hydraulic head 362 

(b), median (50th percentile) flow and 75th percentile flows (c-d). The hydraulic head shows 363 

good agreement between simulated and observed (Figure 6b).  While hydraulic head is the 364 

motivation for lateral flow and has been used in prior comparisons (e.g. Fan et al 2007) both 365 

observed and simulated values are highly dependent on the local elevation.  Figure 6a plots the 366 

water table depth below ground surface, or the difference between local elevation and 367 

groundwater.  Here we see the simulated water table depths are shallower than the observed, 368 

something observed in prior simulations of large-scale water table depth (Fan et al 2013).  The 369 

observed water tables may include anthropogenic impacts, namely groundwater pumping, while 370 

the model simulations do not and this is a likely cause for this difference.  Also, because 371 

groundwater wells are usually installed for extraction purposes there is no guarantee that the 372 
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groundwater observations are an unbiased sample of the system as a whole. Figure 6c plots the 376 

steady-state derived flow values compared to median observed flow values and Figure 6d plots 377 

these same steady-state simulated flows compared to the 75th percentile of the observed transient 378 

flow at each station.  While the ParFlow model provides a robust representation of runoff 379 

generation processes, the steady-state simulations average event flows.  We see the model 380 

predicts greater flow than the 50th percentile observed flows (Figure 6c) and good agreement 381 

between the model simulations and the 75th percentile observed flows (Figure 6d).  This 382 

indicates a potentially wet bias in the forcing, which might also explain the shallower water table 383 

depths. 384 

 Figures 7 and 8 compare observed and simulated flows and water table depths for each of 385 

the major basin encompassed by the model.  Water tables are generally predicted to be shallower 386 

in the model than observations with the exception of the Upper and Lower Colorado which 387 

demonstrate better agreement between model simulations and observations than other basins.  388 

These histograms agree with a visual inspection of Figures 2b and 4 which also indicate deeper 389 

observed water tables. Figure 8 indicates that simulated histograms of streamflow also predict 390 

more flow than the observations.  This might indicate that the P-E forcing is too wet.  However, 391 

a comparison of streamflow for the Colorado Watershed, where water table depths agree (Figure 392 

8 e and g) and flows are overpredicted (Figure 7 e and g), indicates a more complex set of 393 

interactions than basic water balance driven by forcing. 394 

 To better diagnose model processes, model inputs are compared with model simulation 395 

outputs over example regions chosen to isolate the impact of topographic slope, forcing and 396 

hydraulic conductivity on subsurface-surface water hydrodynamics. We do this as a check to see 397 

if and how this numerical experiment compares to real observations.  It is important to use a 398 
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range of measures of success that might be different from that used in a model calibration where 400 

inadequacies in model parameters and process might be muted while tuning the model to better 401 

match observations.  Figure 9 juxtaposes slope, potential recharge, surface flow, water table 402 

depth, hydraulic conductivity and a satellite image composite also at 1km resolution (the NASA 403 

Blue Marble image, (Justice et al. 2002)) and facilitates a visual diagnosis of control by the three 404 

primary model inputs.  While the model was run to steady-state and ultimately all the potential 405 

recharge has to exit the domain as discharge, the distribution and partitioning between 406 

groundwater and streams depends on the slope and hydraulic conductivity.  Likewise, while 407 

topographic lows create the potential for flow convergence, it is not a model requirement that 408 

these will develop into stream loci.  Figure 9 demonstrates some of these relationships quite 409 

clearly over a portion of the model that transitions from semi-arid to more humid conditions as 410 

the North and South Platte River systems join the Missouri. As expected changes in slope yield 411 

flow convergence, however, this figure also shows that as recharge increases from west to east 412 

(X > 1700 km, panel c) the model generally predicts shallower water tables and greater stream 413 

density (panels d and e, respectively).  Conversely, in localized areas of decreased P-E (e.g. 700  414 

< Y < 900 km specifically south of the Platte River) water tables increase and stream densities 415 

decrease.  The satellite image (panel f) shows increases in vegetation that correspond to 416 

shallower water tables and increased stream density. 417 

Hydraulic conductivity also has a significant impact on water table depth and stream 418 

network density. In areas of greater recharge in the eastern portion of Figure 9c, regions with 419 

larger hydraulic conductivity (panel b) show decreased stream network density and increased 420 

water table depths. This is more clearly demonstrated in Figure 10 (a region in the upper 421 

Missouri) where, except for the northeast corner, recharge is uniformly low.  Slopes are also 422 
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generally low (panel a), yet hydraulic conductivities show a substantial increase due to a change 425 

in datasets between state and country boundaries (panel b, X > 1250km, Y > 1400 km). The 426 

relative increase in hydraulic conductivity decreases hydraulic gradients under steady state 427 

conditions and generally increases water table depth, which in turn decreases stream network 428 

density.  This change in hydraulic conductivity yields a decrease in the formation of stream 429 

networks resulting in an increase in water table depth.  Thus, hydraulic conductivity has an 430 

important role in partitioning moisture between surface and subsurface flow, also under steady-431 

state conditions.  While mass balance requires that overall flow must be conserved, larger 432 

conductivity values allow this flow to be maintained within the subsurface while lower 433 

conductivities force the surface stream network to maintain this flow.  In turn, stream networks 434 

connect regions of varying hydrodynamic conditions and may result in locally infiltrating 435 

conditions creating a losing-stream to recharge groundwater.  This underscores the connection 436 

between input variables and model predictions, an equal importance of hydraulic conductivity to 437 

recharge in model states and the need to continually improve input datasets. 438 

 Finally, the connection between stream flow and drainage area is a classical scaling 439 

relationship (Rodriguez-Iturbe and Rinaldo 2001), which usually takes the power law form 440 

Q=kAn, where Q is volumetric streamflow [L3T-1], A is the contributing upstream area [L2] and k 441 

[LT-1] and n are empirical constants.  While this relationship has been demonstrated for 442 

individual basins and certain flow conditions (Rodriguez-Iturbe and Rinaldo 2001), generality 443 

has not been established (Glaster 2009).  Figure 11a plots simulated streamflow as a function of 444 

associated drainage area on log-log axes, and Figure 11b plots the same variables for median 445 

observed streamflow from more than 4,000 gaging stations. While no single functional 446 

relationship is evident from this plot, there is a striking maximum limit of flow as a function of 447 
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drainage area with a continental scaling coefficient of n = 0.84. Both Figures 11a and b are 451 

colored by aridity index (AI), the degree of dryness of a given location. Color gradients that 452 

transition from blue (more humid) to red (more arid) show that humid basins fall along the 453 

maximum flow-discharge line, while arid basins have less discharge and fall below this line. For 454 

discharge observations (Figure 11b) the same behavior is observed, where more humid stations 455 

fall along the n=0.9 line and more arid stations fall below this line. Essentially this means that in 456 

humid locations, where water is not a limiting factor, streamflow scales most strongly with 457 

topography and area. Conversely arid locations fall below this line because flow to streams is 458 

limited by groundwater storage. 459 

 460 

Conclusions 461 

Here we present the results of an integrated, multiphysics-based hydrologic simulation 462 

covering much of Continental North America at hyperresolution (1km). This numerical 463 

experiment provides a consistent theoretical framework for the analysis of groundwater and 464 

surface water interactions and scaling from the headwaters to continental scale (100-107 km2).  465 

The framework exploits high performance computing to meet this grand challenge in hydrology 466 

(Wood et al. 2011; Gleeson and Cardiff 2014; Bierkens et al. 2015). We demonstrate that 467 

continental-scale, integrated hydrologic models are feasible and can reproduce observations and 468 

the essential features of streamflow and groundwater. Results show that scaling of surface flow 469 

is related to both drainage area and aridity. These results may be interrogated further to 470 

understand the role of topography, subsurface properties and climate on groundwater table and 471 

streamflow, and used as a platform to diagnose scaling behavior, e.g. surface flow from the 472 

headwaters to the continent. 473 
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These presented results are a first-step in high resolution, integrated, continental-scale 477 

simulation.  We simulate an unaltered, or pre-development scenario of groundwater and surface 478 

water flows under steady-state conditions.  As such, the discussion focuses on the physical 479 

controls of groundwater surface water interactions and scaling behavior; however there are 480 

obvious limitations to this scenario and these simulations.  Clearly reservoir management, 481 

groundwater pumping, irrigation, diversion and urban expansion all shape modern hydrology. 482 

Work has been undertaken to include these features within the ParFlow framework at smaller 483 

scales (Ferguson and Maxwell 2011; Ferguson and Maxwell 2012; Condon and Maxwell 2013; 484 

Condon and Maxwell 2014) and an important next step is to scale the impacts out to the 485 

continent. 486 

Additionally, the steady-state simulation does not take into consideration temporal 487 

dynamics or complex land-surface processes, also important in determining the quantity and 488 

fluxes of water.  These limitations can all be addressed within the current modeling framework 489 

but require transient simulations and additional computational resources.  Model performance is 490 

also limited by the quality of available input datasets. As noted throughout the discussion, 491 

existing datasets are subject to uncertainty and are clearly imperfect.  As improved subsurface 492 

characterization becomes available, this information can be used to better inform models and 493 

fully understand the propagation of uncertainty in these types of numerical experiments  (e.g. 494 

Maxwell and Kollet 2008; Kollet 2009). However, while the magnitudes of states and fluxes may 495 

change with improved datasets, the overall trends and responses predicted here are not likely to 496 

change within the confines of the numerical experiment.  While there are always improvements 497 

to be made, these simulations represent a critical first step in understanding coupled surface 498 
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subsurface hydrologic processes and scaling at continental scales resolving variances over four 503 

for orders of spatial scales.  504 

This study highlights the utility of high performance computing in addressing the grand 505 

challenges in hydrological sciences and represents an important advancement in our 506 

understanding of hydrologic scaling in continental river basins. By providing an integrated 507 

model we open up a useful avenue of research to bridge physical processes across spatial scales 508 

in a hydrodynamic, physics-based upscaling framework. 509 

 510 

Code Availability 511 

ParFlow is an open-source, modular, parallel integrated hydrologic platform freely available via 512 

the GNU LPGL license agreement.  ParFlow is developed by a community led by the Colorado 513 

School of Mines and F-Z Jülich with contributors from a number of other institutions.  Specific 514 

versions of ParFlow are archived with complete documentation and may be downloaded1 or 515 

checked-out from a commercially hosted, free SVN repository; v3, r693 was the version used in 516 

this study.  The input data and simulations presented here will be made available and may be 517 

obtained by contacting the lead author via email. 518 

  519 

                                                
1 http://inside.mines.edu/~rmaxwell/maxwell_software.shtml 
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 523 

Figures 524 

 525 
Figure 1.  Maps of top soil type (a), elevation (masl) (b), bottom soil type (c), potential recharge, 526 

P-E, (m/y) (d), saturated hydraulic conductivity (m/h) (e) over the model domain (f). 527 

  528 
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 529 
Figure 2. Plot of observed streamflow (a) and observed water table depth (b). 530 
  531 
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 532 
Figure 3. Map of simulated surface flow (m3/s) over the CONUS domain with two insets 533 
zooming into the Ohio river basin.  Colors represent surface flow in log scale and line widths 534 
vary slightly with flow for the first two panels.  535 
  536 
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 537 
Figure 4. Map of water table depth (m) over the simulation domain with two insets zooming into 538 
the North and South Platte River basin, headwaters to the Mississippi.  Colors represent depth in 539 
log scale (from 0.01 to 100m).  540 
  541 
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 542 

Figure 5.  Scatterplots of simulated v. observed hydraulic head (a) and surface flow (b). 543 

  544 



 

25 

 545 
Figure 6. Histograms of simulated and observed water table depth (a), hydraulic head (b), 546 
median observed flow (c) and 75th percentile observed flow (d). 547 
  548 
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 549 
 550 

 551 
Figure 7.  Distributions of observed and simulated streamflow by basin as indicated. 552 
  553 
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 554 
Figure 8. Distributions of observed and simulated water table depth by basin as indicated. 555 

a. Pacific Northwest (1358 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Simulated
Observed

b. Missouri (24082 Points)

Water Table Depth (m)

De
ns

ity
0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

c. Upper Mississippi (3502 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

d. Great Basin (1632 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

e. Upper Colorado (1203 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

f. Ohio (491 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

g. Lower Colorado (2882 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

h. Arkansas−White−Red (7363 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

i. Other Areas (2828 Points)

Water Table Depth (m)

De
ns

ity

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15



 

28 

 556 
Figure 9. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water 557 
table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the 558 
Platte River basin. 559 
 560 
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 563 
Figure 10. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water 564 
table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the 565 
Upper Missouri basin. 566 
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 568 
Figure 11. Plots of scaling relationships for simulated and median observed surface flow.  Log-569 
scale plots of surface flow as a function of contributing drainage area derived from the model 570 
simulation (a) and observations (b). Individual symbols are colored by aridity index (AI) with 571 
blue colors being humid and red colors being arid in panels (a) and (b). 572 
 573 
 574 
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