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Abstract 12 
Interactions between surface and groundwater systems are well-established theoretically and 13 

observationally. While numerical models that solve both surface and subsurface flow equations 14 

in a single framework (matrix) are increasingly being applied, computational limitations have 15 

restricted their use to local and regional studies. Regional or watershed-scale simulations have 16 

been effective tools for understanding hydrologic processes; however there are still many 17 

questions, such as the adaptation of water resources to anthropogenic stressors and climate 18 

variability, that can only be answered across large spatial extents at high resolution.  In response 19 

to this ‘grand challenge’ in hydrology, we present the results of a parallel, integrated hydrologic 20 

model simulating surface and subsurface flow at high spatial resolution (1km) over much of 21 

continental North America (~6,300,000 km2). These simulations provide integrated predictions 22 

of hydrologic states and fluxes, namely water table depth and streamflow, at very large scale and 23 

high resolution.  The physics-based modeling approach used here requires limited 24 

parameterizations and relies only on more fundamental inputs, such as topography, 25 

hydrogeologic properties and climate forcing. Results are compared to observations and provide 26 

mechanistic insight into hydrologic process interaction.  This study demonstrates both the 27 

feasibility of continental scale integrated models and their utility for improving our 28 

understanding of large-scale hydrologic systems; the combination of high resolution and large 29 

spatial extent facilitates analysis of scaling relationships using model outputs. 30 
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Introduction 31 

There is growing evidence of feedbacks between groundwater, surface water and soil 32 

moisture that moderate land-atmospheric energy exchanges, and impact weather and climate 33 

(Maxwell et al. 2007; Anyah et al. 2008; Kollet and Maxwell 2008; Maxwell and Kollet 2008; 34 

Jiang et al. 2009; Rihani et al. 2010; Maxwell et al. 2011; Williams and Maxwell 2011; Condon 35 

et al. 2013; Taylor et al. 2013).  While local observations and remote sensing can now detect 36 

changes in the hydrologic cycle from small to very large spatial scales (e.g. Rodell et al. 2009), 37 

theoretical approaches to connect and scale hydrologic states and fluxes from point 38 

measurements to the continental scales are incomplete. In this work, we present integrated 39 

modeling as one means to address this need via numerical experiments.  40 

Though introduced as a concept in the literature almost half a century ago (Freeze and 41 

Harlan 1969), integrated hydrologic models that solve the surface and subsurface systems 42 

simultaneously have only been a reality for about a decade (VanderKwaak and Loague 2001; 43 

Jones et al. 2006; Kollet and Maxwell 2006).  Since their implementation, integrated hydrologic 44 

models have been successfully applied to a wide range of watershed-scale studies (see Table 1 in 45 

Maxwell et al. 2014) successfully capturing observed surface and subsurface behavior (Qu and 46 

Duffy 2007; Jones et al. 2008; Sudicky et al. 2008; Camporese et al. 2010; Shi et al. 2013), 47 

diagnosing stream-aquifer and land-energy interactions (Maxwell et al. 2007; Kollet and 48 

Maxwell 2008; Rihani et al. 2010; Condon et al. 2013; Camporese et al. 2014), and building our 49 

understanding of the propagation of perturbations such as land-cover and anthropogenic climate 50 

change throughout the hydrologic system (Maxwell and Kollet 2008; Goderniaux et al. 2009; 51 

Sulis et al. 2012; Mikkelson et al. 2013).  52 
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Prior to this work, computational demands and data constraints have limited the 53 

application of integrated models to regional domains.  Advances in parallel solution techniques, 54 

numerical solvers, supercomputer hardware, and additional data sources have only recently made 55 

large-scale, high-resolution simulation of the terrestrial hydrologic cycle technically feasible 56 

(Kollet et al. 2010; Maxwell 2013). As such, existing large scale studies of the subsurface have 57 

focused on modeling groundwater independently (Fan et al. 2007; Miguez-Macho et al. 2007; 58 

Fan et al. 2013) and classifying behavior with analytical functions (Gleeson et al. 2011). 59 

Similarly, continental scale modeling of surface water has utilized tools with simplified 60 

groundwater systems that do not capture lateral groundwater flow and model catchments as 61 

isolated systems (Maurer et al. 2002; Döll et al. 2012; Xia et al. 2012), despite the fact that 62 

lateral flow of groundwater has been shown to be important across scales (Krakauer et al. 2014).  63 

While much has been learned from previous studies, the focus on isolated components within 64 

what we know to be an interconnected hydrologic system is a limitation than can only be 65 

addressed with an integrated approach. 66 

The importance of groundwater-surface water interactions in governing scaling behavior 67 

of surface and subsurface flow from headwaters to the continent has yet to be fully characterized. 68 

Indeed, one of the purposes for building an integrated model is to better understand and predict 69 

the nature of hydrologic connections across scales and throughout a wide array of physical and 70 

climate settings.  Arguably, this is not possible utilizing observations, because of data scarcity 71 

and the challenges observing 3D groundwater flow across a wide range of scales. For example, 72 

the scaling behavior of river networks is well known (Rodriguez-Iturbe and Rinaldo 2001), yet 73 

open questions remain about the quantity, movement, travel time, and spatial and temporal 74 

scaling of groundwater and surface water at the continental scale. Exchange processes and flow 75 
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near the land surface are strongly non-linear, and heterogeneity in hydraulic properties exist at all 76 

spatial scales. As such, a formal framework for connecting scales in hydrology (Wood 2009) 77 

needs to account for changes in surface water and groundwater flow from the headwaters to the 78 

mouth of continental river basins. We propose that integrated, physics-based hydrologic models 79 

are a tool for providing this understanding, solving fundamental non-linear flow equations at 80 

high spatial resolution while numerically scaling these physical processes up to a large spatial 81 

extent (i.e. continental scale). 82 

In this study, we simulate surface and subsurface flow at high spatial resolution (1 km) 83 

over much of continental North America (6.3M km2), which is itself considered a grand 84 

challenge in hydrology (e.g. Wood et al. 2011; Gleeson and Cardiff 2014). The domain is 85 

constructed entirely of available datasets including topography, soil texture and hydrogeology 86 

This simulation solves surface and subsurface flow simultaneously and takes full advantage of 87 

massively parallel, high-performance computing.  The results presented here should be viewed as 88 

a sophisticated numerical experiment, designed to diagnose physical behavior and evaluate 89 

scaling relationships. While this is not a calibrated model that is intended to match observations 90 

perfectly, we do verify that behavior is realistic by comparing to both groundwater and surface 91 

water observations. 92 

The paper is organized as follows: first a brief description of the model equations are 93 

provided including a description of the input variables and observational datasets used for model 94 

comparison; next model simulations are compared to observations in a number of ways, and then 95 

used to understand hydrodynamic characteristics and to describe scaling. 96 

 97 

 98 
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Methods 99 

The model was constructed using the integrated simulation platform ParFlow (Ashby and 100 

Falgout 1996; Jones and Woodward 2001; Kollet and Maxwell 2006) utilizing the terrain 101 

following grid capability (Maxwell 2013).  ParFlow is a physically based model that solves both 102 

the surface and subsurface systems simultaneously. In the subsurface ParFlow solves the mixed 103 

form of Richards’ equation for variably saturated flow (Richards 1931) in three spatial 104 

dimensions given as:  105 

𝑆!𝑆! ℎ !!
!"
+ 𝜙𝑆! ℎ !!! !

!"
= ∇ ∙ 𝐪+ 𝑞!(𝑥, 𝑧) (1)  106 

where the flux term q [LT-1] is based on Darcy’s law:  107 

 𝐪 = −𝐊! 𝐱 𝑘! ℎ ∇ ℎ + 𝑧 cos𝜃! + sin𝜃!  (2) 108 

In these expressions, h is the pressure head [L]; z is the elevation with the z-axis specified as 109 

upward [L]; Ks(x) is the saturated hydraulic conductivity tensor [LT-1]; kr is the relative 110 

permeability [-]; Ss is the specific storage [L-1]; φ is the porosity [-]; Sw is the relative saturation [-111 

]; qr is a general source/sink term that represents transpiration, wells, and other fluxes including 112 

the potential recharge flux, which is enforced at the ground surface [T-1]; and θ [-] is the local 113 

angle of topographic slope, Sx and Sy, in the x and y directions and may be written as 114 

 𝜃! = tan!! 𝑆! and 𝜃! = tan!! 𝑆!. Note that we assume that density and viscosity are both 115 

constant, although ParFlow can simulate density and viscosity-dependent flow (Kollet et al. 116 

2009).  The van Genuchten (1980) relationships are used to describe the relative saturation and 117 

permeability functions (Sw(h) and kr(h) respectively).  These functions are highly nonlinear and 118 

characterize changes in saturation and permeability with pressure. 119 
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 Overland flow is represented in ParFlow by the two-dimensional kinematic wave 120 

equation resulting from application of continuity conditions for pressure and flux (Kollet and 121 

Maxwell 2006):  122 

𝐤 ∙ −𝐊! 𝐱 𝑘! ℎ ∙ ∇ ℎ + 𝑧 = ! !,!
!"

− ∇ ∙ ℎ, 0 𝐯!" + 𝜆𝑞!(𝐱) (3) 123 

In this equation vsw  is the two-dimensional, depth-averaged surface water velocity [LT-1] given 124 

by manning’s equation; h is the surface ponding depth [L] the same h as is shown in Equation 1. 125 

Note that ℎ, 0  indicates the greater value of the two quantities in Equation 3.  This means that 126 

if h < 0 the left hand side of this equation represents vertical fluxes (e.g. in/exfiltration) across 127 

the land surface boundary and is equal to qr(x) and a general source/sink (e.g. rainfall, ET) rate 128 

[LT-1] with λ being a constant equal to the inverse of the vertical grid spacing [L-1]. This term is 129 

then entirely equivalent to the source/sink term shown in Equation 1 at the ground surface where 130 

k is the unit vector in the vertical, again defining positive upward coordinates.  If h > 0 then the 131 

terms on the right hand side of Equation 3 are active water that is routed according to surface 132 

topography (Kollet and Maxwell 2006). 133 

 The nonlinear, coupled equations of surface and subsurface flow presented above are 134 

solved in a fully-implicit manner using a parallel Newton-Krylov approach (Jones and 135 

Woodward 2001; Kollet and Maxwell 2006; Maxwell 2013). Utilizing a globally-implicit 136 

solution allows for interactions between the surface and subsurface flow system to be explicitly 137 

resolved. While this yields a very challenging computational problem, ParFlow is able to solve 138 

large complex systems by utilizing a multigrid preconditioner (Osei-Kuffuor et al. ; Ashby and 139 

Falgout 1996) and taking advantage of highly scaled parallel efficiency out to more than 1.6 x 140 

104 processors (Kollet et al. 2010; Maxwell 2013).   141 
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ParFlow solves saturated subsurface flow (i.e. groundwater), unsaturated subsurface flow 142 

(i.e. the vadose zone) and surface flow (i.e. streamflow) in a continuum approach within a single 143 

matrix. Thus, complete non-linear interactions between all system components are simulated 144 

without a priori specification of what types of flow occur in any given portion of the grid.  145 

Streams form purely based on hydrodynamic principles governed by recharge, topography, 146 

hydraulic conductivity and flow parameters, when water is ponded due to either excess 147 

infiltration (surface fluxes exceed the infiltration capacity, e.g. Horton 1933) or excess saturation 148 

(subsurface exfiltration to the surface system, e.g. Dunne 1983) for further discussion see Kirkby 149 

(1988) and Beven (2004) for example. Groundwater converges in topographic depressions and 150 

unsaturated zones may be shallow or deep depending upon recharge and lateral flows.  151 

 The physically based approach used by ParFlow is similar to other integrated hydrologic 152 

models such as Hydrogeosphere (Therrien et al. 2012), PIHM (Kumar et al. 2009) and CATHY 153 

(Camporese et al. 2010). This is a distinct contrast to more conceptually-based models that may 154 

not simulate lateral groundwater flow or simplify the solution of surface and subsurface flow by 155 

defining regions of groundwater or the stream-network prior to the simulation. In such models, 156 

groundwater surface water interactions are often captured as one-way exchanges (i.e. surface 157 

water loss to groundwater) or parameterized with simple relationships (i.e. functional 158 

relationships that impose the relationship between stream head and baseflow). The integrated 159 

approach used by ParFlow eliminates the need for such assumptions and allows the 160 

interconnected groundwater surface water systems to evolve dynamically based only on the 161 

governing equations and the properties of the physical system.  The approach used here requires 162 

robust numerical solvers (Maxwell 2013; Osei-Kuffuor et al. 2014) and exploits high-163 

performance computing (Kollet et al. 2010) to achieve high resolution, large extent simulations. 164 
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Domain Setup 165 

In this study, the model and numerical experiment was directed at the Continental US 166 

(CONUS) using the terrain following grid framework (Maxwell 2013) for a total thickness of 167 

102m over 5 model layers. The model was implemented with a lateral resolution of 1 km with 168 

nx=3342, ny=1888 and five vertical layers with 0.1, 0.3, 0.6, 1.0 and 100 m discretization for a 169 

total model dimensions of 3,342 by 1,888 by 0.102 km and 31,548,480 total compute cells.  The 170 

model domain and input data sets are shown in Figure 1. All model inputs were re-projected to 171 

have an equal cell-size of 1 x 1 km as shown in Figure 1.  Topographic slopes (Sx and Sy) were 172 

calculated from the Hydrosheds digital elevation model (Figure 1b) and were processed using the 173 

r.watershed package in the GRASS GIS platform.  Surface roughness values were constant 10-5 174 

[h m-1/3] outside of the channels and varied within the channel as a function of average watershed 175 

slope.  Over the top 2 m of the domain, hydraulic properties from soil texture information of the 176 

Soil Survey Geographic Database (SSURGO) were applied and soil properties were obtained 177 

from Schaap and Leij (1998).  Note that two sets of soil categories were available. The upper 178 

horizon was applied over the top 1m (the top three model layers) and the bottom one over the 179 

next 1 m (the fourth model layer).  These soil types were mapped to their corresponding category 180 

in the property database and those values were used in the model simulation (e.g. saturated 181 

hydraulic conductivity, van Genuchten relationships).  Figures 1a and c show the top and bottom 182 

soil layers of the model. The deeper subsurface (i.e. below 2 m) was constructed from a global 183 

permeability map developed by Gleeson et al. (2011). These values (Gleeson et al. 2011) were 184 

adjusted to reduce variance (Condon and Maxwell 2013; Condon and Maxwell 2014) and to 185 

reflect changes in topography using the e-folding relationship empirically-derived in (Fan et al. 186 

2007): 𝛼 = 𝑒!
!"
!  where 𝑓 = !

!!!∗ !!!!!!!
 . For this analysis a=20, b=125 and the value of 50 187 
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[m] was chosen to reflect the midpoint of the deeper geologic layer in the model.  Larger values 188 

of α reduce the hydraulic conductivity categorically, that is by decreasing the hydraulic 189 

conductivity indicator values in regions of steeper slope. Figure 1e maps the final conductivity 190 

values used for simulation.   Below the deeper geologic layer, the presence of impermeable 191 

bedrock was assumed.  This assumption oversimplifies regions that have weathered or fractured 192 

systems that contribute to regional flow and aquifer systems deeper than 100 m.  These 193 

assumptions are necessitated by lack of data at this scale, not limitations of the model simulation. 194 

Note that this complex subsurface dataset is assembled from many sources and is subject to 195 

uncertainty: heterogeneity within the defined geologic types, uncertainty about the breaks 196 

between geologic types and parameter values assigned to these types. There are breaks across 197 

dataset boundaries, commonly at State or Province and International political delineations. The 198 

fidelity and resolution of the source information used to formulate this dataset also changes 199 

between these boundaries yielding some interfaces in property values. 200 

All input datasets are a work in progress and should be continually improved.  However, 201 

we feel it is important to continue numerical experiments with the data that is currently available, 202 

while keeping in mind the limitations associated with every model input.  Shortcomings in 203 

hydrogeological data sets reflect the lack of detailed unified hydrogeological information that 204 

can be applied in high resolution continental models. This constitutes a significant source of 205 

uncertainty, which needs to be assessed, quantified and ultimately reduced in order to arrive at 206 

precise predictions. Still, it should be noted that the purpose of this work is to demonstrate the 207 

feasibility of integrated modeling to explicitly represent processes across many scales of spatial 208 

variability using best available data. By focusing on large-scale behaviors and relationships we 209 

limit the impact of uncertain inputs.  210 
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No-flow boundary conditions were imposed on all sides of the model except the land 211 

surface, where the free-surface overland flow boundary condition was applied.  For the surface 212 

flux, a Precipitation-Evapotranspiration (P-E, or potential recharge) field, shown in figure 1d, 213 

was derived from  products developed by Maurer et al. (2002). They developed a gridded 214 

precipitation field from observations and simulated evaporation and transpiration fluxes using 215 

the VIC model. We calculate the average difference between the two from 1950-2000 and apply 216 

all positive values as potential recharge (P-E) (negative values were set to zero). The model was 217 

initialized dry and the P-E forcing was applied continuously at the land surface upper boundary 218 

(qr in equation 1) until the balance of water (difference between total outflow and P-E) was less 219 

than 3% of storage.  For all simulations a nonlinear tolerance of 10-5 and a linear tolerance of 10-220 

10 were used to ensure proper model convergence. 221 

While this study employs state of the art modeling techniques, it is important to note that 222 

the numerical simulation of this problem required significant computational resources. 223 

Simulations were split over 128 divisions in the x-direction and 128 in the y-direction and run on 224 

16,384 compute-cores of an IBM BG/Q supercomputer (JUQUEEN) located at the Jülich 225 

Supercomputing Centre, Germany.  These processor splits resulted in approximately 2,000 226 

unknowns per compute core; a relatively small number, yet ParFlow’s scaling was still better 227 

than 60% efficiency due to the non-symmetric preconditioner used (Maxwell 2013). The reason 228 

for this is the special architecture of JUQUEEN with only 256MB of memory per core and 229 

relatively slow clock rate. Additionally, code performance was improved using efficient 230 

preconditioning of the linear system (Osei-Kuffuor et al.). The steady-state flow field was 231 

accomplished over several steps. Artificial dampening was applied to the overland flow 232 

equations early in the simulation during water table equilibration. Dampening was subsequently 233 
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decreased and removed entirely as simulation time progressed.  Large time steps (10,000h) were 234 

used initially and were decreased (to 1h) as the stream network formed and overland flow 235 

became more pronounced with reduced dampening.  The entire simulation utilized 236 

approximately 2.5M core hours of compute time, which resulted in less than 1 week of wall-237 

clock time (approximately 150 hours) given the large core counts and batch submission process. 238 

 Model results were compared to available observations of streamflow and hydraulic head 239 

(the sum of pressure head and gravitational potential). Observed streamflow values were 240 

extracted from a spatial dataset of current and historical U.S. Geological Survey (USGS) stream 241 

gages mapped to the National Hydrography Dataset (NHD) (Stewart et al., 2006). The entire 242 

dataset includes roughly 23,000 stations, of which just over half (13,567) fall within the CONUS 243 

domain.  For each station, the dataset includes location, drainage area, sampling time period and 244 

flow characteristics including minimum, maximum, mean and a range of percentiles (1, 5, 10, 245 

20, 25, 50, 75, 80, 90, 95, 99) compiled from the USGS gage records.  For comparison, stations 246 

without a reported drainage area, stations not located on or adjacent to a river cell in ParFlow, 247 

and stations whose drainage area were not within twenty percent of the calculated ParFlow 248 

drainage area were filtered out. This resulted in 4,736 stations for comparison.  The 50th 249 

percentile values for these stations are shown in Figure 2a.  Note that these observations are not 250 

naturalized, i.e. no attempt is made to remove dams and diversions along these streams and 251 

rivers, however some of these effects will be minimized given the longer temporal averages.  252 

Hydraulic head observations of groundwater at more than 160,000 locations were assembled by 253 

Fan et al.  (Fan et al. 2007; Fan et al. 2013).  Figure 2b plots the corresponding water table depth 254 

at each location calculated as the difference between elevation and hydraulic head. Note that 255 
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these observations include groundwater pumping (most wells are drilled for extraction rather 256 

than purely observation). 257 

 258 

Results and Discussion 259 

Figures 3 and 4 plot simulated streamflow and water table depth, respectively, over much 260 

of continental North America, both on a log scale for flow (Figure 3) and water table depth 261 

(Figure 4). Figure 3 shows a complex stream network with flow rates spanning many orders of 262 

magnitude. Surface flows originate in the headwaters (or recharge zones) creating tributaries that 263 

join to form the major river systems in North America. Note, as discussed previously that the 264 

locations for flowing streams are not enforced in ParFlow but form due to ponded water at the 265 

surface (i.e. values of h>0 in the top layer of the model in Equations 1-3).  Overland flow is 266 

promoted both by topographic convergence, and surface and subsurface flux; however, with this 267 

formulation there is no requirement that all potential streams support flow. Thus, the model 268 

captures the generation of the complete stream network without specifying the presence and 269 

location of rivers in advance, but rather by allowing channelized flow to evolve as a result of 270 

explicitly simulated non-linear physical processes.   271 

The insets in Figure 3 demonstrate multiscale detail ranging from the continental river 272 

systems to the first-order headwaters. In Figure 4, water table depth also varies over five orders 273 

of magnitude.  Whereas aridity drives large-scale differences in water table depth (Figure 1d), at 274 

smaller scales, lateral surface and subsurface flow processes clearly dominate recharge and 275 

subsurface heterogeneity (see insets to Figure 4).  Water tables are deeper in the more arid 276 

western regions, and shallower in the more humid eastern regions of the model.  However, areas 277 

of shallow water table exist along arid river channels and water table depths greater than 10m 278 
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exist in more humid regions.  Note that this is a pre-development simulation, thus, results do not 279 

include any anthropogenic water management features such as groundwater pumping, surface 280 

water reservoirs, irrigation or urbanization—all of which are present in the observations.  Many 281 

of these anthropogenic impacts have been implemented into the ParFlow modeling framework 282 

(Ferguson and Maxwell 2011; Condon and Maxwell 2013; Condon and Maxwell 2014).  283 

Although anthropogenic impacts clearly influence water resources, a baseline simulation allows 284 

for a comparison between the altered and unaltered systems in future work. 285 

Next we compare the results of the numerical experiment to observations. As noted 286 

previously, this is not a calibrated model. Therefore, the purpose of these comparisons is to 287 

evaluate model behavior and physical processes against observations not to generate input 288 

parameters. Figure 5 plots observed and simulated hydraulic head and streamflow for the dataset 289 

shown in Figure 2.  Hydraulic head (Figure 5a) is plotted (as opposed to water table depth) as it 290 

is the motivating force for lateral flow in the simulation; it includes both the topography and 291 

pressure influences on the final solution.  We see a very close agreement between observations 292 

and model simulations, though given the large range in hydraulic heads the goodness of fit may 293 

be influenced by topography.  Additional metrics and comparisons are explored below.  294 

Simulated streamflow (Figure 5b) also agrees closely with observations.  There is some bias, 295 

particularly for smaller flows (which we emphasize by plotting in log scale), which also exhibit 296 

more scatter than larger flows, and are likely due to the 1km grid resolution employed here.  297 

Larger flows are more integrated measures of the system and might be less sensitive to resolution 298 

or local heterogeneity in model parameters.  We see this when linear least squared statistics are 299 

computed where the R2 value increases to 0.8. 300 
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Figure 6 plots histograms of predicted and observed water table depth (a), hydraulic head 301 

(b), median (50th percentile) flow and 75th percentile flows (c-d). The hydraulic head shows 302 

good agreement between simulated and observed (Figure 6b).  While hydraulic head is the 303 

motivation for lateral flow and has been used in prior comparisons (e.g. Fan et al 2007) both 304 

observed and simulated values are highly dependent on the local elevation.  Figure 6a plots the 305 

water table depth below ground surface, or the difference between local elevation and 306 

groundwater.  Here we see the simulated water table depths are shallower than the observed, 307 

something observed in prior simulations of large-scale water table depth (Fan et al 2013).  The 308 

observed water tables may include anthropogenic impacts, namely groundwater pumping, while 309 

the model simulations do not and this is a likely cause for this difference.  Also, because 310 

groundwater wells are usually installed for extraction purposes there is no guarantee that the 311 

groundwater observations are an unbiased sample of the system as a whole. Figure 6c plots the 312 

steady-state derived flow values compared to median observed flow values and Figure 6d plots 313 

these same steady-state simulated flows compared to the 75th percentile of the observed transient 314 

flow at each station.  While the ParFlow model provides a robust representation of runoff 315 

generation processes, the steady-state simulations average event flows.  We see the model 316 

predicts greater flow than the 50th percentile observed flows (Figure 6c) and good agreement 317 

between the model simulations and the 75th percentile observed flows (Figure 6d).  This 318 

indicates a potentially wet bias in the forcing, which might also explain the shallower water table 319 

depths. 320 

 Figures 7 and 8 compare observed and simulated flows and water table depths for each of 321 

the major basin encompassed by the model.  Water tables are generally predicted to be shallower 322 

in the model than observations with the exception of the Upper and Lower Colorado which 323 
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demonstrate better agreement between model simulations and observations than other basins.  324 

These histograms agree with a visual inspection of Figures 2b and 4 which also indicate deeper 325 

observed water tables. Figure 8 indicates that simulated histograms of streamflow also predict 326 

more flow than the observations.  This might indicate that the P-E forcing is too wet.  However, 327 

a comparison of streamflow for the Colorado Watershed, where water table depths agree (Figure 328 

8 e and g) and flows are overpredicted (Figure 7 e and g), indicates a more complex set of 329 

interactions than basic water balance driven by forcing. 330 

 To better diagnose model processes, model inputs are compared with model simulation 331 

outputs over example regions chosen to isolate the impact of topographic slope, forcing and 332 

hydraulic conductivity on subsurface-surface water hydrodynamics. We do this as a check to see 333 

if and how this numerical experiment compares to real observations.  It is important to use a 334 

range of measures of success that might be different from that used in a model calibration where 335 

inadequacies in model parameters and process might be muted while tuning the model to better 336 

match observations.  Figure 9 juxtaposes slope, potential recharge, surface flow, water table 337 

depth, hydraulic conductivity and a satellite image composite also at 1km resolution (the NASA 338 

Blue Marble image, (Justice et al. 2002)) and facilitates a visual diagnosis of control by the three 339 

primary model inputs.  While the model was run to steady-state and ultimately all the potential 340 

recharge has to exit the domain as discharge, the distribution and partitioning between 341 

groundwater and streams depends on the slope and hydraulic conductivity.  Likewise, while 342 

topographic lows create the potential for flow convergence, it is not a model requirement that 343 

these will develop into stream loci.  Figure 9 demonstrates some of these relationships quite 344 

clearly over a portion of the model that transitions from semi-arid to more humid conditions as 345 

the North and South Platte River systems join the Missouri. As expected changes in slope yield 346 



 

16 

flow convergence, however, this figure also shows that as recharge increases from west to east 347 

(X > 1700 km, panel c) the model generally predicts shallower water tables and greater stream 348 

density (panels d and e, respectively).  Conversely, in localized areas of decreased P-E (e.g. 700  349 

< Y < 900 km specifically south of the Platte River) water tables increase and stream densities 350 

decrease.  The satellite image (panel f) shows increases in vegetation that correspond to 351 

shallower water tables and increased stream density. 352 

Hydraulic conductivity also has a significant impact on water table depth and stream 353 

network density. In areas of greater recharge in the eastern portion of Figure 9c, regions with 354 

larger hydraulic conductivity (panel b) show decreased stream network density and increased 355 

water table depths. This is more clearly demonstrated in Figure 10 (a region in the upper 356 

Missouri) where, except for the northeast corner, recharge is uniformly low.  Slopes are also 357 

generally low (panel a), yet hydraulic conductivities show a substantial increase due to a change 358 

in datasets between state and country boundaries (panel b, X > 1250km, Y > 1400 km). The 359 

relative increase in hydraulic conductivity decreases hydraulic gradients under steady state 360 

conditions and generally increases water table depth, which in turn decreases stream network 361 

density.  This change in hydraulic conductivity yields a decrease in the formation of stream 362 

networks resulting in an increase in water table depth.  Thus, hydraulic conductivity has an 363 

important role in partitioning moisture between surface and subsurface flow, also under steady-364 

state conditions.  While mass balance requires that overall flow must be conserved, larger 365 

conductivity values allow this flow to be maintained within the subsurface while lower 366 

conductivities force the surface stream network to maintain this flow.  In turn, stream networks 367 

connect regions of varying hydrodynamic conditions and may result in locally infiltrating 368 

conditions creating a losing-stream to recharge groundwater.  This underscores the connection 369 



 

17 

between input variables and model predictions, an equal importance of hydraulic conductivity to 370 

recharge in model states and the need to continually improve input datasets. 371 

 Finally, the connection between stream flow and drainage area is a classical scaling 372 

relationship (Rodriguez-Iturbe and Rinaldo 2001), which usually takes the power law form 373 

Q=kAn, where Q is volumetric streamflow [L3T-1], A is the contributing upstream area [L2] and k 374 

[LT-1] and n are empirical constants.  While this relationship has been demonstrated for 375 

individual basins and certain flow conditions (Rodriguez-Iturbe and Rinaldo 2001), generality 376 

has not been established (Glaster 2009).  Figure 11a plots simulated streamflow as a function of 377 

associated drainage area on log-log axes, and Figure 11b plots the same variables for median 378 

observed streamflow from more than 4,000 gaging stations. While no single functional 379 

relationship is evident from this plot, there is a striking maximum limit of flow as a function of 380 

drainage area with a continental scaling coefficient of n = 0.84. Both Figures 11a and b are 381 

colored by aridity index (AI), the degree of dryness of a given location. Color gradients that 382 

transition from blue (more humid) to red (more arid) show that humid basins fall along the 383 

maximum flow-discharge line, while arid basins have less discharge and fall below this line. For 384 

discharge observations (Figure 11b) the same behavior is observed, where more humid stations 385 

fall along the n=0.9 line and more arid stations fall below this line. Essentially this means that in 386 

humid locations, where water is not a limiting factor, streamflow scales most strongly with 387 

topography and area. Conversely arid locations fall below this line because flow to streams is 388 

limited by groundwater storage. 389 

 The model presented here represents a first, high-resolution integrated simulation over 390 

continental-scale river basins in North America using the best available data.  However, primary 391 

input datasets are used (potential recharge, subsurface properties and topography), which clearly 392 
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require improvement. For example, higher resolution simulations are feasible, given that the 393 

ParFlow model exhibits better than 80% parallel efficiency for more than 8 billion compute cells.  394 

This could improve the surface and subsurface prediction; although, we do not expect the form 395 

of the scaling relationships as shown in Figure 11 to change with an increase in resolution. 396 

Higher resolution simulations would require higher resolution parameter fields that do not exist 397 

at this time.  Similarly, model lower boundaries (i.e. the overall thickness of the subsurface) 398 

could be extended given information about deeper hydrogeologic formations and their properties.  399 

The model domain could be expanded to larger spatial extent, either over more of continental 400 

North America, coastlines, or even globally.  Thus, the study strongly motivates improved, 401 

unified input and validation data sets for integrated hydrologic models at the continental scale, 402 

similar to data products available to the atmospheric sciences. 403 

Conclusions 404 

Here we present the results of an integrated, multiphysics-based hydrologic simulation 405 

covering much of Continental North America at hyperresolution (1km). This numerical 406 

experiment provides a consistent theoretical framework for the analysis of groundwater and 407 

surface water interactions and scaling from the headwaters to continental scale (100-107 km2).  408 

The framework exploits high performance computing to meet this grand challenge in hydrology 409 

(Wood et al. 2011; Gleeson and Cardiff 2014; Bierkens et al. 2015). We demonstrate that 410 

continental-scale, integrated hydrologic models are feasible and can reproduce observations and 411 

the essential features of streamflow and groundwater. Results show that scaling of surface flow 412 

is related to both drainage area and aridity. These results may be interrogated further to 413 

understand the role of topography, subsurface properties and climate on groundwater table and 414 
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streamflow, and used as a platform to diagnose scaling behavior, e.g. surface flow from the 415 

headwaters to the continent. 416 

These presented results are a first-step in high resolution, integrated, continental-scale 417 

simulation.  We simulate an unaltered, or pre-development scenario of groundwater and surface 418 

water flows under steady-state conditions.  As such, the discussion focuses on the physical 419 

controls of groundwater surface water interactions and scaling behavior; however there are 420 

obvious limitations to this scenario and these simulations.  Clearly reservoir management, 421 

groundwater pumping, irrigation, diversion and urban expansion all shape modern hydrology. 422 

Work has been undertaken to include these features within the ParFlow framework at smaller 423 

scales (Ferguson and Maxwell 2011; Ferguson and Maxwell 2012; Condon and Maxwell 2013; 424 

Condon and Maxwell 2014) and an important next step is to scale the impacts out to the 425 

continent. 426 

Additionally, the steady-state simulation does not take into consideration temporal 427 

dynamics or complex land-surface processes, also important in determining the quantity and 428 

fluxes of water.  These limitations can all be addressed within the current modeling framework 429 

but require transient simulations and additional computational resources.  Model performance is 430 

also limited by the quality of available input datasets. As noted throughout the discussion, 431 

existing datasets are subject to uncertainty and are clearly imperfect.  As improved subsurface 432 

characterization becomes available, this information can be used to better inform models and 433 

fully understand the propagation of uncertainty in these types of numerical experiments (e.g. 434 

Maxwell and Kollet 2008; Kollet 2009). However, while the magnitudes of states and fluxes may 435 

change with improved datasets, the overall trends and responses predicted here are not likely to 436 

change.  While there are always improvements to be made, these simulations represent a critical 437 
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first step in understanding coupled surface subsurface hydrologic processes and scaling at 438 

continental scales resolving variances over four for orders of spatial scales.  439 

This study highlights the utility of high performance computing in addressing the grand 440 

challenges in hydrological sciences and represents an important advancement in our 441 

understanding of hydrologic scaling in continental river basins. By providing an integrated 442 

model we open up a useful avenue of research to bridge physical processes across spatial scales 443 

in a hydrodynamic, physics-based upscaling framework. 444 

 445 

Code Availability 446 

ParFlow is an open-source, modular, parallel integrated hydrologic platform freely available via 447 

the GNU LPGL license agreement.  ParFlow is developed by a community led by the Colorado 448 

School of Mines and F-Z Jülich with contributors from a number of other institutions.  Specific 449 

versions of ParFlow are archived with complete documentation and may be downloaded1 or 450 

checked-out from a commercially hosted, free SVN repository; v3, r693 was the version used in 451 

this study.  The input data and simulations presented here will be made available and may be 452 

obtained by contacting the lead author via email. 453 

  454 

                                                
1 http://inside.mines.edu/~rmaxwell/maxwell_software.shtml 



 

21 

 455 

Figures 456 

 457 
Figure 1.  Maps of top soil type (applied over the top 2 m of the model) (a), elevation (masl) (b), 458 

bottom soil type (c), potential recharge, P-E, (m/y) (d), saturated hydraulic conductivity (m/h, 459 

applied over the bottom 100 m of the model) (e) over the model domain (f). 460 

  461 
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 462 
Figure 2. Plot of observed streamflow (a) and observed water table depth (b). 463 
  464 
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 465 
Figure 3. Map of simulated surface flow (m3/s) over the CONUS domain with two insets 466 
zooming into the Ohio river basin.  Colors represent surface flow in log scale and line widths 467 
vary slightly with flow for the first two panels.  468 
  469 
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 470 
Figure 4. Map of water table depth (m) over the simulation domain with two insets zooming into 471 
the North and South Platte River basin, headwaters to the Mississippi.  Colors represent depth in 472 
log scale (from 0.01 to 100m).  473 
  474 
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 475 

Figure 5.  Scatterplots of simulated v. observed hydraulic head (a) and surface flow (b). 476 

  477 
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 478 
Figure 6. Histograms of simulated and observed water table depth (a), hydraulic head (b), 479 
median observed flow (c) and 75th percentile observed flow (d). 480 
  481 

a. Water Table Depth

Water Table Depth (m)

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
04

0.
08

0.
12

Simulated
Observed

b. Hydraulic Head

Hydraulic Head (m)

D
en

si
ty

0 1000 2000 3000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

c. Median Observed Flow

Flow (cms)

D
en

si
ty

0.01 1 100 10000

0.
0

0.
2

0.
4

0.
6

d. 75 Percentile Observed Flow

Flow (cms)

D
en

si
ty

1e−04 0.01 1 100 10000

0.
0

0.
2

0.
4

0.
6



 

27 

 482 
 483 

 484 
Figure 7.  Distributions of observed and simulated streamflow by basin as indicated. 485 
  486 
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 487 
Figure 8. Distributions of observed and simulated water table depth by basin as indicated. 488 

a. Pacific Northwest (1358 Points)
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 489 
Figure 9. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water 490 
table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the 491 
Platte River basin. 492 
 493 
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 494 
Figure 10. Plots of topographic slope (a), hydraulic conductivity (b) potential recharge (c), water 495 
table depth (d), streamflow (e) and satellite image (f) for a region of the model covering the 496 
Upper Missouri basin. 497 
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 498 
Figure 11. Plots of scaling relationships for simulated and median observed surface flow.  Log-499 
scale plots of surface flow as a function of contributing drainage area derived from the model 500 
simulation (a) and observations (b). Individual symbols are colored by aridity index (AI) with 501 
blue colors being humid and red colors being arid in panels (a) and (b). 502 
 503 
 504 
  505 
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