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 11 
Abstract 12 

 13 
Modeling and classification difficulties are fundamental issues in natural hazard assessment. A 14 
geographic information system (GIS) is a domain that requires users to use various tools to 15 
perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard 16 
modeling. To perform this analysis, several calculations are required and the user has to transfer 17 
data from one format to another. Most researchers perform these calculations manually by using 18 
Microsoft Excel or other programs. This process is time consuming and carries a degree of 19 
uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this 20 
study. In this paper, a user-friendly tool, BSM (Bivariate statistical modeler), for BSA technique 21 
is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and 22 
evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is 23 
programmed in Python and created by a simple graphical user interface, which facilitates the 24 
improvement of model performance. The proposed tool implements BSA automatically, thus 25 
allowing numerous variables to be examined. To validate the capability and accuracy of this 26 
program, a pilot test area in Malaysia is selected and all three models are tested by using the 27 
proposed program. Area under curve is used to measure the success rate and prediction rate. 28 
Results demonstrate that the proposed program executes BSA with reasonable accuracy. The 29 
proposed BSA tool can be used in numerous applications, such as natural hazard, mineral 30 
potential, hydrological, and other engineering and environmental applications.  31 

Keywords: ArcMAP tool, Bivariate statistical analysis, Geographic information systems  32 
 33 

1 Introduction  34 
 35 
Techniques to predict a response variable given a set of characteristics are required in several 36 
scientific regularities. Numerous applications have been implemented in various areas of 37 
geosciences. Bivariate analysis is one of the simplest methods of statistical analysis, and is 38 
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popular in numerous fields of study. Mathematicians, statisticians, biologists, and hydrologists 39 
use this method to perform their analysis. Different types of bivariate statistical analysis (BSA) 40 
have been established, for example, frequency ratio (FR), weights-of-evidence (WoE), and 41 
evidential belief function (EBF) (Yalcin, 2008). Although each of these methods requires 42 
specific mechanisms for calculation, all of these methods operate by using the same concept. 43 
Environmental scientists model various natural conditions by using the BSA statistical method. 44 
For instance, Ozdemir (2011) employed this technique for the same purpose. The results of the 45 
analysis were plotted in ArcGIS after computation in other programs. Mineral potential mapping 46 
is also aided by BSA techniques. Carranza (2004) used WoE modeling to map the mineral 47 
potential in the administrative province of Abra in northwestern Philippines. Their achievements 48 
indicate the plausibility of WoE in the mineral potential mapping of large areas with a small 49 
number of mineral prospects. Researchers have applied WoE in mapping mineral potential 50 
(Bonham-Carter et al., 1989) and remains popular in this area of research (Carranza et al., 2008). 51 
 52 
BSA is in demand in hazard studies because its procedure is simple and efficient. This technique 53 
is has been used in natural hazard applications by researchers to predict the spatial distribution of 54 
events. Extensive literature on different BSA techniques and their proficiency assessment are 55 
also available. BSA techniques can be used as a simple geospatial analysis tool to determine the 56 
probabilistic correlation among dependent variables (produced by using the inventory map of a 57 
hazard incidence) and independent variables (conditioning factors) containing multi-categorized 58 
maps (Oh et al., 2011). In BSA, the overlay of conditioning factors and computation of hazard 59 
densities, the significance of each factor, or the particular mixture of factors can be investigated 60 
individually. Bivariate statistical analysis functions by using a dependent variable and one 61 
conditioning factor. Hence, the significance of each factor is investigated separately (Porwal et 62 
al., 2006).  63 
 64 
In BSA, each conditioning factor is overlaid with the dependent variable. On the basis of the 65 
event density, weights are measured for each class of each factor. By using normalized weights 66 
(the correlation between the event density in each class of conditioning factor and the event 67 
density of the entire region), each conditioning factor is reclassified and the hazard map is 68 
produced. By using the acquired weights, decision rules can be produced on the basis of the 69 
knowledge of experts. Conditioning factors can also be combined to generate a map with 70 
uniform units, which is then overlaid with the inventory map to provide the density per class. 71 
The BSA approach has been used in landslide mapping (Constantin et al., 2011), earthquake 72 
studies (Xu et al., 2012b), flood susceptibility mapping (Tehrany et al., 2013), land subsidence 73 
(Kim et al., 2006; Lee and Park, 2013), and risk analysis (Hu et al., 2009). Numerous studies 74 
have been conducted to exploit the potential application of BSA in the hazard domain.  75 
 76 
This research examined the efficiency of statistical analysis, particularly bivariate analysis, in 77 
landslide studies in the Cuyahoga River watershed (Nandi and Shakoor, 2010). In another study, 78 
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FR and WoE were applied in the Sultan Mountains of southwestern Turkey to map areas that are 79 
susceptible to landslides (Ozdemir and Altural, 2013). According to Nandi and Shakoor (2010) 80 
and Ozdemir and Altural (2013), the BSA model is simple and its input, computation, and 81 
outcome procedures are effortlessly understood. The application of EBF in the area of landside 82 
studies has been investigated (Lee et al., 2013). Four functions, namely, degree of belief (Bel), 83 
degree of disbelief (Dis), degree of uncertainty (Unc) and degree of plausibility (Pls), are 84 
calculated separately to determine EBF.  85 
 86 
Each of these functions produces valuable information. However, each function requires 87 
individual computations with specific formulas. Tien Bui et al. (2012) used EBF and fuzzy logic 88 
methods in their research and found that the landslide susceptibility map derived from EBF has 89 
the highest prediction ability. They also established the efficiency of BSA in landslide mapping. 90 
BSA is also popular in hydrological research. Flood susceptibility maps assist in mitigation 91 
strategies. Lee et al. (2012) used the statistical method of FR to produce a map of flood-prone 92 
regions in Busan, Korea, in GIS. Tehrany et al. (2013) proposed an ensemble method of FR and 93 
LR to detect regions with high flood probability in Kelantan, Malaysia. The conditioning factors 94 
were reclassified on the basis of the weights acquired from the FR technique. These factors were 95 
entered in LR processing to obtain the MSA result. If the calculation time for these statistics can 96 
be reduced, the efficiency of the developed ensemble method will be enhanced. Hence, 97 
producing a tool that is capable of performing BSA calculations will help reduce the calculation 98 
time of ensemble methods.  99 
 100 
The BSA model has been widely used in land subsidence susceptibility mapping. In a study by 101 
Lee and Park (2013), the FR model was applied and compared with the machine learning of DT. 102 
The BSA is a method that is commonly used in natural hazard investigations. Although this 103 
method is not novel, the use of BSA has increased in recent years. RS and GIS have 104 
revolutionized the domain of natural hazards (Jebur et al., 2013a; Jebur et al., 2013b). Spatial 105 
database consists of different data types that are required to be transferred from one format to 106 
another because specific programs accept only specific data formats. Scientists have started to 107 
develop new programs in hazard studies because of the vital role of early warning systems in 108 
such applications (Osna et al., 2014; Pradhan et al., 2014). GIS is capable to store, analyze and 109 
show geographic information. It makes it possible to collect, organize, explore, model and view 110 
the spatial data for solving complex problems (Barreca et al., 2013). Different types of spatial 111 
data analysis ranges from the simple overlaying of various thematic layers to identify the region 112 
to the more complex use of mathematical equations or combined statistical models for the 113 
prediction of  natural hazards. The importance of GIS in catastrophic evaluation was proven by 114 
many studies related to the GIS tools usages in exploration of various types of data (Steiniger 115 
and Hunter, 2013).  116 

For example the existing hydrological GIS-based tools such as  Mike SHE and ArcSWAT 117 
revealed considerable power in enhancing the accuracy of soil and water evaluations (Lei et al., 118 
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2011). These tools are capable of facilitating the modeling and calibration procedure, and 119 
decreasing the stages in implementing the models and increasing the precision of the outcomes 120 
(Hörmann et al., 2009). The creation of tools that automatically implement susceptibility 121 
mapping was applied by Akgun et al. (2012). Akgun et al. (2012) proposed “MamLand,” a 122 
program in MATLAB, to create landslide susceptibility mapping by using fuzzy inference 123 
system. ArcGIS allows users to produce specific tools for spatial analysis (Stevens et al., 2007). 124 
For instance, Pradhan et al. (2014) developed a tool in ArcGIS to apply texture analysis for high-125 
resolution radar data. Recently, a GIS-based system has been developed by Barreca et al. (2013) 126 
to evaluate and process the hazard associated to active faults influencing the eastern and southern 127 
flanks of Mt. Etna. The proposed tool was created in ArcGIS which contains various thematic 128 
datasets. It includes spatially-referenced arc-features and associated database. In another paper, 129 
Lei et al. (2011), integrated hydrological code EasyDHM and proposed open source 130 
MapWindow GIS tool called MWEasyDHM. Their aim was to create the tool by combining 131 
modules for preprocessing, modeling, viewing and analysis. MWEasyDHM tool is user friendly, 132 
free and proficient which produces selectable multi-functional hydrological analysis. Similarly, a 133 
number of GIS tools are programmed by Etherington (2011) in Python environment for 134 
landscape genetics researches. Tools are capable to transform files, view genetic relatedness, and 135 
calculate landscape associations through least-cost path procedure. The tools are free and 136 
available in ArcToolbox. In a separate paper, Roberts et al. (2010) implemented the research to 137 
facilitate the advanced analytic methods. A Marine Geospatial Ecology Tools (MGET) was 138 
created in GIS environment which is free, easy to use and efficient tools for the ecologists. The 139 
tools were made by integrating different strong programming methods of Python, R, MATLAB, 140 
and C++. 141 

 142 
The current research aims to reduce the processing time of BSA by introducing an easy-to-use 143 
ArcMap tool. On the basis of the aforementioned problem statement regarding the required 144 
processing time and difficulties for BSA, a program that is capable of calculating BSA 145 
automatically should be developed. Hence, a tool programmed in Python and based on the BSA 146 
technique is proposed. This tool automatically extracts the correlation among each class of 147 
conditioning factor and event occurrence, reclassifies the factors on the basis of the acquired 148 
weights in a GIS environment, and saves each correlation in separate folders. A simple graphical 149 
user interface (GUI) improves the model operation because Python knowledge is not required. 150 
The entire process can be performed in ArcGIS without any requirement for another program. 151 
The proposed tool was tested to generate a landslide susceptibility map of Bukit Antarabangsa, 152 
Ulu Klang, Malaysia. 153 

 154 
2 Methodology  155 

The procedural and theoretical perspectives of BSA applied in this research include several steps 156 
(Fig. 1). In the methodology flowchart, the BSA tool was developed and integrated into ArcGIS. 157 
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To apply BSA, the conditioning factors should be provided in raster format and classified with 158 
the proper scheme by the user. The BSA recognizes the effects of each class of conditioning 159 
factor on event occurrence. Hence, this step cannot be eliminated in the BSA process. As a 160 
second stage, a dependent variable (training layer) should be constructed by using the inventory 161 
map and other resources. This layer should contain a pixel value of one to represent the existence 162 
of an event. Once the conditioning factors are classified and the training layers are prepared, FR, 163 
WoE, and EBF can be applied automatically. The developed program reclassifies each 164 
conditioning factor by using the attained weights and saves them in a separate folder. The group 165 
of conditioning factors that have been assessed by BSA are ready to be entered in the raster 166 
calculator to derive the corresponding hazard map. The following sub-section represents the 167 
overall information on the scheme and functionality of the developed tool. 168 

Fig. 1. About here  169 

 170 

2.1 Overall information on scheme and functionality 171 

The program is developed by using ArcGIS and Python for BSA. The tool can be used in 172 
ArcGIS 9 and 10 versions. Fig. 2 displays the interface of the tool in GIS toolbox.  173 

Fig. 2. About here  174 

The ArcToolbox provided in this research is used to enter the proposed tool in ArcMap. The user 175 
defines the source of the Python files of each model from the properties menu of the script (Fig. 176 
3).  177 

Fig. 3. About here  178 

The program is partitioned into three sections: FR, WoE, and EBF. The theoretical concept and 179 
graphic interface of each tool is discussed in the following sections. 180 

2.1.1 FR 181 

The theoretical expression of FR, as well as its usage in landslide susceptibility and flood 182 
mapping has been reported in the studies conducted by Yilmaz (2009) and Tehrany et al. (2013) 183 
respectively. The FR method has a simple and understandable structure compared with other 184 
probabilistic methods. FR is described as the proportion of the region where an event occurred 185 
over the entire area; FR is also defined as the proportion of likelihood of an event occurrence to a 186 
nonoccurrence for a particular attribute. FR can be calculated by using the following equation: 187 

𝐹𝑅 =

𝑁𝑝𝑖𝑥(𝑆𝑋𝑖)
∑ 𝑆𝑋𝑖𝑚
𝑖=1

𝑁𝑝𝑖𝑥(𝑋𝑗)
∑ 𝑁𝑝𝑖𝑥𝑛
𝑗=1 (𝑋𝑗)

                                                    (1) 

5 
 



 188 
where 𝑁𝑝𝑖𝑥(𝑆𝑋𝑖) is the number of pixels, which contain an event in class 𝑖 of the independent 189 

variable; 𝑋, 𝑁𝑝𝑖𝑥(𝑋𝑗) is the number of pixels and exist in independent variables 𝑋𝑗; 𝑚 is the 190 

number of categoris of the independent variable 𝑋𝑖. Furthermore, 𝑛 is the total number of 191 
independent variables in the whole area (Yilmaz, 2009). Most of the researchers performed these 192 
calculations manually by using Microsoft Excel or other programs. Once the weights were 193 
obtained, these values were used to reclassify the independent variables by using the spatial 194 
analyst tool in ArcGIS. The raster calculator in ArcGIS was used to obtain the final susceptibility 195 
map. The proposed tool in ArcMap can apply the FR automatically and reclassify the 196 
independent variables on the basis of the gained weights. 197 

The graphic interface of the FR tool consists of one window containing four fields (Fig. 4). Each 198 
field is user-defined in ArcGIS. The first field is the input raster, which is related to the desired 199 
conditioning factor. The training layer or dependent variable, which is predefined and saved 200 
prior to analysis, is selected for the second field. The cell size of the output and its location are 201 
specified by the user in the third and fourth fields, respectively. The developed tool has a simple 202 
structure, thus providing BSA for each conditioning factor within a few seconds. In manual 203 
calculations, this procedure usually requires considerable amount of time to be implemented. The 204 
proposed tool reclassifies the analyzed conditioning factor based on the attained weights and 205 
saves it in the selected folder by the user. 206 

Fig. 4. About here 207 

2.1.2 WoE 208 

The WoE method is a data-driven technique based on the Bayesian probability framework 209 
(Beynon et al., 2000; Neuhäuser and Terhorst, 2007; Porwal et al., 2006). This characteristic 210 
provides additional advantages to the proposed tool compared with other statistical methods. To 211 
implement WoE, two important parameters of positive weight (𝑊+) and negative weight (𝑊−) 212 
are computed (Bonham-Carter et al., 1989). This technique calculates the weight for each 213 
independent variable (𝐵) on the basis of the existence or non-existence of the event (𝐴) within 214 
the study area (Xu et al., 2012a) by using the following equations: 215 

𝑊𝑖
+ = ln

𝑃{𝐵|𝐴}
𝑃{𝐵|�̅�}

                               (2) 

𝑊𝑖
− = ln

𝑃{𝐵�|𝐴}
𝑃{𝐵�|�̅�}

                                     (3) 

where 𝑃 represents the probability, 𝐼𝑛 is the natural 𝑙𝑜𝑔. 𝐵 , and 𝐵�  reveals the existence and 216 
nonexistence of the independent variable. 𝐴 and �̅� show the existence and nonexistence of the 217 
event. A positive weight (𝑊+) determines the presence of the specific independent variable at 218 
the event, and the amount of positive weight represents the positive correlation between the 219 
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presence of the independent variable and event, respectively. A negative weight (𝑊−) indicates 220 
the nonexistence of the independent variable and shows the amount of negative correlation. 221 

The weight contrast is the difference between the two weights of W+ and W−: 222 
 223 

𝐶(𝐶 = 𝑊+ −𝑊−)                         (6) 
 224 
The size of the weight contrast demonstrates the spatial relationship between the independent 225 
variable and the event. The 𝐶 value is positive in the case of a positive relationship and is 226 
negative in the case of a negative relationship.  227 
 228 
The standard deviation of 𝑊 is calculated as follows: 229 
 230 

𝑆(𝐶) =  �𝑆2𝑊+ + 𝑆2𝑊−                      (7) 
 231 
where 𝑆(𝑊+) and 𝑆(𝑊−) are the variance of the positive and negative weights, respectively. 232 
These variances can be calculated by using the following equations: 233 
 234 

𝑆2𝑊+ =
1

𝑁{𝐵 ∩ 𝐴} +
1

𝐵 ∩ �̅�
                 (8) 

𝑆2𝑊− =
1

𝑁{𝐵� ∩ 𝐴}
+

1
{𝐵� ∩ �̅�}

                (9) 

 235 
By using the proportion of the contrast divided by its standard deviation, the studentized contrast 236 
is calculated. The studentized contrast is the final weight that assists the informal test if 𝐶 is 237 
considerably different from zero or if the contrast is probable to be “real.” A complete 238 
explanation of the mathematical formulation of this method is accessible in Xu et al. (2012b). 239 
Fig. 5 illustrates the user interface of the WoE tool. Each field should be defined similar to FR. 240 

Fig. 5. About here  241 

 242 

2.1.3 EBF 243 

Dempster (1967) is an innovator who presented the Dempster–Shafer theory of evidence, which 244 
is known as a generalized Bayesian theory of subjective probability. This theory has been used in 245 
several fields of study, including environmental and hazard studies (Awasthi and Chauhan, 246 
2011). This theory also has relative flexibility, which is considered its advantage, accepts 247 
uncertainty, and is capable of combining beliefs from different sources of evidence. EBF 248 
estimates the probability that a hypothesis is true and evaluates how close the evidence is to the 249 
truth of that hypothesis. A complex procedure is required to calculate EBF compared with FR. 250 
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To compute the EBF, four functions (Bel, Dis, Unc, and Pls) should be measured separately (Lee 251 
et al., 2013). Individual computation by using specific formulas is required to provide this 252 
information.  253 

Assume that a set of independent variables of C = (Ci, i = 1, 2, 3, … , n), which contains mutually 254 
exclusive and exhaustive factors of Ci, is used in current research. The function m: P(C) → [0,1] 255 
is the basic of the probability assignment.  256 

 257 

Bel�Cij� =
WCij(event)

∑ WCij(event)
n
j=1

,                                  (6) 

 258 

where C is the frame of discernment and P(C) is the set of all subsets of C, counting the empty 259 
set (Φ) and C itself. Mass function is another name for the mentioned function that satisfies 260 
m(Φ) = 0 and ∑ m (A) = 1AC , where A is any subset of C. The degree in which the evidence 261 
support A is calculated by m(A), which is represented by a belief function (Bel(A)). Suppose that 262 
N(L) and N(C) are the total number of pixels affected by the event and the total number of pixels 263 
in the study area, respectively; Cij is the j-th class of the independent variable of Ci(i =264 

1, 2, 3, … , n); N(Cij) is the total number of pixels in class Cij; and N = (L ∩  Cij) is the number of 265 

pixels affected by the event in Cij. Therefore, the data-driven measurement of EBF can be 266 
calculated by using the following equation (Tien Bui et al., 2012): 267 

where the Cij is shown by WCij(event) and supports the belief that the presence of the event is 268 

more than its nonexistence. The detailed mathematical calculation of each function has been 269 
discussed in several studies, such as Lee et al. (2013). Fig. 6 represents the interface of the EBF 270 
tool, and contains three more fields compared with the two other methods because each EBF 271 
function should be applied and saved in a separate folder. Hence, after the selection of the 272 
conditioning factor, training layer, and output cell size, the location to save each function should 273 
be defined.  274 

Fig. 6. About here  275 

 276 

2.2  Code description 277 

The code was designed in python 27 (The default software included with windows 7). In the 278 
beginning, the arcpy library is called to check the  code for  spatial extension in order to continue 279 
the process. After that, when the user defines the raster, the code calls the raster data as test using 280 
the command “GetParameterAsText” which is part of arcpy library. Using same as the previous 281 
command, the code will define the output layer for the chosen model. The default path for all the 282 
sub process is defined to be in “C” drive because it is the default drive in all the systems. 283 
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Therefore, the code creates folder calls “"FR_modeler”, "WOE_modeler", or "EBF_modeler" 284 
depending on the selected process.  285 

The next stage is to analyze the input layer (e.g. Slope) and “Lookup” command will be applied 286 
to prepare the layer for zonal geometry process. The zonal geometry is defined as table to be able 287 
to work on the statistic of the output. A filed is added to the attribute of the created table in the 288 
previous step namely “zonal” to be used for calculating the percentage of each class of the input 289 
layer. A statistics analysis was applied to calculate the sum of all the pixels of the selected layer. 290 
Then, a joining process is defined to link the created table with the input layer. Subsequently, 291 
tabulate area process was ran to calculate the percentage of the occurrence of the independent 292 
factor (i.e. Landslide) in each input layer classes. The last step for calculating FR is applied using 293 
eq.1. Then, the resulted values is defined as integer and used to reclassify the input layer. The 294 
code includes a delete command to delete all the sub process layers and table.  295 

The process of WoE and EBF contains the same process of FR as initial step. However, more 296 
statistical analysis and more field are added to calculate the parameters of WoE and EBF which 297 
is listed in eq. (2-6). In each selected model, a different folder will be created. The user may 298 
overwrite and redo the process as much as required because the command “overwriteOutput” 299 
was defined for each code. The three codes is added as appendix 1.   300 

2.3 Test area and data 301 

Although the developed program can be used in any application that employs BSA, the 302 
proficiency of the tool was tested in the hazard domain. To examine the capability and efficiency 303 
of the developed program, landslide susceptibility analyses were performed by using the 304 
developed ArcMAP tool with three BSA models, namely, FR, WoE, and EBF. The program was 305 
tested for the landslide susceptibility mapping of Bukit Antarabangsa, Ulu Klang, Malaysia (Fig. 306 
7). 307 
 308 
Fig. 7. About here 309 
 310 
A spatial database was constructed and analyzed on the basis of the altitude, aspect, curvature, 311 
slope, stream power index, topographic wetness index, distance from the river, distance from the 312 
road, and geological layers. Comprehensive overview of the usage of BSA for landslide 313 
susceptibility mapping has been reported in numerous studies (Yalcin et al., 2011). Study 314 
conducted by Mohammady et al. (2012) provided additional knowledge on the capabilities of 315 
these three BSA methods. These previous research compared the three methods of FR, WoE, and 316 
EBF and determined the pros and cons of each statistical approach. A total of 47 landslide 317 
locations were recorded and a landslide inventory map was prepared. The allocation of the 318 
landslide inventory for training and testing was 70% and 30%, respectively (Fig. 7). The training 319 
data set (31 landslide locations) was chosen randomly and a dependent layer (landslide layer) 320 
was created.  321 
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 322 
3 Experimental results and discussion 323 

To examine the efficiency of the developed BSM tool, landslide susceptibilities were derived by 324 
using all three methods. The correlation among the conditioning factors and landslide occurrence 325 
was extracted. The landslide probability index was measured and classified by using the proper 326 
scheme. To produce a susceptibility map, the probability index should be partitioned into various 327 
classes. The quantile method was applied in the current research because of its reputation in 328 
classification. In the quantile classification method, each class has the same number of features. 329 
This method has been employed by several researchers, such as Umar et al. (2014) and 330 
Papadopoulou-Vrynioti et al. (2014). The method provided appropriate results on the comparison 331 
between the created landslide susceptibility map and the spatial distribution of landslide events. 332 
The acquired landslide conditioning factors is shown in Fig. 8. 333 
 334 
Fig. 8. About here  335 
 336 
The derived landslide susceptibility map from WoE shows a different appearance compared with 337 
the two other maps. Validation should be performed to determine which map is reliable. The area 338 
under curve (AUC) was applied to examine the precision of the derived susceptibility maps 339 
(Pérez-Vega et al., 2012). The success rate values were 68%, 63%, and 76% for FR, WoE, and 340 
EBF, respectively. Moreover, 71%, 75%, and 80% were the prediction rates for FR, WoE, and 341 
EBF, respectively. The EBF represented the highest accuracy compared with other methods in 342 
terms of success and prediction rates. The prediction rate value for WoE was high but not as high 343 
as EBF. This result is caused by the greater proficiency and capability of EBF compared with 344 
WoE. Recognizing the best method for modeling is possible because any comparative study is 345 
restricted and the best method for a specific data set is significantly related to the characteristics 346 
of that dataset. Fig. 9 illustrates the computed accuracies. 347 
 348 
Fig. 9. About here  349 
 350 
The design and interface of the developed tool show that the BSA is simple to execute by using 351 
the proposed program compared with manual calculation. The derived susceptibility maps and 352 
their AUC values suggest that the tool is precise and reliable. Previous research has established 353 
that because of the nature of BSA, the obtained results are imprecise compared with machine 354 
learning and rule-based methods. Therefore, the measured accuracies are acceptable for these 355 
simple statistical methods.  356 

 357 
4 Conclusion 358 

To perform hazard studies, several requirements, such as constructing the precise spatial 359 
database, obtaining high-resolution imagery, and providing a reliable inventory map, should be 360 
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fulfilled. Users can be confronted with the insufficiency of appropriate and free tools to perform 361 
various analyses. This condition makes such studies complex and in some cases, time 362 
consuming. The BSA is one of the fundamental methods in hazard mapping. Hence, developing a 363 
tool that manages a large number of factors with an automatic statistical and classification 364 
performance is essential. Users commonly have to apply the BSA calculation manually and 365 
within separate software. The results have to be entered in a GIS environment and used to 366 
reclassify each conditioning factor one after another. The proposed BSM tool can be used to 367 
automate the BSA procedure and to facilitate the generation of the probability index. BSM is 368 
developed as a tool in ArcGIS, which is capable of performing the three BSA models of FR, 369 
WoE, and EBF. This tool can also manage large amounts of conditioning factors with reduced 370 
calculation time, thus allowing the replication of various trials. As an example, a significant 371 
characteristic of BSM is the reclassification of the conditioning factors on the basis of the 372 
acquired weight from BSA. The GUI also allows the application of RF, WoE, and EBF without 373 
entering any code from Python, thus helping the user in model operation. The application to 374 
landslide susceptibility mapping in Bukit Antarabangsa in Ulu Klang, Malaysia provides 375 
significant outcomes. All three methods are applied and landslide susceptibility maps are created. 376 
FR, WoE, and EBF acquired success rates of 68%, 63%, and 76%, respectively. AUC values for 377 
prediction rates are 71%, 75%, and 80% for FR, WoE, and EBF, respectively. In conclusion, the 378 
proposed tool can transform the BSA procedure into a simple and fast technique. This tool can 379 
assist scientists in performing statistical analyses for any environment and mathematical 380 
application.  381 
 382 
 383 
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 485 

Fig. 1. General design of the methodology and BSA tool.  486 
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 488 

Fig. 2. BSA tool interface. 489 
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 491 

Fig. 3. Procedure to add the BSM tool in ArcGIS. 492 
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 494 

Fig. 4. Graphic user interface of the FR tool. 495 
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 497 

Fig. 5. Graphic interface of the WoE tool. 498 
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 500 

Fig. 6. Graphic interface of the EBF tool. 501 
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 503 
Fig. 7. Location of the pilot study area for testing the proposed ArcMAP tool. 504 
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 506 
Fig. 8. Landslide susceptibility maps derived from a) FR, b) WoE, and c) EBF. 507 
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 509 
Fig. 9. Graphic representation of the cumulative frequency diagram presenting the cumulative 510 
landslide occurrence (%; y-axis) in landslide probability index rank (%; x-axis): a) success rate, 511 
and b) prediction rate. 512 
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 526 

Appendix 1:(the code of the three models coded in python)  527 

FR 528 

import arcpy 529 

arcpy.CheckOutExtension("spatial") 530 

arcpy.env.overwriteOutput = True 531 

Input_raster = arcpy.GetParameterAsText(0) 532 

Training_layer = arcpy.GetParameterAsText(1) 533 

Processing_cell_size = arcpy.GetParameterAsText(2) 534 

if Processing_cell_size == '#' or not Processing_cell_size: 535 

    Processing_cell_size = "5" # provide a default value if unspecified 536 

Output_FR_layer = arcpy.GetParameterAsText(3) 537 

Folder_Location = "c:\\" 538 

arcpy.CreateFolder_management(Folder_Location, "FR_modeler") 539 

arcpy.env.workspace = "C:\FR_modeler" 540 

arcpy.gp.Lookup_sa(Input_raster, "VALUE", "C:\FR_modeler\lookupp") 541 

arcpy.gp.ZonalGeometryAsTable_sa("lookupp", "VALUE", "c:/fr_modeler/zonal", Processing_cell_size) 542 

arcpy.AddField_management("zonal", "layer_pert", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 543 

arcpy.Statistics_analysis("zonal", "C:\FR_Modeler\ssummary.dbf", "AREA SUM", "") 544 

arcpy.JoinField_management("zonal", "layer_pert", "C:\FR_Modeler\ssummary.dbf", "OID", "SUM_AREA") 545 

arcpy.CalculateField_management("zonal", "layer_pert", "[AREA] / [SUM_AREA]", "VB", "") 546 

arcpy.gp.TabulateArea_sa("lookupp", "VALUE", Training_layer, "VALUE", "c:/fr_modeler/tabulate", Processing_cell_size) 547 

arcpy.AddField_management("tabulate", "layer_l", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 548 

arcpy.Statistics_analysis("tabulate", "C:\FR_modeler\ssssummary.dbf", "VALUE_1 SUM", "") 549 

arcpy.JoinField_management("tabulate", "layer_l", "C:\FR_modeler\ssssummary.dbf", "OID", "SUM_VALUE_") 550 

arcpy.CalculateField_management("tabulate", "layer_l", "[VALUE_1] / [SUM_VALUE_]", "VB", "") 551 

arcpy.JoinField_management("zonal", "VALUE", "tabulate", "VALUE", "") 552 

arcpy.AddField_management("zonal", "fr_layer", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 553 

arcpy.CalculateField_management("zonal", "fr_layer", "Int ([layer_l]/ [layer_pert]*100)", "VB", "") 554 

arcpy.CopyRows_management("zonal", "c:/fr_modeler/frresult", "#") 555 

arcpy.gp.ReclassByTable_sa("lookupp","frresult","VALUE","VALUE","FR_LAYER",Output_FR_layer) 556 
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arcpy.Delete_management("C:\FR_modeler\ssssummary.dbf","#") 557 

arcpy.Delete_management("C:\FR_modeler\ssummary.dbf","#") 558 

arcpy.Delete_management("C:\FR_modeler\zonal","#") 559 

arcpy.Delete_management("C:\FR_modeler\frresult","ArcInfoTable") 560 

arcpy.Delete_management("C:/FR_modeler/lookupp","RasterDataset") 561 

arcpy.Delete_management("C:/FR_modeler/tabulate","ArcInfoTable") 562 

arcpy.Delete_management("frresult","#") 563 

 564 

WoE 565 

import arcpy 566 

arcpy.CheckOutExtension("spatial") 567 

arcpy.env.overwriteOutput = True 568 

Input_raster = arcpy.GetParameterAsText(0) 569 

Training_layer = arcpy.GetParameterAsText(1) 570 

Processing_cell_size = arcpy.GetParameterAsText(2) 571 

if Processing_cell_size == '#' or not Processing_cell_size: 572 

    Processing_cell_size = "5" # provide a default value if unspecified 573 

Output_WOE_layer = arcpy.GetParameterAsText(3) 574 

Folder_Location = "c:\\" 575 

arcpy.CreateFolder_management(Folder_Location, "woe_modeler") 576 

arcpy.env.workspace = "C:\woe_modeler" 577 

arcpy.gp.Lookup_sa(Input_raster, "VALUE", "C:\woe_modeler\lookupp") 578 

arcpy.gp.ZonalGeometryAsTable_sa("C:\woe_modeler\lookupp","VALUE","c:/woe_modeler/zonal","5") 579 

arcpy.AddField_management("zonal", "per_cell", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 580 

arcpy.Statistics_analysis("zonal", "C:\woe_modeler\ssummary.dbf", "AREA SUM", "") 581 

arcpy.JoinField_management("zonal", "per_cell", "C:\woe_modeler\ssummary.dbf", "OID", "SUM_AREA") 582 

arcpy.CalculateField_management("zonal", "per_cell", "[AREA] / [SUM_AREA]", "VB", "") 583 

arcpy.gp.TabulateArea_sa("lookupp", "VALUE", Training_layer, "VALUE", "c:/woe_modeler/tabulate", Processing_cell_size) 584 

arcpy.AddField_management("tabulate", "per_depost", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 585 

arcpy.Statistics_analysis("tabulate", "C:\woe_modeler\ssssummary.dbf", "VALUE_1 SUM", "") 586 
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arcpy.JoinField_management("tabulate", "per_depost", "C:\woe_modeler\ssssummary.dbf", "OID", "SUM_VALUE_") 587 

arcpy.AddField_management("tabulate", "deposit", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 588 

arcpy.CalculateField_management("tabulate", "deposit", "[VALUE_1] + 0.0000000001", "VB", "") 589 

arcpy.CalculateField_management("tabulate", "per_depost", "( [deposit] / [SUM_VALUE_] )", "VB", "") 590 

arcpy.JoinField_management("zonal", "VALUE", "tabulate", "VALUE", "") 591 

arcpy.AddField_management("zonal", "fr_layer", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 592 

arcpy.CalculateField_management("zonal", "fr_layer", "[per_depost] / [per_cell]", "VB", "") 593 

arcpy.AddField_management("zonal", "per_non_cl", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 594 

arcpy.CalculateField_management("zonal", "per_non_cl", "1 - [per_cell]", "VB", "") 595 

arcpy.AddField_management("zonal", "pr_non_dep", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 596 

arcpy.CalculateField_management("zonal", "pr_non_dep", "1 - [per_depost]", "VB", "") 597 

arcpy.AddField_management("zonal", "non_fr", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 598 

arcpy.CalculateField_management("zonal", "non_fr", "[pr_non_dep] / [per_non_cl]", "VB", "") 599 

arcpy.AddField_management("zonal", "w_positave", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 600 

arcpy.CalculateField_management("zonal", "w_positave", "Log ( [FR_LAYER] +1 )", "VB", "") 601 

arcpy.AddField_management("zonal", "w_nagative", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 602 

arcpy.CalculateField_management("zonal", "w_nagative", "Log ( [non_fr] + 1 )", "VB", "") 603 

arcpy.AddField_management("zonal", "C", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 604 

arcpy.CalculateField_management("zonal", "C", "[w_positave] - [w_nagative]", "VB", "") 605 

arcpy.AddField_management("zonal", "S2_W_pos", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 606 

arcpy.CalculateField_management("zonal", "S2_W_pos", "( 1 / [deposit] ) + ( 1 / ( [AREA] - [deposit] ))", "VB", "") 607 

arcpy.AddField_management("zonal", "s2_w_nag", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 608 

arcpy.CalculateField_management("zonal", "s2_w_nag", "( 1 / ( [SUM_VALUE_] - [VALUE_12] ) ) + ( 1 / ( [SUM_AREA] - 609 
[SUM_VALUE_] - [AREA] - [VALUE_12] ))", "VB", "") 610 

arcpy.AddField_management("zonal", "s_c", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 611 

arcpy.CalculateField_management("zonal", "s_c", "Sqr ( [S2_W_pos] + [s2_w_nag] )", "VB", "") 612 

arcpy.AddField_management("zonal", "woe", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 613 

arcpy.CalculateField_management("zonal", "woe", "Int ( [C] / [s_c] )", "VB", "") 614 

arcpy.CopyRows_management("zonal", "c:/woe_modeler/woeresult", "#") 615 

arcpy.gp.ReclassByTable_sa("lookupp", "woeresult", "VALUE", "VALUE", "WOE", Output_WOE_layer, "DATA") 616 
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arcpy.Delete_management("C:\FR_modeler\ssssummary.dbf","#") 617 

arcpy.Delete_management("C:\FR_modeler\ssummary.dbf","#") 618 

arcpy.Delete_management("C:\FR_modeler\zonal","#") 619 

arcpy.Delete_management("C:\FR_modeler\frresult","ArcInfoTable") 620 

arcpy.Delete_management("C:/FR_modeler/lookupp","RasterDataset") 621 

arcpy.Delete_management("C:/FR_modeler/tabulate","ArcInfoTable") 622 

arcpy.Delete_management("frresult","#") 623 

 624 

EBF 625 

import arcpy 626 

arcpy.CheckOutExtension("spatial") 627 

arcpy.env.overwriteOutput = True 628 

Input_raster = arcpy.GetParameterAsText(0) 629 

Training_layer = arcpy.GetParameterAsText(1) 630 

Processing_cell_size = arcpy.GetParameterAsText(2) 631 

if Processing_cell_size == '#' or not Processing_cell_size: 632 

    Processing_cell_size = "5" # provide a default value if unspecified 633 

belief = arcpy.GetParameterAsText(3) 634 

disbelief_layer = arcpy.GetParameterAsText(4) 635 

uncertainty_layer = arcpy.GetParameterAsText(5) 636 

plausibility_layer= arcpy.GetParameterAsText(6) 637 

Folder_Location = "c:\\" 638 

arcpy.CreateFolder_management(Folder_Location, "EBF_modeler") 639 

arcpy.env.workspace = "C:\EBF_modeler" 640 

arcpy.gp.Lookup_sa(Input_raster, "VALUE", "C:\EBF_modeler\lookupp") 641 

arcpy.gp.ZonalGeometryAsTable_sa("lookupp", "VALUE", "c:/EBF_modeler/zonal", Processing_cell_size) 642 

arcpy.AddField_management("zonal", "layer_pert", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 643 

arcpy.Statistics_analysis("zonal", "C:\EBF_Modeler\ssummary.dbf", "AREA SUM", "") 644 

arcpy.JoinField_management("zonal", "layer_pert", "C:\EBF_Modeler\ssummary.dbf", "OID", "SUM_AREA") 645 
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arcpy.CalculateField_management("zonal", "layer_pert", "[AREA] / [SUM_AREA]", "VB", "") 646 

arcpy.gp.TabulateArea_sa("lookupp", "VALUE", Training_layer, "VALUE", "c:/EBF_modeler/tabulate", Processing_cell_size) 647 

arcpy.AddField_management("tabulate", "layer_l", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 648 

arcpy.Statistics_analysis("tabulate", "C:\EBF_modeler\ssssummary.dbf", "VALUE_1 SUM", "") 649 

arcpy.JoinField_management("tabulate", "layer_l", "C:\EBF_modeler\ssssummary.dbf", "OID", "SUM_VALUE_") 650 

arcpy.CalculateField_management("tabulate", "layer_l", "[VALUE_1] / [SUM_VALUE_]", "VB", "") 651 

arcpy.JoinField_management("zonal", "VALUE", "tabulate", "VALUE", "") 652 

arcpy.AddField_management("zonal", "eq1", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 653 

arcpy.CalculateField_management("zonal", "eq1", "[layer_l] / (( [AREA] - [VALUE_12] ) / ( [SUM_AREA] - [SUM_VALUE_] 654 
))", "VB", "") 655 

arcpy.AddField_management("zonal", "eq2", "DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 656 

arcpy.CalculateField_management("zonal", "eq2", "( ( [SUM_VALUE_] - [VALUE_12] ) / [SUM_VALUE_] ) / ( ( 657 
[SUM_AREA] - [SUM_VALUE_] - [AREA] - [VALUE_12] ) / ( [SUM_AREA] - [SUM_VALUE_] ) )", "VB", "") 658 

arcpy.AddField_management("zonal", "belief", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 659 

arcpy.Statistics_analysis("zonal", "C:\EBF_modeler\summarryy.dbf", "eq1 SUM", "belief") 660 

arcpy.JoinField_management("zonal", "belief", "C:\EBF_modeler\summarryy.dbf", "belief", "SUM_eq1") 661 

arcpy.AddField_management("zonal", "disbelief", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 662 

arcpy.Statistics_analysis("zonal", "C:\EBF_modeler\summaryy.dbf", "eq2 SUM", "disbelief") 663 

arcpy.JoinField_management("zonal", "disbelief", "C:\EBF_modeler\summaryy.dbf", "disbelief", "SUM_eq2") 664 

 665 

arcpy.CalculateField_management("zonal", "belief", "Int ( ( [eq1] / [SUM_eq1] ) * 100 )", "VB", "") 666 

arcpy.CalculateField_management("zonal", "disbelief", "Int ( ( [eq2] / [SUM_eq2] ) * 100 )", "VB", "") 667 

 668 

arcpy.AddField_management("zonal", "uncertian", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 669 

arcpy.AddField_management("zonal", "plusabili", "LONG", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 670 

arcpy.CalculateField_management("zonal", "uncertian", "100 - [belief] - [disbelief]", "VB", "") 671 

arcpy.CalculateField_management("zonal", "plusabili", "100 - [disbelief]", "VB", "") 672 

arcpy.CopyRows_management("zonal", "c:/EBF_modeler/beliefresult", "#") 673 

arcpy.gp.ReclassByTable_sa("lookupp","beliefresult","VALUE","VALUE","BELIEF",belief,"DATA") 674 

arcpy.CopyRows_management("zonal", "c:/EBF_modeler/disbeliefresult", "#") 675 

arcpy.gp.ReclassByTable_sa("lookupp","disbeliefresult","VALUE","VALUE","DISBELIEF",disbelief_layer,"DATA") 676 
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arcpy.CopyRows_management("zonal", "c:/EBF_modeler/uncertiantyresult", "#") 677 

arcpy.gp.ReclassByTable_sa("lookupp","uncertiantyresult","VALUE","VALUE","uncertian",uncertainty_layer,"DATA") 678 

arcpy.CopyRows_management("zonal", "c:/EBF_modeler/plusabilityresult", "#") 679 

arcpy.gp.ReclassByTable_sa("lookupp","plusabilityresult","VALUE","VALUE","plusabili",plausibility_layer,"DATA") 680 

arcpy.Delete_management("C:/EBF_modeler/beliefresult","ArcInfoTable") 681 

arcpy.Delete_management("C:/EBF_modeler/disbeliefresult","ArcInfoTable") 682 

arcpy.Delete_management("C:/EBF_modeler/plusabilityresult","ArcInfoTable") 683 

arcpy.Delete_management("C:/EBF_modeler/ssssummary.dbf","DbaseTable") 684 

arcpy.Delete_management("C:/EBF_modeler/ssummary.dbf","DbaseTable") 685 

arcpy.Delete_management("C:/EBF_modeler/summarryy.dbf","DbaseTable") 686 

arcpy.Delete_management("C:/EBF_modeler/summaryy.dbf","DbaseTable") 687 

arcpy.Delete_management("C:/EBF_modeler/lookupp","RasterDataset") 688 

arcpy.Delete_management("C:/EBF_modeler/tabulate","ArcInfoTable") 689 

arcpy.Delete_management("C:/EBF_modeler/uncertiantyresult","ArcInfoTable") 690 

arcpy.Delete_management("C:/EBF_modeler/zonal","ArcInfoTable") 691 
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