- 1 **Response to Topical Editor**
- 2

3 Thanks for submitting a revised version of your manuscript. I feel most comments from

- 4 the reviewers were well addressed in the revised version, and the model documentation in
- 5 GitHub has been improved considerably. I think this is a very significant step towards a
- 6 more open and transparent development of climate and Earth system models, and I hope
- 7 new improvements of this model will follow in the future with input from a broader 8 community.
- 9 I only have one minor comment that I would like the authors to address in the final
- 10 version. Although the manuscript mentions a test framework for Hector, and the source
- code does indeed have a number of test files, there is no mention about the functionality 11
- 12 of these tests. I feel that for potential users and developers it is very important to know
- 13 better what is being tested. Please include a short paragraph describing the test suit 14 available.
- 15
- 16 The authors have addressed this comment in the text below:
- 17 "In keeping with Hector's emphasis on modern, robust software design, the code
- includes an optional (i.e., not needed to compile and run the model) unit testing build 18
- target. Unit testing allows individual units of source code to be tested in a standardized 19
- 20 and automatic manner, ensuring that they behave as expected after changes are made
- 21 to the model source code. Current tests verify the behavior of the model coupler
- 22 (message passing and dependency calculation); reading of input; time series; logging;
- 23 and units checking. This functionality requires the 'googletest' library
- 24 (http://code.google.com/p/googletest)."
- 25
- 26 Response to Reviewer 1

27 **General comments**

- 28 • Land carbon uptake in the model is represented by net primary production and not by 29 gross primary production. This may have some conceptual and practical problems
- 30 because, i) the autotrophic flux of carbon is not included in the calculations of the land-
- 31 atmosphere C exchange, and ii) this land-atmosphere exchange can't be compared against
- 32 many available data products. For example, soil respiration fluxes, which include both
- 33 autotrophic and heterotrophic sources can't be compared with model predictions.
- 34 Similarly, ecosystem level fluxes can't be compared with eddy-covariance derived fluxes
- 35
- or GPP estimates from satellite products. Can you explain why the autotrophic
- 36 component of the land C cycle is not included in the model? Do you plan to include this 37 in the future, or is there a particular reason why you believe this should not be included?
- 38
- 39 As the reviewer notes, we have chosen, in this 1.0 version, to implement the terrestrial-
- 40 atmosphere C exchange as the difference between NPP and RH, rather than breaking out
- 41 GPP and RA separately. This makes for a simpler model but, again as the reviewer
- 42 correctly notes, limits our ability to compare to, for example, remotely-sensed GPP. This
- 43 is a choice that could (and probably will) be changed in the future; we've logged it as an
- 44 "issue" on the project repository at https://github.com/JGCRI/hector/issues/53. We have
- 45 added the following to the manuscript under section 7.0: "For example, Hector does not

46 currently simulate terrestrial gross primary production, a key metric of comparison to e.g. the FLUXNET database." 47

48

49 • The documentation of the model in GitHub is incomplete and needs to be finished. In 50 particular, the authors should describe better the steps for compiling and running the 51 model in different OS. Given that this documentation is written in Markdown language, 52 the authors should provide a step-by-step procedure for compiling and running a 53 simulation using syntax highlighting. A demo on how to analyze the results using the R 54 scripts would be also very useful. 55 56 All documentation of the model is now on Github wiki, including how to compile and run

- 57
- Hector in each OS, how to guides such as; add new components, unitvals, tseries and a
- demo of the R backend. All documentation is found at: 58 https://github.com/JGCRI/hector/wiki
- 59 60

61 • Figure 4 shows a very high sensitivity of Hector for predicting temperature anomalies.

62 The slope after the 1960s is much larger in Hector than in the other models. Can you 63 comment on this large sensitivity?

64

65 We have addressed and fixed the high temperature sensitivity after 1960 by including a 66 variable ocean heat flux, as well as lagging the temperature effects from atmospheric 67 $[CO_2]$. There are numerous processes that are not simulated in Hector that buffer the temperature effects of increasing GHGs. Therefore, we take a simple approach in this 68 69 current version and lag our temperature. We have addressed this in the manuscript 70 section 4.1, "As global temperatures rise, the uptake capacity of the ocean thus 71 diminishes, simulating both a saturation of heat in the surface and a slowdown in ocean 72 circulation with increased temperatures. Finally, the temperature effects from 73 atmospheric $[CO_2]$ are lagged in time, as there are numerous real-world processes not 74 simulated in Hector buffering the temperature effects of increasing atmospheric $[CO_2]$." 75 See figures 4 and 8 for updated global temperature change. 76

77 **Technical and other comments**

78 • Page 7076, lines 22-23. I would say that fully coupled Earth system models

- 79 (atmosphere-ocean-land) are at the complexity end, and not just AOGCMs.
- 80

81 The authors agree with the reviewer and have edited the title as suggested:

- 82 "To accomplish this, a hierarchy of climate models with differing levels of complexity
- 83 and resolution are used, ranging from purely statistical or empirical models, to simple
- 84 energy balance models, to fully-coupled Earth System Models (ESMs) (Stocker, 2011)."
- 85

- 87 cvcle models.
- 88 *Equation edited as suggested.* " $dC/dt < \varepsilon$ "
- 89

[•]Page 7080, line 28. Change for d. The notation is commonly used for isotopes in C 86

• How do you calculate NPP0 and RH0? I think this formulation of RH is potentially

91 dangerous because you may respire more C than what is available in the pools of

92 equation (8) and (9).

93

In regards to NPPO and RH: NPPO, the global preindustrial NPP flux, is specified a priori,
not calculated. The use of RHO in Equation 5 was a mistake, for which we apologize. At
any point in time, model RH is always a function of the current carbon stocks in soil and
litter.

98

• Equation (12). What is the last term Fi? It seems to me that this term violates mass

balance. What additional flux, different from all inputs and outputs, can modify the netchange?

102

103 The last term Fi is now the carbon flux to/from the atmosphere to/from the ocean.

104 *Equation 12 has been changed accordingly:*

$$\frac{dC_i}{dt} = \sum_{j=1}^{in} F_{j \to i} - \sum_{j=1}^{out} F_{i \to j} + F_{atm \to i}$$

105 106

• Page 7058, line 25. Replace 'model' for 'version'.

- 108
- 109 *Model has been changed to version as suggested by the reviewer.*
- 110

Equation (15). Why do you use a difference equation instead of a differential equation?
Is this process discrete in time?

113

114 The reviewer brings up a good point. We updated equation 16 to reflect changes from a 115 difference solution to an exact solution. Operating on a finite timescale introduces more

116 error than an exact solution. $C(t) = C_0 * \exp\left(-\frac{1}{T}\right) + E * T * \left(1 - \exp\left(-\frac{1}{T}\right)\right)$

117 Response to Reviewer 2:

- 118 General comments
- 119

120 I have two major concerns with the manuscript: 1) experiments to validate Hector are not 121 well described, and 2) Hector appear to have issues at longer timescales that are not well 122 described or acknowledged. I recommend the authors include additional material on the 123 performed experiments and fidelity of Hector at different timescales. The manuscript also 124 need significant cleanup of typos and grammatical errors, and could benefit from 125 improvement of figures.

126

127 The authors have since restructured the results section to better describe the

128 experimental design. All experiments are run under prescribed emissions scenarios from

129 the Representative Concentration Pathways (RCP 2.6, 4.5, 6.0, and 8.5). However, the

- 130 CMIP5 data used to compare with Hector are from prescribed concentration scenarios,
- 131 with the exception of atmospheric $[CO_2]$. We acknowledge that this may not be a perfect

132 comparison, but the CMIP5 archive is limited in the number of models that ran scenarios133 with prescribed emissions.

134

As noted in the title, Hector is concerned with policy relevant timescales, notably the next
 100-300 years. We agree with the reviewer that a more detailed explanation of the

137 timescales is needed in the manuscript and have since updated this.

138 *"Hector's strengths lie within policy relevant time scales of decades to centuries. Studies*

139 suggest that 80% of the anthropogenic CO_2 emissions have an average atmospheric

140 lifetime of 300-450 years (Archer et al., 1997; Rogner, 1997; Archer, 2005). Hector has

all the necessary components to model the climate system from present day through the
next approximately 300 years."

143

144 *Lastly, grammatical errors, and figures have been improved in the updated manuscript.*145

- 146 Specific comments
- 147

148 **Title:** The title of the paper does not appropriately describe the contents of this

149 manuscript. The title suggests that this manuscript describes a global carbon cycle model,

150 but Hector is a full climate model and the paper describes all the components of Hector.

151 A better title might be something like, A simple object-oriented and open source model

152 for scientific and policy analyses of the global climate system – Hector v0.1. I

recommend that the authors revise the title to better reflect the overall contents of thepaper.

155

156 *The authors agree with the reviewer and have edited the title as suggested:*

157 "A simple object-oriented and open source model for scientific and policy analyses of the
158 global climate system–Hector v1.0"

159

Introduction: The introduction is lacking a description of previous work in the field and needs to add citations and discuss the novelty of Hector. The authors properly describe the purpose of simple climate models, their general structure and implementation. But, the authors should cite previous simple climate models and explicitly explain why the design of Hector is novel. Relevant citations include but are not limited to Meinshausen et al. (2011), Joos et al. (2013), Glotter et al. (2014), and models described in van Vuuren et al. (2009) and Hof et al. (2011).

167

168 The authors have added significant changes to the introduction to better reflect the 169 current state of simple climate modeling within Integrated Assessment Models.

170

171 "Depending on the purpose of the IAMs (economics, cost-benefit analysis, or more

172 physical based processes), the corresponding climate and carbon component varies in

173 complexity and resolution. For example, models like DICE, FUND, and MERGE have a

174 highly simplified carbon/climate system (Nordhaus, 2008; Anthoff and Tol, 2014; Manne

and Richels, 2005). IAMs focusing more on the physical processes of the natural system

176 and the economy employ more complex representations of the climate/carbon system.

177 Models like GCAM (Global Change Assessment Model) and MESSAGE use MAGICC as

their SCM (Meinshausen et al., 2011a; Riahi et al., 2007; Calvin et al., 2011).

179 Increasing in complexity, some IAMs include the climate/carbon system at gridded scales

- 180 (e.g., IMAGE), and can be coupled to earth system models of intermediate complexity
- 181 (e.g., MIT IGSM), or more recently coupled to a full earth system model (the iESM
- 182 project) (Bouwman et al., 2006; Sokolov et al., 2005; Bond-Lamberty et al., 2014; Di
- 183 Vittorio et al., 2014; Collins et al., 2015)."
- 184

Results: The experimental design for the tests performed in this manuscript are not well described. There remain several ambiguities in Section 5 that must be clarified so results can be properly assessed. In general, figure captions should be expanded to explain the experimental design used to make that display. The authors may find it beneficial to add a table that describes all experiments performed, including Hector's configuration for each experiment, input data used to drive Hector, and the model output (or data) that Hector is compared to. Specific examples of ambiguities related to experimental design include:

192

For most figures, it remains unclear precisely when Hector is driven by an emissions
 scenario and when atmospheric carbon is prescribed. For example, is Figure 8 made
 using fixed exogenous CO2 concentrations or with emissions scenarios that reproduce
 RCPs? The authors should clarify when RCPs are used and when esmRCPs are used. An
 experimental design table (as described above) would help clarify here.

198

The authors have clarified this information in the text as well as in the figure caption.
"All CMIP5 variables used in this study are from model runs with prescribed

201 atmospheric concentrations, except for comparisons involving atmospheric [CO₂] which

- are from the emissions driven scenario (esmHistorical and esmRCP8.5) (Figures 3 and
- 203 5). We acknowledge that this comparison, between an emissions-forced model (Hector)

and concentration-forced models (CMIP5), is not perfect. However, few CMIP5 models were run under prescribed emissions scenarios."

206

• The paragraph on page 7081 (lines 4-16) that describes how atmospheric concentrations are prescribed needs to be re-written. If the model simply inverts concentrations to find emissions, it is not clear why the assumption in lines 14-15 is necessary. I am also not sure this statement would hold true for large perturbation scenarios, such as an instantaneous doubling (or more) of CO2. If this is how the authors perform the prescribed-CO2 experiments, it is vital that it be described carefully else results are not

- 213 interpretable.
- 214

The paragraph on page 7081 explains some of the capabilities built into Hector to force
its output to match a user-supplied time series. This is very helpful with testing and

217 *debugging the carbon cycle system within Hector. We do not invert concentrations to*

find emissions; instead for example, atmospheric CO₂ concentrations are read into

219 *Hector and over write any calculated* [CO₂] *values. The user-supplied time series can be*

started and stopped at any point. When the model exits the constrained time period,

 $[CO_2]$, in this case, becomes fully prognostic. We have updated the manuscript to better reflect this.

224 "Hector can be forced to match its output to a user-supplied time series. This is helpful 225 to isolate and test different components. Available constraints currently include 226 atmospheric CO_2 , global temperature anomaly, total ocean-atmosphere carbon 227 exchange, total land-atmosphere carbon exchange, and total radiative forcing." 228 229 • Which "historical conditions" are used to run Hector (page 7089, lines 17-18)? 230 231 The text containing 'historical conditions' has been rewritten to better reflect the inputs 232 use to run Hector in this study. 233 234 Within this study, Hector is run with prescribed emissions from 1850 to 2300 under all 235 four Representative Concentration Pathways (RCPs), freely available at 236 http://tntcat.iiasa.ac.at/RcpDb/" 237 238 • Which models run esmRCP8.5 (page 7090, lines 11-12)? Are these different than the 11 239 CMIP5 models? 240 241 The authors have updated table 3 within the manuscript to reflect the models that ran 242 esmHistorical and esmrcp85 (emissions prescribed scenarios). 243 244 • RCPs (by definition) are CO2 concentration pathways. What does it mean for 245 atmospheric CO2 in Hector to be highly correlated with MAGICC for the four RCPs (Page 7091, lines 23-27)? Shouldn't the definition of an RCP necessitate identical 246 247 concentration pathways? This confusion also applies to figures 5-6, and is likely related 248 to the confusion described in the second bullet. Please clarify. 249 250 The authors apologize for the confusion on the wording of RCPs and how they relate to 251 the Hector output. We have clarified this issue in section 5.0 below: 252 "RCPs by definition are concentration pathways; however, for all experiments within this 253 manuscript we use the corresponding emissions trajectories from each RCP as input for 254 Hector." 255 256 • I disagree with the statements at the beginning of section 6.2. It is incorrect that models 257 that 258 accurately estimate historical climate are simply "assumed" to be reliable for future 259 scenarios. The credibility of Hector in making future projections of the climate should not 260 be based solely on the fact that it can reproduce historical trends. In fact, we see that 261 Hector has problems at long timescales (where short timescales are more accurate-Figures 8 and 10), and even some errors appear in the historical record itself (Figure 4). 262 263 The authors must re-write this paragraph, but more importantly, must be explicit about issues with the use of Hector over long timescales. There are issues with the fidelity of 264 Hector at different timescales that are not acknowledged or described. Hector does not 265 include the dissolution of calcium carbonate in its representation of the carbon cycle (to 266 267 my knowledge) and therefore will not be dependable past _2000 years. But I do not know 268 whether Hector is dependable up to 2000 years. Potential users of Hector would benefit

greatly from a dedicated discussion of its usefulness at different timescales. Specificconcerns with the fidelity of Hector include:

271

The authors fully agree with the reviewer that accurately simulating historical conditions
does not thereby make them reliable for future scenarios. We also agree with the

274 reviewer that a discussion of the timescales in which Hector is useful over is needed
275 within the manuscript (section 6.2).

276 *"We compare Hector to MAGICC and CMIP5 under differing future climate projections."*

277 *Hector's strengths lie within policy relevant time scales of decades to centuries. Studies*

suggest that 80% of the anthropogenic CO₂ emissions have an average atmospheric
lifetime of 300-450 years (Archer et al., 1997; Rogner, 1997; Archer, 2005). Hector has
all the necessary components to model the climate system from present day through the

- 281 next approximately 300 years."
- 282

• Hector is unable to reproduce 1970-2010 temperatures (Fig 4). These errors should be described in the text, including possible explanations linked to underlying physics.

285

286 We have addressed and fixed the high temperature sensitivity after 1960 by including a 287 variable ocean heat flux, as well as lagging the temperature effects from atmospheric 288 $[CO_2]$. There are numerous processes that are not simulated in Hector that buffer the

temperature effects of increasing GHGs. Therefore, we take a simple approach in this

290 current version and lag our temperature. We have addressed this in the manuscript

291 section 4.1, "As global temperatures rise, the uptake capacity of the ocean thus

292 diminishes, simulating both a saturation of heat in the surface and a slowdown in ocean

293 circulation with increased temperatures. Finally, the temperature effects from

294 atmospheric $[CO_2]$ are lagged in time, as there are numerous real-world processes not

simulated in Hector buffering the temperature effects of increasing atmospheric $[CO_2]$." See figures 4 and 8 for updated global temperature change.

297

Atmospheric CO2 concentrations in figure 5 are only shown from 1850-2100. Is there a reason why this plot isn't extended to 2300 like figures 6-11? If model errors are prevalent from 2100-2300, it is essential that this plot show the entire time range.

301

302 The CMIP5 archive of models that ran esmrcp85, do not run out to 2300. Therefore, we 303 can only compare out to 2100. The caption for Figure 5 has been updated:

304 "Figure 5: Atmospheric [CO₂] from 1850 to 2100 under RCP 8.5 for Hector (blue),

305 MAGICC6 (green), Mauna Loa (purple), Law Dome (brown) and esmRCP 8.5

306 (prescribed emissions scenario) CMIP5 median, one standard deviation and model range 307 (pink, n=4 (1850-2000) and n=5 (2001-2100)). Note that the CMIP5 models run under

308 esmrcp85 do not extend to 2300."

309

• Hector also appears unable to reproduce temperatures in CMIP5 models past year 2100

311 (Fig 8). This misrepresentation is downplayed in the text (page 7092, lines 11-20). It is

312 not sufficient to simple state that errors are negligible because correlations are high. It is

313 unclear whether this is an error in the temperature or the carbon cycle model of Hector

because the experiment is not well described. Please clarify.

- 316 Since fixing the temperature problem post 1960s, Hector is now closer to the CMIP5
- 317 median post 2100, than MAGICC6 is. Post 2100, Hector remains within the standard
- 318 deviation of the CMIP5 models. We have included in the figure captions, the numbers of
- 319 models for each scenario, for each time period. Post 2100, the number of model run out
- 320 to 2300 drops off dramatically, which could be responsible for some of the differences
- 321 *between the CMIP5 median and Hector.*
- 322
- The authors do a nice job highlighting deviations in the atmosphere-ocean flux in
- Hector from CMIP5 models after _2100 (Fig 10). However, these deviations do not seem
 trivial, and may impact long-term projections. If Hector cannot be trusted after _2100,
 this should be stated.
- 327 Until a later version of Hector is released with an updated modeling approach, the authors
- 328 should acknowledge these issues and should add discussion on the physical causes that
- 329 may produce deviations from observations (or more complex models). The authors do
- include some discussion of the underlying physics at the end of section 6, but more
- 331 should be included throughout the manuscript.
- 332
- The authors agree with the reviewer and have since updated section 6.2 with more detail: "Hector's calculation of air-sea fluxes is within the large CMIP5 model range up to
- 335 2100. However, after that Hector peaks close to 2150, while the CMIP5 models are
- 336 beginning to decline. One potential reason for this discrepancy after 2100 is that in this
- 337 version of Hector, we do not simulate changes in ocean circulation, potentially biasing
- 338 fluxes too high after 2100. Most ESMs in CMIP5 show a weakening of the Atlantic
- meridional overturning circulation by 2100 between 15% and 60% under RCP 8.5
- 340 (Cheng et al., 2013). A slowdown in ocean circulation may result in less carbon uptake
- by the oceans, as seen in Figure 9. Another potential reason for this bias is Hector's
 constant pole to equator ocean temperature gradient. Studies show that the Artic is
- 342 constant pole to equator ocean temperature gradient. Studies show that the Artic is
 343 warming faster than the rest of the globe (e.g., Bintanja and van der Linden, 2013;
- 344 Holland and Bitz, 2003; Bekryaev et al., 2010). A warmer high latitude surface ocean in
- 345 Hector would suppress the uptake of carbon, potentially contributing to higher air-sea
- 346 *fluxes after 2100.*"
- 347

348 **Technical corrections - figures and tables**

- All figures: Figure text is too small.
- 350
- 351 *Figure fonts and line size have been enlarged for all figures.*
- Figure 2: Describe (in caption or key) the definitions of variables TT, EIL, EID, etc.
- 354 A reference to Table 2 has been included in the figure caption.
- 355
- Figures 3-5, and 8: use consistent colors for models across figures. It is very hard to
- 357 compare across figures when Hector output is shown as yellow in one plot and green in
- 358 another.
- 359

360	The authors agree with the reviewer and have updated all figures to have the same color
361	scheme.
362	
363	• Figure 8: Label panels a. b. c. and d.
364	Sarris are farried, i, i, i, a and
365	Figure 8 has been updated.
366	0 1
367	• Tables 1 and 2: Include references for initial condition values where applicable.
368	For example, the recent IPCC estimates a pre-industrial total oceanic carbon content of
369	_38,000 GtC. Numbers here are closer to 35,000 GtC. This difference is not likely
370	significant for Hector, but my confidence in the model would be higher with references to
371	justify these numbers.
372	
373	The authors agree with the reviewer and have added references for initial values where
374	applicable in Table 1 & 2.
375	
376	Technical corrections - text
377	(Note that I did not provide comments for sections 4.2.1-4.2.6, and suggest a different
378	reader with expertise in this area to review this material.)
379	• Page 7077, line 5: #4 (modeling the carbon cycle) seems a subset of #1 (calculating
380	future concentrations of greenhouse gases). Either remove #4 or move it up as an explicit
381	subset of #1 (or explain what is meant, if I am missing something). The order should
382	reflect the general order of operations in an SCM.
383	
384	Sentence edited as suggested:
385	"Most SCMs have a few key features: 1) calculating future concentrations of greenhouse
386	gases (GHGs) from given emissions while modeling the global carbon cycle; 2)
387	calculating global mean radiative forcing from greenhouse gas concentrations; and 3)
388	converting the radiative forcing to global mean temperature (e.g., Wigley, 1991;
389	Meinshausen et al., 2011a; Tanaka et al., 2007b; Lenton, 2000)."
390	
391	• Page 7077, line 7: Recommend changing the word "policy" to "decision making".
392	
393	Sentence edited as suggested:
394	"With these capabilities, SCMs play an integral role in decision making and scientific
395	research."
396	
397	• Page 7077, lines 12-13: Recommend changing "have a simple representation" to "rely
398	on simple representations".
399	
400	Sentence edited as suggested:
401	"Therefore, all IAMs rely on a simple representation of the global climate system."
402	
403	• Page /0//, lines 24-2/: Consider re-writing the first sentence of this paragraph. There is
404	also a grammatical error in this sentence: "therefore are used for run multiple simulations

405 of future climate change..."

406	
407	Sentence edited as suggested:
408	"Lastly, SCMs are computationally efficient and inexpensive to run. Therefore, they are
409	used to run multiple simulations of future climate change emissions scenarios,
410	parameter sensitivity experiments, perturbed physics experiments, large ensemble runs,
411	and uncertainty analyses (Senior and Mitchell, 2000; Hoffert et al., 1980; Harvey and
412	Schneider, 1985; Ricciuto et al., 2008; Sriver et al., 2012; Irvine et al., 2012)."
413	
414	• Page 7077, line 29: Please be more specific with wording choice for "fast enough".
415	
416	Sentence edited as suggested:
417	"Lastly, SCMs are computationally efficient and inexpensive to run."
418	
419	• Page 7078, line 5: "This study introduces Hector v0.1, an object-oriented, simple"
420	
421	Sentence edited as suggested:
422	"This study introduces Hector v1.0, an object-oriented, simple"
423	
424	• Page 7078, line 11: Consider changing the word "basic" to "fundamental".
425	
426	Sentence edited as suggested:
427	"One of the fundamental questions faced in developing a SCM is how much detail should
428	be represented in the climate system."
429	
430	• Page 7082, line 19: typo- "-political"
431	Formatting issues with a '-' have been corrected.
432	
433	• Page 7083, line 6: typo– "NPP is modified by a the use-specified"
434	Formatting issues with a '-' have been corrected.
435	
436	• Page 7083, line 7: Does (or can) beta change with time or temperature? If parameter is
43/	fixed, state that explicitly.
438	
439	No, beta (the shape of the NPP response to CO2 fertilization) doesn't change with time. It
440	does, optionally, change spatially: users can define separate beta values for different
441	biomes, for example.
442	"These are commonly used formulations: NPP is modified by a user-specified carbon
443	fertilization parameter, $m{ heta}$ (Piao et al., 2013), that is constant in time but not necessarily
444	in space. For example, users can define separate β values for different biomes."
445	
446	• Page 7083, line 14: Do you mean Eqs. (7)-(9)? Correct if this is a typo.
447	
448	The authors corrected this typo.
449	
450	• Page 7083, eqs 7-9: Explicitly define all terms and/or refer to Table 1. Terms do not
451	match those in Table 1 (e.g. FLC).

454

453 The authors have corrected this.

Page 7084, lines 10-12: This assumption is essentially a statement of fixed equator-pole
temperature gradient. But when the Earth warms, the poles tend to warm more than the
equator. This assumption should be discussed explicitly, including under what conditions
it would affect the performance of Hector

459

Within Hector it is assumed a fixed equator-pole temperature gradient in sea surface
temperature. While this may not hold under future warming scenarios, v1.0 of Hector is a
simple representation of the climate system and this change in temperature gradient is a
major future improvement to the model. A warmer high latitude ocean will potentially
result in less CO₂ uptake in the high latitude ocean.

465 *"We assume a constant pole to equator temperature gradient, but acknowledge that this assumption may not hold true if the poles warm faster than the equator."*

467

Page 7084, lines 21-23: Carbon cycle description (section 3 up to 3.1) is incomplete.
Presumably the model includes the non-linear effects in oceanic carbon uptake from

470 changing ocean acidity as atmospheric carbon is transferred to the upper ocean, but these
471 are not described. The relevant equations should be included here. Some discussion
472 comes later on page 7093, but the pH dependence is not well described.

473

474 This has been addressed under section 3.0:

475 *"We model the nonlinearity of the inorganic carbon cycle, calculating pCO₂, pH, and*

476 carbonate saturations based on equations from Zeebe and Wolf-Gladrow, (2001). The

477 flux of CO_2 for each box i is calculated by:

$$F_i(t) = k \, \alpha \, \varDelta p CO_2 \tag{11}$$

478 where k is the CO_2 gas-transfer velocity, α is the solubility of CO_2 in water based on 479 salinity, temperature, and pressure, and ΔpCO_2 is the atmosphere-ocean gradient of 480 pCO_2 (Takahashi et al., 2009). The calculation of pCO_2 in each surface box is based on 481 the concentration of CO_2 in the ocean and its solubility (a function of temperature, 482 salinity, and pressure)."

483

484 • Page 7089, line 17: Please be more specific with "other models". Do the authors mean
485 more complex models? Or widely used models? Or both?

486 Sentence edited as suggested:

487 *"A critical test of Hector's performance is to compare the major climatic variables*

- 488 calculated in Hector, e.g., atmospheric [CO₂], radiative forcing, and atmospheric
 489 temperature, to observational records and both simple and complex climate models. "
- 490

491 • Page 7090, line 8: Spell out "SD".

492

493 Sentence edited as suggested: "standard deviation"

• Page 7090, line 24: Remove words "a few".

496

- 497 Sentence edited as suggested: removed "a few"
- Page 7090, line 25-26: Consider re-wording sentence.
- 501 *Sentence edited as suggested:*
- 502 *"After spinup is complete in Hector, atmospheric* [CO₂] *in* 1850 *is* 286.0 *ppmv, which* 503 *compares well with observations from Law Dome of* 285.2 *ppmv."*
- 504

500

- Page 7091, line 19: Is Hector actually perfectly correlated here, or is R=1.0 from rounding? Please double check.
- 507

508 The authors have since removed the correlation values from the manuscript. We have 509 replaced them with absolute changes over given time periods. We feel that this is a better 510 comparison between all the models, than correlation. 2 models can be well correlated, 511 but that does not necessarily suggest that they are in agreement.

- 512
- Page 7092, line 23: Grammatical error "the higher the correlation and low RMSE between CMIP5 and" Presumably what is intended is "the lower the RMSE"
- between CMIP5 and : : :". Presumably what is intended is "the lower the RMSE".
- 516 The authors have since removed figure 9 from the manuscript as well.
- 517
- Page 7093, line 23: Change "see" to "estimate".
- 519
- 520 Sentence edited as suggested:
- 521 *"We estimate a significant drop in pH from present day through 2100."*
- 522

- 523 A simple object-oriented and open source model for scientific and policy analyses of
- 524 the global carbon cycleclimate system–Hector v1.00.1
- 525 C.A. Hartin*, P. Patel, A. Schwarber, R.P. Link, and B.P. Bond-Lamberty
- 526
- 527 Pacific Northwest National Laboratory, Joint Global Change Research Institute at the
- 528 University of Maryland–College Park, 5825 University Research Court, College Park, MD
- 529 **20740, USA**
- 530
- 531 *Corresponding author: <u>corinne.hartin@pnnl.gov</u>
- 532
- 533

534 Abstract

535	Simple climate models play an integral role in <u>the policy</u> and scientific communities.
536	They are used for climate mitigation scenarios within integrated assessment models,
537	complex climate model emulation, and uncertainty analyses—Here we describe
538	Hector v <u>1.0</u> 0.1, an open source, object-oriented, simple global climate carbon-cycle
539	model. This model runs essentially instantaneously while still representing the most
540	critical global scale earth system processes. Hector has <u>a</u> three <u>-part</u> main carbon
541	pools<u>cycle</u>: an <u>a one-pool</u> atmosphere, land, and ocean
542	carbon cycle includes primary production and respiration and fluxes primary production,
543	accommodating arbitrary geographic divisions into, e.g., ecological biomes or political
544	units. Hector actively solves the inorganic carbon system in the surface ocean, directly
545	calculating air-sea fluxes of carbon and ocean pH. Hector reproduces the global
546	historical trends of atmospheric [CO ₂], radiative forcing, and surface temperatures. The
547	model simulates all four Representative Concentration Pathways with equivalent rates
548	of changehigh correlations (R >0.7) of key variables over time compared with to current
549	observations, MAGICC (a well-known simple climate model), and <u>models from</u> the <u>5th</u>
550	Coupled Model Intercomparison Project-version 5. Hector's flexibility, is freely available
551	under an open source licensenature, and its-modular design will facilitate a broad range
552	of research in various areas.

553

554

1.0 Introduction

556	Projecting future impacts of anthropogenic perturbations on the climate system
557	relies on understanding the interactions of key earth system processes. To accomplish
558	this, a hierarchy of climate models with differing levels of complexity and resolution are
559	used, ranging from purely statistical or empirical models, to simple energy balance
560	models, to fully-coupled atmosphere-ocean-general circulation models (AOGCMs)Earth
561	System Models (ESMs) (Stocker, 2011).
562	Simple-Reduced-complexity or simple climate models (SCMs) lie in the middle of
563	this spectrum, representing only the most critical global scale earth system processes
564	with low spatial and temporal resolution, e.g., carbon fluxes between the ocean and
565	atmosphere, primary production and respiration fluxes and primary production on land.
566	These models are relatively easy to use and understand, and are computationally
567	inexpensiveMost SCMs have a few key features: 1) calculating future concentrations of
568	greenhouse gases (GHGs) from given emissions and while modeling the global carbon
569	$\frac{cycle_{7}}{2}$ 2) calculating global mean radiative forcing from greenhouse gas concentrations;
570	and 3) converting the radiative forcing to global mean temperature , and 4) modeling
571	the carbon cycle, an essential part of the climate system (e.g., Wigley, 1991;
572	Meinshausen et al., 2011a; Tanaka et al., 2007b; Lenton, 2000).
573	With these capabilities, SCMs play an integral role in policy-decision making and
574	scientific research. For example, energy-economic-climate models or Integrated
575	Assessment Models (IAMs) are used to address issues on energy system planning,
576	climate mitigation, and stabilization pathways, and land-use changes, pollution control,

577 and population policies (Wigley et al., 1996; Edmonds and Smith, 2006; van Vuuren et 578 al., 2011). AOGCMS-ESMS are too computationally expensive to use in these analyses. 579 Therefore, all IAMs rely on have a a simple representation -of the global climate system 580 in which emissions data from the IAMs are converted to concentrations and then 581 radiative forcing and global temperature are calculated. 582 Depending on the purpose of the IAMs (economics, cost-benefit analysis, or more 583 physical based processes), the corresponding climate and carbon component varies in 584 complexity and resolution. For example, models like DICE, FUND, and MERGE have a 585 stronglyhighly simplified carbon/climate system (Nordhaus, 2008; Anthoff and Tol, 586 2014; Manne and Richels, 2005). IAMs focusing more on the physical processes of the 587 natural system and the economy have a employ more complex representations of the 588 climate/carbon system. Models like GCAM (Global Change Assessment Model) and 589 MESSAGE use MAGICC as their SCM (Meinshausen et al., 2011a; Riahi et al., 2007; Calvin 590 et al., 2011). Increasing in complexity, some IAMs include the climate/carbon system at 591 gridded scales (e.g., IMAGE), and can be coupled to earth system models of 592 intermediate complexity (e.g., MIT IGSM), or more recently coupled to an full earth 593 system model (the iESM project) (Bouwman et al., 2006; Sokolov et al., 2005; Bond-594 Lamberty et al., 2014; Di Vittorio et al., 2014; Collins et al., 2015). 595 SCMs such as MAGICC, GENIE, and the climate emulation tool at RDCEP are also 596 used as emulators of more complex AOGCMs-ESMs, such as MAGICC, GENIE, and the 597 climate emulation tool at RDCEP (Meinshausen et al., 2011c; Schlesinger and Jiang, 598 1990; Challenor, 2012; Ratto et al., 2012; Lenton et al., 2009; Castruccio et al., 2014).

599	The components-behavior of SCMs can be constrained to replicate the overall behavior
600	of the more complex model <u>ESM-components</u> . For instance, the climate sensitivity of a
601	SCM can be made equal to that of a <u>n ESMn AOGCM</u> by altering a single model
602	parameter. In particular, the One SCM, MAGICC, model has been central to the
603	analyses presented in the Intergovernmental Panel on Climate Change (IPCC) reports,
604	and can be parameterized to emulating emulate a large suite of AOGCMs-ESMs
605	(Meinshausen et al., 2011a).
606	Lastly, SCMs are computationally efficient and inexpensive to run , and t herefore,
607	they are used forto run multiple simulations of future climate change emissions
608	scenarios, parameter sensitivity experiments, perturbed physics experiments, large
609	ensemble runs, and uncertainty analyses (Senior and Mitchell, 2000; Hoffert et al., 1980;
610	Harvey and Schneider, 1985; Ricciuto et al., 2008; Sriver et al., 2012; Irvine et al., 2012).
611	SCMs are fast enough <u>computationally efficient in that multiple scenarios can be</u>
612	simulated, and a wide range of parameter values can be tested. MAGICC, the Bern CC
613	model, and SNEASY are examples of a few models used for uncertainly analysis
614	(Meinshausen et al., 2011c; Urban and Keller, 2010; Joos et al., 2001b) <u>. Specifically,</u>
615	SCMs have been useful in reducing uncertainties in future CO_2 sinks, quantifying
616	parametric uncertainties in sea-level rise, ice-sheet modeling, ocean-heat uptake, and
617	aerosol forcing s (Ricciuto et al., 2008; Sriver et al., 2012; Applegate et al., 2012; Urban
618	and Keller, 2009).
619	This study introduces Hector v 0. 1 <u>.0</u> , <u>an open source,</u> object-oriented, simple climate
620	carbon-cycle model. <u>Hector was developed with three main goals in mind.</u> First, Hector

621	is an open source model, <u>Hector is open source</u> , an important quality given that the
622	scientific community, funding agencies, and journals are increasingly emphasizing
623	transparency and open source (E.P. White, 2013; Heron et al., 2013), particularly in
624	climate change sciences (Wolkovich et al., 2012)(Wolkovich et al. 2012). With an open
625	source model a <u>A</u> large community of scientists can access, use, and enhance itopen
626	source models, with the potential for long-term utilization, improvement, and
627	reproducibility (Ince et al., 2012)
628	framework is critical for Hector development and future use. This allows for new
629	components to easily be added to Hector, i.e. the model's functionality to be easily
630	extended in the future-not currently included in the core version. More importantlyIn
631	addition, this framework allows for easy coupling into IAMs, in particular GCAM. Lastly,
632	Hector is a stand-alone simple climate model used to answer fundamental scientific
633	research questions, uncertainty analysis, parameter sensitivities, etc.
634	One of the basic fundamental questions faced in developing a SCM is how much
635	detail should be represented in the climate system. Our goal is to introduce complexity
636	only where warranted, keeping the representations of the climate system as simple as
637	possible. This results in fewer calculations, faster execution times, and easier analysis
638	and interpretation of results. Sections 2, 3, and 4 describe the structure and
639	components of Hector. Sections 5 and 6 describe the experiments, results and
640	comparison of Hector against observational data and other models (MAGICC and
641	CMIP5).

DRAFT

643 **2.0 Model architecture**

644

2.1 Overall structure and design

Hector is written in C++ and uses an object-oriented design that enforces clean separation between its different parts, which interact via strictly defined interfaces. The separation keeps each software module self-contained, which makes the code easy for users to understand, maintain, and enhance. Entities in the model include a commandline *wrapper*, the model *coupler*, various *components* organized around scientific areas (carbon cycling, radiative forcing, etc.) and *visitors* responsible for model output. Each of these is discussed below.

652

2.2 Model Coupler

Hector's control flow starts with the coupler, which is responsible for: 1) parsing
and routing input data to the model components; 2) tracking how the components
depend on each other; 3) passing messages and data between components; 4) providing
facilities for logging, time series interpolation, etc.; and 5) controlling the main model
loop as it progresses through time. Any errors thrown by the model are caught by the
wrapper, which prints a detailed summary of the error.

Input data are specified in flat text files, and during startup are routed to the
correct model component for its initialization. Some of the key initial model conditions
are summarized in **Table 1 and Table 2**. For more details of initial model conditions we
urge the reader to download Hector v0.1.0 (https://github.com/JGCRI/hector).

663 Components can send messages to each other during the model run, most often

DRAFT

requesting data. <u>The messaging interface is also available to external subroutines, such</u>
<u>as components of IAMs or other linked models.</u> The coupler handles message routing
(via the *capability* mechanism, below) and enforces mandatory type checking: e.g., if a
component requests mean global temperature in °C but the data are provided in K, an
error will be thrown (i.e., execution halts) unless the receiving component can handle
this situation.

670 Visitor patterns- are units of code that traverse all model components and 671 handle model output (Martin et al., 1997). Two visitors currently exist: one saves an 672 easily-readable summary table to an output file, while the other writes a stream of 673 model data (both standard outputs and internal diagnostics). After the model is 674 finisheds-running, this 'stream' file can be parsed and summarized by R scripts (R 675 Development Core Team, 2014) included with the code Hector-. Log files may also be 676 written by any model entity, using facilities provided by the coupler. The full sequence 677 of events during a model run is summarized in Figure 1.

678

2.3 Components

Model components are submodels that communicate with the coupler. From the coupler's point of view, components are fully defined by their *capabilities* and *dependencies*. At model startup, before the run begins, components inform the coupler of their capabilities, i.e., what data they can provide to <u>or accept from</u> the larger model system. The coupler uses this information to route messages, <u>such as requests for data</u>, between components, such as requests for data. Components <u>also</u> register their dependencies, i.e., what data-results they require from other components in order for

686 their complete their computations. After initialization, but before the model begins to

run, the coupler uses this dependency information to determine the order in which

688 components will be called in the main control loop.

The model's modular architecture, and the *capability/dependency* systems described above, allows swapping, enabling and disabling of model components directly via the input without recompiling. For example, this means that a user can test two different ocean submodels and easily compare results without having to rebuild the model.

694

2.4 Time step, spinup, and constraints

The model's fundamental time step is 1 year, although the carbon cycle can operate on a finer resolution when necessary (Section 2.6.13.1). When the model is on an integer date (e.g. 1997.0) it is considered to be the midpoint of that particular calendar year, in accordance with Representative Concentration Pathway (RCP) data (Meinshausen et al., 2011b)-.

Like many models, Hector has an optional 'spinup' step, in which the model runs to equilibrium in an a_historical, perturbation-free mode (Pietsch and Hasenauer, 2006). This occurs after model initialization, but before the historical run begins, and ensures that the model is in steady state when it enters the main simulation. During spinup, the coupler repeatedly calls all the model components in their dependency-driven ordering, using an annual time step. Each component signals whether it needs further steps to stabilize, and this process repeats until all components signal that they are complete.

DRAFT

707Currently only the model's carbon cycle makes use of the spinup phase. Spinup708Spinup takes place prior to land use change or industrial emission inputs.--, and t
The709main carbon cycle moves from its initial, user-defined carbon pool values to a steady710state in which $\delta dC/dt < \varepsilon$ for all pools;.__t
The convergence criterion ε is user-definable;711and by default $\varepsilon = 1$ Tg C yr⁻¹. From its default values the preindustrial carbon cycle will712typically stabilize in 300-400 time steps.

713 Hector can be forced to The model can be constrained, i.e., matching its output to a user-supplied time series. This is helpful to -to allow-isolateion and testing of 714 715 different components. Available constraints currently include atmospheric CO₂, global 716 temperature anomaly, total ocean-atmosphere carbon exchange, total land-atmosphere 717 carbon exchange, and total radiative forcing. Most constraints operate by overwriting 718 model-calculated values with user-supplied time series data during the run. The 719 atmospheric [CO₂] constraint operates slightly differently, as the global carbon cycle is 720 subject to a continuous mass-balance check. As a result, when the user supplies a $[CO_2]$ 721 record between arbitrary dates and orders the model to match it, the model computes 722 $[CO_2]$ at each time step, and any deficit (surplus) in comparison with the constraint $[CO_2]$ 723 is drawn from (added to) the deep ocean. The deep ocean holds the largest reservoir of carbon; therefore, small changes in this large pool have a negligible effect on the carbon 724 725 cycle dynamics. When the model exits the constraint time period, atmospheric $[CO_2]$ 726 again becomes fully prognostic.

- 727
- 2.5 Code availability and dependencies

DRAFT

728 All Hector code is open source and available at 729 https://github.com/JGCRI/hector/. The repository includes model code that can be 730 compiled on Mac, Linux, and Windows, inputs files for the four Representative 731 Concentration Pathways (RCP) cases discussed in Section 45, R scripts to process model 732 output, and extensive documentation. We kept the Software dependencies are as 733 limited as possible, with only the GNU Scientific Library (GSL, Gough, 2009) and the 734 Boost C++ libraries (http://www.boost.org) required. An optional unit testing build 735 target requires the googletest framework (http://code.google.com/p/googletest). 736 However, this is not needed to compile and run Hector. HTML documentation can be automatically generated from the code using the Doxygen tool 737 738 (http://www.doxygen.org). All these tools and libraries are free and open source. 739 In keeping with Hector's emphasis on modern, robust software design, the code 740 includes an optional (i.e., not needed to compile and run the model) unit testing build 741 target. Unit testing allows individual units of source code to be tested in a standardized 742 and automatic manner, ensuring that they behave as expected after changes are made 743 to the model source code. Current tests verify the behavior of the model coupler 744 (message passing and dependency calculation); reading of input; time series; logging; 745 and units checking. This functionality requires the 'googletest' library (http://code.google.com/p/googletest). 746 747

748 3.0 Main cCarbon Ceycle Component

749 In the model's default terrestrial carbon cycle, terrestrial vegetation, detritus, 750 and soil are linked with each other and the atmosphere by first-order differential 751 equations (Figure 2). Vegetation net primary production is a function of atmospheric 752 [CO₂] and temperature. Carbon flows from the vegetation to detritus and then to soil, 753 losing fractions to heterotrophic respiration on the way. Land-use change emissions are 754 specified as inputs. An 'earth' pool debits carbon emitted as anthropogenic emissions, 755 allowing a continual mass-balance check across the entire carbon cycle. 756 More formally, any change in atmospheric carbon, and thus [CO₂], occurs as a 757 function of anthropogenic fossil fuel and industrial emissions (F_A), land-use change

emissions <u>(F_{LC} </u>), and the atmosphere-ocean <u>(F_0 </u>) and atmosphere-land (F_1) carbon fluxes.

759 The atmosphere is treated as a single well-mixed box whose rate of change is:

$$\frac{dC_{atm}}{dt} = F_A(t) + F_{LC}(t) - F_O(t) - F_L(t)$$
(1)

760	where, F _A is the anthropogenic emissions, F _{LC} is the land use change emissions
761	and F _o and F _t are the atmosphere ocean and atmosphere land fluxes. Note that the
762	carbon cycle is solved under indeterminate time steps (represented in the text by
763	equations with d/dt), while most other submodels of Hector are solved under a fixed
764	time step of 1 year (equations with Δ). Future versions of Hector will incorporate
765	indeterminate time steps within all components of the model. The overall terrestrial
766	carbon balance <u>(Equation 2) excluding user-specified land-use change fluxes</u> at time <i>t</i> is
767	the difference between net primary production (NPP) and heterotrophic respiration
768	(RH). This is summed over user-specified n groups (each typically regarded as a latitude
769	band, biome, or -political units), with $n \ge 1$:

DRAFT

$$F_L(t) = \sum_{i=1}^n NPP_i(t) - RH_i(t)$$
⁽²⁾

770Note that NPP here is assumed to include non-LUC disturbance effects (e.g., fire), for771which there is currently no separate term. For each biome *i*, NPP and RH are is computed772as a functions of their its preindustrial values NPP₀ and RH₀, current atmospheric carbon773 C_{atm} , and the biome's temperature anomaly T_{i} , while heterotrophic respiration RH774depends upon the pool sizes of detritus (Cd) and soil (Cs), and global temperatures: $NPP_i(t) = NPP_0 * f(C_{atm}, \beta_i)$ (3) $f(C_{atm}, \beta_i) = 1 + \beta_i (log (\frac{C_{atm}}{C_0}))$ (4)

$$RH_{s,d}(t) = C_{s,d} * f_{rs,rd} * Q_{10i}^{T_i(t)/10}$$
(5)

$$T_i(t) = T_G(t) * \delta_i \tag{6}$$

775 These are commonly used formulations: NPP is modified by a the-user-specified carbon 776 fertilization parameter, 86 (Piao et al., 2013), that is constant in— time but not 777 necessarily in space. Optionally, it can change spatially. For example, users can define 778 separate 8 values for different biomes. RH changes are controlled by a biome-specific 779 Q_{10} value. Biomes can experience temperature changes at rates that differ from the 780 global mean T_{G} , controlled by a user specified temperature factor δ_{l} . Note that in 781 equation (5), soil RH depends on a running mean of past temperatures, an attempt to 782 representing king the slower propagation of heat through soil strata. 783 Land carbon pools (vegetation, detritus, and soil) change as a result of NPP, RH, 784 and land-use change fluxes, whose effects are partitioned among these carbon pools. In 785 addition, carbon flows from vegetation to detritus and to soil (Figure 2). Partitioning

fractions (*f*) control the flux quantities between pools (**Table 2**). For simplicity Equations
87-109 omit the time *t* and biome-specific *i* notations, but each pool is tracked

788 separately for each biome at each time step:

$$\frac{dC_V}{dt} = NPPf_{nv} - C_V(f_{vd} + f_{vs}) - F_{LC}f_{lv}$$
(7)(8)

$$\frac{dC_D}{dt} = NPPf_{nd} + C_V f_{vd} - C_D f_{ds} - RH_{det} - F_{LC} f_{ld}$$
(8)(9)

$$\frac{dC_S}{dt} = NPPf_{ns} + C_V f_{vs} + C_D f_{ds} - RH_{soil} - F_{LC} f_{ls}$$
(9)(10)

The ocean-atmosphere carbon flux is the sum of the ocean's surface fluxes ($\underline{F_i}$) (currently n=2, high and low latitude surface box):

$$F_0(t) = \sum_{i=1}^n F_i(t) F_0(t) = \sum_{i=1}^n F_i(t)$$
(10)(11)

791 The surface fluxes of each individual box are <u>directly</u>-calculated from an ocean

792 chemistry <u>sub</u>model described in detail by Hartin et al. (in prep). We model the

793 <u>nonlinearity of the inorganic carbon cycle, calculating pCO₂, pH, and carbonate</u>

794 saturations based on equations from Zeebe and Wolf-Gladrow, (2001). The flux of CO₂

for each box *i* is calculated by:

$$F_i(t) = k \alpha \, \Delta p C O_2 \tag{121}$$

Where where k is the CO₂ gas-transfer velocity, α is the solubility of CO₂ in water based
on salinity, temperature, and pressure, and ΔpCO₂ is the atmosphere-ocean gradient of
pCO₂ (Takahashi et al., 2009). <u>The calculation of pCO₂ in each surface box is based on</u>
the concentration of CO₂ in the ocean and its solubility (a function of temperature,
salinity, and pressure). At steady state, the cold high latitude surface box (>55°, subpolar

801 gyres) acts as a sink of carbon from the atmosphere, while the warm low latitude 802 surface box (<55°) off gases carbon back to the atmosphere. Temperatures of the 803 surface boxes are linearly related to atmospheric global temperatures (see section 4.1), 804 $T_{HL} = \Delta T - 13$ and $T_{LL} = \Delta T + 7$ (Lenton, 2000). but The ocean model, modeled after 805 Lenton et al., (2000) and Knox and McElroy, (1984), –circulates carbon through four 806 boxes (two surface, one intermediate depth, one deep), via water mass advection and 807 exchange, simulating a simple thermohaline circulation (Figure 2). At steady state, 808 approximately 100Pg of carbon are transferred from the high latitude surface box to the 809 deep box based on the volume of the box and transport in Sv (10⁶ m³ s⁻¹) between the 810 boxes. The change in carbon of any box *i* is given by the fluxes in and out, with F_{atm si} as 811 the atmosphere-ocean carbon flux:

$$\frac{dC_i}{dt} = \sum_{j=1}^{in} F_{j \to i} - \sum_{j=1}^{out} F_{i \to j} + F_{atm \to i}$$

<u>(12)(13)</u>

As the model advances, the carbon values in PgC is converted toor dissolved inorganic
 carbon (DIC) change in each box..... The new DIC values are used within the chemistry
 submodel to calculate pCO₂ values at the next time step.

815

3.1 Adaptive-time step solver

The fundamental time step in Hector is currently one year, and most model components are solved at this resolution. The carbon cycle, however, <u>can</u>-operate<u>s</u> on a variable time step, <u>helping to stabilize itensuring accurate ODE solutions, even</u> under <u>particularly</u>_high-emissions scenarios. This will also allow future sub-annual applications where desired. The adaptive time step accomplished using the *gsl_odeiv2_evolve_apply*

821 solver package of GSL 1.16, which attempts many different step sizes varies the time 822 step to reliably (i.e., with acceptable error)keep truncation error within a specific 823 tolerance when advancinge the model. Thus all the carbon cycle components handle 824 indeterminate time steps less than or equal to - 1 year, and can signal the solver if a 825 too-large time step is leading to instability. The solver then re-retries the solution, using 826 a series of smaller steps. From the coupler's point of view, however, the entire model 827 continues to advance in annual increments.

828

4.0 Other Components

829 4.1 Global Aatmospheric Ttemperature 830 Near surface global atmospheric temperature is calculated by: $\Delta T(t) = \lambda * RF(t) - F_{H}(t)$ <u>(13)(14)</u> where, the user-specified λ is the climate feedback parameter, defined as $\lambda = S'/S$, 831 832 where S' is the climate sensitivity parameter (3 KelvinK) and S is the equilibrium climate 833 sensitivity for a doubling of CO₂ (3.7 Wm⁻²) (Knutti and Hegerl, 2008). RF is the total 834 radiative forcing and F_H is the ocean heat flux. F_H is calculated by a simple sigmoidal expression of the ocean heat uptake efficiency k (W m⁻² K⁻¹) (that decreasing with 835 836 increasing global temperatures) and-multiplied by the atmospheric temperature change 837 prior to the ocean's removal of heat from the atmosphere (T_H) (Raper et al., 838 2002):(Raper et al., 2002). $\Delta F_H(t) = k * \Delta T_H(t)$ (14)

DRAFT

DRAFT

4.2.12 Halocarbons

861 The halocarbon component of the model can accept an arbitrary number of gas 862 species, each characterized by a name, a lifetime τ (yr), a radiative forcing efficiency $\alpha \rho$ (W m⁻² pptv⁻¹), an optional user-specified preindustrial concentration (pptv), and a 863 864 molar mass (g). For each gas, its concentration (C_i) at time t is then computed based on 865 a specified emissions time series E, assuming an exponential decay from the 866 atmosphere: $C(t) = C_0 * \exp\left(-\frac{1}{T}\right) + E * T * \left(1 - \exp\left(-\frac{1}{T}\right)\right)$ <u>(16)</u> 867 $C_i(t) = C_i(t-1)\left(1-\frac{1}{x}\right) + E_i(t)$ (16) 868 E is corrected for atmospheric dry air mole constant (1.8) and the molar mass of each 869 halocarbon. The default model input files include these parameters and a time series of 870 emissions for C2F6, CCl4, CF4, CFC11, CFC12, CFC113, CFC114, CFC115, CH3Br, CH3CCl3, 871 CH3Cl, HCF22, HCF141b, HCF142b, HFC23, HFC32, HFC125, HFC134a, HFC143a, 872 HFC227ea, HFC245ca, HFC245fa, HFC4310, SF6, halon1211, halon1301, and halon2402. 873 Radiative forcing by halocarbons, and other gases controlled under the Montreal 874 Protocol, SF₆, and ozone are calculated via: $RF = \alpha [C(t) - C(t_0)]$ (177)where α is the radiative efficiency (input parameters) in W m⁻² ppbv⁻¹, and C is the 875 876 atmospheric concentration.

877	<u>4.2.3 Ozone</u>
878	Tropospheric ozone concentrations are calculated from the CH_4 concentration
879	and the emissions of three primary pollutants: NO _x , CO, and NMVOCs, modified from
880	Tanaka et al. (2007a):
	$O_{3_t} = (5.0 * \ln[CH_4]) + (0.125 * ENO_x) + (0.0011 * ECO) $ (18)
	+ (0.0033 * EVOC)
881	where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt
882	et al., 2001). The radiative forcing of tropospheric ozone is calculated from a linear
883	relationship using a radiative efficiency factor (Joos et al., 2001a):
	$RF_{O3} = 0.042 * [O_3]$ (19)
884	4 .2.2 Ozone
885	Tropospheric ozone concentrations are calculated by the <u>current CH</u> 4
886	concentration and the emissions of three primary pollutants: NO _x , CO, and
887	NMVOCs(2007a):
	$ \frac{\partial_{z}(t) = \partial_{z}(2000)}{+ 5.0 \ln \left[\frac{CH_{4}(t)}{CH_{4}(2000)}\right] + 0.125 \left[eNO_{x}(t) - eNO_{x}(2000)\right]} $ (18)
	$ \begin{array}{l} \theta_{x}(t) = -\theta_{x}(2000) & (18) \\ + 5.0 \ln \left[\frac{CH_{4}(t)}{CH_{4}(2000)} \right] + 0.125 \left[eN\theta_{x}(t) - eN\theta_{x}(2000) \right] \\ + 0.0011 \left[eC\theta(t) - eC\theta(2000) \right] \end{array} $
	$\begin{aligned} \theta_{x}(t) &= \theta_{x}(2000) \end{aligned} \tag{18} \\ &+ 5.0 \ln \left[\frac{CH_{4}(t)}{CH_{4}(2000)} \right] + 0.125 \left[eN\theta_{x}(t) - eN\theta_{x}(2000) \right] \\ &+ 0.0011 \left[eC\theta(t) - eC\theta(2000) \right] \\ &+ 0.0033 \left[eV\theta C(t) - eV\theta C(2000) \right] \end{aligned}$
888	$O_{\underline{x}}(t) = O_{\underline{x}}(2000) $ (18) + 5.0 ln $\left[\frac{CH_4(t)}{CH_4(2000)}\right]$ + 0.125 $[eNO_{\underline{x}}(t) - eNO_{\underline{x}}(2000)]$ + 0.0011 $[eCO(t) - eCO(2000)]$ + 0.0033 $[eVOC(t) - eVOC(2000)]$ where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt
888 889	$O_{x}(t) = O_{x}(2000) $ $+ 5.0 \ln \left[\frac{CH_{4}(t)}{CH_{4}(2000)} \right] + 0.125 \left[eNO_{x}(t) - eNO_{x}(2000) \right] $ $+ 0.0011 \left[eCO(t) - eCO(2000) \right] $ $+ 0.0033 \left[eVOC(t) - eVOC(2000) \right] $ where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt et al., 2001). The radiative forcing of tropospheric ozone is calculated from a linear
888 889 890	$O_{x}(t) = -O_{x}(2000) $ (18) + 5.0 ln $\left[\frac{CH_{4}(t)}{CH_{4}(2000)}\right]$ + 0.125 $\left[eNO_{x}(t) - eNO_{x}(2000)\right]$ + 0.0011 $\left[eCO(t) - eCO(2000)\right]$ + 0.0033 $\left[eVOC(t) - eVOC(2000)\right]$. where the constants are the ozone sensitivity factors for each of the precursors (Ehhalt et al., 2001). The radiative forcing of tropospheric ozone is calculated from a linear relationship using a radiative efficiency factor (Joos et al., 2001a) and a pre-industrial

DRAFT

$$RF_{ox} = 0.042 + [O_{3}] - [O_{3}]_{pre}$$
(19)

892

4.2.43 BC and OC

893
The radiative forcing from black and organic carbon is a function of the black carbon and

994
organic carbontheir emissions (*eEBC* and *eEOC*).

 $RF_{BC} = 0.0743 + 10^{-9} Wm^{-2}Tkg^{-1} * EeBC$
(2020)

 $RF_{oc} = -0.0128 + 10^{-9} Wm^{-2}Tkg^{-1} * EeOC$
(214)

895
The coefficients 0.0743 * 10⁻⁹ and -0.0128 * 10⁻⁹ include both indirect and direct forcings

906
of black and organic carbon (fossil fuel and biomass) (Bond et al., 2013, table C1).

897

4.2.54 Sulphate Aerosols

898
The radiative forcing from sulphate aerosols is a combination of the direct and indirect

899
forcings (Joos et al., 2001a).

 $RF_{SOx Direct} = -0.435 Wm^{-2} * \frac{ESO_{x_{1}}eSO_{x_{1}}eSO_{x_{1}}(eSO_$

$$* \left(ln \frac{EeSN + EeSO_{x_{t0}}eSO_{x}(2000)}{EeSN} \right)^{-1}$$

900 The direct forcing by sulphate aerosols is proportional to the anthropogenic sulphur
901 emissions (GgS yr⁻¹) divided by the sulphate emissions from 2000. The indirect forcing by
902 sulphate aerosols is a function of the anthropogenic and natural sulphur emissions.
903 Natural sulphur emissions, denoted by <u>*EeSN*</u>, <u>is-are</u> equal to 42000 Gg_S. A time series of
904 annual mean volcanic stratospheric aerosol forcing (W m⁻²) is supplied from

905 Meinshausen et al. (2011b) and is-added to the indirect and direct forcing for a total
906 sulphate forcing.

907 4.2.65 N2O and Methane (CH₄)CH4 908 The change in [CH₄] is calculated directly from CH₄ emissions, and sinks of CH₄ in the the 909 troposphere (based on the lifetime of OH), stratosphere, and soil based on Wigley et al. 910 (2002). $\Delta CH_4 = \frac{E(CH_4)}{2.78} - \frac{[CH_4]}{T_{OH}} - \frac{[CH_4]}{T_{strat}} - \frac{[CH_4]}{T_{soll}}$ (24) where E is total CH₄ emissions (Tg yr⁻¹) from both natural and anthropogenic sources, 911 2.78 (Tg ppb⁻¹) is the conversion factor, and T are the lifetimes of the tropospheric sink 912 913 (T_{OH}) , the stratospheric sink (T_{strat} = 120 year), and the soil sink (T_{soil} = 160 year). Note, that within Hector, natural emissions are held at a constant 300 Tg yr⁻¹. 914 915 The lifetime of OH is a function of [CH₄], and the emissions of NOx, CO and VOC, 916 based on Tanaka et al. (2007a). $\ln(OH)_t = -0.32 (\ln[CH_4]_t - \ln[CH_4]_{t0}) + 0.0042 (E(NO_x)_t)$ (25) $-(E(NO_r)_{t_0}) - 0.000105(E(CO)_t - (E(CO)_{t_0}))$ $-0.00315 (E(VOC)_t - (E(VOC)_{t0}))$ 917 The radiative forcing equation for CH₄ (Joos et al., 2001a) is a function of the 918 concentrations (ppbv) of both CH₄ and N₂O: $RF_{CH_4} = 0.036 Wm^{-2} \left[\sqrt{[CH_4](t)} - \sqrt{[CH_4](t_0)} \right]$ (26) $-f[CH_4(t), N_2O(t_0)] - f[CH_4(t_0), N_2O(t_0)]$ 919 The function f accounts for the overlap in CH₄ and N₂O in their bands is:

DRAFT

925 emissions of N₂O to linearly decrease from 11 Tg N yr⁻¹ in 1765, to 8 Tg N yr⁻¹ in 2000

926 and are then held constant at 8 Tg N yr⁻¹ to 2300. The lifetime of N_2O is a function of its

927 initial lifetime (T_0) and concentration ([N_2O]_{t0}).

$$T_{N_2O} = T_0 * \left(\frac{[N_2O]_t}{[N_2O]_{t0}}\right)^{-0.05}$$
(29)

928 The radiative forcing equation for N_2O (Joos et al., 2001a) are is a function of the

929 concentrations (ppbv) of both CH_4 and $N_2O_{and their radiative efficiency}$:

$$RF_{N_20} = 0.12 Wm^{-2} \left[\sqrt{[N_20]_t} - \sqrt{[N_20]_{t0}} \right] - f[CH_4(t_0), N_20(t)]$$

$$- f[CH_4(t_0), N_20(t_0)]$$

$$(25)$$

(24)

DRAFT

930The function f accounts for the overlap in CH4 and N2O in their bands is the same as931equation 27.*
f(M, N) = 0.47
(26)
* ln(1 + (2.01 + 10⁻⁵) * (MN)^{0.75} + (5.31 + 10⁻¹⁵) * M
* (MN)^{1.52})932Note, we are not explicitly calculating concentrations of CH4 and N2O within Hector,
instead we have input files of concentrations.9334.2.36 Stratospheric H2O from CH4 oxidation:9344.2.36 Stratospheric H2O from CH4 oxidation:935The radiative forcing from stratospheric H2O is a function of the [CH4]concentrations936(Tanaka et al., 2007a). The coefficient 0.05 is from Joos et al. (2001a) based on the fact937that the forcing contribution from stratospheric H2O is about 5% of the total CH4 forcing938(IPCC, 2001)-----The 0.036 value of the coefficient corresponds to the same coefficient939value used in the CH4 radiative forcing equation.
$$RF_{stratH2O} = 0.05 * \left\{ 0.036 Wm^{-2} * \left(\sqrt{[CH4]t} - \sqrt{[CH4]t0} \right) \right\}$$
9405.0 Model e£xperiments and D\$4ata \$sources9415.0 Model e£xperiments and D\$4ata \$sources942A critical test of Hector's performance is to compare the major climatic variables
calculated in Hector, e.g., atmospheric [CO2], radiative forcing, and atmospheric944temperature, to observational records and other modelsboth simple and complex
climate models. Within this study, Hector is run.Wo run Hector under prescribed

946 <u>emissions under historical conditions</u> from 1850-2005 to 2300 and then under for all

947 four Representative_-Concentration Pathways (RCPs)<u>,-out to 2300 freely available at</u>

DRAFT

948	http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=about (Moss et al., 2010;
949	van Vuuren et al., 2007; Clarke et al., 2007; Wise et al., 2009; Riahi et al., 2007; Fujino et
950	al., 2006; Hijioka et al., 2008; Smith and Wigley, 2006) <u>. (Moss et al., 2010). The RCPs are</u>
951	plausible future scenarios that are-were developed to improve our understanding of the
952	coupled human climate system
953	however, for all experiments within this manuscript we use the corresponding emissions
954	trajectories from each RCP as input for Hector. All necessary emission and concentration
955	inputs are from the four RCPs (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) freely available at
956	(Meinshausen et al., 2011b; Riahi et al., 2011; van Vuuren et al., 2011a; van Vuuren et
957	al., 2011b; Masui et al., 2011; Thomson et al., 2011; van Vuuren et al., 2011d).
958	Comparison data is-was obtained from a series of models. We compared Hector
959	results to MAGICC, a SCM widely used in the scientific and IAM communities, for global
960	variables such as atmospheric CO_2 , radiative forcing, and temperature (e.g., Raper et al.,
961	2001; Wigley, 1995; Meinshausen et al., 2011a).—. We also compare Hector to a suite of
962	eleven Earth System Models included in the <u>5th Coupled Model Intercomparison Project</u>
963	(CMIP5) archive(Taylor et al., 2012)_ (Table 3) . All CMIP5 data are were converted to
964	yearly global averages from the historical period through the RCPs and their extensions.
965	One standard deviation of the annual global averages and the CMIP5 model spread
966	range is were calculated for each variable using the RCMIP5
967	(http://github.cm/JGCRI/RCMIP5) package in R. All CMIP5 variables used in this study
968	are from model runs with prescribed atmospheric concentrations, except for
969	comparisons involving atmospheric [CO ₂] which are from the emissions driven scenario
970	(esmHistorical and esmRCP8.5) (Figures 3 and 5). We acknowledge that this is not a
-----	---
971	perfect-comparison, between an emissionsforced model (Hector) versus, and
972	concentration-forced models (CMIP5), is not perfect. However, very there is a
973	significant lack offew CMIP5 models that arewere run under prescribed emissions
974	scenarios-available
975	models used to investigate the carbon cycle in further detail.
976	<u>WLastly, we compare Hector to observations of atmospheric [CO₂]</u>
977	concentrations from Law Dome (1010-1975) and Mauna Loa (1958 – 2008), (Keeling and
978	Whorf, 2005; Etheridge et al., 1996). Global temperature anomalies are from
979	HadCRUT4 (Morice et al., 2012). Observations of air-sea and air-land fluxes are from the
980	Global Carbon Project (GCP) (Le Quéré et al., 2013). Lastly, observations of surface
981	ocean pH are from Bermuda Atlantic Time Series (BATS) and Hawaii Ocean Time Series
982	(HOTS) (Bates, 2007; Fujieki et al., 2013).
983	
984	6.0 Results and Discussion
985	6.1 Historical
986	A critical test of Hector's performance is how well it compares to historical and
987	present day climate from observations, MAGICC, and a suite of CMIP5 models <u>Rates</u>
988	of change and root mean square errors were calculated We carried out a few statistical
989	tests on Hector (e.g., correlation and root mean square error)for all Hector's primary
990	outputs-variables, which are summarized in Table 4 . After spinup is complete in Hector,
991	the atmospheric [CO ₂] in 1850 is 286.0 ppmv, <u>which comparinges</u> well with observations

992	from Law Dome of 285.2 ppmv. Compared to observations, MACGICC6, and CMIP5 data
993	from 1850 to 2005, Hector captures the global trends in atmospheric [CO ₂] (Figure 3)
994	with- correlation coefficients of R >0.99 and _ an average root mean square error (RMSE)
995	of 2.85 ppmv (Table 4a), when compared to observations, MAGICC6, and CMIP5 data
996	from 1850-2005 Rate of change of atmospheric [CO ₂] from 1850-2005 is slightly lower
997	than the observations, MAGICC6, and CMIP5—Hector can be forcedhas the ability to
998	match atmospheric [CO ₂] records (section 2.4), but we disabled this feature to highlight
999	the full performance of the model. Note however, that in the MAGICC6 results a similar
1000	feature was used to force the output to match the historical atmospheric [CO ₂] record.
1001	Historical global atmospheric temperature anomalies (relative to 1850) are
1002	compared across Hector, MAGICC6, CMIP5, and observations from HadCRUT4 (Figure
1003	4). <u>A Hector is running without the effects of volcanic forcing, leading to the smoother</u>
1004	representation of temperature with time. Atmospheric temperature change from
1005	Hector (0.98 °C) over the period 1850 to 200 <u>5</u> 4 <u>closely match the CMIP5 temperature</u>
1006	change (1.01 °C), both slightly higher than the observational record. Over this time
1007	period a Hector has anis well correlated to (> 0.8) to observations and models with an
1008	average RMSE of 0.1 2 4 °C <u>. Note that With a simple climate models like Hector, we</u>
1009	not intend do not aim to capture temperature variations in temperature due to
1010	interannual/decadal variability found in either in ESMs or the real world;. Winstead
1011	theye are interested in simulatinge the overall trends in global mean temperature
1012	change.
1013	

1014	6.2 Future Projections
1015	Hector's strengths lie within policy relevant time scales of decades to centuries,
1016	and here we compare Hector to MAGICC and CMIP5 under differing future climate
1017	projections. Results from all four RCPs are broadly similar when comparing Hector, to
1018	MAGICC6, and CMIP5; we display here RCP8.5 results as representative. Within the
1019	modeling community, models that best simulate the historical and present day climate
1020	are assumed to be credible under future projections. We are confident in Hector's
1021	ability to reproduce historical trends and are therefore confident in its ability to
1022	simulate future climate changes. We compare Hector to MAGICC and CMIP5 under
1023	differing future climate projections. Studies suggest that 80% of the anthropogenic CO ₂
1024	emissions have an average atmospheric lifetime of 300-450 years (Archer et al., 1997;
1025	Rogner, 1997; Archer, 2005). Hector has all the necessary components to model the
1026	climate system from present day through the next approximately 300 years. other
1027	processes become important: ,dominantlonger-term cyclea process
1028	Figure 5 highlights historical trends in atmospheric $[CO_2]$, along with projections
1029	of atmospheric [CO ₂] under esmRCP8.5 from 1850 to 2100. <u>Note that the emissions</u>
1030	forced scenario only extends to 2100 and not to 2300 like the concentration forced
1031	scenarios (e.g., Figure 8). Both Hector and MAGICC6 are on the low end of the CMIP5
1032	median, but fall within one standard deviation and model range, with- a RMSE of 9.0
1033	ppmv is perfectly correlated with MAGICC and CMIP5 over this period and with a RMSE
1034	of 9.2 ppmv-(Table 4b). Hector and MAGICC6 diverge from the CMIP5 median most
1035	notably after 2050, but are both still within the low end of the CMIP5 model spread.

1036	The CMIP5 archive does not provide emissions prescribed scenarios for all RCPs;
1037	we can only compare Figure 6 compares atmospheric [CO ₂] from Hector and with
1038	MAGICC6 under all four RCP scenarios out to 2300 (Figure 6). Hector's change in [CO ₂]
1039	(1472.13 ppmv) from 1850 to 2300 is slightly lower than MAGICC6 (1600.0 ppmv) for
1040	RCP 8.5. This is most likely due to different representations of the global carbon cycle.
1041	Hector is well correlated with MAGICC6 from 1850 out to 2300 for the four RCPs. Under
1042	all of the scenarios except for RCP 8.5, atmospheric [CO ₂] within Hector fluctuates
1043	around the MAGICC6 atmospheric [CO ₂] values, with the most notable fluctuations
1044	under low carbon emissions. This is due to changes in the flux of carbon over the land
1045	as net primary production and respiration change with CO ₂ fertilization and temperature
1046	effects.
1047	We compare Hector to MAGICC6 for changes in radiative forcing under the four
1048	RCPs (Figure 7). Radiative forcing <u>wasis</u> not an output provided from-within the CMIP5
1049	models-archive and therefore we can only compare Hector and MAGICC6. Hector is
1050	offset slightly lower compared to MAGICC6, which is expected since atmospheric [CO ₂]
1051	is slightly lower. Over the period 1850 to 2300 Hector (12.80 Wm ⁻²) and MAGICC6
1052	(12.24 Wm ⁻²) are comparable in their change in radiative forcing, is well correlated (1.0)
1053	with MAGICC6-with a RMSE of 0.265 W m ⁻² .— <u>One noticeable difference between</u>
1054	MAGICC6 and Hector during the historical period is the decreases in radiative forcing.
1055	This is due to We acknowledge that t <u>The correlation is lower under in the historical</u>
1056	period (0.79), because as noted above. This <u>s aremay be due to slight differences in the</u>
1057	representation of atmospheric gases, pollutants, and aerosols between the two models.

1058	the effects of volcanic emissions on radiative forcing. For simplicity, we have chosen to
1059	run Hector without these effects.
1060	Figure 8 compares global temperature anomalies from Hector to MAGICC6 and
1061	CMIP5 over the four RCPs, from 2005 to 2300. Hector simulates the-CMIP5 median
1062	more closely than MAGICC6 across all four RCPs, with a temperature change under RCP
1063	8.5 for Hector of 8.59 °C, compared to MAGICC6 of 7.30 °C, while the temperature
1064	change for CMIP5 is 9.57 °C (Table 4c) and MAGICC6 are comparable in their
1065	temperature change across the four RCPs. However, both are lower than the CMIP5
1066	median under RCP 2.6, 4.5 and 8.5, with the largest discrepancy under high CO ₂
1067	emissions in RCP 8.5 To highlight this close comparison, temperature change over the
1068	entire record (1850-2300) for Hector is 9.58 °C, which is within 1.0 °C of the CMIP5
1069	median, while MAGGIC6's temperature change is greater than 2.5 °C away from the
1070	CMIP5 median. the median does 66 is1 Regardless, Hector is still highly correlated
1071	(>0.97) to MAGICC6 and CMIP5 for RCP 8.5, with a RMSE of 0.52 °C compared to CMIP5
1072	(Table 4c) The fluctuations seen in RCP 2.6 within atmospheric [CO ₂] are also
1073	apparent in the atmospheric temperature trends. However, the general trends of
1074	temperature change, peaking around 2050 and then slowly declining out to 2300 are
1075	captured within Hector.
1076	(Cheng et al., 2013)
1077	Another way to visualize model performance is a <u>A</u> Taylor diagram (Figure 9)
1078	compactly summarizes model performance simulating of global temperature change
1079	relative to 1850, from 1850 to 2300 for RCP 8.5. The In this figure, the closer the points

1080are to the reference point (Hector) the higher the correlation and low RMSE between1081CMIP5 models and MAGICC6. Those points with a standard deviation similar to that of1082Hector experience the same amplitude of temperature change over this time period1083(MAGICC6). __All of the models are highly correlated with Hector, with a large range in1084the their standard deviations (1-5 °C).

1085 Figures 910 and 110 present a detailed view of carbon fluxes under RCP 8.5, for 1086 CMIP5 and observations (negative represents carbon flux to the atmosphere). The 1087 ocean is a major sink of carbon through 2100, becoming less effective with time in both 1088 Hector and the CMIP5 models. MAGICC6 does not include air-sea fluxes in its output, 1089 and because it is not open source we were unable to obtain these values. Therefore, we 1090 compare air-sea fluxes of CO₂ to MAGICC5.3, the version currently used in the IA model, 1091 Global Change Assessment Model (Calvin et al., 2011), updated with explicit BC and OC 1092 forcing as described in Smith and Bond (2014). Hector's calculation of air-sea fluxes is 1093 within the large CMIP5 model range up to 2100. However, after that Hector peaks close 1094 to 2150, while the CMIP5 models are beginning to decline. The correlation is high 1095 between Hector and CMIP5 over the historical period (0.95). However, the correlation, 1096 but drops off significantly between 2005 and 2300 (0.10) (Table 4c). This is an active 1097 area of research, investigating the differences between Hector and CMIP5 after 2100. 1098 One potential reason for theis discrepancy low correlation after 2100 could be due to 1099 the fact that we are only comparing to three models that run the RCP extension to 2300 1100 (bcc-csm1-1, IPSL-CM5A-LR, and MPI-ESM-LR). With more models included after 2100a 1101 larger spread of fluxes, Hector may be better correlated. is that in this version of

DRAFT

1102	Hector, we do not simulate changes in ocean circulation, potentially biasing fluxes too
1103	high after 2100. Most ESMs in CMIP5 show a weakening of the Atlantic meridional
1104	overturning circulation by 2100 between 15% and 60% under RCP 8.5 (Cheng et al.,
1105	2013). A slowdown in ocean circulation may result in less carbon uptake by the oceans-
1106	. Another potential reason for this bias is Hector's constant pole to equator ocean
1107	temperature gradient. Studies show that the Artic is warming faster than the rest of the
1108	globe (e.g., Bintanja and van der Linden, 2013; Holland and Bitz, 2003; Bekryaev et al.,
1109	2010). A warmer high latitude surface ocean in Hector would suppress the uptake of
1110	carbon, potentially bringing the air-sea fluxes closer to the CMIP5 median after
1111	2100. The average correlation over the CMIP5 models over 1850-2300 is higher at 0.80,
1112	with a RMSE of 1.45 PgC yr ⁻¹ (Table 4b)
1113	The land fluxes have a large range of uncertainty into the future within the
1114	CMIP5 models. Hector follows the general trends of the land acting as a sink of carbon
1115	initially with a gradual switch to a carbon source after 2150. Fluxes of carbon over the
1116	land are less well correlated to the CMIP5 median compared to the air-sea fluxes, 0.55
1117	(historical) and 0.65 (RCP 8.5), but it is important to note that-CMIP models tend to
1118	show huge divergences in their land responses to changing climate (e.g., Friedlingstein
1119	et al., 2006), which is evident by the large range in CMIP5 models (Figure 10). Hector
1120	simulates the general trends, of increasing carbon sink and then a gradual decline to a
1121	carbon source after 2100. Both land and ocean fluxes within Hector agree well the
1122	observations from Le <u>QuereQueré</u> et al., (2013) and other sources .

1123	One feature in Hector that is unique amongst SCMsLastly, a_unique feature of
1124	Hector-is its ability to actively solve the carbonate system in the upper ocean (Hartin et
1125	al, in prep). This feature allows us to predict changes ocean acidification, calcium
1126	carbonate saturations and other parameters of the carbonate system parameters.
1127	Figure 112 shows low latitude (<55°) pH for Hector compared to CMIP5 and
1128	observations from 1850 to 2100 under RCP 8.5. We- <u>The see estimate-model projects</u> a
1129	significant drop in pH from present day through 2100 <mark>,, which may lead to detrimental</mark>
1130	effects on marine ecosystems (e.g., Fabry et al., 2008)

7.0 Conclusions

1133	Hector reproduces the largescale couplings and feedbacks on the climate
1134	system between the atmosphere, ocean, and land, generally. Hector falls falling within
1135	the range of the CMIP5 model spread and tracks matchesmatching well with MAGICC.
1136	Our goal was not to <u>it does not</u> simulate the fine details or parameterizations typically
1137	found in largescale, complex modelsESMs, but instead to-represents only the most
1138	critical global processes in a reduced-complexity form
1139	times, ease of understanding,and straightforward analysis of the model output. To help
1140	with the analysis of Hector we included within the online database of Hector, R scripts
1141	to process Hector's output as well as the comparison data.
1142	Two of Hector's two-key features are its open source license-nature and modular
1143	design. This allows the user to manipulate edit the input files and code at will, for
1144	example to enable/disable/replace- components, or include components not found

1145	within the core version of Hector. For example, the <u>a</u> user can design a new submodel
1146	(e.g., sea-ice) to answer specific climate questions relating to that process <u>Hector is</u>
1147	hosted on a widely-used open source software repository (Github), and thus changes
1148	and improvements can be easily shared with the scientific community. Because of these
1149	critical features, Hector has the potential to be a key analytical tool in both the policy
1150	and scientific communities. We welcome user input and encourage use, modifications,
1151	and collaborations with Hector.
1152	While Hector has many strengths, there the current 1.0 version certainly has are
1153	a few- <u>some</u> limitations-that later versions of Hector hope to addressand weaknesses.
1154	For example, Hector does not currently simulate terrestrial gross primary production, a
1155	key metric of comparison to e.g. the FLUXNET database. For exampleAlso, - Hector does
1156	not have differential radiative forcing and atmospheric temperature calculations over
1157	land and ocean. Th <u>is ismay be a problem, as e-land responds to changes in emissions of</u>
1158	greenhouse gases and aerosols much quicker than the ocean_ , leading to different
1159	temperature responses over the land and ocean (REFERENCE) (Hansen et al., 2005). In
1160	addition, it does not currently simulate terrestrial gross primary production, a key
1161	metric of comparison to e.g. the Fluxnet database. Also, Hector does not explicitly deal
1162	with oceanic heat uptake, except via a simple empirical formula
1163	temperatures are calculated based on a linear relationship with atmospheric
1164	temperature and heat uptake by the ocean is parameterized by a constant heat uptake
1165	efficiency. we assume a constant pole to equator temperature gradient. We
1166	acknowledge that this assumption may not hold true if the poles warm faster than the

1167	equator. While Hector can reproduce global trends in atmospheric CO ₂ , and
1168	temperature, we cannot investigate ocean heat uptake in the deep ocean using Hector.
1169	Currently, there is placeholder in Hector for a more sophisticated sea level rise
1170	submodel. The current edition of Hector uses inputs of concentrations of CH_4 and N_2O
1171	to calculate radiative forcing from CH_4 and N_2O . Ideally we would like Hector to
1172	calculate concentrations from emissions of CH ₄ and N ₂ O. This would allow for quick
1173	integration within IAMs.
1174	Future plans with Hector include addressing some of the above limitations and
1175	conducting numerous scientific experiments, using Hector as a stand-alone simple
1176	climate carbon-cycle model. Also, HectorIt is also beingwill be incorporated into Pacific
1177	Northwest National Laboratory's Global Change Assessment Model to begin runningfor
1178	policy-policy-relevant experiments.—. Hector has the ability to be a key analytical tool
1179	used across many scientific and policy communities due to its modern software
1180	architecture, open source, and object-oriented structure.
1181	
1182	Code Availability
1183	Hector is freely available at <u>https://github.com/JGCRI/hector</u> . The specific Hector
1184	v 0. 1.0 referenced in this paper, as well as code to reproduce all figures and results
1185	shown here, is available at <u>https://github.com/JGCRI/hector/releases/tag/v0.1.0</u>
1186	Author contributions
1187	C.A.H. and B.P.BL. developed the ocean and terrestrial carbon models, respectively,
1188	and led the overall development of Hector. R.P.L. and P.P. wrote critical code for

- 1189 Hector's coupler and carbon cycle solver. A.S. helped with the development of the
- 1190 atmospheric forcing components. C.A.H. wrote the manuscript with contributions from
- all co-authors.
- 1192

1193 Acknowledgements

- 1194 This research is based on work supported by the U.S. Department of Energy, Office of
- 1195 Science, Integrated Assessment Research Program. The Pacific Northwest National
- 1196 Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-

1197 **76RL01830**.

1198 **References:**

- 1199 Anthoff, D., and Tol, R. S. J.: The income elasticity of the impact of climate change, Is
- 1200 the Environment a Luxury? An inquiry into the relationship between environment and 1201 income adited by Tiongi S, and Martini C. Paulladae 2014
- 1201 income, edited by: Tiezzi, S., and Martini, C., Routledge, 2014.
- 1202 Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R.: An assessment of
- 1203 key model parametric uncertainties in projections of Greenland Ice Sheet behavior, The 1204 Cryosphere, 6, 589-606, 10.5194/tc-6-589-2012, 2012.
- 1205 Archer, D., Kheshgi, H., and Maier-Reimer, E.: Multiple timescales for neutralization of
- 1206 fossil fuel CO2, Geophysical Research Letters, 24, 405-408, 10.1029/97GL00168, 1997.
- Archer, D.: Fate of fossil fuel CO2 in geologic time, Journal of Geophysical Research:
 Oceans, 110, C09S05, 10.1029/2004JC002625, 2005.
- 1209 Bates, N. R.: Interannual variability of the oceanic CO2 sink in the subtropical gyre of the
- 1210 North Atlantic Ocean over the last 2 decades, Journal of Geophysical Research: Oceans,
- 1211 112, C09013, 10.1029/2006JC003759, 2007.
- 1212 Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of Polar Amplification in
- Long-Term Surface Air Temperature Variations and Modern Arctic Warming, Journal ofClimate, 23, 3888-3906, 10.1175/2010JCLI3297.1, 2010.
- Bintanja, R., and van der Linden, E. C.: The changing seasonal climate in the Arctic, Sci.Rep., 3,
- 1217 <u>http://www.nature.com/srep/2013/130327/srep01556/abs/srep01556.html#supplementary</u> 1218 <u>-information</u>, 2013.
- 1219 Bond-Lamberty, B., Calvin, K., Jones, A. D., Mao, J., Patel, P., Shi, X., Thomson, A.,
- 1220 Thornton, P., and Zhou, Y.: Coupling earth system and integrated assessment models: the
- problem of steady state, Geosci. Model Dev. Discuss., 7, 1499-1524, 10.5194/gmdd-71499-2014, 2014.
- 1223 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J.,
- 1224 Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K.,
- 1225 Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S.,
- 1226 Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont,
- 1227 Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
- 1228 C. S.: Bounding the role of black carbon in the climate system: A scientific assessment,
- Journal of Geophysical Research: Atmospheres, 118, 5380-5552, 10.1002/jgrd.50171,2013.
- Bouwman, A. F., Hoek, K. W. v. d., Drecht, G. V., and Eickhout, B.: World Livestock
- and crop production systems, land use and environment between 1970 and 2030, Rural
- 1233 Lands, Africulture and Climate beyond 2015: A new prespective on suture land use
- 1234 patterns, edited by: Brouwer, F., and McCarl, B., Springer, Dordrecht, 2006.
- 1235 Calvin, K., Clarke, L., Edmonds, J., Eom, J., Hejazi, M., Kim, S., Kyle, G., Link, R.,
- Patel, P., Smith, S., and Wise, M.: GCAM Wiki Documentation, PNNL-20809, PacificNorthwest National Laboratory, Richland WA, 2011.
- 1238 Castruccio, S., McInerney, D. J., Stein, M. L., Crouch, F. L., Jacob, R. L., and Moyer, E.
- 1239 J.: Statistical Emulation of Climate Model Projections Based on Precomputed GCM
- 1240 Runs, Journal of Climate, 27, 2014.

- 1241 Challenor, P.: Using emulators to estimate uncertainty in complex models, Uncertainty
- 1242 Quantification in Scientific Computing, edited by: Dienstry, A. M., and Boisvert, R. F., 1243
- Springer, IFIP AICT 377, 151-164 pp., 2012.
- 1244 Cheng, W., Chiang, J. C. H., and Zhang, D.: Atlantic Meridional Overturning Circulation
- 1245 (AMOC) in CMIP5 Models: RCP and Historical Simulations, Journal of Climate, 26,
- 1246 7187-7197, 10.1175/JCLI-D-12-00496.1, 2013.
- 1247 Clarke, L., J. Edmonds, H. Jacoby, H. Pitcher, Reilly, J., and Richels, R.: Scenarios of
- 1248 Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of
- 1249 Synthesis and Assessment Product 2.1, edited by: Research, U. S. C. C. S. P. a. t. S. o. G.
- 1250 C., Department of Energy, Office of Biological & Environmental Research, Washington, 1251 7 DC., USA, 2007.
- 1252 Collins, W. D., Craig, A. P., Truesdale, J. E., Di Vittorio, A. V., Jones, A. D., Bond-
- 1253 Lamberty, B., Calvin, K. V., Edmonds, J. A., Kim, S. H., Thomson, A. M., Patel, P.,
- 1254 Zhou, Y., Mao, J., Shi, X., Thornton, P. E., Chini, L. P., and Hurtt, G. C.: The integrated
- 1255 Earth System Model (iESM): formulation and functionality, Geosci. Model Dev.
- 1256 Discuss., 8, 381-427, 10.5194/gmdd-8-381-2015, 2015.
- 1257 Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D.
- 1258 Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da
- 1259 Silva Dias, S.C. Wofsy and X. Zhang: Climat Change 2007: The Physical Science Basis.,
- edited by: Change, C. o. W. G. I. t. t. F. A. R. o. t. I. P. o. C., Cambridge University 1260
- Press, Cambridge, United Kingdom and New York, USA, 2007. 1261
- 1262 Di Vittorio, A. V., Chini, L. P., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J., Craig,
- 1263 A., Calvin, K., Jones, A., Collins, W. D., Edmonds, J., Hurtt, G. C., Thornton, P., and
- 1264 Thomson, A.: From land use to land cover: restoring the afforestation signal in a coupled
- 1265 integrated assessment-earth system model and the implications for CMIP5 RCP
- 1266 simulations, Biogeosciences, 11, 6435-6450, 10.5194/bg-11-6435-2014, 2014.
- 1267 E.P. White, E. B., Z.T. Brym, K.J. Locey, D.J. McGlinn: Nine simple ways to make it 1268 easier to (re)use your data, PeerJ PrePrints, 1:e7v2,
- 1269 http://dx.doi.org/10.7287/peerj.preprints.7v2, 2013.
- 1270 Edmonds, J., and Smith, S. J.: The Technology of Two Degrees. Avoiding Dangerous
- Climate Change, edited by: Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, 1271
- 1272 T., and Yohe, G., Cambridge University Press, Cambridge, UK, 2006.
- 1273 Ehhalt, D., Prather, M. J., Dentener, F. J., Derwent, R., Dlugokencky, E. J., Holland, E.
- 1274 A., Isaksen, I. S., Katima, J., Kirchoff, V., Matson, P. A., and Wang, M.: Atmospheric
- 1275 chemistry and greenhouse gases, in: Climate Change 2001: The Scientific Basis, edited
- 1276 by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, L., Dai, X.,
- 1277 Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, UK, 892,
- 1278 2001.
- 1279 Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and
- 1280 Morgan, V. I.: Natural and anthropogenic changes in atmospheric CO2 over the last 1000
- 1281 years from air in Antarctic ice and firn, Journal of Geophysical Research: Atmospheres,
- 1282 101, 4115-4128, 10.1029/95JD03410, 1996.
- Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean acidification on 1283
- 1284 marine fauna and ecosystem processes, ICES Journal of Marine Science: Journal du
- 1285 Conseil, 65, 414-432, 10.1093/icesjms/fsn048, 2008.

- 1286 Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P.,
- 1287 Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya,
- 1288 M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C.,
- 1289 Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa,
- 1290 C., and Zeng, N.: Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP
- 1291 Model Intercomparison, Journal of Climate, 19, 3337-3353, 10.1175/JCLI3800.1, 2006.
- 1292 Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S.
- 1293 K., and Knutti, R.: Uncertainties in CMIP5 Climate Projections due to Carbon Cycle
- 1294 Feedbacks, Journal of Climate, 27, 511-526, 10.1175/JCLI-D-12-00579.1, 2014.
- Fujieki, L., Santiago-Mandujano, F., Fumar, C., Liukas, R., and Church, M.: Hawaii
 Ocean Time-series Program Data Report, 2013.
- 1297 Fujino, J., Nair, R., Kainuma, M., Masui, T., and Matsuoka, Y.: Multi-gas mitigation
- analysis on stabilization scenarios using AIM global model, Multigas Mitigation andClimate Policy. The Energy Journal, Special Issue, 2006.
- 1300 Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G.,
- 1301 Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng,
- 1302 Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley,
- 1303 M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P.,
- 1304 Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D.,
- 1305 Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and
- 1306 Zhang, S.: Efficacy of climate forcings, Journal of Geophysical Research: Atmospheres,1307 110, D18104, 10.1029/2005JD005776, 2005.
- Hartin, C. A., Bond-Lamberty, B., and Patel, P.: Projections of ocean acidification over
 three centuries using a carbonate chemsitry box model, Biogeosciences, in prep.
- 1310 Harvey, L. D. D., and Schneider, S. H.: Transient climate response to external forcing on
- 1311 100–104 year time scales part 1: Experiments with globally averaged, coupled,
- 1312 atmosphere and ocean energy balance models, Journal of Geophysical Research:
- 1313 Atmospheres, 90, 2191-2205, 10.1029/JD090iD01p02191, 1985.
- 1314 Heron, M., Hanson, V., and Ricketts, I.: Open source and accessibility: advantages and
- 1315 limitations, Journal of Interaction Science, 1, 2, 10.1186/2194-0827-1-2, 2013.
- 1316 Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, M., and Kainuma, M.: Global GHG
- 1317 emissions scenarios under GHG concentration stabilization targets, Journal of
- 1318 Environmental Engineering, 13, 97-108, 2008.
- 1319 Hoffert, M. I., Callegari, A. J., and Hsieh, C.-T.: The Role of Deep Sea Heat Storage in
- 1320 the Secular Response to Climatic Forcing, J. Geophys. Res., 85, 6667-6679,
- 1321 10.1029/JC085iC11p06667, 1980.
- 1322 Holland, M. M., and Bitz, C. M.: Polar amplification of climate change in coupled
- 1323 models, Climate Dynamics, 21, 221-232, 10.1007/s00382-003-0332-6, 2003.
- Ince, D. C., Hatton, L., and Graham-Cumming, J.: The case for open computer programs,Nature, 482, 485-488, 2012.
- 1326 IPCC: Climate Change 2001: The Science of Climate Change. Contribution of Working
- 1327 Group I to the Second Assessment Report of the Intergovernmental Panel on Climate
- 1328 Change, Cambridge University Press, Cambridge, 2001.
- 1329 Irvine, P. J., Sriver, R. L., and Keller, K.: Tension between reducing sea-level rise and
- 1330 global warming through solar-radiation management, Nature Clim. Change, 2, 97-100,

- 1331 <u>http://www.nature.com/nclimate/journal/v2/n2/abs/nclimate1351.html#supplementary-</u>
- 1332 <u>information</u>, 2012.
- 1333 Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and
- 1334 Hasselmann, K.: Global warming feedbacks on terrestrial carbon uptake under the
- 1335Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios, Global
- 1336 Biogeochemical Cycles, 15, 891-907, 10.1029/2000GB001375, 2001a.
- 1337 Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and
- 1338 Hasselmann, K.: Global warming feedbacks on terrestrial carbon uptake under the
- 1339 Intergovernmental Panel on Climate Change (IPCC) emission scenarios, Global1340 Biochemical Cycles, 15, 891-907, 2001b.
- 1341 Knox, F., and McElroy, M. B.: Changes in Atmospheric CO2: Influence of the Marine
- 1342 Biota at High Latitude, J. Geophys. Res., 89, 4629-4637, 10.1029/JD089iD03p04629, 1343 1984.
- 1344 Knutti, R., and Hegerl, G. C.: The equilibrium sensitivity of the Earth's temperature to 1345 radiation changes, Nature Geosci, 1, 735-743, 2008.
- 1346 Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I.,
- 1347 Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L.,
- 1348 Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C.,
- 1349 Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy,
- 1350 P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D.,
- 1351 Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst.
- 1352 Sci. Data, 5, 165-185, 10.5194/essd-5-165-2013, 2013.
- 1353 Lenton, T. M.: Land and ocean carbon cycle feedback effects on global warming in a
- simple Earth system model, Tellus B, 52, 1159-1188, 10.1034/j.1600-0889.2000.01104.x,
 2000.
- 1356 Lenton, T. M., Myerscough, R. J., Marsh, R., Livina, V. N., Price, A. R., and Cox, S. J.:
- 1357 Using GENIE to study a tipping point in the climate system, 1890, 871-884 pp., 2009.
- 1358 Manne, A. S., and Richels, R. G.: Merge: an integrated assessment model for global
- climate change, Energy and environment, edited by: Loulou, R., Waaub, J.-P., andZaccour, G., Springer, New York, 2005.
- 1361 Martin, R. C., Riehle, D., and Buschmann, F.: Pattern Languages of Program Design 3,
- 1362 Addison-Wesley, Boston, MA, 672 pp., 1997.
- 1363 Meinshausen, M., Raper, S. C. B., and Wigley, T. M. L.: Emulating coupled atmosphere-
- 1364 ocean and carbon cycle models with a simpler model, MAGICC6 Part 1: Model
- 1365 description and calibration, Atmos. Chem. Phys., 11, 1417-1456, 10.5194/acp-11-1417-1366 2011, 2011a.
- 1367 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.
- 1368 F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G.
- 1369 J. M., and Vuuren, D. P. P.: The RCP greenhouse gas concentrations and their extensions
- 1370 from 1765 to 2300, Climatic Change, 109, 213-241, 10.1007/s10584-011-0156-z, 2011b.
- 1371 Meinshausen, M., Wigley, T. M. L., and Raper, S. C. B.: Emulating atmosphere-ocean
- 1372 and carbon cycle models with a simpler model, MAGICC6 Part 2: Applications,
- 1373 Atmos. Chem. Phys., 11, 1457-1471, 10.5194/acp-11-1457-2011, 2011c.
- 1374 Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties
- 1375 in global and regional temperature change using an ensemble of observational estimates:

- 1376 The HadCRUT4 data set, Journal of Geophysical Research: Atmospheres, 117, D08101,
- 1377 10.1029/2011JD017187, 2012.
- 1378 Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren,
- 1379 D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B.,
- 1380 Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P.,
- and Wilbanks, T. J.: The next generation of scenarios for climate change research andassessment, Nature, 463, 747-756,
- 1383 http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08823_S1.html, 2010.
- 1384 Murakami, K., Sasai, T., and Yamaguchi, Y.: A new one-dimensional simple energy
- balance and carbon cycle coupled model for global warming simulation, Theoretical and
- 1386 Applied Climatology, 101, 459-473, 10.1007/s00704-009-0232-8, 2010.
- 1387 Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative
- forcing due to well mixed greenhouse gases, Geophysical Research Letters, 25, 2715-2718, 10.1029/98GL01908, 1998.
- 1390 Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J.,
- 1391 Myneni, R. B., and Running, S. W.: Climate-Driven Increases in Global Terrestrial Net
- 1392 Primary Production from 1982 to 1999, Science, 300, 1560-1563,
- 1393 10.1126/science.1082750, 2003.
- 1394 Nordhaus, W. D.: A question of balance weighing the options on global warming
- 1395 policies, Yale University Press, New Haven, 2008.
- 1396 Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav,
- 1397 A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J.,
- 1398 Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z.,
- 1399 Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of terrestrial carbon cycle
- models for their response to climate variability and to CO2 trends, Global Change
 Biology, 19, 2117-2132, 10.1111/gcb.12187, 2013.
- 1402 Pietsch, S. A., and Hasenauer, H.: Evaluating the self-initialization procedure for large-
- scale ecosystem models, Global Change Biology, 12, 1-12, 10.1111/j.1365-
- 1404 2486.2006.01211.x 2006.
- 1405 Raper, S. C., Gregory, J. M., and Stouffer, R. J.: The Role of Climate Sensitivity and
- 1406 Ocean Heat Uptake on AOGCM Transient Temperature Response, Journal of Climate,1407 15, 124-130, 2002.
- 1408 Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: Use of an upwelling-diffusion energy
- balance climate model to simulate and diagnose A/OGCM results, Climate Dynamics, 17,601-613, 2001.
- 1411 Ratto, M., Castelletti, A., and Pagano, A.: Emulation techniques for the reduction and
- 1412 sensitivity analysis of complex environmental models, Environmental Modelling and
- 1413 Software, 34, 1-4, 2012.
- 1414 Riahi, K., Grubler, A., and Nakicenovic, N.: Scenarios of long-term socio-economic and
- environmental development under climate stabilization, Technological Forecasting andSocial Change, 74, 887-935, 2007.
- 1417 Ricciuto, D. M., Davis, K. J., and Keller, K.: A Bayesian calibration of a simple carbon
- 1418 cycle model: The role of observations in estimating and reducing uncertainty, Global
- 1419 Biogeochemical Cycles, 22, GB2030, 10.1029/2006GB002908, 2008.
- 1420 Rogner, H. H.: An assessment of world hydrocarbon resources, Annual Review of
- 1421 Energy and the Environment, 22, 217-262, 10.1146/annurev.energy.22.1.217, 1997.

- 1422 Schlesinger, M. E., and Jiang, X.: Simple Model Representation of Atmosphere-Ocean
- 1423 GCMs and Estimation of the Time Scale of C02-Induced Climate Change, Journal of
- 1424 Climate, 3, 1297-1315, 10.1175/1520-0442(1990)003<1297:SMROAO>2.0.CO;2, 1990.
- 1425 Senior, C. A., and Mitchell, J. F. B.: The time-dependence of climate sensitivity,
- 1426 Geophysical Research Letters, 27, 2685-2688, 10.1029/2000GL011373, 2000.
- 1427 Smith, S., and Wigley, T.: Multi-Gas Forcing Stabilization with the MiniCAM, Energy
- 1428 Journal Special Issue #3, 373-391, 2006.
- 1429 Smith, S. J., and Bond, T. C.: Two hundred fifty years of aerosols and climate: the end of
- the age of aerosols, Atmos. Chem. Phys. Discuss., 13, 6419-6453, 10.5194/acp-14-5372014, 2014.
- 1432 Sokolov, A. P., CA, S., S, D., S, P., DW, K., HD, J., RG, P., CE, F., JM, R., C, W., B, F.,
- 1433 MC, S., J, S., PH, S., M, J., and J, C.: The MIT Integrated Global System Model (IGSM)
- 1434 version 2: model description and baseline evaluation, MIT, Cambridge, 2005.
- 1435 Sriver, R., Urban, N., Olson, R., and Keller, K.: Toward a physically plausible upper
- bound of sea-level rise projections, Climatic Change, 115, 893-902, 10.1007/s10584-0120610-6, 2012.
- 1438 Stocker, T.: Model Hierarchy and Simplified Climate Models, in: Introduction to Climate
- Modelling, Advances in Geophysical and Environmental Mechanics and Mathematics,
 Springer Berlin Heidelberg, 25-51, 2011.
- 1441 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman,
- 1442 D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E.,
- 1443 Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y.,
- 1444 Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B.,
- 1445 Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de
- 1446 Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net
- 1447 sea-air CO2 flux over the global oceans, Deep Sea Research Part II: Topical Studies in
- 1448 Oceanography, 56, 554-577, <u>http://dx.doi.org/10.1016/j.dsr2.2008.12.009</u>, 2009.
- 1449 Tanaka, K., Kriegler, E., Bruckner, T., Hooss, C., Knorr, W., and Raddatz, T.:
- 1450 Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2) -
- description of the forward and inverse models, Max Planck Institute for Meteorology.Hamburg, Germany, 188, 2007a.
- 1453 Tanaka, K., Kriegler, E., Bruckner, T., Hooss, G., Knorr, W., Raddatz, T. J., and Tol, R.:
- Aggregated carbon cycle, atmospheric chemistry, and climate model (ACC2), Hamburg,
- 1455 188, 2007b.
- 1456 Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
- 1457 Experiment Design, Bulletin of the American Meteorological Society, 93, 485-498,
- 1458 10.1175/BAMS-D-11-00094.1, 2012.
- 1459 Urban, N. M., and Keller, K.: Complementary observational constraints on climate
- sensitivity, Geophysical Research Letters, 36, L04708, 10.1029/2008GL036457, 2009.
- 1461 Urban, N. M., and Keller, K.: Probabilistic hindcasts and projections of the coupled
- 1462 climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian
- 1463 fusion of century-scale observations with a simple model, Tellus A, 62, 737-750,
- 1464 10.1111/j.1600-0870.2010.00471.x, 2010.
- 1465 van Vuuren, D., Elzen, M. J., Lucas, P., Eickhout, B., Strengers, B., Ruijven, B., Wonink,
- 1466 S., and Houdt, R.: Stabilizing greenhouse gas concentrations at low levels: an assessment

- 1467 of reduction strategies and costs, Climatic Change, 81, 119-159, 10.1007/s10584-006-
- 1468 9172-9, 2007.
- 1469 van Vuuren, D., Lowe, J., Stehfest, E., Gohar, L., Hof, A., Hope, C., Warren, R.,
- 1470 Meinshausen, M., and Plattner, G.-K.: How well do integrated assessment models
- 1471 simulate climate change?, Climatic Change, 104, 255-285, 10.1007/s10584-009-9764-2,
- 1472 2011.
- 1473 Ward, D. S., and Mahowald, N. M.: Contributions of developed and developing countries
- to global climate forcing and surface temperature change, Environmental ResearchLetters, 9, 074008, 2014.
- Wigley, T. M. L.: A simple inverse carbon cycle model, Global Biogeochemical Cycles,
 5, 373-382, 10.1029/91GB02279, 1991.
- 1478 Wigley, T. M. L.: Global-mean temperature and sea level consequences of greenhouse
- 1479 gas concentration stabilization, Geophysical Research Letters, 22, 45-48,
- 1480 10.1029/94GL01011, 1995.
- Wigley, T. M. L., Richels, R., and Edmonds, J. A.: Economic and environmental choices
 in the stabilization of atmospheric CO2 concentrations, Nature, 379, 240-243, 1996.
- 1483 Wigley, T. M. L., Smith, S. J., and Prather, M. J.: Radiative Forcing Due to Reactive Gas
- 1484 Emissions, Journal of Climate, 15, 2690-2696, 10.1175/1520-
- 1485 0442(2002)015<2690:RFDTRG>2.0.CO;2, 2002.
- 1486 Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S.
- 1487 J., Janetos, A., and Edmonds, J.: Implications of Limiting CO2 Concentrations for Land
- 1488 Use and Energy, Science, 324, 1183-1186, 10.1126/science.1168475, 2009.
- 1489 Wolkovich, E. M., Regetz, J., and O'Connor, M. I.: Advances in global change research
- require open science by individual researchers, Global Change Biology, 18, 2102-2110,
 10.1111/j.1365-2486.2012.02693.x, 2012.
- Zeebe, R. E., and Wolf-Gladrow, D.: CO2 in Seawater: Equilibrium, Kinetics, Isotopes,
 Elsevier, 2001.
- 1494
- 1495

1496 **Table and Figure Captions:**

1497 Table 1: Initial m^Model conditions prior to-<u>the</u> spinup <u>phase</u>. Carbon values change 1498 <u>slightly after spinning up to a steady state</u>. 1499

Variable	Description	Initial Value	Units	<u>Notes</u>
*C _{atm}	Atmospheric Carbon	588.1	PgC	<u>Murakami</u> (2010)
*C _D	Detritus Carbon	55 <u>.0</u>	PgC	<u>Denman et al., (</u> 2007)
				Land carbon (detritus, soil and
				vegetation) totaling ~2300PgC
*Cs	Soil Carbon	1782 <u>.0</u>	PgC	
*C _v	Vegetation Carbon	550 <u>.0</u>	PgC	
C _{DO}	Deep Ocean	26000 <u>.0</u>	PgC	<u>Denman et al., (</u> 2007)
				<u>Ocean carbon (deep,</u>
				intermediate and surface)
				totaling ~3800PgC **
C _{HL}	Surface Ocean High Latitude	140 <u>.0</u>	PgC	
C _{IO}	Intermediate Ocean	8400 <u>.0</u>	PgC	
C _{LL}	Surface Ocean Low Latitude	770 <u>.0</u>	PgC	
FL	Atmosphere-Land Carbon Flux	0 <u>.0</u>	PgC yr ⁻¹	
Fo	Atmosphere-Ocean Carbon Flux	0 <u>.0</u>	PgC yr⁻¹	
NPP ₀	Net Primary Production	50 <u>.0</u>	PgC yr⁻¹	Approximate global value.
				<u>Nemani et al., (</u> 2003)
T _G	Global Temperature Anomaly	0 <u>.0</u>	°C	
T _{HL}	Temperature of high latitude surface	2 <u>.0</u>	°C	<u>Lenton, (</u> 2000)
	ocean box			
T _{LL}	Temperature of low latitude surface	22 <u>.0</u>	°C	<u>Lenton, (</u> 2000)
	ocean box			
1500	* parameters appearing in the input file.			

1501 ** in order to obtain a steady state in Hector, carbon values in the intermediate box are

1502 less than reported Denman et al.,(2007).

Table 2: Model parameters for the land and ocean carbon components.

Variable	Description	Value	<u>Notes</u>
f_{ds}	annual fraction of detritus carbon	0.60	The following
	that is transferred to soil		fractions (f) were
			selected to be
			generally consistent
			with previous simple
			(e.g., Meinshausen et
			al., 2011a; Ricciuto et
			al., 2008; Murakami et
			al., 2010) <u>.</u>
*f _{ld}	annual fraction of land use change	0.01	
	flux from detritus		
f_{ls}	annual fraction of land use change	0.89	
	flux from soil		
*f _{lv}	annual fraction of land use change	0.10	
	flux from vegetation		
*f _{nd}	annual fraction of NPP carbon that is	0.60	
	transferred to detritus		
f_{ns}	annual fraction of NPP carbon that is	0.05	
	transferred to soil		
*f _{nv}	annual fraction of NPP carbon that is	0.35	
	transferred to vegetation		
$f_{\it rd}$	annual fraction of respiration carbon	0.25	
	that is transferred to detritus		
f_{rs}	annual fraction of respiration carbon	0.02	
	that is transferred to soil		
$f_{ m vd}$	annual fraction of vegetation carbon	0.034	
	that is transferred to detritus		
f_{vs}	annual fraction of vegetation carbon	0.001	
	that is transferred to soil		
*6	Beta	0.36	
*Q10	Q10 respiration	2.45	
*Т _Н	High-latitude circulation	4.9e7 m ³ s ⁻¹	Tuned to give ~100
			PgC from surface to
			<u>deep</u>
*T _T	Thermohaline circulation	7.2e7 m ³ s ⁻¹	Tuned to give ~100

				PgC from surface to
				<u>deep</u>
	*E _{ID}	Water mass exchange – intermediate	1.25e7 m ³ s ⁻	<u>Lenton, 2000; Knox</u>
		<u>to</u> —deep	1	and McElroy, 1984
Ì	*E _{LI}	Water mass exchange – low latitude	2.0e8 m ³ s ⁻¹	Lenton, 2000; Knox
		<u>to</u> - intermediate		and McElroy, 1984

1505

* parameters appearing in the input file.

Table 3: CMIP5 ESM models used within this study. We use the same suite of models as
found in Friedlingstein et al. (2014). Note, not all variables are reported for each model
under all scenarios.

Model	Model Name	Institute
bcc-csm1-1	Beijing Climate Center, Climate	Beijing Climate Center, China
	System Model, version 1.1	Meteorological Administration, China
CanESM2 <u>*</u>	Second Generation Canadian	Canadian Center for Climate Modeling
'	Earth System Model	and Analysis, BC, Canada
CESM1-BGC <u>*</u>	Community Earth System	National Center for Atmospheric
	Model, version 1.0-	Research, United States
	Biogeochemistry	
GFDL-ESM2G	Geophysical Fluid Dynamic	Geophysical Fluid Dynamics Laboratory,
	Laboratory Earth System	United States
	Model with GOLD ocean	
	component	
HadGEM2-ES	Hadley Centre Global	Met Office Hadley Centre, United
	Environmental Model, version	Kingdom
	2 (Earth System)	
inmcm4	Institute of Numerical	Institute of Numerical Mathematics,
	Mathematics Coupled Model,	Russia
	version 4.0	
IPSL-CM5A-LR	L'Institut Pierre-Simon Laplace	Institut Pierre Simon Laplace, France
	Coupled Model, version 5A,	
	coupled with NEMO, low	
. h	resolution	
MIROC-ESM <u>*</u>	Model for Interdisciplinary	Atmosphere and Ocean Research
	Research on Climate, Earth	Institute; National Institute for
	System Model	Environmental Studies, Japan Agency for
		Marine-Earth Science and Technology,
		Japan
MPI-ESM-LR	Max Planck Institute Earth	Max Planck Institute for Meteorology,
	System Wodel, low resolution	Germany
	Meteorological Research	Meteorological Research Institute Earth,
	institute Earth System Wodel,	заран
NorESNA1 NAE *	Version Farth Suctor	Nonvogian Climata Cantar Norway
		NULWERIAL CHILATE CELLEC NOLWAY

resolution

* Models used in emissions forced scenarios (esmhist and esmrcp85).

1510	Table 4: Skill of Root mean square	error (RMSE) -for H	lector versus observations,	, CMIP5,
------	------------------------------------	---------------------	-----------------------------	----------

- 1511 and MAGICC, correlation coefficients (R) and root mean square error (RMSE) for
- 1512 atmospheric [CO2], surface temperature anomaly, radiative forcing, fluxes of carbon
- 1513 (ocean and land), and low latitude surface ocean pH and change (Δ) in atmospheric
- 1514 [CO2], surface temperature anomaly and radiative forcing for Hector, CMIP5,
- 1515 observations, and MAGICC6.

			Historical 1850 - 20	05		
Variable	<u>Skill</u>	Hector	Observations	MAGICC	CMIP5	Units
[CO ₂]*	RMSE		2.85	2.95	2.21	ppmv
	Δ	85.78	94.47	95.0	103.30	
temperature	RMSE		0.15	0.13	0.15	deg C
	Δ	0.98	0.91	0.76	1.01	
Forcing	RMSE			0.39		W m ⁻²
	Δ	2.16		1.75		
Ocean Flux	RMSE				0.25	PgC yr⁻¹
Land Flux	RMSE				1.27	PgC yr⁻¹
рН	RMSE				0.004	unitless

*[CO₂] observations are an average of Law Dome and Mauna Loa.

		RCP 8.5 1850	- 2300		
Variable		Hector	MAGICC	CMIP5	Units
[CO ₂] *	RMSE		10.41	7.54	ppmv
	Δ	1557.91	1695.0		
temperature	RMSE		0.12	0.52	deg C
	Δ	9.58	8.05	10.57	
Forcing	RMSE		0.26		W m ⁻²
	Δ	12.80	12.24		
Ocean Flux	RMSE			1.39	PgC yr⁻¹
Land Flux	RMSE			3.86	PgC yr⁻¹
рН	RMSE			0.003	unitless

*CMIP5 [CO₂] only to 2100.

		Ner 0.5 2005 2.	500		
Variable		Hector	MAGICC	CMIP5	Units
[CO ₂]*	RMSE		10.07	7.23	ppmv
	Δ	1472.13	1600.0		
temperature	RMSE		0.09	0.58	deg C
	Δ	8.59	7.30	9.57	
Forcing	RMSE		0.03		W m⁻²
	Δ	10.65	10.49		
Ocean Flux	RMSE			1.41	PgC yr ⁻¹
Land Flux	RMSE			4.59	PgC yr⁻¹
рН	RMSE			0.001	unitless

RCP 8.5 2005 - 2300

*CMIP5 [CO₂] only to 2100.

1517

1518

- **Figure 1:** Model phases for the coupler (left) and a typical component (right). Arrows
- 1521 show flow of control and data. The greyed spinup step is optional.

1524 Figure 2: Representation of Hector's carbon cycle, land, atmosphere, and ocean. The 1525 atmosphere consists of one well mixed box. The ocean consists of four boxes, with 1526 advection and water mass exchange simulating thermohaline circulation (see Table 2 for 1527 description of parameters). At steady state, the high latitude surface ocean takes up 1528 carbon from the atmosphere, while the low latitude surface ocean off gases carbon to 1529 the atmosphere. The land consists of a user defined number of biomes or regions for 1530 vegetation, detritus and soil. At steady state the vegetation takes up carbon from the atmosphere while the detritus and soil release carbon back into the atmosphere. The 1531 1532 earth pool is continually debited with each time step to act as a mass balance check on 1533

- Figure 7: Relative radiative forcing from 1850 to 2300 for Hector (solid) and MAGICC6 1568
- 1569 (dashed) for all four RCP scenarios, 2.6 (red), 4.5 (green), 6.0 (blue), 8.5 (purple). Hector
- has the option to enable or disable radiative forcing from historical volcanic emissions. 1570
- 1571 We have opted to disable this for ease of comparison across all RCPs.
- 1572

Figure 8: Global temperature anomaly relative to 1850 for (a) RCP 2.6 (b) RCP 4.5 (c) RCP
6.0 and (d) RCP 8.5, comparing Hector (blue), MAGICC6 (green), and CMIP5 median,
standard deviation and model spread-range (pink). The CMIP5 models under RCP 6.0
used in this study do not extend to 2300. Note the change in scales between the four
panels. Number of CMIP5 models in a) n=7 (2006-2100) and n=5 (2101-2300), b) n=9
(2006-2100) and n=6(2101-2300), c) n=6 (2006-2100), d) n=9 (2006-2100) and n=3
(2101-2300).

1584	Figure 9: Taylor diagram of global temperature anomaly relative to 1850, from 1850 to
1585	2300 for RCP 8.5, Hector (), MAGICC6 (), CMIP5 median (red), and CMIP5 models (grey).
1586	
1587	

1588 **Figure 109**: Global air-sea fluxes of carbon under RCP 8.5, Hector (blue), MAGICC5.3

1589 (purple, note that this is not the current version of MAGICC), CMIP5 median, standard

1590 <u>deviation, and model range</u> (redpink, n=9 (1850-2100) and n=4 (2101-2300)), and

1591 observations from GCP (green) (Le Quéré et al., 2013). The break in the graph at 2100

1592 signifies a change in the number of models that ran the RCP 8.5 extension.

1595Figure 101: Global air-land fluxes of carbon under RCP 8.5, Hector (blue), CMIP5 median,1596standard deviation, and model range CMIP5-(redpink, n=8 (1850-2100) and n=2 (2101-15972300)), and observations from GCP (green) (Le Quéré et al., 2013). The break in the1598graph at 2100 signifies a change in the number of models that ran the RCP 8.51599extension.-__1600

