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European Geosciences Union

Dear Editor:

We herewith submit our revised manuscript, “Global Sensitivity Analysis, Probabilistic Calibration, and Pre-
dictive Assessment for the Data Assimilation Linked Ecosystem Carbon Model”, by Safta, Ricciuto, Sargsyan,
Debusschere, Najm, Williams, and Thornton for publication in the Geoscientific Model Development. The
original manuscript had been returned to us after a round of reviews, with requests for major modifications.
The reviewers had also posed some questions to us.

We have gone over the reviewer comments in detail. We have benefited much from many of the reviewer
comments, shown in cursive font in this letter, and have incorporated them in the revised text. Our detailed
responses are shown in normal font immediately following each question.

We feel that we have addressed all comments, and have done the major revisions to the paper consistent
with the Editor’s and reviewers’ requests. Some of the major changes are briefly described on the next page.

We respectfully ask the Editor to reconsider the revised paper.

Sincerely,

Cosmin Safta



A brief outline of major changes in the current manuscript compared to the previous version is provided
below.

e We reduced the size of the Introduction. We refocused the paper to emphasize the comparison between
the steady and transient model setups. This comparison is now the focus of all Sections in the revised
manuscript.

e In the GSA section we replaced the discussion of first-order Sobol indices, S; with total effect indices,
ST We believe that total effect indices, which include the first order effects and the joint and higher
order interaction effects, provide a better picture on which parameters matter for specific quantities of
interest.

e In the current version of the manuscript we employ informative priors for all model parameters. These
priors are described in Section 4.3. In addition to the model calibration study, these priors were also
used in Section 3 for Global Sensitivity Analysis.

e The model error is no longer ignored in the current version of the manuscript. We discuss the modeling
associated with the statistical model error term in Section 4.2. In Section 4.4.1 we present a convergence
study for the parameters controlling the model error.

e Given the new emphasis on steady state/transient model setups, we removed the section Fisher Infor-
mation matrix (FIM) and subsequent discussion and results based on FIM. Overall the length of the
paper, not including figures and tables, increased by one page due to the substantial increase in the
discussion in other parts of the paper.

e All figures and most of the associated text, except perhaps the sketches, were updated in the revised
manuscripts to account for the changes in priors and model error term. We reduced the number of
figures by two, from 19 to 17.



Response to Reviewer #1

1. Unfortunately, there were a few substantial problems in the paper. First and most important is that
model error was ignored during calibration. Second, prior information on model parameters was also
ignored, which leads to a misleading uncertainty analysis and potentially biologically implausible parameter
estimates (as an aside, the plausibility of model posterior estimates is never discussed or compared to data).
Third, lacking an estimate of model error, predictive distributions are done by propagating observation error
into the forecasts, which is inappropriate. Finally, overall the paper was too long, though in many places
1 felt like I was being hit by a barrage of indices that were all Methods and Results without Discussion.

We thank this reviewer for his critical assessment of the first version of our manuscript. We have addressed
the two major comments, regarding model error and prior information. We updated the formulation to
include these comments resulting in major changes throughout most of the manuscript. We provide
detailed replies to specific comments by this reviewer, including a reply included in item #20 below to
the third issue raised above.

2. Pages 6895-6897: Too much background. Theres been multiple recent reviews of data assimilation in
ecosystem models that can be pointed to for readers that want all the nitty gritty, so instead you should
focus on your message/context.

The Introduction section in the current version of the manuscript is significantly more compact compared
to the previous version. We eliminated unnecessary details, refer to a review paper, and provide a more
focused description on the motivation for our study.

3. Page 6897, line 25: Unlike the last 2 pages, this comment is unsupported. Indeed, there have been a
number of recent papers performing detailed sensitivity and uncertainty analyses specifically in the context
of leading up to data assimilation. This is worth mentioning because it is important to note that while the
details of the workflow the authors put forth is unique, the general workflow they are following is definitely
not, and thats a part of the literature that DOES need to be discussed if youre going to claim that what
you are going is novel.

This comment is now reformulated to state that few, if any, studies focus on the steady vs transient
assumptions for the ecosystem models.

4. Page 6898, line 27: This bit is very important and much more rare (indeed, I know of examples where
teams have taken one approach or the other, but Im not aware of a paper that compares the two explicitly),
however in the context of this paragraph I had no idea what you were talking about. It was only when I
got to the methods that it became clear that you were discussing the alternatives of assuming spin up to
steady-state vs. including the IC in the assimilation. This needs to be explained and highlighted more in
the intro.

We now provide a more detailed explanation, both in the “Introduction” as well as in the following section,
“Description of Carbon Cycle Model”, on the two approaches for using DALEC, steady-state vs transient
model setups.

5. Page 6898, L10-12: Extraneous. That youre developing this workflow to apply it to more complexr models
like CLM 1is relevant, but tweaks to the model can be left to the methods

The description of changes to the DALEC model was moved to Section 2.

6. Pg 6899, L12: Great, but the reader has no idea what UQTE is is it a project, a model, a conference, a
piece of software? What does UQTE stand for? Given that the answer is that its a piece of software, push
this into the methods, be more explicit about its use, and make the overarching workflow for performing
this analysis public (even if the source code of the toolbox isnt). Having just that toolbox is insufficient to
allow this analysis to be reproduced.

We have updated the description of the suite of tools in UQTk. The source code for this software toolbox is
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available for download. We also state that additional scripts/wrappers specific to this paper are available
upon request from the first author.

. I fundamentally disagree. A sensitivity analysis (even a global one) connects PERTURBATIONS in the

model inputs to perturbations in the model output. What you describe is an uncertainty analysis. The
fundamental difference is that to perform an UA rather than a SA you need to know the uncertainties in
the parameters. But you dont have those uncertainties, you just have arbitrarily assigned uniform ranges.
Personally, I dont think Sobol indices are an appropriate technique for SA since they are variance-based
their interpretation only really makes sense for UA.

We modified the start of this paragraph to eliminate some ambiguity in the intent of this section. We
agree with the reviewer that Sobol indices, being variance based, are not equivalent to indices from
a perturbation-type sensitivity analysis over the supports of the given probability density functions of
model parameters. At the same time, we submit that, in our experience, we have seen perturbative SA
done only in local SA, while all GSA studies we have seen actually rely on variance-based probabilistic
analysis. In fact, applying perturbative analysis with large perturbations associated with the support of
parameter PDFs can be problematic, e.g. in cases where the PDF support is exceedingly large or infinite,
as it would give sole attention to the bounds of the support. On the other hand, probabilistic variance-
based GSA is naturally weighted by the input measure and well behaved for any input PDF. Given the
predominance of the probabilistic framework for GSA, we respectfully propose to retain this framework
here as is.

. Pg 6902, L15-20: The logic here is completely backwards. You state you are only given prior information

on parameter bounds, but it is you that is only giving yourself that information. If you wanted to give
yourself more information you easily could since Mats made the model and has been working with it for a
decade. More to the point, for almost every parameter in DALEC there is more prior information available
in the literature.

The prior ranges are chosen following previous studies (e.g. Fox et. al. [1]) and more broadly reflect
temperate deciduous forests, since many carbon cycle models characterize sites by plant functional type
(PFT) rather than focusing on specific species present at a site. We now employ informative priors for all
model parameters using nominal PFT-level values and some basic assumptions about their uncertainty.
Informative priors for the initial carbon pool amounts now use actual site-specific measurements. The
text has been updated to reflect these changes.

Pg 6903, L6: This info really needs to make it into the legends for these figures I looked at the figures
first and was scratching my head since neither grey nor white was in the legend or caption

We have improved the colormap description in the figure captions.

Pg 6905, L16: The assumption that NEE data are independent is not plausible and will result in consid-
erably overconfident posterior distributions

The largest source of error in NEE measurements is associated with turbulent transport, which is expected
to be independent (Hollinger and Richardson [2]). However, systematic errors associated with the eddy
covariance method are likely, and while they are corrected when possible, some are likely to remain. Such
errors will now be represented in the statistical model error term that we have added in this version. This
should address the overconfidence problem but systematic data errors may contribute to biases in the
posterior distributions of model parameters.

Pg 6905, L18: The decision to neglect model error is completely inappropriate, will lead to incorrect
posterior distributions, and renders your predictive intervals meaningless. This assumption implies that
you believe that your process model is perfect and the only reason for deviations from observations is
due to observation error, which is untenable. The inclusion of model error as a fit parameter is neither
conceptually difficult or computationally costly updating the model error doesnt require model runs and
the prior could easily be chosen to be conjugate to your Normal likelihood, allowing the update to be done



12.

13.

14.

15.

16.

17.

18.

19.

20.

using Gibbs Sampling

In the current version of this study we model the discrepancy between the model and the “truth” as
a multivariate normal distribution with constant bias and square-exponential covariance matrix. The
hyperparameters introduced by this model error term are estimated together with the original model
parameters. We also discuss the convergence of these hyperparameters with respect to the bandwidth of
the covariance matrix.

L6906, L14: This is awesome. However, you dont state what your priors are. As I note above in the
discussion of informed priors, you should actually be able to construct fairly informative priors for most of
your C pools since the biometric data for Harvard Forest is pretty good and all public through the LTER.

We now use informative priors for all DALEC parameters, including the intial Carbon pools’ amounts
in the transient model setup. These parameters are provided in Table 4 in the current version of our
manuscript.

P6906, L20: Could you use more meaningful acronyms?? Also, these acronyms are not defined in the
tables and figures that include them

We have changed the labels for the steady state/transient model setups to Dgt and Dtr. We are now
providing explicit definitions in the figure/table captions.

P6907 L1: D is replaced by a random vector of NEE observations This bit doesnt make sense to me,
why would you be randomizing your NEE observations such that their was no pairing between observations
and model predictions? Based on my reading theres no requirement for this randomization in Fisher
Information approach.

and

P6907 L12-13: Given that Sigma is just a constant with respect to the different model parameters (thetas),
this standardization by...

The above comments pertain to the section on Fisher Information Matrix. This section was removed from
the current version of the manuscript.
Pg 6909, LS: high-lighted

The paragraph containing this typo was re-written in the current version of the manuscript.
P6910, L9-12: This is a really neat trick.

P6911, L5-6: This is also a new and useful contribution (at the least, its an approach that I havent seen
before in the ecosystem modeling literature)

We thank the reviewer for the above comments.

P6912, L26-28: Neat. I've never seen a piecewise posterior before, but this is a great example of how input
accuracy and if statements can impact posterior inference.

We thank the reviewer for this comment. In the current version of the manuscript the piecewise constant
posterior is now piecewise (quasi) linear due to the inclusion of informative priors.

P6915, L12-14: I dont think this analysis makes sense. First, observation error should not be propagated
into a forecast. Model error, which wasnt estimated, DOES need to be propagated into the predictive
distributions. Given that, Id strongly recommend that the authors restrict the current analysis to looking
Just at the models credible interval (parameter uncertainty) not predictive intervals (unless they end up
quantifying model error as well)

Respectfully, we cannot agree with the reviewer on this point. The reviewer is under the misapprehension
that the posterior predictive is for predictive forecasts with the model. In fact it is not. A predictive
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forecast would be made with only the model-error term included, and is what we call the pushed forward
posterior. The point of the posterior predictive is not so much prediction of Qols with the calibrated model,
but rather prediction of the noisy data itself as a diagnostic check on the quality of the statistical inference.
One cannot do a posterior predictive check relevant to the measured noisy data without including the
data noise term in the posterior predictive. In the current version of the manuscript we include the newly
inferred model error together with the data noise in the posterior predictive check.

P6916, L1: computed with KDE is unclear

This paragraph was re-written and this expression does not appear in the current version of the manuscript.
P 6916, L14: CRPS is also new to me. I think this is cool, but in the end theres not much interpretation
/ discussion of the results. Needs to be a more clear set of take-home messages in this section

and

P6917, L14: Likewise, CRPSS is new to me, and while it is interesting, like with CRPS it isnt explained
or interpreted enough. If the only take home message is that there was 40% improvement, then you should
make this section much shorter in order to get to that point more quickly

We have now expanded the discussion of CRPS and CRPSS, in particular when comparing the steady vs
transient model setups.

Figure 2: what is NPP2 and why does leaf biomass not affect LAI?

One of the green arrows was missing in Fig. 2. A change in LAI leads to a change in vc! which is the leaf
biomass. NPP2 is a variable internal to DALEC representing the NPP available for allocation to stem
and root pools after allocation to foliage. It is computed by subtracting the net change in LAI from the
Net Primary Production (NPP).

Figure 3-6: please put the months in order! Start with January, end with December rather than starting
with November.

We have updated these figures per reviewer’s request.

Figure 4: Why is DALEC so sensitive to leaf fall in December, which is 2 months after leaf fall occurs?
The GPP average during the winter months is negligible, basically just noise of the same order of magnitude

to machine epsilon. We have updated the plotting scripts to skip plotting sensitivity data when this
information is not physical. Thank you for pointing this out.
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Response to Reviewer #2

We thank this reviewer for his critical assessment of our manuscript. Please find below our itemized replies
to the issues raised by this reviewer.

1. The use of uninformed priors greatly reduces the utility of the study as a number of studies have demon-
strated ...

In the current version of the manuscript, we employ informative priors for all parameters.

2. Qwverall the paper is too long, with too many figures especially given the lack of any meaningful discussion
about much of the results.

We have eliminated the section presenting the Fisher information matrix and several paragraphs through-
out the paper related to that discussion. We also eliminated several figures. On the other hand, in the
new version we emphasize the comparison between steady state and transient model setups. Addition-
ally, the use of informative priors lead to more discussion in several sections in the current version of the
manuscript. Overall, the current version is shorter by about three pages and with two figures less than
the previous version.

3. Page 6895-6896: Much of the background section could be replaced by reference to a number of recent
reviews of data assimilation techniques used with ecosystem models and UQ workflow tools. Instead more
emphasize should be placed on the context of this particular study.

The Introduction section in the current version of the manuscript is significantly more compact compared
to the previous version. We eliminated unecessary details, refer to a review paper, and provide a more
focused description on the motivation for our study.

4. Page 6897, line 27: The impacts of steady state/non-steady state assumption on SA and UQ are pretty
interesting and deserve more discussion at this point. In this case this is spin-up v. initial conditions
estimation (although you dont explain that here), but could mean other things.

We expanded the discussion in the Global Sensitivity Analysis section of the similarities and differences
between steady state/transient assumption for DALEC.

5. Page 6898, line 9: Dont say modified version without immediately describing the changes which is done
in the following section

We have moved the discussion on the modifications made to DALEC to Section 2.

6. Page 6899, line 12: What is UQTEk v3.09 OM you follow the link and its software. This looks great,
but how was this actually used? How could what youve done be reproduced? I think it would be of great
interest to have considerable more details of this tool, and how ecosystem modelers can use it.

In the new version of the manuscript we provide a brief description on the set of software tools employed
in this study.

7. Page 6901, line 9: What you describe is an uncertainty analysis, not a sensititivity analysis (which is
what you then do)

We modified the start of this paragraph to eliminate some ambiguity in the intent of this section. We
agree with the reviewer that Sobol indices, being variance based, are not equivalent to results based on
perturbation-type sensitivity analysis over the supports of the given probability density functions of model
parameters. At the same time, we submit that, in our experience, we have seen perturbative SA done
only in local SA, while all GSA studies we have seen actually rely on variance-based probabilistic analysis.
In fact, applying perturbative analysis with large perturbations associated with the support of parameter
PDF's can be problematic, e.g. in cases where the PDF support is exceedingly large or infinite, as it would
give sole attention to the bounds of the support. On the other hand, probabilistic variance-based GSA is
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naturally weighted by the input measure and well behaved for any input PDF. Given the predominance
of the probabilistic framework for GSA, we respectfully propose to retain this framework here as is.

Page 6902, line 19: See my overall comment there is considerable prior information that could be/should
be used to inform priors in this study to give a meaningful and informative analysis.

We now use informative priors in the current version of the manuscript.

Page 6903, line 27: Right, monthly timescales are not appropriate for analysis of controls over these large

carbon pools. Why was a monthly timescale selected in the first place?

We originally selected a monthly timescale in order to study the NEE and GPP fluxes. While monthly
timescales are too short for the Carbon pools, we believe that current results offer a nice confirmation for
the longer timescales characteristic to the Carbon pools.

Page 6906, line 6: How was steady-state defined in this case?

We added in the last paragraph of Section 2 a description on the criteria employed to decide when the
model achieves a “numerical” steady state.

Page 6900, line 6: 30-50 cycles Why is there is variability? Youre cycling the same climate files, in the

same order? And have a definition of steady state, why isnt it a single, repeatable value?

While indeed we use the same climate file for all DALEC simulations, the model parameters values also
play a role in the model behavior. In particular, the number of cycles required for spinup depends on the
turnover time of the slow carbon pools (i.e. longer stem or SOM turnover requires more cycles). For some
samples it take longer for DALEC to achieve a steady state compared to others. In general, we observed
that for most runs, it takes between 30 and 50 cycles to achieve a steady state.

Page 6906, line 14: Do you mean 1991 or should it be 1992 to correspond with the start of the met data?

We meant 1992. Fixed the typo.
Page 6909, line 13: Why is this done sequentially like this?

This paragraph was removed from this version of the manuscript. We describe the sequential procedure
in Section 4.4. The main reason is to facilitate an efficient MCMC sampling. In high-dimensional settings
the posterior landscape can be very flat and require accurate starting covariances and sample points. This
is achieved by starting in a lower-dimensional setting with parameters that are likely to be informed by
the data, thus ensuring a good sample coverage for the intermediate posterior densities.

Page 6913, line 8: paramaters typo
Fixed typo
Page 6916, line 1: What is KDE here?

This context was removed from the current version of the manuscript

Page 6918, line 3: This requires further elaboration/explanation.

We now employ informative priors, including for the Carbon pools for the transient model setup. The
original statement referred to in this comment was removed

Page 6919, line 27: Actually, it seems like these robust statistical methodologies that are sampling based
cant be used with model like CLM thats why youre developing emulators!

This paragraph was removed from the current version of this manuscript.



Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2014/07/29 7.12 Copernicus papers of the IATEX class copernicus.cls.
Date: 30 April 2015

Global sensitivity analysis, probabilistic
calibration, and predictive assessment for
the Data Assimilation Linked Ecosystem
Carbon model

C. Safta', D. M. Ricciuto?, K. Sargsyan', B. Debusschere’, H. N. Najm', M. Williams?,
and P. E. Thornton?

'Sandia National Labs, Livermore, CA 94551, USA

2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge,

TN 37831, USA

3School of GeoSciences and National Centre for Earth Observation, University of Edinburgh, EH9
EJN, UK

Correspondence to: C. Safta (csafta@sandia.gov)

JTode g uoIsSsnosI(]

JodeJ UOISSNoSI(]

JodeJ UOISSNoSI(]

JodeJ UOISSnoSI(]



Abstract

In this paper we propose a -probabilistic framework for an uncertainty quantification study of
a -carbon cycle model —A-and focus on the comparison between steady state and transient
simulation setups. A Global Sensitivity Analysis (GSA) study indicates the parameters and
parameter couplings that are important at different times of the year for Quantities of Interest
obtained with the Data Assimilation Linked Ecosystem Carbon (DALEC) model. We then

employ a —Bayesian—approach-Bayesian approach and a statistical model error term to
calibrate the parameters of DALEC using net ecosystem exchange observations at the

Harvard Forest site. The calibration exerelseﬂ&gurdeeLbfGSAﬂﬁdJewﬁsheHﬂ#eﬂﬂaﬂeﬂ

speeﬁr&medeﬁarame{ers—?hekea{wraﬁeﬁresw%&results are employed in the second part

of the paper to assess the predictive skill of the model via posterior predlctlve checks

1 Introduction

Climate studies strongly depend on the modeling of the Carbon cycle. Carbon cycle mod-
els, in turn, strongly depend on the capability of current land models to simulate the terres-
trial ecosystem and to capture G-Carbon exchanges between land and atmosphere. There
have been a -significant number of studies looking to leverage the increasing amount of ex-
perimental observations and calibrate parameters in several terrestrial ecosystem models.
These studies have faced a -number of challenges related to handling data and measure-
ment errors from multiple sources, formalizing model error, dealing with parameter observ-
ability and data sparsity, to name a -few. In this paper we propose a -probabilistic framework
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to estimate parameters for a -process-based ecosystem model. Representative studies,
both probabilistic and non-probabilistic, are reviewed below.

Over the past two decades several studies employed data assimilation techniques
to calibrate Carbon cycle models. Here we briefly discuss the works that motivated

the current study. [Kaminski-et-at;{2062)Kaminski et al.| (2002,[2012) used an adjoint ap-

proach to infer model parameters for a —Simple—Diaghostic-Biosphere—Modelterrestrial

biosphere model based on observational data streams. The variational data assimi-
lation problem was formulated based on Bayes formuta—theorem with both the likeli-

hood and the prlor presumed Gaussian. ?hr&resuﬁ&ﬂ%aquadraﬂc—ees%frweehewﬂea{

streams%hemede#liyasjgygcjjhalm@ge@employlng optimized parameters shewsshow
clear |mprovements when checked agalnst mdependent observations compared to non-

eempared—tesn@e—s&&parame%eeepﬂﬁﬂzaﬂe%&mllar a roaches were em Io ed b
Rayner et al](2005) , [Tjiputra et al (2007) , [Kuppel et al. (2012) to estimate parameters of

ecosystem models.
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Some of the above studies start from a —Bayesian framework when setting the cost
function for a —least- square flttlng procedure ?hesestudms—arehbasedﬂ%aeaussraﬁ

y Wev he The resultlng probabll-
ity densities for model parameters are approxmated as multivariate Gaussian distributions
densities _near the Maximum a -Posteriori (MAP) estimate of the parameter values. This
assumption is valld only in the vicinity of MAP values unless the model |s linear in all pa-

past decade some of WhICh mentioned below, employed sampllng techniques to explore
non-Gaussian posterior distributions for parameters in ecosystem models.

[Knorr and Kattge| (2005)empleyed—a—Bayesian—framework—to—calibrate-the—parameters
et—a#errest%&esystem%ﬂede#@EM&—HAetrepe%—Hasﬂng&W ﬂm

ecos stem models. These studies employed Metropolis-Hastings Markov Chain Monte
Carlo (MCMC) approach-was-tusee-technigues to sample the posterior distribution-density
of model parameters gweﬁaeausereH%eeemesmtwgvtgd based on eddy covariance

measurements of

wm%%eeﬁwm&mm%eﬁemmw
4
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on synthetic datasets. Tang and Zhuang| (2009) employed both Global Sensitivity Analysis
(GSA) and a -Bayesian framework to improve parameterization of a —Terrestrial Ecosys-

tem Model. This study employed Latin Hypercube Sampling from the prior distributions

density of model parameters, and sampte-impertanceresampting--a sampling-importance
resam I|n method to construct posterlordlstﬁbuﬂeﬂsﬁAeArlsAltlAeg,m for model parametersﬁ'md

[ﬁm (2008) employed an MCMC approach to sample the posterlor densmes of
key parameters for combined global-scale terrestrial and ocean carbon cycle models. The
study found that temporal correlation has a -significant impact on the calibrated parameters
and subsequently on model predictions. A recent review by [Zobitz et al.| (2011) provides a

Several studies compared pfebabﬂﬁtrc—ahdmm%prebabﬂﬁtreseveral parameter estima-

tion methods for terrestrial biogeochemical models. Several-participants—to—Participants
in _the OptlC project (Trudinger et al| (2007)) presented results employing opti-

mization, varlatlonal and pfebabmeﬂc—metheds—%}eﬁmaﬂ—eeﬂetuﬁeﬂ—et—the—ewdy

Hee%esuﬁs—thae#te—ehere%et%ehﬁre%methed%sam Iln methods S|m|larly, the

REFLEX project {Fexetal{2609)-(Fox et al. (2009) ) selected the DALEC vi model
{Williams-et-al}2605)-(Williams et al| (2005) ) to assess the performance of several pa-

rameter estimation algorlthms usmg both synthetlc and observed NEEL&%EAFdat&

empleyeuﬁeeftarﬂty—medetstha%afeeenssteﬁwﬂthebsewatﬂw&Net Ecosystem Exchan
NEE) and Leaf Area Index (LAI) data. More recently, IZiehn et al.| (2012) compared varia-

tional and probabitistic-sampling techniques to estimate parameters for BETHY, a -process-
based model of the terrestrial blosphere ttwas—feund%hattheﬁauseta%&ppfexﬂ%aﬂem
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From this review, we noted a -set of critical outstanding research questions in the field
e#eenst%aﬁrng—&context of constrainin Carbon cycle models Flrst few, |f any, C—eyele

Seeend—tewelt—anyeahleratren{:allbratlon stud|es have |nvest|gated steady state/nen—steady

state-transient assumptions. It is also important for the ecological community to understand

how information content depends on model assumptlon egﬁteadyestate—euﬁeﬁtlﬁhefe

parameter&eﬁeeeshmaﬁﬁge stead state VS tranS|ent Second Carbon C cIe model
require a complete parameter sensitivity analysis, particularly with respect to temporal

dynamics. Such analyses are vital for organising effective parameter calibration followed
by an estimation of the predictive skill of ecosystem models.

In this paper we propose a —Bayesian framework for the estimation of uncertain-
ties in ecosystem land model parameters followed by a forward Uncertainty Quantifica-
tion (UQ) study to examine the predictive capabilities of the model given the calibrated

set of parameters. The Bayesian formulation provides a flexible framework for handlin
heterogeneous information, and allows for sequential updates of posterior distributions as

the prior information is revised.
Figure [1| shows a schematic of this framework, consisting of two intrinsically con-

nected workflows, for Parameter Estimation and Forward UQ. In this schematic, the

same—ecosystem—Carbon—model-Data Assimilation Linked Ecosystem Carbon (DALEC
model (Williams et al|(2005) ) is used for both the “Measurement Model” g{)}-m() and the

“Computational Model” m{)—Fhe-Garben-moedelHisbased-on—a—modifiedversion—of-the
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employ two model setups in our analysis. In the first approach, DALEC is run in a spinup

To facilitate the estimation of a fhigh-dimensional posterior density for model parame-

t

ar&raﬂkedﬂﬁﬂ@flrst rank the importance of s eC|f|c modeI arameters on modeI outputs
via Global Sensitivity Analysis. Specifically we employ variance-based decomposition

techniques to compute Sobol indices (Sobol (1993); Campolongo et al.| (2000)). Poste-
rior densities are estimated first for the most important parameters, while less important

parameters are fixed at their nominal values. This constraint is subsequently relaxed to
arrive at a -joint posterlor distribution over the entlre parameter space Seeond;-since-the

Finally, we undertake a Bayesian posterior predictive check (Lynch and Western| (2004))

to assess the adequacy of the calibrated Carbon model to predict the experimental obser-
vations. The predictive skill of this model is further assessed via Continuous Rank Pre-

dictive Score {Gneiting-andRaftery}2007)-computations—(Gneiting and Raftery| (2007) )

computations. The analysis steps mentioned here are undertaken with the help of the
Uncertainty Quantification Toolkit (UQTK).)'| UQTK is a collection of software libraries and

Thttp://www.sandia.gov/UQToolkit
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tools for the quantification of uncertainty in numerical model predictions. Additional scripts

specific to this study are available upon request from the first author.
This paper is organized as follows. Section [2| provides a -description of the processes

comprising DALEC and of their associated parameters. Section[3|presents the GSA results,
including first-total order effects, in Seet.Section [3.1} and joint effects, in Seet.Section
Fmﬁsu#%&ﬁdﬁeﬁemwdﬁtﬁmmmifor model parameters are ex-
plored in Seet.Section @ and the predictive capabilities are estimated in Seet.Section @ We

end with conclusions in Seet.Section @ Fhe-methods-employed-in-this-paper-are-part-of
UQTkv3.0F

2 Description of the Carbon Cycle Model

The schematic in Fig. [2| shows a 1 day time step consisting of a -sequence of process-
based submodels shown with green boxes. These submodels are connected via fluxes and
interact with five major Carbon (C) pools. The fluxes calculated on any given day impact
G-Carbon pools and processes in subsequent days. The blue arrows in this figure indicate
G-Carbon pools or model variables that are input parameters to specific sub-models, while
green arrows indicate the ©-Carbon pools or model variables affected by a -particular sub
process.

TFhis-The version of DALEC used in this study is modified—rom-based on a modified
version of the DALEC v1 used-in-{Fexetal{2009)—Beth-versions—of-the-modet-consist
model (Williams et al.| (2005); |Fox et al. (2009) ). The model has been modified to facilitate
comparisons with the Gommunity Land Model (Thornton et al.|(2007) ), and with the Local
Terrestrial Ecosystem Carbon Model (Ricciuto et al] (2011) ) f]it consists of three vegetation

G-Carbon pools, for leaf, stem, and root, and two soil S-Carbon pools, for soil organic matter

2

The source code for the modified DALEC version is available upon request from Daniel Ricciuto
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and litter. ihe#phetesye%hesi&lﬂtgtgg%s driven by the Aggregate Canopy Model

I\ AAP-V-D-V-S2-PN-L VN N -S4

the Soil-Plant- Atmosphere (SPA) model {W+thamee%&k %Hhe#ettewmgﬁedmeaﬂeﬁs
were-made:-An-update-was-made-(Williams et al.|(1996) ). ACM was updated to employ
a -temperature-based deciduous phenology used in |Ricciuto et al.| (2011), driven by the
six parameters shown in Fig. |2l Spring phenology is driven by a -linear relationship to
growing degree days, while senescence is driven by mean air temperature. To reduce model
complexity, the plant labile pool was removed and stem carbon is used to support springtime
leaf flush given the spring phenology and the maximum leaf area index parameter. Given the
importance of maintenance respiration in other sensitivity analyses (Sargsyan et al.|(2014)),
this process was added along with parameters controlling the base rate and temperature
sensitivity.

In this version of DALEC, ACM shares one parameter, the specific leaf area (/ma), with
the deciduous phenology and employs two additional parameters, leaf C:N ratio (leafcn)
and Nitrogen use efficiency (nue). The autotrophic respiration model computes the growth
and maintenance respiration components and is controlled by three parameters: the growth
respiration fraction (rg_frac), and the base rate at 25 °C (br_mr) and temperature sensitivity
for maintenance respiration (q70_mr), respectively. The allocation sub-model partitions G
Carbon to several vegetation G-Carbon pools. Leaf allocation is first determined by the phe-
nology submodel, and the remaining available €-Carbon is allocated to the root and stem
pools depending on the fractional stem allocation parameter (astem). The “Litterfall” sub-
model redistributes the ©-Carbon content from vegetation pools to soil pools and is based
on the turnover times for stem (tstem), root (troot), and leaves (tleaf). The sequence of
sub-models concludes with the “Decomposition” which models the heterotrophic respiration
component and the decomposition of litter into soil organic matter (SOM). This sub-model
is driven by temperature sensitivity for heterotrophic respiration (q70_hr), the base turnover
times for litter and SOM at 25 °C (br_lit,br_som), respectively, and by the decomposition
rate (dr) from litter to SOM.
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Model parameters and their nominal values are provided in Table [} These parameters
are grouped according to the sub-model that employs them. Except for leaf mass per unit
area (/ma) which impacts both the deciduous leaf phenology and ACM, all other parame-
ters are employed in single submodels. The numerical ranges and nominal values for these

parameters are aJse»prowded in the table#hese«raﬂges,—eeﬁespeﬂdmg%e—the—HaFvard
d )

GSAﬁud%pfeseﬁ%edﬂfr%h&ﬁexPseeﬂen and are deS| ned to reflect average values and
broad uncertainties associated with the temperate deciduous forest plant functional t

that includes Harvard Forest (Fox et al. (2009); White et al.| (2000); Ricciuto et al.| (201 1J)NL

In addition to the model parameters, several processes are driven by the observed air tem-
perature, solar radiation, vapor pressure deficit, and CO, concentration at the flux tower
site.

As mentioned in the Introduction, for this study we consider two approaches for running
DALEG. The first approach employs a steady state assumption, with DALEC run in a spinup
less than a threshold value of 10~° for select model ouputs. For the range of parameters
the 1992-2006 meteorology (450-750 total years) depending on the parameter values,
running the model for 15 years with the meteorology inputs of 1992-2006. At the start of the
of interest output by DALEC in the first cycle after the system reaches a steady state are
the North American Carbon Program (NACP) interim_synthesis _simulations, but fails_to
capture, for example, the large negative NEE observed at Harvard Forest. In the second

10
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approach, the initial values of the Carbon pools in January 1992 are added to the set of
model parameters to be estimated. This approach employs transient assumptions and,
for any given set of parameter values, DALEC is run one cycle only, for 1992-2006. The
resulting model output values are then used to study the model behavior under transient
conditions. The model evaluations are cheaper compared to the first approach, however
the dimensionality of the parameter space of DALEC is increased by 5, with 3 vegetation
Carbon pools and 2 soil Carbon pools, from 18 to 23 parameters. Henceforth, we will refer
to these two approaches as Dsy and Drg.

3 Global Sensitivity Analysis

GSA formally connects—uncertainties—studies how the change in model output te—the

underlying-uneertaintiespresent-can be apportioned to changes in the model inputs. We

Given our focus on statistical model calibration and uncertainty quantification, we employ
variance-decomposition methods where the variance of the model output is decomposed

into fractions associated with input factors and their interactions. The primary quantity of
interest (Qol) for GSA is NEE, for which we have experimental observations available. We
explore GSA for several other Qoets-Qols to understand the role each parameter or set of
parameters piay-on-other DALEG-outputs-plays in determining other quantities of interest
in addition to NEE. Specifically we consider the Gross Primary Production (GPP), the Total
Vegetation Carbon (TVC), and the Total Soil Carbon (TSC).

The effects of input parameters 6 = {61, ...,0x, } and their interactions on a model output
y =m(0), are quantified through Sobol indices (Sobol (1993); Campolongo et al.| (2000)).
The first order Sobol indices are given by

Vary, [Ee._,(m(0)]6;)]

Si = Varg[m(0)]

=1,...,Ny (1)

where 0..; = {61,...,0i-1,0i11,...,0n,}, Eg_,[-] is the expectation with respect to §..;, and

Vary,[-] is the variance with respect to 6;. Note that, in this context, sub-script i can denote
11
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one parameter or a group of parameters. Such a group, corresponding to the Phenolo

model, is presented below.
Similarly, the joint sensitivity indices S;; are

S = Vareivej [E9~(i,j)(m(0)|0i7‘9j)] o
v Varg[m(0)] :

While interactions between three or more parameters can be defined in a -similar fashion,
for most physical models these higher-order interactions are typicaty-negligible.

The sensitivity index S; can be interpreted as the fraction of the variance in the Qol
that can be attributed to the ith—th input parameter only, while .S;; is the variance fraction
that is due to the joint contribution of the ith—th and jth—-th input parameters. The Sebet
indicestotal sensitivity index combines the first-order sensitvity indices with joint sensitivity
and higher-order interactions to yield

Eg_[Vary (m(8)|0;
SzT:Sz‘FZSz]'i‘ Z Sz]k+: BN’[ are’(m( )‘ )] (3)
3 ik

~ 8, ij=1,...,Ny. 2)

; Varg[m(0)]
i#j i j#hA

This index measures the fractional contribution to the total variance due to parameter 6;
and all interactions with all other model parameters.
Starting from the derivation of these indices, based on the decomposition of variance,

the sum of all first-order order indices and joint and higher-order interaction indices sums
to one

1225‘1-}-25@4-... (4)
7 N

K3
i#]

Given that all Sobol indices are greater or equal to zero, it follows that > . S; <1. The

reverse is true for the total effect indices, S . S > 1, due to multiple counting of joint and

higher order parameter interactions.
12
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the most impact on a particular Qol, and also decide which parameters are less important

Sobol indices for brevity.
The Sobol indices can be written in integral forms, but these integrals witt

netbe-are not analytically tractable when the input parameter space is high-dimensional. In
order to evaluate these indices numerically we employ a -Monte-Carlo approach enhanced
by techniques described by and modified by [Kucherenko et al| (2012) to
account for parameter dependencies. This method employs sampling of the input parame-
ters from their prior distributions and an efficient re-use of model evaluations to reduce the
computational cost of estimation of the above conditional variances.

We employ m m

W@ﬁﬁb&m&@mwm@for aII model parametersw&h
beunds-previded-in-Tablell The prior distributions for these-parameters-are-all parameters
are _assumed independent, except for the spring—phenology parameters—gdd-—min and
gde—maxSpring_phenology parameters gdd_min and gdd_max, which are bound by the
inequality constraint gdd_min < gdd_maz. Consequently, for these two parameters we
will compute a compound sensitivity index, namely S;” for i = (gdd_min, gdd_maz) which
parameters.

13
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For each of the Qols mentioned above, we compute monthly averages corresponding to
the entire simulation, i-e—i.e. the January average is computed using the January daily Qol

values for all available years. Global-averagesforal-Qols-are-alseo-analyzedforcomparison

purposes—The simulations are driven by daily minimum and maximum temperatures, global
radiation, and CO, concentration for years 1992—20061992 — 2006, at the Harvard Forest

site (Urbanski et al.| (2007)).
3.1 First-order-effectsTotal Effect Indices

Flgures I—;@ show matrices of first-order-Sobolindicestotal effect |nd|ces ST, for the four
Qols mentloned above. 0

g a O 0

9%—wh++eﬂblaﬂ+eeeﬂs+nd+ea%eﬂ+alues—smaHeHhe9HrEach row in these matrices shows
the Sebel-indices correspondlng toa JpaFHGUJ&F artlcular monthl average Qol 1Fhe~sum

ol thece\ AN—O ) aVa¥al a¥a

Different parameters have larger impacts at certain times of the year. For NEE
corresponding to Dst, in Fig.[3&, phenology parameters tsmin and leaffall, which control the
senescence of leaves in the Fall, have a -significant impact on NEE during this period only.
Specifically, tsmin, which is the critical temperature at which leaffall begins, mainly affects

NEE in October. For D1, in Fig. Bb, the base rate of maintenance respiration br_mr, which

i.e. astem, tstem, troot, and tleaf are not shown in this figure, since they have a negligible
contribution to NEE variance.

14
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Similar behavior is seen for parameters that control GPP-—Parametergdd—min, in Fig. [

Parameter gdd min, which is the-part of the pair gdd=(gdd_min,gdd_max) in this figure, is
the number of growing degree days at which leaf budbreak occurs;—. This parameter has
the most impact in March and April. The strong dependence of these fluxes on phenology
parameters highlights the importance of an accurate phenology model, as has been shown
in other modeling studies, e—g-—(Richardson-etak;26+2)—e.g. (Richardson et al.|(2012) ).
On the other hand, the Nitrogen use efficiency nfAtenue, which controls the amount
of GPP per unit leaf Nitrogen, is important throughout most of the growing season
(dunre—Septemberdune-September). This is broadly consistent with other sensitivity stud-
ies that have shown strong sensitivity to leaf nitrogen, e-g—Sargsyan-etal{201+4)—e.g.
Sargsyan et al|(2014) . Unlike for NEE, the GPP fluxes exhibit a similar dependence on
the parameters controlling the phenology and aggregate canopy modes for both Dsr and

D1gr..
TVC and TSC are carbon pools and tend to vary on a -much larger timescale than GPP

or NEE, which are fluxes. Therefore, the Sobol indices do not exhibit significant seasonal

variability. TVC is a sum of three Carbon pools, vc1 (for leaf C), ve2 (for stem C), and ve3 (for
root C). For both Dst and Drg. in Fig. [B] this quantity of interest is most strongly controlled
by the base rate of mamtenance resplratlon b%m#whrebrrepfeseﬂﬁeafbeﬂfes%plaﬂfs
yv-br_mr. For
MWM%WMWWM%W
10% on the total variance of TVC. .

TSC corresponding to Dst, in Fig. is mostly controlled by both br_mr and the base
rate of decomposition for soil organic matter br—sembr_som, which effectively determines
the pool residence time. Given the same inputs, a -pool with a -longer residence time will
contain more Carbon. For Drg, in Fig. b, the initial value of soil organic matter pool (sc2)
of br_mr and br_som on the total variance of TSC is about 40%, down from about 80% for

the quasi-steady state setup for Ds.

15

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



The total sensitivity index results indicate that, for some quatities of interest like GPP and
TVC, the simulation setup, i.e. Dst vs D1g, does not change significantly the effect of model
parameters on the model outputs. For these two model outputs the dominant parameters
the Carbon pools for Drr. Unlike for GPP and TVC, the simulation setup_changes the
a change in the relative importance of phenology and ACM model parameters (for NEE) or
by bringing a significant contribution from the Carbon pools (for TSC). In the next section

3.2 Joint effectsEffects

Figures[7HgH{9] show relevant joint sensitivity indices corresponding to NEE-and-GPP-which

exmbHeaseﬂaHfaﬁabHﬁyquhe—ﬁrs{—efder—SebeHﬂmees the four quantities of interest
examined in this study. In these figures, each node shows relevant parameters while the

label on each link corresponds to the joint Sobol index S, in % tinits—ta-this-figure-the-joint
% units. She joint sensitivity Sobol index values are rounded to the nearest mteger for cIar-

Both NEE and GPP exhibit seasonal variability for the total effect Sobol indices. For these
parameters the joint parameter interactions are alse-important—Forexample, - during-Spring;
the-interaction-between-gdd—min and-ether-AGM-only relevant during Fall, accounting for
about 10-15% of the total variance in the corresponding quantity of interest, and play an

eriod. Figures [7] and showing these interactions during October, are representative
of results throughout Fall. For both NEE and GPP the interaction tsmin and leaffall
Wm@%m
between Dsy and AR v .
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Similar to the total effect index results for TVC and TSV, the joint sensitivity indices
display little seasonal variability. The results shown in Fig. [9] for these Qols correspond to

September and are representative of all monthly averages (results not shown). Moreover,
only Dst results are shown in this figure since the corresponding Dtg results are almost
identical to Dst. For TVC the data in Fig. indicates that the interaction between AR
through br mr) and ACM (nue) and Literfall (tstem) sub-models, respectively, contribute

interest, the interaction AR (br_mr) and Decomposition (br_som) sub-models acounts for
The GSA results can be used to understand the effect of model parameters on particular
impact. In_this study, we will use the GSA results to facilitate the calibration of model

4 Parameter calibrationCalibration

We employ a -Bayesian framework to compute posterior probabilities for the-model pa-
rameters discussed in the previous sections. This framework is well-suited for dealing with
uncertainties from different sources, mcludlng parametrlc and model uncertalnty anebas
well as experimental errors -

17
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. Bayes rule is

Lp(0)p(6)

p(9|D) = W

Lp(0)p(9)/p(D), ©)

Here-where p(6) and p(6|D) are the prior and posterior probability densities, respectively,
for model parameters 6. These densities represent our knowledge of 8 before and after
learning from the data D. The likelihood function Lp(0) = p(D|0) is the likelihood of the
data D for a -particular instance of model parameters 6. The denominator in Eq. , p(D),
is the “evidence”, computed by integrating the numerator over the support of 8p(8). It plays
a -role of a -normalizing constant in the parameter estimation context, and is not computed
here.

4.1 Calibration Data

The data available for the calibration of model parameters consists of the Harvard
Ferest's-daity Net-Eeosystem-Exehange-daity Forest’s daily NEE values processed for the
North American Carbon Program Site Synthesis study {Barretal}{2013)—Flux-data-were
measured-by-the—siteP¥s{Urbanski-et-al{2067)-(Barr et al| (2013) ) based on flux data
measured at the site (Urbanski et al, (2007) ). Hill et al.|(2012) estimated that daily NEE es-

tlmates foIIowa -normal distribution. Geﬁﬁs{eﬂ{—w%h-ww—ﬁyﬁemaﬁe—blas%e
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servations cover a -period of 15 years starting with year 1992. A -snapshot of these observa-
tions, including the magnitude of the observation error, is provided in Fig. |10} The standard
deviations for the daily NEE values were estimated using a -bootstrapping technique using

half- hourIy NEE data MW

%mean standard dewatlon is about 0 7 W|th a range of varlatlon between 0. 2 and 2 5
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4.2 Likelihood Construction

In general, the

tl El
armation-\ H AN\ ic defined
w, i w, "A[® V

. 0m
2(6):; = 90, 187j'

discrepancy between model predictions and the data can be formalized as
2 =m(t:0) - em ¥ ca (®)

Here, m(6)- is the time in day units and z is the daily NEE observation described above.
Further, ¢,, is the discrepancy between the model prediction m(¢; @) and the physical truth,

while e; denotes the experimental error. In general it is not straightforward to disambiguate
between these two sources of error. For the present study, we presume the experimental
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error to be known (Papale et al.| (2006); Barr et al. (2009) ). Given that measurements are
taken at different times, we further assume that daily measurement noise/errors, ¢4, are
independent, hence

€0 N(0.%g), To=diaglody oiz:-- ], 7)
—_———
Ng

where N, is the number of days. Next we will focus our attention on modeling ¢,,. We

ropose a multivariate Gaussian distribution, employing a constant bias

and a N; x N, square exponential covariance matrix > ,,, with
iy = T &P (=(ti = 4;)"/1c) ®)

%anm@wmwwmww
= )2/12), where 1. is a correlation length. This analytical expression
for 3., is adopted based on the intuition that model errors for succesive days are highly

multivariate normal error term

e=€m+egx N(p,X), %= o2 + O'ii, Ytk = o2 exp (—k2/l§) 9)

and the likelihood Lp(0) is written as

M@chtor of daily—NEE—values—output—by—DALEG;
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W\M@@M
All these vectors are NNy long. In addition to the model parameters 6, we now have three
standard deviation a,,, and correlation length Z.. Unlike for DALEC parameters, for which

In practice, estimating the likelihood Lp(@) can be costly, and prone to numerical

Zmﬂ:k =0fork >k (11)

The effect of covariance matrix bandwidth on the model error terms {1, 0. 1.} and DALEC
arameters is studied in Section [4.4.1]

4.3 Parameter priors

Following [LeBauer et al,(2012) we proceed to_construct informed priors for the DALEC
model parameters_as well as for the initial Carbon_pool amounts employed in_Dtg.
Considering the nominal values and bounds presented in Table

deviations set to one-eight of the range of variation for each parameter.
22
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second category we place parameters for WhICh the range of variation spans more tha
two orders of magnitude. For these parameters we set truncated log-normal density priors.
Similarly to the first set of parametersshewn%%%eeﬂ%eﬂgw&eapﬂmﬁeﬁhﬁw
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truncate the priors based on the GSMes«%Hhe—prevmu&seeﬂeﬂ—feFNE%Speeﬁre&w
gdd-minranges presented in Table[dl
For all parameters, except the pair (gdd_min,q+0—mr-br—mr-and-rg—frac exhibitrelevant
first-ordereffeets;—shown-inFig—{3-while—geld-max gdd_max) we consider independent
prior distributions. For the growing degree days parameters, given the inequality constraint
gdd_min < gdd_mazx, we employ a truncated joint normal density set up as a product of
one-dimensional normal densities for both gdd_min and ‘eaffafl are relevantmestly through
: . o CFio D
Geﬂverseb% M@M%ﬁm

hoaca O o b P d a-the
\/

earbﬁaheﬁﬂ‘esuH&ﬁfesefﬁetheﬁext—seetwtruncated normal and log-normal densmes
for the other model parameters are appropriately scaled to account for the finite parameter
ranges.
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gmdt@ﬁaddﬂﬁparametewqe@feupﬁﬂ—ﬁme 992 are also estlmated in addltlon to
the DALEC parameters and the hyperparameters defining the model error. For the carbon
ool initial values we also employ truncated normal and log-normal densities. These prior

distributions are informed by site observations (Table [2).

set to zero with a small standard deviation because of the starting date of the simulation,
which is in mid-winter well after leaf fall. Initial litter and soil organic mean (sc1, sc2

values and standard deviations are taken from|Gaudinski et al.| (2000) , while stem carbon

is estimated from|Urbanski et al.| (2007) . Specifically, we employ truncated normal densities
for all Carbon pools except litter carbon (sc1). For sc1, the mean and the range differ by two

orders of magnitude, hence we employ a truncated log-normal density for this pool.
4.4 Posterior distributions via MCMC

A —Markov Chain Monte Carlo (MCMC) algorithm is used to sample from
the posterior probability density p(@|D) in_Eg. (B). MCMC is a —class of
techniques that allows sampling from a —probability density by construct-
ing a —Markov Chain that has the target density as its stationary distribu-

tion {Gamerman| {1997} |Gitks-etal{1996)-(Gamermanl (1997);[Gilks et al (1996) ).

In particular, we employ an adaptive Metropolis algo-
rithm {Heaarie-etak;2661)-(Haario et al|(2001) ), which uses the covariance of the
previously visited chain states to find better proposal distributions, allowing it to explore
the posterior distribution in an efficient manner. Haario et al.| (2001) shows-show that,
for Gaussian distributions, the adaptive sampling algorithm is similar in performance to
the Metropolis algorithm. For non-Gaussian posterior densities, the adaptive procedure is
superior to non-adaptive procedures, however the adaptive procedure is challenged by the
dimensionality of the parameter space.

To facilitate the convergence of the adaptive MCMC algorithm we proceed gradually,

starting with the-first-a group of parameters mentioned-in-the-previous-seetionidentified as
25
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important for NEE through GSA in Section[3l The schematic in Fig. [11] .shows one iteration
in the sequence of MCMC simulations. Fer-the-firstiteration,-We also add the model error

hyperparameters, in addition to select DALEC parameters, to start the first iteration

0 = {gdd_min,gdd_mazx,g10—mrtsmin, br-mrleaf fall,rg—fracnue, teaffatlgl0_mr,br mr}

with initial values #*-6'%) set to the nominal conditions provided in Table [1| for DALEC

ini ~4nri

parameters, and p =0, g, =l =1 for model error hyperparameters, respectively. The
rest of parameters are held constant at their nominal values. The initial covariance ma-
trix, #g& allows the MCMC algorithm to explore a -number of possible states before
adapting the sample covariance based on the sample history. For this study we found that
a -diagonal covariance matrix with entries set to a -fraction of about 1/16 of the variances
for the corresponding prior distributions—provided-a—density provided a good start for the
MCMC algorithm.

The MCMC states obtained during the first iteration are used to compute the covariance

matrix corresponding to the first set of parameters €1-C(1) which is then used to con-
struct the initial covariance matrix for the second iteration, @0(2) This process is shown

ni~=an2 *

schematically in Fig. [T1} The initial parameter values for the 2rd-2-nd iteration consist of
the Maximum A -Posteriori (MAP) for #(1) augmented with the nominal values for

0N = {isminlma, e10-hrrg_frac,brliglo_hr,imebr_Lit}

The iterative process is completed after the third iteration, with #(3\(2) containing the rest

of the DALEC parameters. This iterative algorithm breaks the original high-dimensional

We employ the Raftery—Lewis—diagnostic—(Raftery-and-tewis;1992)-Raftery-Lewis
diagnostic (Raftery and Lewis|(1992) ) to determine when the MCMC samples converge
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to stationary posterior distributions. For B+8DsT, approximately 4 x 10° samples are nec-
essary to predict the 5506,—and-95%5%, 50%, and 95% quantiles of all parameters
to within +1-%aceuracy—with-95% %1% accuracy with 95% probability. For B23Dg,
the Raftery-Lewis diagnostic test shows that 6 x 10° are necessary for converged pos-
terior distributionsdensities. Given 5 x 10°® MCMC samples, the Effective Sample Size
{Kass-etal}11998){(Kass et al|(1998) ) (ESS) for B18-varies-between-16000-and-15000
Dst varies between 10,000 and 15,000 samples depending on each parameter, while
for B23D1Rr, ESS is between 8666-and-126068,000 and 12,000. This shows that there
is significant autocorrelation between chain samples, which is somewhat typical for MCMC
samplers in high-dimensional spaces. To ensure converged posterior distribttionsdensities,
and since the computational model is cheap, results presented below are based on 16~
7.5 x 10° MCMC samples for both D+8-and-D23-Dst and Dtg. When processing the

MCMC samples, we skip the first 10° samples, and then “thin” the rest of the samples
by picking every 10th sample.

4.4.1 Effect of covariance bandwidth on posterior distributions

Figure [12(a)-(c) shows the estimated MAP values for the hyperparameters u, o,,, and [,
respectively corresponding to the model error. In addition to Dst and D1g. We also show
results for "Dyiz”. This run is similar to Dyg, except uniform priors with the same range

band-diagonal trim of the covariance martrlx FraII runs considered here 1 is consistentl
negative signaling that, on average, DALEC overpredicts the NEE data. The other two
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deviation g, mean values for both Dst and Dtg are slightly below 0.4, compared to a
mean value of 0.7 for the NEE measurement error (in Section[d.1).

The 2D joint marginal density for g, and [., shown in Fig. [12f
MWW
hyperparameters. Results for larger covariance bandwidths (not_shown) confirm_that
parameters lead to_similar mean values for l.. A value of I. = 4. indicating that the
and precipitation events (Mahecha et al|(2010) ). Further tests, with alternate model error

4.4.2 Comparison between Dst and D1r

We first proceed to analyse the model calibration results for 5+8Dst, when DALEC is run to
a -quasi-steady state for each parameter sample. In order to measure the degree of depen-

dence in the joint-posterior-distribution-posterior distributions for the 18 model parameters
we examine the “distance correlation” values {Székely-et-al{2607)-(Székely et al.| (2007) )

estimated based on the MCMC samples. The distance correlation is a -measure of depen-
dence between two random variables, being zero when they are independent. Given ran-
dom variables X and Y with finite first moments, the distance correlation R(X,Y") € [0,1]
is defined as

9?(X,Y)

JR(X)P2(Y)

R(X,)Y)= (12)
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where 92(X,Y’) is the “distance covariance” between X and Y and 9¥?(X) is the “distance
variance”, ¥?(X) = 9¥?(X, X). The distance covariance ¥2(X,Y) is defined as

PPXY) =E(||X - X"|IlY = Y”1) + E(|X = X" [NExY - Y"|)

—2E(||X = X"|[IIY = Y"[]) (13)

where (X5 ¥ AXYO(X, Y, (X", Y") are independent and identically distributed
random variables, drawn-from-with the same joint density as (X,Y"). Székely et al.| (2007)

provide numerical algorithms to compute R(X,Y’) given samples of random variables X
and Y. The results are shown in Table [3] In this table, parameters are grouped in blocks
according to the sub-model they participate in. The entries in the diagonal blocks show
dependencies between parameters in the same sub-model while the entries in off-diagonal
blocks indicate dependencies between parameters from different sub-models.

The most important statistical dependencies are between nue and-fma nue and Ima that
control the gross photosynthesis (ACM) and between rg—frac aned-rte rg_frac and nue that
control net photosynthesis. Relevant dependencies are also observed between g10—mra

q10_mr, a parameter of the autotrophic respiration process, and g+9—hr which-participaies

inthe-heterotrophicrespiration-processand the gross photosynthesis parameters. In order
to further understand the dependencies between model parameters we compute +-D-and

%&Moint marginal densities via Kernel Density Estimates—Estimation (KDE)
that exhlblt d%%&eweﬁm%ﬁeweﬁeﬂﬁﬁ%mww
factor that is greater than 0.4. These results are shown in Fig.[T3] The statistical dependen-
cies identified above through R are also evident in 2-B-2D joint marginal densities for the
same parameters.

Figure@shows +-B-1D marginal densities for the rest of the parameters. These param-
eters show little dependence on other parameters and so the +-B-1D marginal distribution
is sufficient to characterize their density. Some parametersare—well-constrained-towards

%h&eeﬁe#e#ﬂmwfaﬂgﬁ%mstaﬂeeﬁbﬁwaﬁd%%ﬂmsemﬂemﬁeﬁﬁdﬁe
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a&ther%pﬂeﬁderMes—FeF#eaf e. astem tleaf br_mr. show I|ttIe u date from r|ort

osterior densities. For br _som, its turnover rate is slow enough such that the NEE data
contain little useful information. For tleaf, the lack of information is due to the fact that the

effects of leaf turnover on net fluxes are much more strongly controlled by their timing, as de-
termlned by the phenology parameters than by the background turnover rate Ferbﬁsem,

posterior densrtles for other parameters, e-g—faimaxe MgM/a/ArAngg are trlted toward one end of
their prior range. This might indicate that the model error term is not sufficient to describe
the discrepancy between the model and the data, and the calibration process attempts to
compensate for structural discrepancies between observations and model predictions by
pushing some parameters toward either the minimum or the maximum value of their prior

tsmin s—meeewrseﬂjmtermThe osterlor density for tsm/n exhlbrts an mterestrn iecewise
quasi-linear profile. This is due to the fact that minimum daily temperatures, in degrees Cel-

sius, are provided with one decimal digit accuracy and this parameter is a -threshold for leaf
drop, i.e. its participation in the computational model is through an “if” statement. Hence all
samples between successive one-digit accurate thresholds are equally prebable-likely dur-

ing the MCMC sampling process:-, and the product between piecewise uniform likelihood

Nextwe-, we analyze the calibration results for D1x. For this model setup, the initial values
for the Carbon pools at the beginning of year 1992 are part of the set of model parameters
and each DALEC simulation consists of only one cycle, for the time span 1992-2006. The
distance correlation matrix for Dyg parameters that are common to Dsy has entries that are
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by-and-large similar to the ones shown in Table |3|indicating that the dependence between

Finally, Figure [15] shows marginal densities for two Carbon pools that were updated in
the calibration exercise Dyr. vc3 corrresponds to the stem Carbon while sc7 and sc2
correspond to the litter Carbon and soil organic matter, respectively. Both ve3 and sc2
exhibit some dependence on the temperature sensitivities for maintenance respiration
consistent with the flow of information depicted in Fig. [l

Next we examine the departure of each parameter’s posterior density from its triferm
prior—as—a—prior_density as a result of the Bayesian update via Eq. . We quantify
these changes via the Kuttback—teibter Kullback-Leibler (KL) divergence between prior and
marginal posterior densities,

Diici (plla) = 7p(x)ln (gg)d@ (14)

—0o0

where p is the posterior densty-density and ¢ is the prior density. KL divergence results for
eertainparamaters-are presented in Fig.[T6] In this figure, parameters are sorted in ascend-

|ng order based on H%eﬁﬂBmﬂfalﬂeHFse—sheWHﬂmheﬂgﬂfeﬁﬁhﬁwefseﬂHheﬁealed

par&me%er&#eaf the D values for Dst. Parameters that exhlblt Dir < 0 5 for both D
and br-semDtRr are excluded from this figure for clarity. Moreover, the C pools shown in
this figure are only present for DT , hence there is no Dst result for these parameters.
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it¥The right half
of thls figure contains parameters that were identified as important for NEE in Section

These parameters are well constrained by the NEE data, reflecting the useful information
in the flux dataen-, for example on the timing of phenological events (gdda—mingdd _min)
and the dynamlcs of autotrophlc resplratlon {b#m#q%@%ﬁ—ihe—large@mépﬁq)ﬂfalues

wﬁ%eﬂ%hr e&w&w@@@%mmmwm
the exception of br

msin—gedom. For mDsr. the NEE data contain little information on the turnover rate of
MMW%WM
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thufe%shews—HBeﬁd—}I} impacts the Ba esian u date of thls arameters due to
the de endenmes observed in the joint marglnal densﬂmsfe%parametewﬂ%dﬁtaﬁee

5 Predictive assessmentAssessment

In this section we explore the predictive skill given the posterior distributions for the model
parameters for B+8-ane-B23Dst and Dtg. First, we employ the Bayesian posterior predic-
tive distribution {Eynehand-Western2664)-(Lynch and Western| (2004) ) to assess the ad-
equacy of the calibrated DALEC model, and the Gaussian data noise model, for prediction
of the NEE observations. Specifically, the posterior distribution for the predicted predicted
NEE data, p(y|D), is computed by marginalization of the likelihood over the posterior distri-

33

ITodeJ uOISSNoSI(]

ITode UOISSNOSI(]

ITodeJ UOISSNOSI(]

Tode UOISSNOSI(]



bution of model parameters and hyperparameters, here 0:

p <yy\D> = / p(yy|0)p(0|D)ddo. (15)
(%

For the present work,

(&—J&WM dimensional vector with NEE predic-
tlons over a range of Ny days and-2>-is-a-diagonal-covariance-matrix-with—variances—of

is the model error term and ¢, is the data noise term.

The 1D-marginal posterior predictive density for daily NEE values for a -two-year snap-
shot around 1995 are shown in Fig. E These distributions—densities were computed by

sampllng +the osterlor dlstrlbutlon of model arameters 0 i.e. b usrng the MCMC sam-

alread avallable We employ about 4000 MCMC sam Ies for each sample we W
samples from the multivariate normal distribution ¢,,, + ¢4, and then add these samples to
the model evaluations. These results are saved into daily bins, from which we extract several

uantiles corresponding to the 1D-marginal posterior predictive density. It is worth to note
that the variance of the posterior predictive distributions can also be estimated analytically

as the sum of the measurement error variance and the pushed-forward variance, i.e. the
variance of the output quantity of interest with respect to posterior variability.

The top frame in Fig. [17 ﬂ corresponds to B18-Dsy and the bottom frame to B23D7R.
Generally, the predlcted data spread covers weII the observed NEE values exeep{—fera—ﬂme

5—95for the entlre tlme range. Ocasmnal S |kes can be seen outS|de the 5 — 95% redlct|v
band, shown in blue. ihlsdﬁerepaneyeeeewsaneﬁrweeyeers%%SA%e«Ferﬁheeyeare
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In order to quantitatively compare the predictive capability of the calibrated models
for B+8-and-B23Dst and Dtr, we adopt a —probabilistic score based on the predictive
cumulative distribution function (CDF). The Continuous Rank Predictive Score (CRPS)
{Greiting-and-Raftery}{2007)-(Gneiting and Raftery| (2007) ) measures the difference be-
tween the CDF of the provided data and that of the forecast/predicted data, i-e—i.e. data
generated based on the posterior predictive distribution. Thus,

CRPSCRPS(F,D) = Z / (Fi(yr|D) = Mo, (yi))? dydys (16)

Here, Fi(yx|D) is the +-B-1D marginal posterior predictive CDF for day/component & com-
puted using +-B-1D marginal posterior predictive distributions

Yk

Fi(yr|D) = /pk (yi’k!D) dy" (17)
where
Pk (yk|D) = /p <y1,y2 . ,yzvdy\73> dyr---dyr—1dysy1- - dyn, Yook (18)

is the +-B-1D_marginal posterior predictive distribtition—density corresponding to day k,
based on D) computed via Eq. . Herre, d =dyy---dyr_1d ~-dyn,. The

CDF of the provided data is approximated as a -Heaviside function centered at the obser-

vation value Dk W{—%(Hersﬁacﬁ (2000) ) Hpk yk Ly, >D,-
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osterior predictive check data presented above to compute CRPS values for both Dst and
Dtgr. For Dst we obtain a value 0.67 while for Dtr the CRPS value is 0.60. The lower

values for B23-compared-to-D18-indicateabetterpredictive—skil-D1r compared to Dst

indicate, on average, tighter marginal predictive CDF’s that are better centered around the
NEE data for the setup when DALEC is run for one cycle and the &-Carbon pools are

treated as parameters 3Fhe+esutts—reveaktha%ﬂ%e4argesﬁmerevemeﬂtrabeut—6%reeeurs

eﬂtyThls indicates a better redlctlve skrII for D gc&nApva“reMASl
In order to measure the effect of calibration on the predictive capability of DALEC we

employ the Continuous Rank Predictive Skill Score (CRPSS) {Witks26++)-(Wilks (2011) )

CRPSpsp — CRPSprp CRPSpsp — CRP Sy,
CRPSy — CRPS,, CRPS,.; — CRPS,,,

CRPSSCRPSS = (19)

where GRPSps5 O RP S, is the CRPS computed above based on the posterior predictive
distribution, GRPSpy-C RP Sy, is based on the prior predictive distribution, and ERPSg+
CRPS,,. is the CRPS based on “perfect” predictions. For the current study, the “perfect”
predictions have-a-muttivariate-nermat-distribution-correspond to the hypothetical case with

no model error and posterior densities for model parameters centered on the observations
and-diagenat-covariancemaitrix>defined-aboveNEE observations. The prior predictive

distribution is defined analogous to the posterior predictive distribution in Eq. (1'1;5[) with the
posterior density p(6|D) being replaced by p(#), the prior density for model parameters 6.
A -CRPSS value of 0 implies no improvement of the predictive skill for the calibrated
model parameters compared to the predictions based on the prior information, while a
-value of 1 can be achieved when the posterior distribution reduces to a —point and the
model prediction is the same as the corresponding experimental data. Fer-the—eurrent
study, GRPS5—=2-38-The CRPS values corresponding to the prior (CRPS, osterior

CRPS and the ideal case CRPS,,.; are resented in Table [ for both D T and

4 " N O
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definredD Based on the values in thls table the CRPSS for D s,howsmwcvtl\s;%grlge[
improvent in predictive capabilities for this model setup compared to Ds.

6 Conclusions

We presented uncertainty quantification results for a -process-based ecosystem Carbon
model. We assembled several probabilistic methodologies in a —framework that tackles
the connected problems of parameter estimation and forward propagation of input un-
certainties. Depending on the simulation setup, the model employs either steady state or
non-steady-fransient assumptions, respectively, and it is driven by meteorological data cor-
responding to years +392—2666-1992-2006 at the Harvard Forest site. Daily Net Ecosystem
Exchange (NEE) observations were available to calibrate the model parameters and test the
performance of the model.

We first discussed global sensitivity analysis (GSA) results for the complete set of input
parameters. Based on their contribution to the variance, we find that different parameters
have larger impacts for NEE at certain times of the year when the processes they control
become important. One example is the tsmin tsmin parameter, which is the critical tem-
perature at which leaf fall begins, and mainly affects NEE in October. We alse-found that
parameter interactions can also be relevant to the variability of NEE or Gross Primary Pro-
duction (GPP). Unlike NEE and GPP which are fluxes, the Carbon pools, either vegetation
orsot(TVG) or soil (TSC), tend to vary more slowly and their month-to-month variability
depends on a -small subset of parameters.

the—GSﬁrfesultsWe also found that the simulation setu affects the reIatlve im ortance of
37
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arameters for NEE and TSC while GPP and TVC are less sensitive to the change between
steady and transient assumptions.
We then proceeded to calibrate the model parameters in a -Bayesian-frameworkBayesian

framework using informative priors for all parameters. In this context we examined both
steady and unsteady-transient assumptions for the Carbon model simulations. The-daily
diserepancies-between-measured-In the latter approach the initial values for the Carbon

ools are part of the calibration rocess. The discre ancy between actual and pre-
dlcted NEE values ii

WV%WWW
exponential covariance matrix. A convergence study was performed to determine the effect

model discrepancy for NEE data exhibits a time scale of about one week.
The posterior distribution of model parameters was sampled sequentially by first con-

sidering the most relevant parameters and then progressively adding less important pa-
rameters, according to GSA-and-FiVresultsGSA-based ranking. The posterior samples,
obtained with a -Markov Chain Monte Carlo algorithm, exhibit significant dependencies

between some of the model parameters Further—a—GSA—analysis—based—on—-marginal

interestComparison of posterior densmes for parameters that are common to the two model

setups indicate similar calibration results.
The predictive capabilities of the model, employing the parameters’ posterior distribution,

were assessed qualitatively through posterior predictive checks and quantitatively through
Continuous Rank Predictive Score (CRPS) computations. Based on the CRPS values, the
unsteady-transient model setup, for which &-Carbon pools are set as simulation param-

eters, performed stlightly—better, in particular during—the—growing—seasons,—compared-to
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model-setup-assuming-steady-state—conditionswhen compared to results based on prior
redictive distributions. Given similar calibration results for the parameters common to
the two configurations, we attribute the improvement in the predictive capabilities to the

calibrated Carbon poals in the transient model setup.
The analysis presented in this paper considered a -single data series at one site only.

However, the Bayesian framework employed in the parameter calibrations is well-suited
to deal with both heteregenous-data-and-modetsheterogeneous data and multiple model
setups. We are currently exploring avenues to extend this work to multi-site studies together
with employlng multiple data streams to better constrain the model parameters.
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Table 1. Description of model parameters.

Param. Nom. val. Range Description Units

c gdd_min 100 10---250 threshold for leafout [°C day]

g gdd_max 200 50---500 threshold for max. LAI [°C day]

o tsmin 5 0---10 Temperature for leaffall [°C]

T laimax 4 2...7 Seasonal max. LAI [m? leaf / m?]

8 leaffall 0.1 0.03---0.95 rate of leaffall [day—]
Ima 80 20---150 specific leaf area [gC / m? leaf]l2ex>2ex

LE) leafcn 25 fixed fixed leaf C:N ratio [gC/gN]

< nue 7 1---20 Nitrogen use efficiency [12ex>2ex

. qlo_mr 2 1.--4 Maintenance resp. T-sensitivity ~ []

2::- br_mr 1074 1075...1072 Base rate for maintenance resp. [gC m~2 day ! / gC biomass]
rg_frac 0.2 0.05---0.5 growth respiration fraction [

< astem 0.7 0.1---0.95 Allocation to plant stem pool [1

. tstem oo Seoe3es T Tonges  Stem turnover time [day—!]

[0} . _

= troot e Ty root turnover time [day—]
tleaf 1072 1073...1071 leaf turnover time [day—1] 2ex>2ex

s 910_hr 2 1.--4 Heterotrophic resp. T-sensitivity  []

£ brlit @ @ e 5><17??6? base turnover for litter [gC m*z dayfi / gC litter]

é% br_som 05365 T00x365 " Tox3es  ase turnover for SOM [9C m~< day— "/ gC SOM]
dr 1073 1074...1072 decomposition rate [day—1]
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Table 2. st{aﬁeeeefreiaﬂeﬁ#aetef&gggrvggtvqg for B+8~$hed1ageﬁal~bleeks—afemafked~aeeefdmg

Name ID_ Mean StDev Constraints
leafG  wvel 0 20 O<uwcl
stemC_ ve2 9000 1800 0<uc2
rootC ve3 1500 300 0<ucd
literC  sc7 10 25 0<scl<1000
somC  sc2 8800 1760 0<sc2.
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Table 3. Distance correlation factors for B23Dst. The diagonal blocks are marked according to
the process the parameters contribute to, see also Fig. [2 and Table[1] The entries in the diagonal
block show dependencies between parameters from the same process, while the entries in the off-
diagonal block show dependencies between parameters from different processes.

gdd_min 1

gdd_max 05 1

tsmin 0 0 1

laimax 0 041 0 1

leaffall 0.1 0 02 O 1

Ima 0 0.2 0 0.1 041 1

nue 01 03 O 0. 02 09 1

ql0_mr 0 0.2 0 01 06 06 1

br_mr 0 02 01 01 04 0.1 0 0.2 1

rg_frac 0.3 0.1 0 0 02 04 06 02 01 1

astem 0 0 0 0 0 0 0 0 0 0o 1

tstem 0 0 0 0 02 0 0 01 01 01 0 1

troot 0 0 0 0 0 0 0 0 0 0O 0 01 A

tleaf 0 0 0 0 0 0 0 0 0 o 0 O o0 1

q10_hr o1 01 01 O 02 02 01 02 02 02 0 02 0 0 1

br_lit o1 01 01 O 04 O 01 01 05 01 0 O O O 03 1

br_som 0 0 0 0 0 0 0 0 0 0O 0 O O o0 o 0 1

dr 0 0 0 0o 01 01 01 01 02 01 0 O O O 01 02 01 A
£ E £ 3 3 o E £ 8 E £ 5% & = E
< § E E [ E 3 J 5 = g2 8 3 3 o 8| 5
5 % 2 8 o = T & 2 & £ = F g 2
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Table 4. CRPS and CRPSS values for B18-Dsy and B23Dr. The CRPSS value for Dyg shows a  ©
much larger improvement in predictive capabilities for this model setup compared to Dsr. ?B
Period-Setup CRPS-D18-CRPS,;  CRPS-D23-CRPS,.,  change CRPS,q, CRPSS
Jun—Aug-DsT_ +260.16_ ++8-0.90 6-Restofyear0.67  +27+252.031
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)
o
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Table 5. Nomenclature.

ACM
CRPS
CRPSS
DALEC
FIM
GPP
GSA
MCMC
NEE
Qol
TSC
TVC

Dia(pllq)
Lp =p(D|0)
p(0), p(6|D)

p(y|D)
Pe(yx|D)

R(X,Y)
Si

Sij

ST

0

Aggregate Canopy Model

Continuous Rank Predictive Score

Continuous Rank Predictive Skill Score

Data Assimilation Linked Ecosystem Carbon

Fisher Information Matrix

Gross Primary Production

Global Sensitivity Analysis

Markov Chain Monte Carlo

Net Ecosystem Exchange

Quantity of Interest

Total Soil Carbon

Total Vegetation Carbon

Kullback—Leibler divergence between probability densities ¢
and p

Likelihood of the data D for a particular instance of model
parameters 6

prior and posterior probability densities, respectively, for
model parameters 6

posterior distribution for the predicted NEE data y

marginal posterior distribution for the predicted NEE compo-
nent y

Distance correlation between random variables X and Y
First-order Sobol index for parameter ¢

Joint Sobol index for parameters i and j

Total-order Sobol index for parameter i
Vector of parameters for DALEC
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Parameter
. . Measurement Model
Estimation
z=m(x;0) + e€m + €4
Bayesian 5
Framework
Computational Model
y = f(z;0)

pdf(6| D)

Forward UQ

Figure 1. Schematic of parameter estimation, on yellow background, and forward UQ workflows,
on green background. For this work DALEC is used as both “measurement model”,
“computational model”, f. In the Bayesian framework, parameter estimation depends both on the

model error ¢, and on the measurement error ¢;.
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\ 4 \ 4 \ 4 “ \
Deaid ACM Autotrofic Allocation ‘ Litterfall ‘ Decomposition

Figure 2. Schematic of processes, shown with green boxes, in DALEC with associated parameters,
listed in orange boxes. The blue arrows indicate how internal parameters and Qols, shown with blue
circles, impact DALEC processes, while while-the green arrows show the impact of processes on

the Qol and other internal parameters.

Respiration
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Figure 3. Matrices with first-erder-total effect Sobol indices, .S, , | ST for monthly averages of NEE —Also
shown-are-the-main-SebeHndices-for the-glo the-globat-average( Gq) Dst and (b) Dtgr. The targest-vatue

Sermr="0-49-0ccurs-colormap changes from red for September-average-NEElarge index values to
blue for indices ~ 1%. The sum-offirst-ordergrayscale corresponds to Sobol indicesforeach-month

isshewnin-parenthesesindex values from 1% down to 0.1%, while blank cells indicate values smaller
the 0.1%.
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Figure 4. Matrices with main-total effect Sobol indices, ST, for monthly averages of GPP —Aise

shown-are-the-main-Sobet-indices-for the-glebat-average-(Ga) Dst and (b) Dtg. The fargest-vatue

month-colormap setup is shewn-similar to the one in parenthesesFig.[3
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Figure 7. Relevant joint Sobol indices, .S;;, corresponding to menthty-October NEE averages for {a)
May-(a) Dst and {b) Oetober(b) D1r. The labels on each line shews-show the magnitude, in %, of
Sobol indices for the corresponding parameter pairs.
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Figure 8. Relevant joint Sobol indices, .5;;, corresponding to monthty-October GPP averages for {a)
May-(a) Dst and (b} Nevember(b) D1r. The labels on each line shews-show the magnitude, in %,
of Sobol indices for the corresponding parameter pairs.
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(a)

NUE

Figure 9. Relevant joint Sobol indices, S;;, corresponding to September averages for (a) TVC and
b) TSC. Both sets of results are based on Dst. The labels on each line show the magnitude, in %,
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of Sobol indices for the corresponding parameter pairs.
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Figure 10. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light blue
region, bordered by thick blue lines corresponds to +2¢ around the daily NEE values.
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Schematic of the iterative process for parameter callbratlon The MCMC samplmg of the Jomt
density for the set of parameters 0(") starts at OwIQ) using an initial proposal covariance C—C’

ini Xand-S ini <A4na*

For the following iteration, (i 4 1), the initial condition is constructed using the MAP estimate for
09 augmented with initial conditions, in this case the nominal values, for the rest of parameters,

6D\ The initial proposal covariance ,%IC (1) is constructed based on the sample

covariance matrix for #(), augmented W|th an initial proposal covariance for §(¢+D\(@),
G (i+1)\ C 7,+1 \(z

|n|

Schematic of the iterative process for parameter calibration. The MCMC sampling of the Jomt density
for the set of parameters 6() starts at 9(—9( ) using an initial proposal covariance &C For the

ini ~ans.
following iteration, (i + 1), the initial condition is constructed using the MAP estimate for 6(*), aug-
mented with initial conditions, in this case the nominal values, for the rest of parameters, §(+1\(),
The initial proposal covariance %C(”l) is constructed based on the sample covariance matrix

ni

for 6(), augmented with an initial proposal covariance for A(+D\@) A AEHING)

ini~zn"
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Schematic of the |terat|ve process for parameter calibration. The MCMC sampling of the Jomt density
for the set of parameters () starts at F)Wgz%usmg an initial proposal covariance C,TNQW For the
following iteration, (i + 1), the initial condition is constructed using the MAP estimate for 6(*), aug-
mented with initial conditions, in this case the nominal values, for the rest of parameters, (¢+D\(),

e . 1 1 . .
The initial proposal covariance €l o+ ie constructed based on the sample covariance matrix

ni

for 6(), augmented with an initial proposal covariance for A(+D\@) A AN
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Figure 12. Convergence of model error components with increasing bandwidth of the covariance

matrix: (a

In addition to Dst and D1r
uniform priors assumed for the vegetation and soil Carbon pools.

setups, we also considered “D5%.”, a setup equivalent to Dtg, but with
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Figure 13. Bt8-problemDgt-problem: +-B-1D marginal and 2-B-2D joint marginal PDFs for pa-
rameters showing distance correlation factors above 6-30.4, see also Table |§| Marginal PDFs are

estimated via KDE based on approximately 5 x 10> MCMC samples.
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={q10—mr-q10-hr}-G3={gde—mingdd— approximately 5 x 10° MCMC samples.

Figure 14. B+8-preblemDst-problem: +-B-1D marginal PDFs for parameters showing distance cor-
relation factors less than 6:3-0.4 with other parameters, see also Table

TR p1q 5, OCtW

G2—{g10—mr-g10—hr-G3—{gdd—mingdd—maxjapproximately 5 x 10> MCMC samples.
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Figure 15. Dza-preblemvwglgm +-B-1D marginal and 2-B-2D joint marginal PDFs for select
parameters 22correlated with the
Carbon pools. Marginal PDFs are estimated via KDE based on a prOX|mateI 5 x 10> MCMC
samples..
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Figure 16. B23-problem+—1-D—marginal— Kulback-Leibler divergence, D
¢ and 2-B-jeint-marginal-PBFs—posterior p densities for parameters ecotrelated-with the-Garben
and Drg.
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Figure 17. Posterior-Marginal posterior predictive distribtitions-densities using the calibration results
for B+8-Dst (top frame) and B23-Dg (bottom frame) presented in Seet:Section E} The blue re-
gions correspond to the daily 5-955 — 95% quantile range and the green regions to 25—7525 — 75%
quantile range. The red line shows the daily NEE observations.
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