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Dear Editor:

We herewith submit our revised manuscript, “Global Sensitivity Analysis, Probabilistic Calibration, and Pre-
dictive Assessment for the Data Assimilation Linked Ecosystem Carbon Model”, by Safta, Ricciuto, Sargsyan,
Debusschere, Najm, Williams, and Thornton for publication in the Geoscientific Model Development. The
original manuscript had been returned to us after a round of reviews, with requests for major modifications.
The reviewers had also posed some questions to us.

We have gone over the reviewer comments in detail. We have benefited much from many of the reviewer
comments, shown in cursive font in this letter, and have incorporated them in the revised text. Our detailed
responses are shown in normal font immediately following each question.

We feel that we have addressed all comments, and have done the major revisions to the paper consistent
with the Editor’s and reviewers’ requests. Some of the major changes are briefly described on the next page.

We respectfully ask the Editor to reconsider the revised paper.

Sincerely,

Cosmin Safta



A brief outline of major changes in the current manuscript compared to the previous version is provided
below.

• We reduced the size of the Introduction. We refocused the paper to emphasize the comparison between
the steady and transient model setups. This comparison is now the focus of all Sections in the revised
manuscript.

• In the GSA section we replaced the discussion of first-order Sobol indices, Si with total effect indices,
ST
i . We believe that total effect indices, which include the first order effects and the joint and higher

order interaction effects, provide a better picture on which parameters matter for specific quantities of
interest.

• In the current version of the manuscript we employ informative priors for all model parameters. These
priors are described in Section 4.3. In addition to the model calibration study, these priors were also
used in Section 3 for Global Sensitivity Analysis.

• The model error is no longer ignored in the current version of the manuscript. We discuss the modeling
associated with the statistical model error term in Section 4.2. In Section 4.4.1 we present a convergence
study for the parameters controlling the model error.

• Given the new emphasis on steady state/transient model setups, we removed the section Fisher Infor-
mation matrix (FIM) and subsequent discussion and results based on FIM. Overall the length of the
paper, not including figures and tables, increased by one page due to the substantial increase in the
discussion in other parts of the paper.

• All figures and most of the associated text, except perhaps the sketches, were updated in the revised
manuscripts to account for the changes in priors and model error term. We reduced the number of
figures by two, from 19 to 17.
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Response to Reviewer #1

1. Unfortunately, there were a few substantial problems in the paper. First and most important is that
model error was ignored during calibration. Second, prior information on model parameters was also
ignored, which leads to a misleading uncertainty analysis and potentially biologically implausible parameter
estimates (as an aside, the plausibility of model posterior estimates is never discussed or compared to data).
Third, lacking an estimate of model error, predictive distributions are done by propagating observation error
into the forecasts, which is inappropriate. Finally, overall the paper was too long, though in many places
I felt like I was being hit by a barrage of indices that were all Methods and Results without Discussion.

We thank this reviewer for his critical assessment of the first version of our manuscript. We have addressed
the two major comments, regarding model error and prior information. We updated the formulation to
include these comments resulting in major changes throughout most of the manuscript. We provide
detailed replies to specific comments by this reviewer, including a reply included in item #20 below to
the third issue raised above.

2. Pages 6895-6897: Too much background. Theres been multiple recent reviews of data assimilation in
ecosystem models that can be pointed to for readers that want all the nitty gritty, so instead you should
focus on your message/context.

The Introduction section in the current version of the manuscript is significantly more compact compared
to the previous version. We eliminated unnecessary details, refer to a review paper, and provide a more
focused description on the motivation for our study.

3. Page 6897, line 25: Unlike the last 2 pages, this comment is unsupported. Indeed, there have been a
number of recent papers performing detailed sensitivity and uncertainty analyses specifically in the context
of leading up to data assimilation. This is worth mentioning because it is important to note that while the
details of the workflow the authors put forth is unique, the general workflow they are following is definitely
not, and thats a part of the literature that DOES need to be discussed if youre going to claim that what
you are going is novel.

This comment is now reformulated to state that few, if any, studies focus on the steady vs transient
assumptions for the ecosystem models.

4. Page 6898, line 27: This bit is very important and much more rare (indeed, I know of examples where
teams have taken one approach or the other, but Im not aware of a paper that compares the two explicitly),
however in the context of this paragraph I had no idea what you were talking about. It was only when I
got to the methods that it became clear that you were discussing the alternatives of assuming spin up to
steady-state vs. including the IC in the assimilation. This needs to be explained and highlighted more in
the intro.

We now provide a more detailed explanation, both in the “Introduction” as well as in the following section,
“Description of Carbon Cycle Model”, on the two approaches for using DALEC, steady-state vs transient
model setups.

5. Page 6898, L10-12: Extraneous. That youre developing this workflow to apply it to more complex models
like CLM is relevant, but tweaks to the model can be left to the methods

The description of changes to the DALEC model was moved to Section 2.

6. Pg 6899, L12: Great, but the reader has no idea what UQTk is is it a project, a model, a conference, a
piece of software? What does UQTk stand for? Given that the answer is that its a piece of software, push
this into the methods, be more explicit about its use, and make the overarching workflow for performing
this analysis public (even if the source code of the toolbox isnt). Having just that toolbox is insufficient to
allow this analysis to be reproduced.

We have updated the description of the suite of tools in UQTk. The source code for this software toolbox is
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available for download. We also state that additional scripts/wrappers specific to this paper are available
upon request from the first author.

7. I fundamentally disagree. A sensitivity analysis (even a global one) connects PERTURBATIONS in the
model inputs to perturbations in the model output. What you describe is an uncertainty analysis. The
fundamental difference is that to perform an UA rather than a SA you need to know the uncertainties in
the parameters. But you dont have those uncertainties, you just have arbitrarily assigned uniform ranges.
Personally, I dont think Sobol indices are an appropriate technique for SA since they are variance-based
their interpretation only really makes sense for UA.

We modified the start of this paragraph to eliminate some ambiguity in the intent of this section. We
agree with the reviewer that Sobol indices, being variance based, are not equivalent to indices from
a perturbation-type sensitivity analysis over the supports of the given probability density functions of
model parameters. At the same time, we submit that, in our experience, we have seen perturbative SA
done only in local SA, while all GSA studies we have seen actually rely on variance-based probabilistic
analysis. In fact, applying perturbative analysis with large perturbations associated with the support of
parameter PDFs can be problematic, e.g. in cases where the PDF support is exceedingly large or infinite,
as it would give sole attention to the bounds of the support. On the other hand, probabilistic variance-
based GSA is naturally weighted by the input measure and well behaved for any input PDF. Given the
predominance of the probabilistic framework for GSA, we respectfully propose to retain this framework
here as is.

8. Pg 6902, L15-20: The logic here is completely backwards. You state you are only given prior information
on parameter bounds, but it is you that is only giving yourself that information. If you wanted to give
yourself more information you easily could since Mats made the model and has been working with it for a
decade. More to the point, for almost every parameter in DALEC there is more prior information available
in the literature.

The prior ranges are chosen following previous studies (e.g. Fox et. al. [1]) and more broadly reflect
temperate deciduous forests, since many carbon cycle models characterize sites by plant functional type
(PFT) rather than focusing on specific species present at a site. We now employ informative priors for all
model parameters using nominal PFT-level values and some basic assumptions about their uncertainty.
Informative priors for the initial carbon pool amounts now use actual site-specific measurements. The
text has been updated to reflect these changes.

9. Pg 6903, L6: This info really needs to make it into the legends for these figures I looked at the figures
first and was scratching my head since neither grey nor white was in the legend or caption

We have improved the colormap description in the figure captions.

10. Pg 6905, L16: The assumption that NEE data are independent is not plausible and will result in consid-
erably overconfident posterior distributions

The largest source of error in NEE measurements is associated with turbulent transport, which is expected
to be independent (Hollinger and Richardson [2]). However, systematic errors associated with the eddy
covariance method are likely, and while they are corrected when possible, some are likely to remain. Such
errors will now be represented in the statistical model error term that we have added in this version. This
should address the overconfidence problem but systematic data errors may contribute to biases in the
posterior distributions of model parameters.

11. Pg 6905, L18: The decision to neglect model error is completely inappropriate, will lead to incorrect
posterior distributions, and renders your predictive intervals meaningless. This assumption implies that
you believe that your process model is perfect and the only reason for deviations from observations is
due to observation error, which is untenable. The inclusion of model error as a fit parameter is neither
conceptually difficult or computationally costly updating the model error doesnt require model runs and
the prior could easily be chosen to be conjugate to your Normal likelihood, allowing the update to be done
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using Gibbs Sampling

In the current version of this study we model the discrepancy between the model and the “truth” as
a multivariate normal distribution with constant bias and square-exponential covariance matrix. The
hyperparameters introduced by this model error term are estimated together with the original model
parameters. We also discuss the convergence of these hyperparameters with respect to the bandwidth of
the covariance matrix.

12. L6906, L14: This is awesome. However, you dont state what your priors are. As I note above in the
discussion of informed priors, you should actually be able to construct fairly informative priors for most of
your C pools since the biometric data for Harvard Forest is pretty good and all public through the LTER.

We now use informative priors for all DALEC parameters, including the intial Carbon pools’ amounts
in the transient model setup. These parameters are provided in Table 4 in the current version of our
manuscript.

13. P6906, L20: Could you use more meaningful acronyms?? Also, these acronyms are not defined in the
tables and figures that include them

We have changed the labels for the steady state/transient model setups to DST and DTR. We are now
providing explicit definitions in the figure/table captions.

14. P6907 L1: D is replaced by a random vector of NEE observations This bit doesnt make sense to me,
why would you be randomizing your NEE observations such that their was no pairing between observations
and model predictions? Based on my reading theres no requirement for this randomization in Fisher
Information approach.

and

15. P6907 L12-13: Given that Sigma is just a constant with respect to the different model parameters (thetas),
this standardization by...

The above comments pertain to the section on Fisher Information Matrix. This section was removed from
the current version of the manuscript.

16. Pg 6909, L8: high-lighted

The paragraph containing this typo was re-written in the current version of the manuscript.

17. P6910, L9-12: This is a really neat trick.

18. P6911, L5-6: This is also a new and useful contribution (at the least, its an approach that I havent seen
before in the ecosystem modeling literature)

We thank the reviewer for the above comments.

19. P6912, L26-28: Neat. I’ve never seen a piecewise posterior before, but this is a great example of how input
accuracy and if statements can impact posterior inference.

We thank the reviewer for this comment. In the current version of the manuscript the piecewise constant
posterior is now piecewise (quasi) linear due to the inclusion of informative priors.

20. P6915, L12-14: I dont think this analysis makes sense. First, observation error should not be propagated
into a forecast. Model error, which wasnt estimated, DOES need to be propagated into the predictive
distributions. Given that, Id strongly recommend that the authors restrict the current analysis to looking
just at the models credible interval (parameter uncertainty) not predictive intervals (unless they end up
quantifying model error as well)

Respectfully, we cannot agree with the reviewer on this point. The reviewer is under the misapprehension
that the posterior predictive is for predictive forecasts with the model. In fact it is not. A predictive
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forecast would be made with only the model-error term included, and is what we call the pushed forward
posterior. The point of the posterior predictive is not so much prediction of QoIs with the calibrated model,
but rather prediction of the noisy data itself as a diagnostic check on the quality of the statistical inference.
One cannot do a posterior predictive check relevant to the measured noisy data without including the
data noise term in the posterior predictive. In the current version of the manuscript we include the newly
inferred model error together with the data noise in the posterior predictive check.

21. P6916, L1: computed with KDE is unclear

This paragraph was re-written and this expression does not appear in the current version of the manuscript.

22. P 6916, L14: CRPS is also new to me. I think this is cool, but in the end theres not much interpretation
/ discussion of the results. Needs to be a more clear set of take-home messages in this section

and

P6917, L14: Likewise, CRPSS is new to me, and while it is interesting, like with CRPS it isnt explained
or interpreted enough. If the only take home message is that there was 40% improvement, then you should
make this section much shorter in order to get to that point more quickly

We have now expanded the discussion of CRPS and CRPSS, in particular when comparing the steady vs
transient model setups.

23. Figure 2: what is NPP2 and why does leaf biomass not affect LAI?

One of the green arrows was missing in Fig. 2. A change in LAI leads to a change in vc1 which is the leaf
biomass. NPP2 is a variable internal to DALEC representing the NPP available for allocation to stem
and root pools after allocation to foliage. It is computed by subtracting the net change in LAI from the
Net Primary Production (NPP).

24. Figure 3-6: please put the months in order! Start with January, end with December rather than starting
with November.

We have updated these figures per reviewer’s request.

25. Figure 4: Why is DALEC so sensitive to leaf fall in December, which is 2 months after leaf fall occurs?

The GPP average during the winter months is negligible, basically just noise of the same order of magnitude
to machine epsilon. We have updated the plotting scripts to skip plotting sensitivity data when this
information is not physical. Thank you for pointing this out.
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Response to Reviewer #2

We thank this reviewer for his critical assessment of our manuscript. Please find below our itemized replies
to the issues raised by this reviewer.

1. The use of uninformed priors greatly reduces the utility of the study as a number of studies have demon-
strated ...

In the current version of the manuscript, we employ informative priors for all parameters.

2. Overall the paper is too long, with too many figures especially given the lack of any meaningful discussion
about much of the results.

We have eliminated the section presenting the Fisher information matrix and several paragraphs through-
out the paper related to that discussion. We also eliminated several figures. On the other hand, in the
new version we emphasize the comparison between steady state and transient model setups. Addition-
ally, the use of informative priors lead to more discussion in several sections in the current version of the
manuscript. Overall, the current version is shorter by about three pages and with two figures less than
the previous version.

3. Page 6895-6896: Much of the background section could be replaced by reference to a number of recent
reviews of data assimilation techniques used with ecosystem models and UQ workflow tools. Instead more
emphasize should be placed on the context of this particular study.

The Introduction section in the current version of the manuscript is significantly more compact compared
to the previous version. We eliminated unecessary details, refer to a review paper, and provide a more
focused description on the motivation for our study.

4. Page 6897, line 27: The impacts of steady state/non-steady state assumption on SA and UQ are pretty
interesting and deserve more discussion at this point. In this case this is spin-up v. initial conditions
estimation (although you dont explain that here), but could mean other things.

We expanded the discussion in the Global Sensitivity Analysis section of the similarities and differences
between steady state/transient assumption for DALEC.

5. Page 6898, line 9: Dont say modified version without immediately describing the changes which is done
in the following section

We have moved the discussion on the modifications made to DALEC to Section 2.

6. Page 6899, line 12: What is UQTk v3.0? OM you follow the link and its software. This looks great,
but how was this actually used? How could what youve done be reproduced? I think it would be of great
interest to have considerable more details of this tool, and how ecosystem modelers can use it.

In the new version of the manuscript we provide a brief description on the set of software tools employed
in this study.

7. Page 6901, line 9: What you describe is an uncertainty analysis, not a sensititivity analysis (which is
what you then do)

We modified the start of this paragraph to eliminate some ambiguity in the intent of this section. We
agree with the reviewer that Sobol indices, being variance based, are not equivalent to results based on
perturbation-type sensitivity analysis over the supports of the given probability density functions of model
parameters. At the same time, we submit that, in our experience, we have seen perturbative SA done
only in local SA, while all GSA studies we have seen actually rely on variance-based probabilistic analysis.
In fact, applying perturbative analysis with large perturbations associated with the support of parameter
PDFs can be problematic, e.g. in cases where the PDF support is exceedingly large or infinite, as it would
give sole attention to the bounds of the support. On the other hand, probabilistic variance-based GSA is
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naturally weighted by the input measure and well behaved for any input PDF. Given the predominance
of the probabilistic framework for GSA, we respectfully propose to retain this framework here as is.

8. Page 6902, line 19: See my overall comment there is considerable prior information that could be/should
be used to inform priors in this study to give a meaningful and informative analysis.

We now use informative priors in the current version of the manuscript.

9. Page 6903, line 27: Right, monthly timescales are not appropriate for analysis of controls over these large
carbon pools. Why was a monthly timescale selected in the first place?

We originally selected a monthly timescale in order to study the NEE and GPP fluxes. While monthly
timescales are too short for the Carbon pools, we believe that current results offer a nice confirmation for
the longer timescales characteristic to the Carbon pools.

10. Page 6906, line 6: How was steady-state defined in this case?

We added in the last paragraph of Section 2 a description on the criteria employed to decide when the
model achieves a “numerical” steady state.

11. Page 6906, line 6: 30-50 cycles Why is there is variability? Youre cycling the same climate files, in the
same order? And have a definition of steady state, why isnt it a single, repeatable value?

While indeed we use the same climate file for all DALEC simulations, the model parameters values also
play a role in the model behavior. In particular, the number of cycles required for spinup depends on the
turnover time of the slow carbon pools (i.e. longer stem or SOM turnover requires more cycles). For some
samples it take longer for DALEC to achieve a steady state compared to others. In general, we observed
that for most runs, it takes between 30 and 50 cycles to achieve a steady state.

12. Page 6906, line 14: Do you mean 1991 or should it be 1992 to correspond with the start of the met data?

We meant 1992. Fixed the typo.

13. Page 6909, line 13: Why is this done sequentially like this?

This paragraph was removed from this version of the manuscript. We describe the sequential procedure
in Section 4.4. The main reason is to facilitate an efficient MCMC sampling. In high-dimensional settings
the posterior landscape can be very flat and require accurate starting covariances and sample points. This
is achieved by starting in a lower-dimensional setting with parameters that are likely to be informed by
the data, thus ensuring a good sample coverage for the intermediate posterior densities.

14. Page 6913, line 8: paramaters typo

Fixed typo

15. Page 6916, line 1: What is KDE here?

This context was removed from the current version of the manuscript

16. Page 6918, line 3: This requires further elaboration/explanation.

We now employ informative priors, including for the Carbon pools for the transient model setup. The
original statement referred to in this comment was removed

17. Page 6919, line 27: Actually, it seems like these robust statistical methodologies that are sampling based
cant be used with model like CLM thats why youre developing emulators!

This paragraph was removed from the current version of this manuscript.
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Abstract

In this paper we propose a probabilistic framework for an uncertainty quantification study of
a carbon cycle model . A

:::
and

::::::
focus

:::
on

:::
the

:::::::::::
comparison

:::::::::
between

::::::
steady

::::::
state

::::
and

::::::::
transient

:::::::::
simulation

::::::::
setups.

::
A Global Sensitivity Analysis (GSA) study indicates the parameters and

parameter couplings that are important at different times of the year for Quantities of Interest
obtained with the Data Assimilation Linked Ecosystem Carbon (DALEC) model. We then
employ a Bayesian approach

:::::::::
Bayesian

::::::::::
approach

::::
and

::
a
:::::::::
statistical

:::::::
model

:::::
error

:::::
term

:
to

calibrate the parameters of DALEC using net ecosystem exchange observations at the
Harvard Forest site. The calibration exercise is guided by GSA and by Fisher information
matrix results that quantify the amount of information carried by the experimental data about
specific model parameters. The calibration results

:::::::
results are employed in the second part

of the paper to assess the predictive skill of the model via posterior predictive checks.
These checks show a better performance for the non-steady state model during the growing
season compared to the one employing steady state assumptions. Overall, this study leads
to a 40% improvement in the predictive skill of DALEC and highlights the importance of
considering correlations in the model parameters as informed by the data.

1 Introduction

Climate studies strongly depend on the modeling of the Carbon cycle. Carbon cycle mod-
els, in turn, strongly depend on the capability of current land models to simulate the terres-
trial ecosystem and to capture C

::::::
Carbon

:
exchanges between land and atmosphere. There

have been a significant number of studies looking to leverage the increasing amount of ex-
perimental observations and calibrate parameters in several terrestrial ecosystem models.
These studies have faced a number of challenges related to handling data and measure-
ment errors from multiple sources, formalizing model error, dealing with parameter observ-
ability and data sparsity, to name a few. In this paper we propose a probabilistic framework
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to estimate parameters for a process-based ecosystem model. Representative studies,
both probabilistic and non-probabilistic, are reviewed below.

Over the past two decades several studies employed data assimilation techniques
to calibrate Carbon cycle models. Here we

:::::
briefly

::
discuss the works that motivated

the current study. Kaminski et al. (2002)
:::::::::::::::::::::::::::
Kaminski et al. (2002, 2012) used an adjoint ap-

proach to infer model parameters for a Simple Diagnostic Biosphere Model
:::::::::
terrestrial

:::::::::
biosphere

:::::::
model

:::::::
based

:::
on

::::::::::::::
observational

:::::
data

:::::::::
streams. The variational data assimi-

lation problem was formulated based on Bayes formula
:::::::
theorem

:
with both the likeli-

hood and the prior presumed Gaussian. This results in a quadratic cost function that
employs an L2 regularization of the model parameters. This formulation led to optimal
values for model parameters. The width of the approximate Gaussian distributions around
these optimal values was sensitive to the covariance matrices assumed in the cost
function. More recently, Kaminski et al. (2012) employed a similar framework to calibrate
the process parameters of a terrestrial biosphere model against two observational data
streams. The model

:
It

::::
was

::::::
found

::::
that

:::::::
models

:
employing optimized parameters shows

:::::
show

clear improvements when checked against independent observations compared to non-
optimized parameters. A similar approach was applied by Rayner et al. (2005) to study the
space–time distribution of terrestrial carbon fluxes generated by a terrestrial carbon cycle
data assimilation system. Tjiputra et al. (2007) employed an adjoint approach to estimate
optimal values for 10 ecosystem control variables in an ocean general circulation model
coupled with a carbon cycle model. The optimization problem is based on a quadratic misfit
between the simulated surface chlorophyll and observations. Kuppel et al. (2012) used
measurements of net CO2 fluxes (NEE) and latent heat fluxes (LE) to constrain the
parameters of a biogeochemical vegetation model. The optimization employed an L-BFGS
algorithm for a quadratic cost function similar to the study by Kaminski et al. (2002) .
They found that the simulation results are improved by using data from multiple sites,
compared to single-site parameter optimization.

:::::::
Similar

::::::::::::
approaches

:::::
were

::::::::::
employed

:::
by

:::::::::::::::::::
Rayner et al. (2005) ,

:::::::::::::::::::::
Tjiputra et al. (2007) ,

:::::::::::::::::::::
Kuppel et al. (2012) to

:::::::::
estimate

:::::::::::
parameters

::
of

::::::::::
ecosystem

::::::::
models.

3



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Some of the above studies start from a Bayesian framework when setting the cost
function for a least-square fitting procedure. These studies are based on a Gaussian
assumption for the discrepancy between model outputs and observations, and they also
employ Gaussian priors to help regularize the problem. However, the

:::
The

:
resulting probabil-

ity densities for model parameters are approximated as multivariate Gaussian distributions

::::::::
densities

:
near the Maximum a Posteriori (MAP) estimate of the parameter values. This

assumption is valid only in the vicinity of MAP values, unless the model is linear in all pa-
rameters. In this paper we propose to employ a Bayesian framework to estimate parameters
in the Data Assimilation Linked Ecosystem Carbon (DALEC) model (Williams et al., 2005) ,
without relying on Gaussian assumptions for posterior distributions. Several studies in the
past decade, some of which mentioned below, employed sampling techniques to explore
non-Gaussian posterior distributions for parameters in ecosystem models.

Knorr and Kattge (2005)employed a Bayesian framework to calibrate the parameters
of a Terrestrial Ecosystem Model (TEM). A Metropolis–Hastings

:
,
:::::::::::::::::::::
Braswell et al. (2005) ,

::::::::::::::::::::::::
Xu et al. (2006) employed

::::::::::
Bayesian

::::::::::::
frameworks

:::
to

:::::::::
estimate

::::::::::::
parameters

:::
of

::::::::::
terrestrial

::::::::::
ecosystem

::::::::
models.

:::::::
These

::::::::
studies

::::::::::
employed

:::::::::::::::::::
Metropolis-Hastings

:
Markov Chain Monte

Carlo (MCMC) approach was used
::::::::::
techniques

:
to sample the posterior distribution

:::::::
density

of model parameters given a Gaussian likelihood
:::::::::::
constructed based on eddy covariance

measurements of carbon and water fluxes . It was found that about 5 parameters were
constrained by the available data and that uniform prior ranges had a strong impact
on the posterior distributions. Braswell et al. (2005) performed a synthetic analysis of Net
Ecosystem Exchange (NEE) of CO2 at Harvard Forest using a simplified photosynthesis
and evapo-transpiration model. In a Bayesian framework, they employed independent
Gaussian daily discrepancies between model predictions and observations. The posterior
distributions for modeled parameters, sampled with MCMC, were compared for several
synthetic data sets to determine how much information the NEE observations carry about
each parameter. A Bayesian framework was also employed by Xu et al. (2006) to study
the posterior distributions of C transfer coefficients and pool sizes in a TEM, based on
several data sets from the Duke Forest Free-Air CO2 site.

:::::::
Carbon

::::::
fluxes

:::
as

::::
well

:::
as

::::::
based
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::
on

:::::::::
synthetic

:::::::::
datasets.

:
Tang and Zhuang (2009) employed both Global Sensitivity Analysis

(GSA) and a Bayesian framework to improve parameterization of a Terrestrial Ecosys-
tem Model. This study employed Latin Hypercube Sampling from the prior distributions

:::::::
density of model parameters, and sample importance resampling ,

:
a
::::::::::::::::::::
sampling-importance

::::::::::
resampling

::::::::
method to construct posterior distributions

::::::::
densities

:
for model parameters, and

to identify key parameters for the ecosystem model and their effect on seasonal C dynamics.
Ricciuto et al. (2008) employed an MCMC approach to sample the posterior densities of
key parameters for combined global-scale terrestrial and ocean carbon cycle models. The
study found that temporal correlation has a significant impact on the calibrated parameters
and subsequently on model predictions.

:
A

::::::
recent

:::::::
review

:::
by

::::::::::::::::::::::::::
Zobitz et al. (2011) provides

::
a

::::::
primer

:::
on

::::
data

::::::::::::
assimilation

:::::::
studies

::::
with

::::::::
MCMC.

Several studies compared probabilistic and non-probabilistic
::::::
several

:
parameter estima-

tion methods for terrestrial biogeochemical models. Several participants to
:::::::::::
Participants

::
in

:
the OptIC project (Trudinger et al. (2007)) presented results employing opti-

mization, variational, and probabilistic methods. The main conclusion of the study
was that modeling choices, i.e. the type of cost function for optimization methods,
or the choice of densities for probabilistic methods, had a greater impact on
the results than the choice of solution methods.

::::::::
sampling

::::::::::
methods.

::
Similarly, the

REFLEX project (Fox et al., 2009)
:::::::::::::::::
(Fox et al. (2009) )

::
selected the DALEC v1 model

(Williams et al., 2005)
:::::::::::::::::::::
(Williams et al. (2005) )

:
to assess the performance of several pa-

rameter estimation algorithms, using both synthetic and observed NEE and LAI data.
This study found that it is difficult to analyze the performance of parameter estimation
methods in the presence of noisy and sparse data, and that all methodologies should
employ uncertainty models that are consistent with observations.

::::
Net

::::::::::
Ecosystem

::::::::::
Exchange

::::::
(NEE)

::::
and

:::::
Leaf

:::::
Area

:::::
Index

:::::
(LAI)

::::::
data. More recently, Ziehn et al. (2012) compared varia-

tional and probabilistic
::::::::
sampling

:
techniques to estimate parameters for BETHY, a process-

based model of the terrestrial biosphere. It was found that the Gaussian approximation is
reasonable for most parameters. This study also indicates that probabilistic approaches can
be prohibitively expensive for complex ecosystem models.
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From this review, we noted a set of critical outstanding research questions in the field
of constraining C

::::::
context

:::
of

::::::::::::
constraining

::::::::
Carbon cycle models. First, few, if any, C cycle

models have had a complete parameter sensitivity analysis, particularly with respect to
temporal dynamics. Such analyses are vital for organising effective parameter calibration .
Second, few, if any, calibration

:::::::::
calibration

:
studies have investigated steady state/non-steady

state
::::::::
transient

:
assumptions. It is also important for the ecological community to understand

how information content depends on model assumption, e.g. steady state . Currently, there
are no agreed approaches in this community for quantifying information content of data on
parameters, or for estimating

::::
e.g.

:::::::
steady

:::::
state

::
vs

::::::::::
transient.

::::::::
Second,

:::::::
Carbon

::::::
cycle

:::::::
models

::::::
require

:::
a

:::::::::
complete

:::::::::::
parameter

::::::::::
sensitivity

:::::::::
analysis,

:::::::::::
particularly

::::
with

::::::::
respect

:::
to

:::::::::
temporal

:::::::::
dynamics.

::::::
Such

:::::::::
analyses

::::
are

::::
vital

:::
for

:::::::::::
organising

::::::::
effective

::::::::::
parameter

:::::::::::
calibration

::::::::
followed

::
by

:::
an

::::::::::
estimation

::
of

:
the predictive skill of ecosystem models.

In this paper we propose a
:::::::::
Bayesian

:
framework for the estimation of uncertain-

ties in ecosystem land model parameters followed by a forward Uncertainty Quantifica-
tion (UQ) study to examine the predictive capabilities of the model given the calibrated
set of parameters.

::::
The

:::::::::
Bayesian

:::::::::::
formulation

:::::::::
provides

::
a
:::::::
flexible

:::::::::::
framework

:::
for

:::::::::
handling

::::::::::::::
heterogeneous

:::::::::::
information,

:::::
and

::::::
allows

:::
for

::::::::::
sequential

::::::::
updates

:::
of

::::::::
posterior

::::::::::::
distributions

:::
as

:::
the

:::::
prior

:::::::::::
information

::
is

:::::::
revised.

:

Figure 1 shows a schematic of this framework, consisting of two intrinsically con-
nected workflows, for Parameter Estimation and Forward UQ. In this schematic, the
same ecosystem Carbon model

:::::
Data

::::::::::::
Assimilation

:::::::
Linked

:::::::::::
Ecosystem

::::::::
Carbon

:::::::::
(DALEC)

::::::
model

::::::::::::::::::::::
(Williams et al. (2005) ) is used for both the “Measurement Model” g()

:::
m()

:
and the

“Computational Model” m(). The Carbon model is based on a modified version of the
DALEC v1 model (Williams et al., 2005; Fox et al., 2009) . This version of DALEC has been
modified to facilitate comparisons with the Community Land Model (Thornton et al., 2007) ,
and with the Local Terrestrial Ecosystem Carbon Model (Ricciuto et al., 2011) .1 The joint
probability density for input parametersis estimated in a Bayesian framework. Bayesian

1The source code for the modified DALEC version is available upon request from Daniel Ricciuto
()
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methods provide a flexible framework for handling heterogeneous information, and allow
for sequential updates of posterior distributions as the prior information is revised

:::
f().

::::
We

:::::::
employ

::::
two

::::::
model

:::::::
setups

::
in

::::
our

:::::::::
analysis.

::
In

::::
the

::::
first

::::::::::
approach,

:::::::
DALEC

::
is
::::
run

::
in

::
a
:::::::
spinup

:::::
mode

:::::
until

::::
the

:::::::
Carbon

::::::
pools

::::::
reach

::
a
::::::
quasi

:::::::
steady

::::::
state.

::
In

::::
the

::::::::
second

::::::::::
approach,

:::::
each

::::::::::
ecosystem

::::::
model

::::
run

::::::::
consists

::
of

::::
one

:::::
cycle

:::::
only.

::
In

::::
this

:::::::::
approach

::::
the

:::::::
Carbon

:::::
pools

::::
are

::::
part

::
of

:::
the

::::::::::::
investigation

:::
on

:::::::
model

:::::::::::
parameters,

::::::
either

:::
for

::::
the

::::::::
purpose

:::
of

::::::::::
estimating

:::::::::
densities

::
of

::::::
model

::::::
inputs

::
or

:::
to

:::::::::
propagate

::::::
these

:::::::::
densities

:::::::
forward

:::
to

::::::
model

::::::::
outputs.

:::::
More

:::::::
details

:::
on

:::
the

::::::
steady

::::::::::::::
state/transient

::::::
model

:::::::
setups

:::
are

:::::::::
provided

::
in

::::::::
Section

:
2.

To facilitate the estimation of a high-dimensional posterior density for model parame-
ters, we undertake parameter sensitivity tests using a variety of methods. First, parameters
are ranked using

::::
first

::::
rank

::::
the

:::::::::::
importance

::
of

::::::::
specific

::::::
model

:::::::::::
parameters

:::
on

:::::::
model

:::::::
outputs

:::
via

:::::::
Global

::::::::::
Sensitivity

::::::::::
Analysis.

:::::::::::
Specifically

::::
we

::::::::
employ

:::::::::::::::
variance-based

:::::::::::::::
decomposition

::::::::::
techniques

:::
to

:::::::::
compute Sobol indices (Sobol (1993); Campolongo et al. (2000)). Poste-

rior densities are estimated first for the most important parameters, while less important
parameters are fixed at their nominal values. This constraint is subsequently relaxed to
arrive at a joint posterior distribution over the entire parameter space. Second, since the
GSA does not consider the error model when ranking parameters, we complement the GSA
results with an analysis of the Fisher Information Matrix (FIM) (?) . The FIM results quantify
the amount of information the experimental observations carry about the set of DALEC
parameters for a particular setting for the discrepancy between model predictions and data.
This study also allows an investigation of the information content of data based on steady
state vs. non-steady state assumptions.

Finally, we undertake a Bayesian posterior predictive check (Lynch and Western (2004))
to assess the adequacy of the calibrated Carbon model to predict the experimental obser-
vations. The predictive skill of this model is further assessed via Continuous Rank Pre-
dictive Score (Gneiting and Raftery, 2007) computations.

::::::::::::::::::::::::::::
(Gneiting and Raftery (2007) )

:::::::::::::
computations.

::::
The

:::::::::
analysis

::::::
steps

:::::::::::
mentioned

:::::
here

::::
are

:::::::::::
undertaken

:::::
with

::::
the

:::::
help

::
of

::::
the

:::::::::::
Uncertainty

:::::::::::::
Quantification

:::::::
Toolkit

::::::::
(UQTk).1

:::::
UQTk

::
is
::
a
::::::::::
collection

::
of

:::::::::
software

::::::::
libraries

::::
and

1
::::::::::::::::::::::::::::
http://www.sandia.gov/UQToolkit
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::::
tools

:::
for

::::
the

:::::::::::::
quantification

::
of

:::::::::::
uncertainty

::
in

::::::::::
numerical

::::::
model

::::::::::::
predictions.

:::::::::
Additional

:::::::
scripts

:::::::
specific

::
to

::::
this

::::::
study

:::
are

:::::::::
available

:::::
upon

::::::::
request

::::
from

::::
the

::::
first

:::::::
author.

This paper is organized as follows. Section 2 provides a description of the processes
comprising DALEC and of their associated parameters. Section 3 presents the GSA results,
including first

::::
total order effects, in Sect.

:::::::
Section 3.1, and joint effects, in Sect.

:::::::
Section 3.2.

FIM results and posterior distributions
::::::::
Posterior

:::::::::
densities

:
for model parameters are ex-

plored in Sect.
:::::::
Section 4 and the predictive capabilities are estimated in Sect.

:::::::
Section 5. We

end with conclusions in Sect.
::::::
Section 6. The methods employed in this paper are part of

UQTk v3.0.2

2 Description of the Carbon Cycle Model

The schematic in Fig. 2 shows a 1 day time step consisting of a sequence of process-
based submodels shown with green boxes. These submodels are connected via fluxes and
interact with five major Carbon (C) pools. The fluxes calculated on any given day impact
C

:::::::
Carbon

:
pools and processes in subsequent days. The blue arrows in this figure indicate

C
:::::::
Carbon

:
pools or model variables that are input parameters to specific sub-models, while

green arrows indicate the C
:::::::
Carbon

:
pools or model variables affected by a particular sub

process.
This

::::
The version of DALEC used in this study is modified from

::::::
based

:::
on

::
a
:::::::::

modified

:::::::
version

::
of

::::
the

:
DALEC v1 used in Fox et al. (2009) . Both versions of the model consist

::::::
model

::::::::::::::::::::::::::::::::::::::
(Williams et al. (2005); Fox et al. (2009) ).

:::::
The

::::::
model

::::
has

:::::
been

:::::::::
modified

::
to

::::::::
facilitate

::::::::::::
comparisons

::::
with

::::
the

:::::::::::
Community

:::::
Land

::::::
Model

::::::::::::::::::::::::
(Thornton et al. (2007) ),

::::
and

::::
with

:::
the

::::::
Local

:::::::::
Terrestrial

:::::::::::
Ecosystem

:::::::
Carbon

::::::
Model

::::::::::::::::::::::
(Ricciuto et al. (2011) ).2

:
It

::::::::
consists of three vegetation

C
:::::::
Carbon pools, for leaf, stem, and root, and two soil C

:::::::
Carbon pools, for soil organic matter

2. UQTk v3.0 is currently undergoing formal review. In the meantime, the source code is available
upon request from Bert Debusschere ()

2
::::
The

::::::
source

:::::
code

::
for

:::
the

::::::::
modified

:::::::
DALEC

::::::
version

::
is
::::::::
available

:::::
upon

:::::::
request

::::
from

::::::
Daniel

:::::::
Ricciuto

:::::::::::::::::::
(ricciutodm@ornl.gov)
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and litter. The photosynthesis
::::::::::::::
Photosynthesis

:
is driven by the Aggregate Canopy Model

(ACM) (Williams et al., 2005)
::::::::::::::::::::::
(Williams et al. (2005) ), which itself is calibrated to

:::::::
againts

the Soil-Plant-Atmosphere (SPA) model (Williams et al., 1996) . The following modifications
were made: An update was made

::::::::::::::::::::::
(Williams et al. (1996) ).

:::::
ACM

:::::
was

::::::::
updated

:
to employ

a temperature-based deciduous phenology used in Ricciuto et al. (2011), driven by the
six parameters shown in Fig. 2. Spring phenology is driven by a linear relationship to
growing degree days, while senescence is driven by mean air temperature. To reduce model
complexity, the plant labile pool was removed and stem carbon is used to support springtime
leaf flush given the spring phenology and the maximum leaf area index parameter. Given the
importance of maintenance respiration in other sensitivity analyses (Sargsyan et al. (2014)),
this process was added along with parameters controlling the base rate and temperature
sensitivity.

In this version of DALEC, ACM shares one parameter, the specific leaf area (lma), with
the deciduous phenology and employs two additional parameters, leaf C:N ratio (leafcn)
and Nitrogen use efficiency (nue). The autotrophic respiration model computes the growth
and maintenance respiration components and is controlled by three parameters: the growth
respiration fraction (rg_frac), and the base rate at 25 ◦C (br_mr ) and temperature sensitivity
for maintenance respiration (q10_mr ), respectively. The allocation sub-model partitions C

:::::::
Carbon to several vegetation C

:::::::
Carbon pools. Leaf allocation is first determined by the phe-

nology submodel, and the remaining available C
::::::
Carbon

:
is allocated to the root and stem

pools depending on the fractional stem allocation parameter (astem). The “Litterfall” sub-
model redistributes the C

:::::::
Carbon content from vegetation pools to soil pools and is based

on the turnover times for stem (tstem), root (troot), and leaves (tleaf ). The sequence of
sub-models concludes with the “Decomposition” which models the heterotrophic respiration
component and the decomposition of litter into soil organic matter (SOM). This sub-model
is driven by temperature sensitivity for heterotrophic respiration (q10_hr ), the base turnover
times for litter and SOM at 25 ◦C (br_lit,br_som), respectively, and by the decomposition
rate (dr ) from litter to SOM.

9
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Model parameters and their nominal values are provided in Table 1. These parameters
are grouped according to the sub-model that employs them. Except for leaf mass per unit
area (lma) which impacts both the deciduous leaf phenology and ACM, all other parame-
ters are employed in single submodels. The numerical ranges

:::
and

::::::::
nominal

:::::::
values for these

parameters are also provided in the table. These ranges, corresponding to the Harvard
Forest site (Urbanski et al., 2007) , are set to capture a broad range of reasonable values
used in past studies (Fox et al., 2009; White et al., 2000) and will serve as a base for the
GSA study presented in the next section,

:::::
and

:::
are

:::::::::
designed

:::
to

::::::
reflect

::::::::
average

:::::::
values

::::
and

:::::
broad

:::::::::::::
uncertainties

:::::::::::
associated

::::
with

::::
the

::::::::::
temperate

::::::::::
deciduous

::::::
forest

::::::
plant

:::::::::
functional

:::::
type

:::
that

:::::::::
includes

::::::::
Harvard

::::::
Forest

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fox et al. (2009); White et al. (2000); Ricciuto et al. (2011) ).

In addition to the model parameters, several processes are driven by the observed air tem-
perature, solar radiation, vapor pressure deficit, and CO2 concentration at the flux tower
site.

:::
As

::::::::::
mentioned

::
in

::::
the

::::::::::::
Introduction,

:::
for

::::
this

:::::
study

::::
we

::::::::
consider

::::
two

:::::::::::
approaches

:::
for

::::::::
running

:::::::
DALEC.

::::
The

::::
first

:::::::::
approach

:::::::::
employs

:
a
:::::::
steady

:::::
state

::::::::::::
assumption,

::::
with

:::::::
DALEC

::::
run

::
in

:
a
:::::::
spinup

:::::
mode

:::::
until

::
it
::::::::
reaches

::
a
:::::::::::::

quasi-steady
::::::
state.

::::
For

::::
this

::::::
study

::::
we

::::::::
declare

::::
the

::::::
model

:::
to

:::
be

::
in

::
a

::::::::::::
quasi-steady

::::::
state

::::::
when

:::
the

::::::::
relative

:::
L2:::::

error
:::::::::

between
:::::::::::
successive

:::::::
cycles

:::::::::
becomes

::::
less

::::
than

::
a
::::::::::
threshold

:::::
value

:::
of

:::::
10−6

:::
for

::::::
select

:::::::
model

:::::::
ouputs.

::::
For

:::
the

::::::
range

:::
of

:::::::::::
parameters

:::::::::
employed

::
in
::::

the
:::::
runs

::::::::::
presented

::::::
here,

::::
the

::::::
model

:::::::
spinup

::::::
takes

:::::::::
typically

::::::
30-50

::::::
cycles

:::
of

:::
the

:::::::::::
1992-2006

::::::::::::
meteorology

::::::::::
(450-750

:::::
total

::::::
years)

:::::::::::
depending

:::
on

::::
the

:::::::::::
parameter

:::::::
values,

:::::::::
especially

::::
the

::::::::
turnover

::::
time

::
of

:::::
slow

:::::::
carbon

::::::
pools.

::
In

::::
this

::::::::
context,

:::::
each

:::::
cycle

::::::::::::
corresponds

::
to

:::::::
running

:::
the

:::::::
model

::
for

:::
15

::::::
years

::::
with

::::
the

:::::::::::
meteorology

:::::::
inputs

::
of

:::::::::::
1992-2006.

::
At

::::
the

::::
start

:::
of

:::
the

:::
first

::::::
cycle,

::::
the

:::::::
Carbon

::::::
pools

:::
are

:::::::::
initialized

:::
to

::::
zero

::::
with

::::
the

:::::::::
exception

:::
of

:::::
stem

:::::::
carbon,

::::::
which

::
is

:::
set

::
at

::
a
::::::
value

::
to

:::::::
"seed"

::::
leaf

:::::::
growth

::
in

::::
the

::::::::
following

::::::::
season.

::::
For

::::::::::::
subsequent

:::::::
cycles,

:::
the

:::::::
Carbon

:::::
pools

::::
are

:::::::::
initialized

::::
with

::::
the

::::
final

:::::
state

:::::
from

:::
the

:::::::::
previous

::::::
cycle.

::::
The

:::::
daily

:::::::::
quantities

::
of

:::::::
interest

:::::::
output

:::
by

:::::::
DALEC

::
in
::::

the
::::
first

::::::
cycle

::::
after

::::
the

:::::::
system

::::::::
reaches

::
a
:::::::
steady

:::::
state

::::
are

:::::
used

:::
for

:::::::
several

:::::::::
analyses

::::::::::
presented

::
in

::::
this

:::::::
paper.

:::::
This

:::::::::
approach

:::::::
follows

::::
the

::::::::
protocol

:::
for

:::
the

::::::
North

::::::::::
American

:::::::
Carbon

:::::::::
Program

::::::::
(NACP)

::::::::
interim

:::::::::
synthesis

::::::::::::
simulations,

::::
but

::::
fails

:::
to

:::::::
capture,

::::
for

:::::::::
example,

:::
the

::::::
large

::::::::
negative

:::::
NEE

::::::::::
observed

::
at

::::::::
Harvard

:::::::
Forest.

:::
In

::::
the

:::::::
second

10
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:::::::::
approach,

::::
the

:::::
initial

:::::::
values

:::
of

:::
the

::::::::
Carbon

::::::
pools

::
in

::::::::
January

::::::
1992

:::
are

:::::::
added

::
to

::::
the

::::
set

::
of

::::::
model

:::::::::::
parameters

:::
to

:::
be

:::::::::::
estimated.

::::
This

::::::::::
approach

:::::::::
employs

::::::::
transient

:::::::::::::
assumptions

:::::
and,

::
for

::::
any

::::::
given

::::
set

::
of

::::::::::
parameter

::::::::
values,

:::::::
DALEC

:::
is

::::
run

::::
one

:::::
cycle

:::::
only,

:::
for

::::::::::::
1992-2006.

::::
The

::::::::
resulting

::::::
model

:::::::
output

:::::::
values

:::
are

:::::
then

:::::
used

:::
to

::::::
study

:::
the

:::::::
model

::::::::
behavior

::::::
under

:::::::::
transient

::::::::::
conditions.

::::
The

:::::::
model

:::::::::::
evaluations

::::
are

::::::::
cheaper

::::::::::
compared

:::
to

:::
the

:::::
first

::::::::::
approach,

::::::::
however

:::
the

::::::::::::::
dimensionality

::
of

::::
the

::::::::::
parameter

::::::
space

:::
of

:::::::
DALEC

:::
is

:::::::::
increased

:::
by

:::
5,

::::
with

::
3

::::::::::
vegetation

:::::::
Carbon

:::::
pools

:::::
and

:
2
::::
soil

:::::::
Carbon

:::::::
pools,

::::
from

:::
18

:::
to

::
23

::::::::::::
parameters.

:::::::::::
Henceforth,

::::
we

:::
will

:::::
refer

::
to

:::::
these

::::
two

::::::::::::
approaches

::
as

:::::
DST ::::

and
::::
DTR:.:

3 Global Sensitivity Analysis

GSA formally connects uncertainties
:::::::
studies

:::::
how

::::
the

::::::::
change

:
in model output to the

underlying uncertainties present
:::
can

:::
be

::::::::::::
apportioned

::
to

:::::::::
changes

:
in the model inputs. We

:::::
Given

::::
our

::::::
focus

:::
on

:::::::::
statistical

::::::
model

:::::::::::
calibration

::::
and

:::::::::::
uncertainty

:::::::::::::
quantification,

::::
we employ

variance-decomposition methods where the variance of the model output is decomposed
into fractions associated with input factors and their interactions. The primary quantity of
interest (QoI) for GSA is NEE, for which we have experimental observations available. We
explore GSA for several other QoI’s

::::
QoIs

:
to understand the role each parameter or set of

parameters play on other DALEC outputs
:::::
plays

::
in

::::::::::::
determining

:::::
other

::::::::::
quantities

:::
of

:::::::
interest

in addition to NEE. Specifically we consider the Gross Primary Production (GPP), the Total
Vegetation Carbon (TVC), and the Total Soil Carbon (TSC).

The effects of input parameters θ = {θ1, . . . ,θNθ} and their interactions on a model output
y =m(θ), are quantified through Sobol indices (Sobol (1993); Campolongo et al. (2000)).
The first order Sobol indices are given by

Si =
Varθi [Eθ∼i(m(θ)|θi)]

Varθ[m(θ)]
, i= 1, . . . ,Nθ (1)

where θ∼i = {θ1, . . . ,θi−1,θi+1, . . . ,θNθ}, Eθ∼i [·] is the expectation with respect to θ∼i, and
Varθi [·] is the variance with respect to θi. :::::

Note
::::
that,

::
in
::::
this

::::::::
context,

::::::::::
sub-script

:
i
::::
can

:::::::
denote

11
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:::
one

:::::::::::
parameter

::
or

::
a
::::::
group

:::
of

::::::::::::
parameters.

:::::
Such

::
a

::::::
group,

::::::::::::::
corresponding

:::
to

::::
the

::::::::::
Phenology

::::::
model,

::
is
::::::::::
presented

:::::::
below.

Similarly, the joint sensitivity indices Sij are

Sij =
Varθi,θj [Eθ∼(i,j)

(m(θ)|θi,θj)]

Varθ[m(θ)]
−Si−Sj , i, j = 1, . . . ,Nθ. (2)

While interactions between three or more parameters can be defined in a similar fashion,
for most physical models these higher-order interactions are typically negligible.

The sensitivity index Si can be interpreted as the fraction of the variance in the QoI
that can be attributed to the ith

::
-th

:
input parameter only, while Sij is the variance fraction

that is due to the joint contribution of the ith
:::
-th and jth

:::
-th input parameters. The Sobol

indices
::::
total

::::::::::
sensitivity

::::::
index

:::::::::
combines

::::
the

:::::::::
first-order

:::::::::
sensitvity

::::::::
indices

::::
with

::::
joint

::::::::::
sensitivity

:::
and

::::::::::::
higher-order

::::::::::::
interactions

::
to

:::::
yield

STi = Si +
∑
j
i 6=j

Sij +
∑
j,k

i 6=j 6=k 6=i

Sijk + . . .=
Eθ∼i [Varθi(m(θ)|θ∼i)]

Varθ[m(θ)]

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::::
This

::::::
index

::::::::::
measures

:::
the

:::::::::
fractional

::::::::::::
contribution

:::
to

:::
the

:::::
total

:::::::::
variance

::::
due

::
to

:::::::::::
parameter

::
θi

:::
and

:::
all

:::::::::::
interactions

:::::
with

::
all

::::::
other

::::::
model

:::::::::::
parameters.

:

:::::::
Starting

:::::
from

::::
the

::::::::::
derivation

::
of

::::::
these

::::::::
indices,

::::::
based

::::
on

:::
the

::::::::::::::
decomposition

:::
of

:::::::::
variance,

:::
the

:::::
sum

::
of

:::
all

:::::::::
first-order

::::::
order

:::::::
indices

::::
and

:::::
joint

::::
and

::::::::::::
higher-order

::::::::::
interaction

:::::::
indices

::::::
sums

::
to

::::
one

1 =
∑
i

Si +
∑
i,j
i 6=j

Sij + . . .

::::::::::::::::::::::

(4)

:::::
Given

:::::
that

:::
all

::::::
Sobol

:::::::
indices

::::
are

::::::::
greater

:::
or

::::::
equal

::
to

::::::
zero,

::
it

:::::::
follows

::::
that

:::::::::::

∑
iSi ≤ 1.

::::
The

:::::::
reverse

::
is

::::
true

:::
for

::::
the

:::::
total

:::::
effect

::::::::
indices,

:::::::::::

∑
iS

T
i ≥ 1,

::::
due

:::
to

:::::::
multiple

:::::::::
counting

::
of

:::::
joint

::::
and

::::::
higher

:::::
order

::::::::::
parameter

::::::::::::
interactions.

:

12
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:::::
Total

:::::
effect

:::::::
indices

::::
are

::::::
useful

:::
to

:::::::::
ascertain

::::::
which

::::::::::
parameter

:::
or

:::::
group

:::
of

:::::::::::
parameters

::::
has

:::
the

:::::
most

:::::::
impact

:::
on

::
a

:::::::::
particular

::::
QoI,

::::
and

:::::
also

:::::::
decide

::::::
which

:::::::::::
parameters

:::
are

:::::
less

:::::::::
important

:::
and

::::
can

::::::::::
potentially

:::
be

:::::
fixed

::
at

:::::
their

::::::::
nominal

:::::
value

:::::::
without

::
a
::::::::::
significant

:::::::
impact

::
on

::::
the

::::::
model

::::::
output.

:::::
Joint

::::::::::
sensitivity

:::::::
indices

::::
can

:::
be

::::::
used

::
to

::::::
verify

::
or

:::::::::
discover

:::::::::::
interactions

::::::::
between

::::
the

:::::::::::::
computational

::::::
model

::::::::::::
components

:::
as

::::::
related

:::
to

:
a
::::::::
specific

::::::
model

:::::::
output.

::
In

::::
this

::::::
paper

:::
we

:::
will

:::::::
present

:::::::
results

:::
for

:::::
total

:::::
effect

:::::
and

::::
joint

::::::::::
sensitivity

::::::
Sobol

::::::::
indices,

:::::
while

::::::::
skipping

::::
first

::::::
order

:::::
Sobol

:::::::
indices

:::
for

:::::::
brevity.

:

::::
The

::::::
Sobol

:::::::
indices (1)and (2

:::
-(3) can be written in integral forms, but these integrals will

not be
:::
are

::::
not analytically tractable when the input parameter space is high-dimensional. In

order to evaluate these indices numerically we employ a Monte-Carlo approach enhanced
by techniques described by Saltelli (2002) and modified by Kucherenko et al. (2012) to
account for parameter dependencies. This method employs sampling

::
of

:
the input parame-

ters from their prior distributions and an efficient re-use of model evaluations to reduce the
computational cost of estimation of the above conditional variances.

We employ maximum entropy (MaxEnt) arguments to choose prior distributions for
the model parameters, since we are only given prior information on parameter bounds
(Table 1). The MaxEnt principle states that the maximum entropy distribution is the least
informative distribution (?) . Among distributions with finite support, the uniform distribution
has the largest entropy, hence, given available prior information, we choose uniform
prior distributions

::::::::::
informative

::::::
priors,

::::::::::
described

:::
in

::::
Sec

::::
4.3,

:
for all model parameters, with

bounds provided in Table 1. The prior distributions for these parameters are
::
all

:::::::::::
parameters

:::
are

::::::::::
assumed

:
independent, except for the spring phenology parameters gdd_min and

gdd_max
::::::
Spring

::::::::::
phenology

:::::::::::
parameters

:::::::::
gdd_min

::::
and

:::::::::
gdd_max, which are bound by the

inequality constraint gdd_min < gdd_max.
::::::::::::::
Consequently,

:::
for

::::::
these

::::
two

::::::::::::
parameters

:::
we

:::
will

::::::::
compute

::
a
:::::::::::
compound

:::::::::
sensitivity

::::::
index,

::::::::
namely

:::
STi :::

for
::::::::::::::::::::::::
i= (gdd_min,gdd_max)

::::::
which

::
is

:::
the

:::::
total

:::::
effect

::::::
index

::::::
based

:::
on

:::::
joint

:::::
prior

::::::::::
distribution

:::
of

::::
this

:::
set

::
of

::::::::::::
parameters,

:::::::::
including

::
all

:::::::::::
interactions

:::::::::
between

::::::
either

:::::::::
gdd_min

:
or

::::::::::
gdd_max,

:::
or

:::::
both,

::::
and

::::
the

::::
rest

:::
of

:::
the

::::::::
DALEC

:::::::::::
parameters.

:
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For each of the QoIs mentioned above, we compute monthly averages corresponding to
the entire simulation, i.e.

:::
i.e. the January average is computed using the January daily QoI

values for all available years. Global averages for all QoIs are also analyzed for comparison
purposes. The simulations are driven by daily minimum and maximum temperatures, global
radiation, and CO2 concentration for years 1992–2006

:::::::::::
1992− 2006, at the Harvard Forest

site (Urbanski et al. (2007)).

3.1 First-order effects
::::
Total

:::::::
Effect

::::::::
Indices

Figures 3–
:
-6 show matrices of first-order Sobol indices

::::
total

::::::
effect

:::::::
indices,

::::
STi ,

:
for the four

QoIs mentioned above. The colormap changes from red for large Sobol index values to blue
for Sobol indices ≈ 1%. The grayscale corresponds to Sobol index values from 1% down to
0.1%, while blank cells indicate values smaller the 0.1%. Each row in these matrices shows
the Sobol indices corresponding to a particular

:::::::::
particular

:::::::
monthly

:
average QoI. The sum

of these values on each row indicates the sum of variance contributions due to individual
parameters to the total variance of that particular average QoI. For example, in Fig. 3, the
first order Sobol indices for the September average NEE sum up to 0.73. The remaining
0.27 fraction of the total variance for this month is due to pairwise interactions between
parameters or higher order interactions.

Different parameters have larger impacts at certain times of the year. For NEE

:::::::::::::
corresponding

::
to

:::::
DST, in Fig. 3

:
a, phenology parameters tsmin and leaffall, which control the

senescence of leaves in the Fall, have a significant impact on NEE during this period only.
Specifically, tsmin, which is the critical temperature at which leaffall begins, mainly affects
NEE in October.

:::
For

:::::
DTR:

,
::
in

::::
Fig.

:::
3b,

::::
the

:::::
base

::::
rate

::
of

::::::::::::
maintenance

:::::::::::
respiration

::::::
br_mr,

::::::
which

::::::::::
represents

::
a

:::::::
Carbon

:::::
cost

::::::
plants

::::::
must

::::::::::::
continuously

::::::
spend

:::::::
during

:::::
their

::::::::
lifetime,

:::::::::
becomes

:::
the

:::::::::
dominant

::::::::::
parameter

:::
for

::::::
NEE.

::
In

::::
the

::::::::
transient

:::::::::::::
configuration,

::::
the

:::::::::::
autotrophic

::::::::::
respiration

::::::::::
sub-model

::::::::
controls

:::::
most

:::
of

:::::
NEE

:::::::::
variance.

::::
The

:::::
total

::::::
effect

::::::
index

:::
for

:::::::
several

::::::::::::
parameters,

:::
i.e.

::::::
astem

:
,
:::::
tstem

:
,
:::::
troot,

:::::
and

::::
tleaf

:::
are

:::
not

:::::::
shown

::
in

::::
this

:::::::
figure,

:::::
since

:::::
they

:::::
have

::
a

:::::::::
negligible

:::::::::::
contribution

::
to

:::::
NEE

:::::::::
variance.
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Similar behavior is seen for parameters that control GPP. Parameter gdd_min,
:::
in

::::
Fig.

::
4.

::::::::::
Parameter

::::::::
gdd_min, which is the

::::
part

::
of

::::
the

::::
pair

::::
gdd

::
=(

::::::::
gdd_min,

:::::::::
gdd_max)

:::
in

::::
this

::::::
figure,

::
is

:::
the

:
number of growing degree days at which leaf budbreak occurs, .

:::::
This

::::::::::
parameter

:
has

the most impact in March and April. The strong dependence of these fluxes on phenology
parameters highlights the importance of an accurate phenology model, as has been shown
in other modeling studies, e. g. (Richardson et al., 2012) .

::::
e.g.

:::::::::::::::::::::::::
(Richardson et al. (2012) ).

On the other hand, the Nitrogen use efficiency nue
:::
nue, which controls the amount

of GPP per unit leaf Nitrogen, is important throughout most of the growing season
(June–September

::::::::::::::::
June-September). This is broadly consistent with other sensitivity stud-

ies that have shown strong sensitivity to leaf nitrogen, e.g. Sargsyan et al. (2014) .
:::
e.g.

::::::::::::::::::::::
Sargsyan et al. (2014) .

::::::
Unlike

:::
for

::::::
NEE,

::::
the

:::::
GPP

::::::
fluxes

:::::::
exhibit

::
a

:::::::
similar

::::::::::::
dependence

:::
on

:::
the

:::::::::::
parameters

::::::::::
controlling

::::
the

::::::::::
phenology

::::
and

::::::::::
aggregate

::::::::
canopy

:::::::
modes

:::
for

::::
both

:::::
DST :::

and

::::
DTR:

.
TVC and TSC are carbon pools and tend to vary on a much larger timescale than GPP

or NEE, which are fluxes. Therefore, the Sobol indices do not exhibit significant seasonal
variability. TVC is

:
a
:::::
sum

::
of

:::::
three

:::::::
Carbon

::::::
pools,

::::
vc1

:::
(for

::::
leaf

::::
C),

:::
vc2

:::
(for

:::::
stem

:::
C),

::::
and

::::
vc3

:::
(for

::::
root

:::
C).

::::
For

::::
both

:::::
DST ::::

and
::::
DTR:

,
::
in

::::
Fig.

::
5,

::::
this

::::::::
quantity

::
of

::::::::
interest

::
is most strongly controlled

by the base rate of maintenance respiration br_mr, which represents a Carbon cost plants
must continuously spend during their lifetime. TSC is most strongly controlled by

::::::
br_mr

:
.
:::
For

::::
DTR:

,
:::
the

::::::
initial

:::::
value

:::
of

:::
vc2

:::::::
exhibits

::
a
::::::
small,

::::
but

::::::::::::::
non-negligible,

::::
total

::::::
effect

::::::
index

::
of

::::::
about

::
10%

::
on

::::
the

::::
total

::::::::
variance

:::
of

:::::
TVC.

:

::::
TSC

::::::::::::::
corresponding

:::
to

::::
DST:

,
::
in

::::
Fig.

::::
6a,

::
is

:::::::
mostly

:::::::::
controlled

:::
by

:::::
both

::::::
br_mr

:::
and

:
the base

rate of decomposition for soil organic matter br_som
:::::::
br_som, which effectively determines

the pool residence time. Given the same inputs, a pool with a longer residence time will
contain more Carbon.

:::
For

::::
DTR:,::

in
::::
Fig.

::::
6b,

:::
the

::::::
initial

:::::
value

:::
of

:::
soil

::::::::
organic

::::::
matter

:::::
pool

:
(
:::
sc2

:
)

::::::::
becomes

::::::::::
dominant

::::
and

:::::::
exhibits

::
a

::::
total

::::::
effect

:::::
index

::
of

::::::
about

:::
50%

:
.
:::
For

::::
this

::::::
setup,

:::
the

:::::::
impact

::
of

::::::
br_mr

::::
and

:::::::
br_som

::
on

::::
the

::::
total

:::::::::
variance

::
of

:::::
TSC

::
is

::::::
about

:::
40%,

::::::
down

:::::
from

:::::
about

:::
80%

::
for

:::
the

::::::::::::
quasi-steady

:::::
state

::::::
setup

:::
for

::::
DST:

.
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::::
The

::::
total

::::::::::
sensitivity

:::::
index

:::::::
results

::::::::
indicate

::::
that,

:::
for

::::::
some

::::::::
quatities

::
of

::::::::
interest

:::
like

:::::
GPP

::::
and

:::::
TVC,

:::
the

::::::::::
simulation

::::::
setup,

:::
i.e.

::::
DST ::

vs
::::
DTR:,:::::

does
:::
not

::::::::
change

:::::::::::
significantly

:::
the

::::::
effect

::
of

::::::
model

:::::::::::
parameters

:::
on

:::
the

:::::::
model

::::::::
outputs.

:::
For

::::::
these

::::
two

::::::
model

::::::::
outputs

::::
the

:::::::::
dominant

:::::::::::
parameters

:::
are

:::::::
similar

:::
for

::::
both

::::::::
setups,

:::::
given

::::
the

::::::
priors

::::::::::
employed

:::
for

:::
the

::::::
model

::::::::::::
parameters,

:::::::::
including

:::
the

::::::::
Carbon

::::::
pools

:::
for

:::::
DTR.

:::::::
Unlike

:::
for

:::::
GPP

:::::
and

:::::
TVC,

::::
the

::::::::::
simulation

:::::::
setup

::::::::
changes

::::
the

:::::::
relative

:::::::::::
importance

::
of

::::::
model

:::::::::::
parameters

:::
on

:::::
NEE

::::
and

:::::
TSC.

:::::
This

:::::
takes

::::::
place

:::::
either

::::::::
through

:
a
::::::::
change

::
in

:::
the

:::::::
relative

:::::::::::
importance

:::
of

::::::::::
phenology

::::
and

:::::
ACM

::::::
model

:::::::::::
parameters

::::
(for

::::::
NEE)

::
or

::
by

::::::::
bringing

::
a
::::::::::
significant

::::::::::::
contribution

::::
from

::::
the

::::::::
Carbon

:::::
pools

::::
(for

::::::
TSC).

:::
In

:::
the

:::::
next

:::::::
section

:::
we

::::::::
examine

:::::
joint

:::::
effect

::::::::
indices

:::
for

::::::::::
parameter

:::::
pairs

:::
to

::::::::::
determine

:::::
what

:::::::
fraction

:::
of

:::
the

:::::
total

:::::
effect

:::::::
indices

::
is

::::
due

:::
to

:::::::::::
interactions

::::::::
between

::::::
model

::::::::::::
parameters.

:

3.2 Joint effects
:::::::
Effects

Figures 7–8
::
-9

:
show relevant joint sensitivity indices corresponding to NEE and GPP which

exhibit seasonal variability for the first-order Sobol indices
:::
the

:::::
four

::::::::::
quantities

::
of

::::::::
interest

:::::::::
examined

::
in

::::
this

::::::
study. In these figures, each node shows relevant parameters while the

label on each link corresponds to the joint Sobol index Sij , in % units. In this figure the joint

::
%

:::::
units.

:::::
She

::::
joint

::::::::::
sensitivity Sobol index values are rounded to the nearest integer for clar-

ity. The results for these months, selected based on the relevant active processes affecting
these two model outputs, show that

::::
Both

:::::
NEE

::::
and

:::::
GPP

:::::::
exhibit

::::::::
seasonal

:::::::::
variability

:::
for

::::
the

::::
total

::::::
effect

:::::
Sobol

::::::::
indices.

::::
For

:::::
these

:::::::::::
parameters

:::
the

::::
joint

:
parameter interactions are also important . For example, during Spring,

the interaction between gdd_min and other ACM
::::
only

::::::::
relevant

:::::::
during

::::
Fall,

:::::::::::
accounting

:::
for

:::::
about

::::::
10-15%

::
of

:::
the

:::::
total

:::::::::
variance

::
in

::::
the

::::::::::::::
corresponding

::::::::
quantity

::
of

::::::::
interest,

::::
and

:::::
play

:::
an

:::::::::
important

::::
role

:::
in

::::::::::::
determining

:::
the

::::::::::
evolution

::
of

::::
the

::::::::
Carbon

:::::
cycle

:::::::
during

::::
the

::::::::::::
senescence

::::::
period.

::::::::
Figures

::
7
:::::

and
::
8,

:::::::::
showing

::::::
these

::::::::::::
interactions

::::::
during

:::::::::
October,

::::
are

::::::::::::::
representative

::
of

:::::::
results

:::::::::::
throughout

:::::
Fall.

::::
For

::::::
both

:::::
NEE

:::::
and

:::::
GPP

::::
the

:::::::::::
interaction

::::::
tsmin

::::
and

:::::::
leaffall

::
is

:::::::::::
signifincant

:::::::
during

:::::
Fall,

::::::
while

:::::::::::
interactions

:::::::::
between

::::::
other

:::::::::::
phenology,

:::::::
ACM,

::::
and

::::
AR

:::::::::::
parameters

:::
are

::::::::::
negligible.

:::
In

::::::::
general

::::
joint

::::::::::
sensitivity

::::::
maps

:::
for

:::::
NEE

::::
and

::::::
GPP

:::
are

:::::::
similar

::::::::
between

::::
DST and AR model parameters account for around 10–20of the total variance for
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both NEE and GPP. Conversely, in the Fall, tsmin and br_mr have important interactions
with several other phenology, AR, and Decomposition model parameters

::::
DTR. These

interactions account for about 15% of the total variance in both NEE and GPP and play
an important role in determining the evolution of the Carbon cycle during the senescence
period

:::::::
Similar

::
to

::::
the

:::::
total

::::::
effect

::::::
index

:::::::
results

:::
for

:::::
TVC

:::::
and

:::::
TSV,

::::
the

:::::
joint

::::::::::
sensitivity

:::::::
indices

::::::
display

:::::
little

:::::::::
seasonal

::::::::::
variability.

::::
The

:::::::
results

::::::
shown

:::
in

::::
Fig.

::
9

:::
for

:::::
these

::::::
QoIs

:::::::::::
correspond

::
to

::::::::::
September

::::
and

::::
are

::::::::::::::
representative

::
of

:::
all

::::::::
monthly

:::::::::
averages

::::::::
(results

:::
not

::::::::
shown).

::::::::::
Moreover,

::::
only

::::
DST ::::::

results
::::
are

:::::::
shown

::
in

::::
this

::::::
figure

:::::
since

::::
the

::::::::::::::
corresponding

:::::
DTR ::::::

results
::::

are
:::::::
almost

::::::::
identical

::
to

:::::
DST.

::::
For

:::::
TVC

::::
the

:::::
data

:::
in

::::
Fig.

:::
9a

:::::::::
indicates

::::
that

::::
the

:::::::::::
interaction

::::::::
between

::::
AR

::::::::
(through

::::::
br_mr

:
)
::::
and

:::::
ACM

::
(
:::
nue

:
)
::::
and

::::::::
Literfall

:
(
:::::
tstem

:
)
::::::::::::
sub-models,

::::::::::::
respectively,

::::::::::
contribute

:::::
about

:::
10%

::
to

:::::
TVC

:::::::::
variance.

:::
In

::::
fact

::::::
these

:::::
joint

:::::::::::
interactions

::::::::::
represent

::::::
about

:::::
half

::
of

::::
the

::::
total

::::::
effect

:::::
index

:::
of

::::
nue

:::
and

::::::
tstem

:
,
:::::::
shown

::
in

::::
Fig.

:::
5.

::::
The

:::::::
results

::
in

:::::
Fig.

:::
9b

:::::
show

::::
that

::::
the

:::::::::::
interactions

::::::::
between

::::::
model

::::::::::::
parameters

:::
are

::::::::::
important

:::
for

::::
TSC

:::
as

:::::
well.

::::
For

::::
this

::::::::
quantity

::
of

:::::::
interest,

::::
the

::::::::::
interaction

::::
AR

:
(
::::::
br_mr

:
)
::::
and

::::::::::::::
Decomposition

::
(
:::::::
br_som)

::::::::::::
sub-models

::::::::
acounts

:::
for

:::::
about

::::::
10-30%

:
of

::::
the

:::::::::::::
corresponding

:::::
total

::::::
effect

:::::
index

:::::::
values,

:::::::
shown

::
in

::::
Fig.

::
6.

:

::::
The

:::::
GSA

::::::
results

::::
can

:::
be

:::::
used

:::
to

::::::::::
understand

::::
the

:::::
effect

:::
of

::::::
model

:::::::::::
parameters

:::
on

:::::::::
particular

:::::::::
quantities

:::
of

:::::::
interest

:::::
and

::::::::
discard,

:::::
from

::::
the

:::::::::
analysis,

:::::::::::
parameters

:::::
that

:::::
have

::
a
::::::::::

negligible

:::::::
impact.

::
In

:::::
this

::::::
study,

::::
we

:::
will

:::::
use

::::
the

:::::
GSA

:::::::
results

:::
to

::::::::
facilitate

::::
the

:::::::::::
calibration

::
of

:::::::
model

:::::::::::
parameters,

:::
by

:::::::::
grouping

:::::::::::
parameters

::::
into

::::::::
sub-sets

::::::::::
according

::
to

:::::
their

::::::
effect

:::
on

:::
the

::::::::
relevant

:::::::::
quantities

::
of

::::::::
interest.

::::::
More

::::::
details

::::
are

::::::::::
presented

::
in

:::
the

:::::::::
following

:::::::
section.

4 Parameter calibration
:::::::::::
Calibration

We employ a Bayesian framework to compute posterior probabilities for the model pa-
rameters discussed in the previous sections. This framework is well-suited for dealing with
uncertainties from different sources, including parametric and model uncertainty and

::
as

::::
well

::
as

:
experimental errors (Sivia, 1996) . In the Bayesian approach, the probability density
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for the model parameters is characterized as
::::::::::::::
(Sivia (1996) ).

::::::
Bayes

::::
rule

::
is

::::::
given

:::
as:

:

p(θ|D) =
LD(θ)p(θ)

p(D)
LD(
:::

θ)p(
::
θ)/p(D),

:::::::
(5)

Here
::::::
where p(θ) and p(θ|D) are the prior and posterior probability densities, respectively,

for model parameters θ. These densities represent our knowledge of θ before and after
learning from the data D. The likelihood function LD(θ) = p(D|θ) is the likelihood of the
data D for a particular instance of model parameters θ. The denominator in Eq. (5), p(D),
is the “evidence”, computed by integrating the numerator over the support of θ

::::
p(θ). It plays

a role of a normalizing constant in the parameter estimation context, and is not computed
here.

4.1
:::::::::::
Calibration

:::::
Data

The data available for the calibration of model parameters consists of the Harvard
Forest’s daily Net Ecosystem Exchange daily

::::::::
Forest’s

:::::
daily

:::::
NEE values processed for the

North American Carbon Program Site Synthesis study (Barr et al., 2013) . Flux data were
measured by the site PI’s (Urbanski et al., 2007)

:::::::::::::::::
(Barr et al. (2013) )

:::::::
based

:::
on

::::
flux

:::::
data

:::::::::
measured

:::
at

:::
the

::::
site

::::::::::::::::::::::
(Urbanski et al. (2007) ). Hill et al. (2012) estimated that daily NEE es-

timates follow a normal distribution. Consistent with Hill et al. (2012) , systematic biases are
not included in the present study. We further assume that daily measurement noise/errors,
εd, are independent. Daily measurement errors or standard deviations are provided by the
North American Carbon Program (NACP) interim synthesis (Barr et al., 2009) . For this
study we neglect the model error, εg in Fig. 1. Given these assumptions, the likelihood
LD(θ) is written as

LD(θ) =

Nd∏
k=1

1√
2πσ2

k

exp

(
−(yk−Dk)2

2σ2
k

)
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where Dk and σk are the observed NEE value and its standard deviation for day k, while
yk =mk(θ) is the corresponding NEE value predicted by the DALEC model. The daily ob-
servations cover a period of 15 years starting with year 1992. A snapshot of these observa-
tions, including the magnitude of the observation error, is provided in Fig. 10. The standard
deviations for the daily NEE values were estimated using a bootstrapping technique using
half-hourly NEE data (Papale et al., 2006; Barr et al., 2009) .

For this study we consider two approaches for running the forward model
and generating the output needed for the computation of the likelihood in
Eq. (10

::::::::::::::::::::::::::::::::::::
(Papale et al. (2006); Barr et al. (2009) ). The first approach employs a steady state

assumption, with DALEC run in a spinup mode until a steady state is reached. This takes
typically 30–50 cycles of the 1992–2006 meteorology (450–750 total years). In this context,
each cycle corresponds to running the model for 15 years with the meteorology inputs of
1992–2006. At the start of the first cycle, the Carbon pools are empty. For subsequent
cycles, the C pools are initialized with the final state from the previous cycle. The daily
model-predicted NEE values used for parameter estimation are those of the first cycle after
the system reaches a steady state. This approach follows the protocol for NACP interim
synthesis simulations, but fails to capture the large negative NEE observed at Harvard
Forest. In the second approach, the initial values of the C pools in January 1991 are
added to the set of model parameters to be estimated. This approach employs unsteady
assumptions and, for any given set of parameter values, DALEC is run one cycle only, for
1992–2006. The resulting model output values are employed to compute the likelihood. The
model evaluations are cheaper compared to the first approach, however the dimensionality
of the parameter space is increased by 5, 3 vegetation C pools and 2 soil Carbon pools,
from 18 to 23 parameters. Henceforth, we will refer to these two approaches as D18 and
D23.

:::::
mean

:::::::::
standard

:::::::::
deviation

::
is

::::::
about

::::
0.7,

::::
with

::
a

:::::
range

:::
of

::::::::
variation

:::::::::
between

:::
0.2

::::
and

::::
2.5.

:

4.2 Fisher information matrix

We first proceed to estimate the amount of information datasets consisting of NEE
observations are expected to carry about the DALEC model parameters. This is quantified
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via Fisher Information (?) , which is defined as the amount of information the observable
NEE carries, as a random vector, about the unknown parameter vector θ. Let Z be a random
vector of NEE observations. For this work, the probability density for Z is the multivariate
normal likelihood defined by Eq. (10). In

4.2
::::::::::
Likelihood

::::::::::::::
Construction

::
In

::::::::
general,

:
the current context, the specific dataset of NEE observations, D, is replaced

by a random vector of NEE observations Z. The Fisher Information Matrix (FIM) is defined
as (?)

I(θ)i,j =−E
[

∂2

∂θi∂θj
logLZ(θ)|θ

]
=−

∫
Ω(Z)

∂2 logLZ(θ)

∂θi∂θj
LZ(θ)dZ

where Ω(Z) represents the space of all possible values of Z. Since LZ(θ) is a multivariate
normal, Z ∼N(m(θ),Σ), with a constant covariance matrix Σ, the Fisher Information
Matrix (FIM) entries in Eq. (??) can be shown to be

I(θ)i,j =
∂mT

∂θi
Σ−1∂m

∂θj
.

:::::::::::
discrepancy

:::::::::
between

::::::
model

::::::::::
predictions

::::
and

::::
the

:::::
data

:::
can

:::
be

:::::::::::
formalized

::
as

:

z =m(t;θ) + εm + εd
:::::::::::::::::::

(6)

Here, m(θ) t
:
is the

::::
time

::
in

::::
day

:::::
units

::::
and

::
z

::
is

:::
the

:::::
daily

:::::
NEE

::::::::::::
observation

:::::::::
described

:::::::
above.

:::::::
Further,

:::
εm::

is
::::
the

:::::::::::
discrepancy

:::::::::
between

:::
the

:::::::
model

:::::::::
prediction

:::::::
m(t;θ)

::::
and

::::
the

::::::::
physical

:::::
truth,

:::::
while

::
εd::::::::

denotes
::::
the

::::::::::::
experimental

::::::
error.

::
In

:::::::
general

::
it
::
is

::::
not

::::::::::::::
straightforward

::
to

:::::::::::::
disambiguate

::::::::
between

::::::
these

::::
two

::::::::
sources

::
of

::::::
error.

:::
For

::::
the

::::::::
present

::::::
study,

:::
we

:::::::::
presume

:::
the

:::::::::::::
experimental
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::::
error

:::
to

:::
be

:::::::
known

::::::::::::::::::::::::::::::::::::::
(Papale et al. (2006); Barr et al. (2009) ).

::::::
Given

::::
that

::::::::::::::
measurements

::::
are

:::::
taken

:::
at

::::::::
different

::::::
times,

::::
we

:::::::
further

::::::::
assume

::::
that

:::::
daily

::::::::::::::
measurement

::::::::::::
noise/errors,

:::
εd,::::

are

::::::::::::
independent,

::::::
hence

:

εd ∝N(0,Σd), Σd =
::::::::::::::::::::

diag
:::

[σ2
d,1,σ

2
d,2, . . .︸ ︷︷ ︸

Nd
:::::::::::

], (7)

::::::
where

:::
Nd:::

is
:::
the

::::::::
number

:::
of

::::::
days.

:::::
Next

:::
we

::::
will

::::::
focus

::::
our

:::::::::
attention

:::
on

:::::::::
modeling

::::
εm.

::::
We

::::::::
propose

:
a
::::::::::::
multivariate

:::::::::
Gaussian

:::::::::::
distribution,

:::::::::::
employing

:
a
:::::::::
constant

:::::
bias

::::::::::::::::
µ= [µ,µ, . . . ,µ]T

:::
and

::
a
:::::::::
Nd×Nd :::::::

square
:::::::::::
exponential

::::::::::
covariance

:::::::
matrix

:::
Σm:::::

with

Σm:::i,j
= σ2

m exp
(
−(ti− tj)2/l2c

)
:::::::::::::::::::::::::

(8)

:::::
Given

:::::
that

::
ti::

is
:::::::

simply
::
a
::::::::
notation

::::
for

::::
day

:
#

:
i,
::::
the

:::::::::::
covariance

::::::
matrix

:::::::
entries

::::
are

::::::
given

:::
by

::::::::::::::::::::::::::::
Σmi,j = σ2

m exp
(
−(i− j)2/l2c

)
,
:::::::
where

::
lc ::

is
::
a

::::::::::
correlation

:::::::
length.

:::::
This

:::::::::
analytical

:::::::::::
expression

::
for

::::
Σm:::

is
::::::::
adopted

::::::
based

:::
on

::::
the

::::::::
intuition

::::
that

:::::::
model

::::::
errors

:::
for

::::::::::
succesive

:::::
days

::::
are

::::::
highly

:::::::::
correlated

::::::
while

::::::
model

::::::
errors

:::
for

::::
days

::::
that

::::
are

:::
far

:::::
apart

::::
are

::::::::::::
uncorrelated.

:::::
The

::::::::::
magnitude

::
of

:
lc::::::::

controls
::::
the

::::
rate

::
of

:::::::::
decrease

:::
of

:::::
daily

::::::
model

:::::
error

::::::::::::
correlations.

::::::
Given

:::
the

::::::
above

::::::::::::
formulations

::
of

::::::
model

::::
and

:::::
data

::::::
errors,

::::
one

::::
can

::::::
group

::::::
these

:::
two

::::
into

::::
one

:::::::::::
multivariate

:::::::
normal

:::::
error

::::
term

:

ε= εm + εd ∝N(µ,Σ), Σi,i = σ2
m +σ2

d,i, Σi,i±k = σ2
m exp

(
−k2/l2c

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(9)

:::
and

::::
the

:::::::::
likelihood

:::::::
LD(θ)

::
is

:::::::
written

::
as

:

LD(θ) = (2π)−Nd/2
√
|Σ|exp

(
−(z−m−µ)T Σ−1 (z−m−µ)

)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

:::::
Here,

:::::::::::::::
z = [z1,z2, . . .]::::

is
:::::

the
::

vector of daily NEE values output by DALEC,
m(θ) = (m1(θ), . . . ,mNd(θ))T , with mk = NEEk for day k. The covariance matrix Σ
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is diagonal, constructed with daily variance values, σ2
k, on the diagonal, see also

Eq. (10). In order to compare the FIM entries corresponding to different parameters ,
the parameter values are normalized by their corresponding prior range. The normalized
FIM entries are then computed as I∗(θ)i,j = I(θ)i,j∆θi∆θj . Here ∆θi ::::

NEE
:::::::::::::
observations,

:::::::::::::::::::::::::
m= [m(t1,θ),m(t2,θ), . . . ]

:
is the range corresponding to θi, computed based on values

given
:::::
vector

:::
of

::::::
model

:::::
NEE

::::::::::::
predictions,

::::
and

::
µ

::
is
::::
the

::::::
model

:::::
bias

::::::
vector

::::::::::
described

:::::::
above.

::
All

::::::
these

:::::::
vectors

::::
are

::::
Nd :::::

long.
::
In

::::::::
addition

:::
to

:::
the

:::::::
model

:::::::::::
parameters

:::
θ,

:::
we

::::
now

::::::
have

:::::
three

:::::::::
additional

::::::::::::::::
hyperparameters

::::::::::::::
characterizing

::::
the

::::::
model

::::::
error:

:::
the

:::::::
model

::::
bias

:::
µ,

::::::
model

:::::
error

::::::::
standard

:::::::::
deviation

::::
σm,

::::
and

:::::::::::
correlation

::::::
length

:::
lc.:::::::

Unlike
:::
for

:::::::
DALEC

::::::::::::
parameters,

:::
for

::::::
which

:::
we

:::::::
employ

:::::::::
informed

::::::
priors

::::::::::
described

::
in
::::

the
:::::
next

::::::::
section,

:::
for

::::::
these

:::::::::::::::::
hyperparameters

:::
we

:::::::
employ

:::::::::::
uninformed

::::::
priors.

:

::
In

:::::::::
practice,

::::::::::
estimating

::::
the

::::::::::
likelihood

:::::::
LD(θ)

:::::
can

:::
be

:::::::
costly,

:::::
and

::::::
prone

:::
to

::::::::::
numerical

::::::::::
instabilities

::::::
when

:::::::::::
considering

:::
the

::::
full

::::::::
Nd×Nd:::::::::::

covariance
::::::
matrix

:::
Σ.

:::::::::
Therefore

::::
we

:::
will

:::::
work

::::
with

::::::::::::::
band-diagonal

:::::::::::
covariance

:::::::::
matrices,

:::::::::
obtained

:::
by

:::::::
setting

:::
the

::::::::::
diagonals

:::
of

::::
the

::::::
model

::::
error

:::::::::::
covariance

::::::
matrix

::::
Σm::

to
:::::
zero

:::::::
beyond

::
a
:::::::
certain

::::::::::
bandwidth

::
kb:

Σi,i±k = 0 fork > kb
::::::::::::::::::

(11)

::::
The

:::::
effect

::
of

:::::::::::
covariance

::::::
matrix

::::::::::
bandwidth

:::
on

::::
the

::::::
model

:::::
error

::::::
terms

::::::::::
{µ,σm, lc} ::::

and
:::::::
DALEC

:::::::::::
parameters

::
is

:::::::
studied

::
in

::::::::
Section

:::::
4.4.1.

:

4.3
::::::::::
Parameter

:::::::
priors

:::::::::
Following

:::::::::::::::::::::::
LeBauer et al. (2012) we

:::::::::
proceed

:::
to

:::::::::
construct

:::::::::
informed

::::::
priors

:::
for

::::
the

::::::::
DALEC

::::::
model

:::::::::::
parameters

::::
as

::::
well

::::
as

:::
for

::::
the

::::::
initial

::::::::
Carbon

:::::
pool

::::::::::
amounts

::::::::::
employed

::
in

::::::
DTR.

:::::::::::
Considering

::::
the

::::::::
nominal

:::::::
values

:::::
and

:::::::
bounds

:::::::::::
presented

:
in Table 1

:
,
:::
we

:::::::::
separate

:::::::
model

:::::::::::
parameters

::::
into

::::
two

:::::::::::
categories.

:::
In

:::
the

:::::
first

::::::::
category

::::
we

::::::
place

:::::::::::
parameters

:::::
with

::
a

::::::
range

:::
that

:::::::
spans

:::::::::::::
approximately

::::
one

::::::
order

::
of

::::::::::
magnitude

:::
or

::::
less.

::::
For

::::::
these

:::::::::::
parameters

:::
we

:::::::
employ

:::::::::
truncated

:::::::
normal

::::::::
densities

:::
as

:::::::
priors,

::::
with

:::
the

::::::
mode

:::
set

:::
at

:::
the

::::::::
nominal

::::::
values

::::
and

:::::::::
standard

:::::::::
deviations

::::
set

::
to

:::::::::
one-eight

:::
of

:::
the

::::::
range

::
of

:::::::::
variation

:::
for

:::::
each

::::::::::
parameter.
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The FIM values are expectations over the data, computed for specific values for model
parameters θ. Thus, an uncertain θ leads to uncertain FIM entries. We use Monte Carlo
sampling to generate random samples from the MaxEnt-derived priors on θ. This yields an
ensemble of FIM values, from which we can construct histograms for each FIM component.
Since the model output dependence on θ is not given analytically, we compute the partial
derivatives in Eq. (??) by numerical differentiation3

∂mk

∂θi
≈ δmk

δθi
=
mk(. . . ,θi−1,θi + δθi,θi+1, . . .)−mk(θ)

δθi
.

The perturbation δθi is set to
√
εmθi, where εm is the upper bound of relative error due to

rounding in floating-point arithmetic, and is typically of the order of 2.2× 10−16 for double
precision (64 bit) computations.

Normalized histograms for select diagonal entries of the FIM are shown in Figs. ??
and ??, using the model setup for D18. In these figures, FIMθi stands for I(θ)∗i,i, defined
above. Convergence tests, results not shown, indicate that about 104 Monte Carlo samples
are sufficient to generate converged histograms. The results were grouped, by visual
inspection, according to the magnitude of log(FIMθi). Figure ?? shows model parameters
with larger FIM diagonal entries while Fig. ?? shows parameters corresponding to generally
smaller values. This indicates that NEE observations are informative about the

::
In

::::
the

:::::::
second

:::::::::
category

:::
we

::::::
place

:::::::::::
parameters

:::
for

::::::
which

::::
the

::::::
range

:::
of

::::::::
variation

:::::::
spans

:::::
more

:::::
than

:::
two

:::::::
orders

::
of

:::::::::::
magnitude.

:::
For

::::::
these

:::::::::::
parameters

:::
we

::::
set

:::::::::
truncated

:::::::::::
log-normal

:::::::
density

::::::
priors.

::::::::
Similarly

::
to

::::
the

::::
first set of parametersshown in Fig. ?? (see the figure caption for the list of

parameter names), and that, consequently, the probability distributions for these parameters
are likely to be significantly updated through the Bayesian parameter estimation discussed
in this section. It is interesting to note that these parameters were found to be important,

:
,
:::
the

::::::::::::
parameters

:::
of

::::::
these

:::::::::
densities

::::
are

:::
set

::::::
such

::::
that

::::
the

::::::
mode

:::::::
occurs

:::
at

::::
the

::::::::
nominal

3Alternatively, a set of ordinary differential equations for ∂mk/∂θi can be derived and solved
numerically.
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:::::
value

::::
and

::::
the

:::::::::
standard

:::::::::
deviation

:::
is

::::
set

::
to

::::::::::
one-eight

:::
of

::::
the

::::::
range

::
of

:::::::::
variation

::::
for

:::::
each

:::::::::::::
corresponding

::::::::::
parameter

:::
in

::::
this

:::::::::
category.

::::
For

:::::
both

:::::::
normal

::::
and

:::::::::::
log-normal

::::::::::
densities,

:::
we

::::::::
truncate

:::
the

::::::
priors

:
based on the GSA results in the previous section, for NEE. Specifically,

gdd_min
::::::
ranges

::::::::::
presented

::
in

::::::
Table

::
1.

:

:::
For

:::
all

::::::::::::
parameters,

::::::
except

::::
the

::::
pair

:
(
::::::::
gdd_min,q10_mr, br_mr, and rg_frac exhibit relevant

first order effects, shown in Fig. 3, while gdd_max
:::::::::
gdd_max)

::::
we

:::::::::
consider

::::::::::::
independent

::::
prior

::::::::::::
distributions.

::::
For

::::
the

:::::::
growing

:::::::
degree

:::::
days

::::::::::::
parameters,

::::::
given

:::
the

:::::::::
inequality

::::::::::
constraint

:::::::::::::::::::::
gdd_min < gdd_max,

:::
we

:::::::
employ

::
a
::::::::::
truncated

::::
joint

:::::::
normal

::::::::
density

:::
set

:::
up

:::
as

::
a
::::::::
product

::
of

:::::::::::::::
one-dimensional

:::::::
normal

:::::::::
densities

:::
for

::::
both

:::::::::
gdd_min and leaffall are relevant mostly through

interactions with other parameters, in Fig. 7.
Conversely,

::::::::
gdd_max

:
.
:::::
This

::::
joint

::::::::
density

::
is

:::::::::::::
appropriately

:::::::
scaled

:::
so

::::
that

::
it

::::::::::
integrates

::
to

:
1
:::::
over

:::::::::::::::
non-rectangular

::::::
space

:::::
(due

:::
to

:::
the

::::::::::
inequality

::::::::::
constraint)

::::
for

:::::
these

::::
two

::::::::::::
parameters.

::::::::
Similarly,

:
the FIM values shown inFig. ?? are much smaller, hence the calibration exercise

is not expected to update the probability distributions for these parameters significantly.
Among these parameters, br_som was found to be the most important for the TSC.
However, based on the FIM results, the NEE observations do not carry information about
this parameter and its prior density will likely not be updated by using the NEE data only.
This likely results from the long residence time of the SOM pool – the 15 year NEE record
is not long enough to constrain it sufficiently. These conjectures will be verified using the
calibration results presented in the next section.

:::::::::
truncated

:::::::
normal

::::
and

::::::::::
log-normal

:::::::::
densities

::
for

::::
the

:::::
other

::::::
model

::::::::::::
parameters

:::
are

:::::::::::::
appropriately

::::::
scaled

:::
to

::::::::
account

:::
for

:::
the

:::::
finite

::::::::::
parameter

:::::::
ranges.

Based on the FIM results presented in this section and on the GSA results in Sect. 3,
we separate the DALEC parameters into three groups. In the first group we include
gdd_min

:::
For

:::::
DTR,

::::
the

::::::
initial

::::::::
Carbon

::::
pool

:::::::::
amounts

:::::::::::::
(representing

:::::::
values

::::
on

::::::::
January

::::
1st,

gdd_max, q10_mr, br_mr, rg_frac, and leaffall. These parameters were highligted both by
the GSA and FIM results as being important for NEE. In the second group we include tsmin,
q10_hr, br_lit, and lma. These parameters were selected since either the GSA or the FIM
results suggested they are relevant to NEE. Finally, we place the remaining parameters
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in the third group. In the next section the posterior distributions for model parameters
are constructed sequentially starting with the most important group of parameters, then
gradually adding parameters, one group at a time

:::::
1992)

::::
are

:::::
also

:::::::::
estimated

:::
in

::::::::
addition

::
to

:::
the

:::::::
DALEC

::::::::::::
parameters

::::
and

:::
the

:::::::::::::::::
hyperparameters

:::::::
defining

::::
the

::::::
model

::::::
error.

::::
For

:::
the

:::::::
carbon

::::
pool

:::::
initial

:::::::
values

:::
we

:::::
also

:::::::
employ

::::::::::
truncated

:::::::
normal

::::
and

::::::::::
log-normal

::::::::::
densities.

::::::
These

:::::
prior

:::::::::::
distributions

::::
are

:::::::::
informed

:::
by

::::
site

:::::::::::::
observations

::::::
(Table

::::
2).

::::
The

::::::
initial

::::
leaf

:::::::
carbon

::::::
(vc1)

::
is

:::
set

::
to

:::::
zero

::::
with

::
a
::::::
small

:::::::::
standard

::::::::
deviation

:::::::::
because

::
of

::::
the

::::::::
starting

::::
date

:::
of

:::
the

:::::::::::
simulation,

:::::
which

:::
is

::
in
:::::::::::

mid-winter
:::::
well

:::::
after

::::
leaf

::::
fall.

::::::
Initial

:::::
litter

:::::
and

::::
soil

:::::::
organic

:::::::
mean

:::::
(sc1,

:::::
sc2)

::::::
values

::::
and

:::::::::
standard

::::::::::
deviations

:::
are

::::::
taken

:::::
from

:::::::::::::::::::::::
Gaudinski et al. (2000) ,

:::::
while

:::::
stem

:::::::
carbon

::
is

:::::::::
estimated

:::::
from

:::::::::::::::::::::
Urbanski et al. (2007) .

:::::::::::
Specifically,

:::
we

:::::::
employ

::::::::::
truncated

::::::
normal

:::::::::
densities

::
for

:::
all

:::::::
Carbon

::::::
pools

::::::
except

:::::
litter

:::::::
carbon

:::::
(sc1).

::::
For

::::
sc1,

::::
the

:::::
mean

::::
and

::::
the

::::::
range

:::::
differ

::
by

::::
two

::::::
orders

::
of

:::::::::::
magnitude,

::::::
hence

::::
we

:::::::
employ

:
a
::::::::::
truncated

::::::::::
log-normal

:::::::
density

:::
for

::::
this

:::::
pool.

4.4 Posterior distributions via MCMC

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from
the posterior probability density p(θ|D)

:
in

:::::
Eq.

::
(5). MCMC is a class of

techniques that allows sampling from a probability density by construct-
ing a Markov Chain that has the target density as its stationary distribu-
tion (Gamerman, 1997; Gilks et al., 1996)

:::::::::::::::::::::::::::::::::::::
(Gamerman (1997); Gilks et al. (1996) ).

In particular, we employ an adaptive Metropolis algo-
rithm (Haario et al., 2001)

::::::::::::::::::::
(Haario et al. (2001) ), which uses the covariance of the

previously visited chain states to find better proposal distributions, allowing it to explore
the posterior distribution in an efficient manner. Haario et al. (2001) shows

:::::
show

:
that,

for Gaussian distributions, the adaptive sampling algorithm is similar in performance to
the Metropolis algorithm. For non-Gaussian posterior densities, the adaptive procedure is
superior to non-adaptive procedures, however the adaptive procedure is challenged by the
dimensionality of the parameter space.

To facilitate the convergence of the adaptive MCMC algorithm we proceed gradually,
starting with the first

::
a group of parameters mentioned in the previous section

::::::::
identified

:::
as
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:::::::::
important

:::
for

:::::
NEE

:::::::
through

:::::
GSA

::
in
::::::::
Section

::
3. The schematic in Fig. 11 shows one iteration

in the sequence of MCMC simulations. For the first iteration,
:::
We

::::
also

::::
add

::::
the

::::::
model

:::::
error

::::::::::::::::
hyperparameters,

::
in
::::::::
addition

:::
to

::::::
select

:::::::
DALEC

::::::::::::
parameters,

::
to

:::::
start

:::
the

::::
first

::::::::
iteration

:

θ(1) = {gdd_min,gdd_max,q10_mrtsmin::::: ,br_mrleaffall
::::::::

, rg_fracnue::: , leaffallq10_mr,
:::::::

br_mr
::::::

}+{µ,σm, lc}
:::::::::::

with initial values θ(1)
ini ::::

θ
(1)
ini set to the nominal conditions provided in Table 1

::
for

::::::::
DALEC

:::::::::::
parameters,

::::
and

:::::::
µ= 0,

::::::::::::
σm = lc = 1

:::
for

:::::::
model

:::::
error

:::::::::::::::::
hyperparameters,

::::::::::::
respectively. The

rest of parameters are held constant at their nominal values. The initial covariance ma-
trix, C

(1)
ini ::::
C

(1)
ini , allows the MCMC algorithm to explore a number of possible states before

adapting the sample covariance based on the sample history. For this study we found that
a diagonal covariance matrix with entries set to a fraction of about 1/16 of the variances
for the corresponding prior distributions provided a

::::::
density

:::::::::
provided

::
a
:
good start for the

MCMC algorithm.
The MCMC states obtained during the first iteration are used to compute the covariance

matrix corresponding to the first set of parameters C(1)
::::
C(1)

:
which is then used to con-

struct the initial covariance matrix for the second iteration, C
(2)
ini ::::
C

(2)
ini . This process is shown

schematically in Fig. 11. The initial parameter values for the 2nd
::::
2-nd

:
iteration consist of

the Maximum A Posteriori (MAP) for θ(1) augmented with the nominal values for

θ(2)\(1) = {tsminlma::: ,q10_hrrg_frac
:::::::

,br_litq10_hr
::::::

, lmabr_lit
:::::

}

The iterative process is completed after the third iteration, with θ(3)\(2) containing the rest
of

:::
the DALEC parameters.

::::
This

::::::::
iterative

::::::::::
algorithm

:::::::
breaks

::::
the

:::::::
original

:::::::::::::::::
high-dimensional

:::::::
problem

:::::
into

::
a
::::::::::
sequence

:::
of

::::::
steps

::
of

:::::::::::
increasing

::::::::::::::
dimensionality,

:::::
with

::::::
each

::::::::::::
intermediate

::::
step

::::::::
starting

::::
with

::
a
::::::
better

:::::::::
proposal

:::::::::::
covariance

::::::::::
compared

:::
to

:::
an

::::::::::
approach

:::
for

::::::
which

::::
this

::::::::::
covariance

::
is

:::::::::::
empirically

:::::::
chosen.

:

We employ the Raftery–Lewis diagnostic (Raftery and Lewis, 1992)
:::::::::::::
Raftery-Lewis

:::::::::
diagnostic

::::::::::::::::::::::::::
(Raftery and Lewis (1992) )

:
to determine when the MCMC samples converge
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to stationary posterior distributions. For D18
::::
DST, approximately 4× 106 samples are nec-

essary to predict the 5, 50, and 95%
:::
5%,

::::::
50%,

::::
and

:::::
95%

:
quantiles of all parameters

to within ±1% accuracy with 95%
::::
±1%

::::::::::
accuracy

::::
with

::::::
95%

:
probability. For D23

::::
DTR,

the Raftery-Lewis diagnostic test shows that 6× 106 are necessary for converged pos-
terior distributions

::::::::
densities. Given 5× 106 MCMC samples, the Effective Sample Size

(Kass et al., 1998) (
::::::::::::::::::
(Kass et al. (1998) )

::
(ESS) for D18 varies between 10000 and 15000

::::
DST :::::

varies
:::::::::

between
:::::::

10,000
:::::

and
:::::::
15,000

:
samples depending on each parameter, while

for D23
::::
DTR, ESS is between 8000 and 12000

:::::
8,000

:::::
and

:::::::
12,000. This shows that there

is significant autocorrelation between chain samples, which is somewhat typical for MCMC
samplers in high-dimensional spaces. To ensure converged posterior distributions

:::::::::
densities,

and since the computational model is cheap, results presented below are based on 107

::::::::
7.5× 106

:
MCMC samples for both D18 and D23.

::::
DST :::

and
:::::

DTR:
.
::::::
When

:::::::::::
processing

::::
the

::::::
MCMC

::::::::::
samples,

:::
we

:::::
skip

::::
the

::::
first

::::
106

:::::::::
samples,

::::
and

:::::
then

::::::
“thin”

::::
the

::::
rest

:::
of

:::
the

:::::::::
samples

::
by

:::::::
picking

::::::
every

::::
10th

::::::::
sample.

:

4.4.1
:::::
Effect

:::
of

:::::::::::
covariance

:::::::::::
bandwidth

:::
on

::::::::::
posterior

:::::::::::::
distributions

:::
We

::::::::::
performed

::::::::
several

:::::::
MCMC

:::::
runs

::
to

:::::::::
examine

:::
the

::::::
effect

::
of

:::::::::::
covariance

::::::::::
bandwidth

:::
on

::::
the

:::::::::
estimates

::
of

:::::::
model

:::::::::::::
pararameters

::::
and

:::::::::::::::::
hyperparameters.

:::::
The

::::::::::
bandwidth

::
is

::::::::::::::
parameterized

::
by

:::
kb,:::

in
::::
Eq. (11)

:
,
::::::
which

::::::::
denotes

::::
the

:::::::
number

:::
of

:::::::::
non-zero

:::::::::
diagonals

:::
on

::::::
either

:::::
side

::
of

::::
the

:::::
main

:::::::::
diagonal.

::::::
Figure

:::::::::
12(a)-(c)

::::::
shows

:::
the

::::::::::
estimated

:::::
MAP

:::::::
values

::
for

::::
the

::::::::::::::::
hyperparameters

:::
µ,

:::
σm,

::::
and

:::
lc,

:::::::::::
respectively

::::::::::::::
corresponding

::
to

::::
the

::::::
model

::::::
error.

::
In

::::::::
addition

:::
to

::::
DST :::

and
:::::

DTR:
,
:::
we

:::::
also

:::::
show

::::::
results

:::
for

:::::::
“Dup

TR”.
:::::
This

::::
run

::
is

:::::::
similar

:::
to

::::
DTR:,:::::::

except
::::::::
uniform

::::::
priors

::::
with

::::
the

::::::
same

::::::
range

::::
were

::::::::::
employed

:::
for

:::
all

:::::::
Carbon

::::::
pools.

:::::
The

:::::
error

::::
bars

:::::::
shown

::
in

::::
this

::::::
figure

:::::::::::
correspond

::
to

::::
two

::::::::
standard

::::::::::
deviations

::::::::::
estimated

::::
from

::::
the

:::::::
MCMC

:::::::::
samples.

:
It
::::::::

seems
::::
that

::::
the

:::::::
model

:::::
bias

:::
µ,

:::
in

:::::
Fig.

::::::
12(a),

:::
is

::::
not

::::::::::::
significantly

:::::::::
affected

:::
by

::::
the

:::::::::::::
band-diagonal

::::
trim

:::
of

:::
the

:::::::::::
covariance

:::::::
martrix.

::::
For

:::
all

::::
runs

:::::::::::
considered

:::::
here

::
µ

::
is

:::::::::::
consistently

::::::::
negative

:::::::::
signaling

:::::
that,

:::
on

:::::::::
average,

::::::::
DALEC

::::::::::::
overpredicts

::::
the

:::::
NEE

::::::
data.

::::
The

::::::
other

::::
two

::::::
model

::::::::::::
parameters,

::::
σm ::::

and
:::
lc,:::

in
::::::

Figs.
::::::::
12(b,c),

::::
are

:::::::::
sensitive

:::
to

::::
the

::::::::::
bandwidth

:::::::
setup,
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::::
until

:::::
they

::::::
reach

::::::::::
statistically

:::::::::::
converged

:::::::
values

:::::::
around

::::::::
kb = 10.

:::::
The

::::::
model

:::::
error

:::::::::
standard

::::::::
deviation

::::
σm::::::

mean
:::::::
values

:::
for

:::::
both

:::::
DST :::

and
:::::
DTR :::

are
:::::::
slightly

::::::
below

::::
0.4,

::::::::::
compared

:::
to

::
a

:::::
mean

::::::
value

::
of

:::
0.7

:::
for

::::
the

:::::
NEE

:::::::::::::
measurement

:::::
error

:::
(in

:::::::
Section

:::::
4.1).

:

::::
The

::::
2D

:::::
joint

:::::::::
marginal

::::::::
density

::::
for

:::::
σm ::::

and
::::
lc,:::::::

shown
:::

in
:::::

Fig.
::::::

12(d)
::::

for
:::::::::
kb = 12,

:::::::
indicate

::
a
:::::::::

relatively
:::::::

strong
:::::::::::::

dependence
::::
and

::
a
:::::::::

negative
:::::::::::

correlation
:::::::::
between

::::::
these

::::
two

::::::::::::::::
hyperparameters.

::::::::
Results

::::
for

:::::::
larger

:::::::::::
covariance

::::::::::::
bandwidths

::::
(not

::::::::
shown)

::::::::
confirm

:::::
that

::::::::
densities

:::
of

::::
both

::::
σm ::::

and
::
lc ::::::

exhibit
::::::::::
converged

::::::::::
moments

:::
for

:::::::
kb > 10.

:

:
It
:::
is

::::::::::
interesting

::
to

:::::
note

::::
the

:::::
value

:::
for

::::
the

::::::::::
converged

::::::
mean

::::::::::
correlation

:::::::
length

::
lc.::

It
:::::::
seems

:::
that

:::::
this

:::::::::::::::
hyperparameter

::::::
does

:::
not

::::::::
depend

:::
on

::
a
::::::::::

particular
:::::::
model

::::::
setup,

:::
at

:::::
least

:::
for

::::
the

:::
site

:::::
and

:::::
time

::::::
range

:::::::::::
considered

:::
in

::::
this

:::::::
study.

::::::::
Further

::::::
tests,

::::
with

::::::::
uniform

:::::::
priors

:::
for

:::
all

:::::::::::
parameters

:::::
lead

::
to

:::::::
similar

:::::::
mean

:::::::
values

:::
for

::::
lc. ::

A
::::::
value

:::
of

::
lc:::

=
:::
4,

::::::::::
indicating

::::
that

::::
the

::::::
model

:::::
error

::::::::::::
discrepancy

::::::::
exhibits

::
a

::::
time

::::::
scale

:::
of

::::::
about

::
8

:::::
days,

:::::::
seems

:::
to

:::
be

:::
an

::::::::
intrinsic

::::::::
property

::
of

::::
the

:::::::
model.

::::
This

::::::
most

:::::
likely

:::::::::
suggests

::::
that

:::::::
model

::::::
errors

::::::
follow

:::
the

::::::::::
variability

::
of

::::
NEE

:::::
over

::::::::
synoptic

:::::::::::
timescales

:::::::::::
associated

::::
with

::::
the

::::::::
periodic

:::::::::
passage

::
of

:::::::::
weather

::::::::
systems

:::
and

::::::::::::
precipitation

:::::::
events

:::::::::::::::::::::::
(Mahecha et al. (2010) ).

::::::::
Further

::::::
tests,

::::
with

:::::::::
alternate

::::::
model

:::::
error

::::::
terms,

:::
are

:::::::::::
necessary

::
to

:::::
verify

::::
this

::::::::::::
observation.

:

4.4.2
::::::::::::
Comparison

:::::::::
between

::::
DST :::

and
:::::
DTR

We first proceed to analyse the model calibration results for D18
::::
DST, when DALEC is run to

a quasi-steady state for each parameter sample. In order to measure the degree of depen-
dence in the joint posterior distribution

::::::::
posterior

::::::::::::
distributions

:
for the 18 model parameters

we examine the “distance correlation” values (Székely et al., 2007)
:::::::::::::::::::::
(Székely et al. (2007) )

estimated based on the MCMC samples. The distance correlation is a measure of depen-
dence between two random variables, being zero when they are independent. Given ran-
dom variables X and Y with finite first moments, the distance correlation R(X,Y ) ∈ [0,1]
is defined as

R(X,Y ) =
ϑ2(X,Y )√
ϑ2(X)ϑ2(Y )

(12)
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where ϑ2(X,Y ) is the “distance covariance” between X and Y and ϑ2(X) is the “distance
variance”, ϑ2(X) = ϑ2(X,X). The distance covariance ϑ2(X,Y ) is defined as

ϑ2(X,Y ) =E(||X −X ′′||||Y −Y ′′||)) +E(||X −X ′′||)E(||Y −Y ′′||)

− 2E(||X −X ′′||||Y −Y ′′′′:||)) (13)

where (X ′,Y ′), (X ′′,Y ′′)
::::::::
(X ′,Y ′),

:::::::::
(X ′′,Y ′′)

:
are independent and identically distributed

random variables, drawn from
::::
with

:
the same joint density as (X,Y ). Székely et al. (2007)

provide numerical algorithms to compute R(X,Y ) given samples of random variables X
and Y . The results are shown in Table 3. In this table, parameters are grouped in blocks
according to the sub-model they participate in. The entries in the diagonal blocks show
dependencies between parameters in the same sub-model while the entries in off-diagonal
blocks indicate dependencies between parameters from different sub-models.

The most important statistical dependencies are between nue and lma
:::
nue

:::
and

::::
lma that

control the gross photosynthesis (ACM) and between rg_frac and nue
::::::
rg_frac

:::
and

::::
nue that

control net photosynthesis. Relevant dependencies are also observed between q10_mr, a

:::::::
q10_mr

:
,
:
a
:
parameter of the autotrophic respiration process, and q10_hr which participates

in the heterotrophic respiration process
::::
and

:::
the

::::::
gross

::::::::::::::
photosynthesis

::::::::::::
parameters. In order

to further understand the dependencies between model parameters we compute 1-D and
2-D

:::
1D

::::
and

::::
2D

:
joint marginal densities, via Kernel Density Estimates

::::::::::
Estimation (KDE)

(Scott, 1992; Silverman, 1986)
::::::::::::::::::::::::::::::
(Scott (1992); Silverman (1986) ), for the model parameters

that exhibit distance correlation factors greater than 0.3
:
at

::::::
least

::::
one

:::::::::
distance

::::::::::
correlation

:::::
factor

::::
that

::
is

:::::::
greater

:::::
than

:::
0.4. These results are shown in Fig. 13. The statistical dependen-

cies identified above through R are also evident in 2-D
::
2D

:
joint marginal densities for the

same parameters.
Figure 14 shows 1-D

:::
1D marginal densities for the rest of the parameters. These param-

eters show little dependence on other parameters and so the 1-D
:::
1D marginal distribution

is sufficient to characterize their density. Some parametersare well constrained towards
the center of the prior range, for instance br_mr and br_lit; these parameters control the
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basal autotrophic and litter respiration rates, which occur on timescales for which the NEE
data have high information content.For tleaf and br_som, the NEE observations are not
informative, see Sect. ??, and their posterior densitiesremain nearly uniform, the same
as their prior densities. For tleaf,

:::
e.g

::::::
astem

:
,
:::::
tleaf

:
,
::::::
br_mr

:
,
:::::
show

:::::
little

:::::::
update

:::::
from

:::::
prior

::
to

::::::::
posterior

::::::::::
densities.

:::
For

::::::::
br_som

:
,
:::
its

::::::::
turnover

::::
rate

:::
is

::::
slow

::::::::
enough

:::::
such

:::::
that

:::
the

:::::
NEE

:::::
data

:::::::
contain

::::
little

::::::
useful

::::::::::::
information.

::::
For

::::
tleaf

:
, the lack of information is due to the fact that the

effects of leaf turnover on net fluxes are much more strongly controlled by their timing, as de-
termined by the phenology parameters, than by the background turnover rate. For br_som,
its turnover rate is slow enough such that the NEE data contain little useful information. The
posterior densities for other parameters, e.g. laimax

::::
e.g.

::::::
laimax, are tilted toward one end of

their prior range. This might indicate that the
::::::
model

:::::
error

:::::
term

::
is

:::
not

:::::::::
sufficient

:::
to

::::::::
describe

:::
the

::::::::::::
discrepancy

::::::::
between

::::
the

::::::
model

::::
and

::::
the

:::::
data,

::::
and

::::
the

:
calibration process attempts to

compensate for structural discrepancies between observations and model predictions by
pushing some parameters toward either the minimum or the maximum value of their prior
range.

While the posterior distribution for br_mr is well updated in the calibration, the R
values between this parameter and all other parameters are smaller than the threshold
used to select parameters that show mutual dependencies. The posterior distribution for
tsmin is piecewise uniform

::::
The

:::::::::
posterior

:::::::
density

:::
for

::::::
tsmin

:::::::
exhibits

:::
an

::::::::::
interesting

::::::::::
piecewise

:::::::::::
quasi-linear

::::::
profile. This is due to the fact that minimum daily temperatures, in degrees Cel-

sius, are provided with one decimal digit accuracy and this parameter is a threshold for leaf
drop, i.e. its participation in the computational model is through an “if” statement. Hence all
samples between successive one-digit accurate thresholds are equally probable

:::::
likely dur-

ing the MCMC sampling process. ,
:::::
and

:::
the

::::::::
product

::::::::
between

::::::::::
piecewise

::::::::
uniform

:::::::::
likelihood

:::
and

::::
the

:::::::
normal

:::::
prior

::::::
results

:::
in

:::
the

:::::::::
posterior

:::::::
density

::::::
profile

:::::::::
observed

:::
in

::::
Fig.

:::
14.

:

Nextwe ,
:::
we

::::::::
analyze

:::
the

::::::::::
calibration

:::::::
results

:::
for

::::
DTR:

.
:::
For

::::
this

::::::
model

::::::
setup,

:::
the

::::::
initial

::::::
values

::
for

::::
the

:::::::
Carbon

::::::
pools

::
at

::::
the

:::::::::
beginning

:::
of

::::
year

:::::
1992

::::
are

::::
part

:::
of

:::
the

:::
set

:::
of

::::::
model

:::::::::::
parameters

:::
and

::::::
each

:::::::
DALEC

::::::::::
simulation

::::::::
consists

:::
of

::::
only

::::
one

::::::
cycle,

:::
for

::::
the

::::
time

::::::
span

:::::::::::
1992-2006.

::::
The

::::::::
distance

::::::::::
correlation

::::::
matrix

:::
for

::::
DTR ::::::::::

parameters
::::
that

::::
are

::::::::
common

:::
to

::::
DST::::

has
:::::::
entries

::::
that

:::
are
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::::::::::::
by-and-large

::::::
similar

:::
to

:::
the

:::::
ones

:::::::
shown

::
in

::::::
Table

:
3
::::::::::
indicating

::::
that

::::
the

::::::::::::
dependence

::::::::
between

::::::
model

:::::::::::
parameters

::
is

:::
not

:::::::
altered

:::
by

:::
the

::::::
model

::::::
setup.

:::::
This

:::::::::::
observation

::
is

::::::::::
confirmed

::
by

::::::
visual

:::::::::
inspection

:::
of

::::
the

:::
1D

::::
and

::::
2D

::::
joint

:::::::::
marginal

:::::::::
densities

:::::::
based

:::
on

::::
DTR ::::::

results
::::
for

:::
the

::::::
same

:::::::::::
parameters

::
as

::::
the

:::::
ones

::::::
shown

:::
in

::::
Fig.

:::
13

:::::::
(results

:::
not

::::::::
shown).

:

:::::::
Finally,

::::::
Figure

:::
15

:::::::
shows

:::::::::
marginal

:::::::::
densities

:::
for

::::
two

:::::::
Carbon

::::::
pools

::::
that

:::::
were

:::::::::
updated

::
in

:::
the

::::::::::
calibration

:::::::::
exercise

:::::
DTR.

:::::
vc3

::::::::::::
corrresponds

::
to

::::
the

::::::
stem

::::::::
Carbon

:::::
while

::::
sc1

::::
and

::::
sc2

::::::::::
correspond

:::
to

::::
the

:::::
litter

:::::::
Carbon

:::::
and

::::
soil

::::::::
organic

:::::::
matter,

::::::::::::
respectively.

:::::
Both

:::::
vc3

::::
and

::::
sc2

::::::
exhibit

::::::
some

:::::::::::::
dependence

:::
on

::::
the

::::::::::::
temperature

::::::::::::
sensitivities

:::
for

:::::::::::::
maintenance

:::::::::::
respiration

:::
and

:::::::::::::
heterotrophic

:::::::::::
respiration,

::::::::
q10_mr

:::
and

::::::::
q10_hr,

::::::::::::
respectively.

:::::::
These

:::::::::::::
dependencies

::::
are

:::::::::
consistent

:::::
with

:::
the

::::
flow

:::
of

:::::::::::
information

::::::::
depicted

::
in

::::
Fig.

:::
1.

::::
Next

::::
we

:
examine the departure of each parameter’s

::::::::
posterior

:
density from its uniform

prior as a
::::
prior

::::::::
density

:::
as

::
a
:

result of the Bayesian update via Eq. (5). We quantify
these changes via the Kullback–Leibler

:::::::::::::::
Kullback-Leibler (KL) divergence between prior and

marginal posterior densities,

DKLKL::
(p||q) =

∞∫
−∞

p(x) ln

(
p(x)

q(x)

)
dxdx:: , (14)

where p is the posterior densty
:::::::
density and q is the prior density. KL divergence results for

certain paramaters are presented in Fig. 16. In this figure, parameters are sorted in ascend-
ing order based on their DKL values. Also shown in the figure is the inverse of the scaled
standard deviation based on the MCMC sample values for each model parameter. This
is obtained from the standard deviation of the MCMC samples for each parameter, σi, by
scaling with the standard deviation based on the corresponding prior density, σ∗i = σp,i/σq,i.
The calibration exercise had negligible effect on the probability density for the first two
parameters, tleaf

:::
the

:::::
DKL:::::::

values
:::
for

::::
DST:

.
:::::::::::
Parameters

::::
that

::::::
exhibit

:::::::::::
DKL < 0.5

:::
for

:::::
both

::::
DST

and br_som
::::
DTR :::

are
:::::::::
excluded

:::::
from

::::
this

::::::
figure

:::
for

::::::
clarity.

::::::::::
Moreover,

::::
the

::
C

::::::
pools

:::::::
shown

::
in

:::
this

::::::
figure

::::
are

:::::
only

:::::::
present

::::
for

::::
DTR:,:::::::

hence
:::::
there

::
is
::::

no
::::
DST :::::

result
:::
for

::::::
these

::::::::::::
parameters.

DKL(p||q) values for these two parameterswere less than 10−2 and were rounded to zero.
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The corresponding σ∗ values are close to 1, indicating little change from their prior uniform
densities. This result confirms that NEE data contain little information on the turnover rate
of SOM, or on the rapidity of leaf drop (rather than the timing of leaf drop, see below). At
the other end of the spectrum, br_mr, gdd_min, and q10_mr, exhibit the largest DKL(p||q),
indicating a larger departure of their posterior densities from their prior density

::::
The

::::
right

::::
half

::
of

::::
this

::::::
figure

::::::::
contains

:::::::::::
parameters

:::::
that

:::::
were

:::::::::
identified

:::
as

:::::::::
important

::::
for

:::::
NEE

::
in

::::::::
Section

::
3.

These parameters are well constrained by the NEE data, reflecting the useful information
in the flux dataon

:
,
:::
for

:::::::::
example

:::
on

::::
the timing of phenological events (gdd_min

::::::::
gdd_min)

and the dynamics of autotrophic respiration (br_mr, q10_mr). The large DKL(p||q) values
for these parameters are accompanied by small σ∗ values, or large values for 1/σ∗ as
shown in Fig. 16, indicators that the marginal posterior density is significantly narrower than
their prior density. Back-of-the-envelope regression tests empirically suggest a power law
dependence between DKL(p||q) and σ∗.

To further assess the importance of statistical dependencies between model parameters,
we revisit the GSA exercise to determine the relative importance of model parameters,
based on the posterior densities of model parameters instead of the prior ones. Figure ??
shows select first order Sobol indices given posterior distributions based on D18. In this
figure, several parameters are grouped together if the distance correlation values, shown
in Table 3, imply that their mutual dependence is significant. These groups, named G1,
G2, and G3, respectively, consist of the following parameters: G1: lma, nue, rg_frac G2:
q10_mr, q10_hr G3: gdd

:
.
::
In

::::::::
general

:::::
DKL::::::

results
::::
are

:::::::
similar

::
for

:::::
DST ::::

and
::::
DTR:

,
::::::::
perhaps

::::
with

:::
the

:::::::::
exception

:::
of

::
br

m
:
sin, gdd

:::
om

:
.
::::
For

:
m

::::
DST:

,
:::
the

::::::
NEE

::::
data

::::::::
contain

:::::
little

:::::::::::
information

:::
on

::::
the

::::::::
turnover

::::
rate

:::
of

:::::
SOM.

::::
For

::::
DTR:

,
:::
the

:::::::::
inclusion

::
of

:::::::
Carbon

::::::
pools,

:::
in

:::::::::
particular

:::
the

:::::
SOM

:::::
pool

:
(
:::
sc2ax The results

shown with red bars in Fig. ?? are based on joint posterior distributions for G1, G2 and
G3, and marginal distributions for the rest of parameters. For the results shown with blue
bars, the joint distributions for G1 through G3 are products of marginal distributions of each
parameter in the group, hence neglecting any statistical dependence. Visual inspection of
the relative importance of parameters or groups of parameters to the total variance of the
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average monthly NEE values shows that neglecting joint dependecies between parameters
can significantly alter the results. This is true both for parameters that show significant
dependence, e.g. see group G1, and for parameters that show little dependence on other
parameters, e.g. br_mr.

Next, we analyze the calibration results for D23. For this model setup, the initial values
for the C poolsat the beginning of year 1991 are part of the set of model parameters and
each DALEC simulation consists of only one cycle, for the time span 1992–2006. Table ??
shows R values for D23 results. Only the parameters common between D23 and D18
are listed in this table. The R values observed in this table for D23 are similar to the
ones observed above for D18 with the exception of pair (q10_mr, q10_hr). While, for D18,
these two parameters exhibit significant dependence, for D23 they are nearly independent.
Figure ?? shows 1-D and 2-D

:
),
::::::::

impacts
::::

the
:::::::::
Bayesian

:::::::
update

:::
of

::::
this

:::::::::::
parameters

:::::
due

::
to

:::
the

::::::::::::::
dependencies

:::::::::
observed

:::
in

::::
the

:
joint marginal densitiesfor parameters with distance

correlation factors greater than 0.3 based on D23 results. In general, these marginal
densities are similar to the ones based on D18.

Finally, ,
:::::::

shown
:::

in
:
Fig. 15shows marginal densities for two Carbon pools that were

updated in the calibration exercise D23. vpool2 corrresponds to the stem C while spool2
corresponds to the soil organic matter. While dr shows little dependence on other model
parameters, it has a dominant role in the conversion of the litter C pool into soil organic
matter, and the distance correlation between this parameter and spool2 is about 0.5.

5 Predictive assessment
::::::::::::
Assessment

In this section we explore the predictive skill given the posterior distributions for the model
parameters for D18 and D23

::::
DST :::

and
:::::
DTR. First, we employ the Bayesian posterior predic-

tive distribution (Lynch and Western, 2004)
::::::::::::::::::::::::::
(Lynch and Western (2004) )

:
to assess the ad-

equacy of the calibrated DALEC model, and the Gaussian data noise model, for prediction
of the NEE observations. Specifically, the posterior distribution for the predicted

::::::::
predicted

NEE data, p(y|D), is computed by marginalization of the likelihood over the posterior distri-
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bution of model parameters and hyperparameters, here θ:

p

(
yy|D

)
=

∫
θ

p(yy|θ)p(θ|D)dd:θ. (15)

For the present work, y|θ ∼N(m(θ),Σ), where y = {yk|k = 1 . . .Nd} is a

::::::::::::::::::::
(y−m) |θ ∼ εm + εd,::::::

where
::::::::::::::
y = [y1,y2, . . .]:::

is
::
a Nd-dimensional vector with NEE predic-

tions over a range of Nd days, and Σ is a diagonal covariance matrix with variances of
daily NEE observations on the diagonal. The 1-D-marginal posterior predictive distributions

::
εm:::

is
:::
the

::::::
model

:::::
error

:::::
term

::::
and

:::
εd ::

is
:::
the

:::::
data

:::::
noise

::::::
term.

::::
The

::::::::::::
1D-marginal

:::::::::
posterior

:::::::::
predictive

:::::::
density

:
for daily NEE values for a two-year snap-

shot around 1995 are shown in Fig. 17. These distributions
::::::::
densities

:
were computed by

sampling ,
:::
the

:::::::::
posterior

:::::::::::
distribution

::
of

::::::
model

::::::::::::
parameters

::
θ,

::::
i.e.

::
by

:
using the MCMC sam-

ples behind the posterior densities presented in the previous section. For computational
efficiency, p(y|θ) was computed with KDE for each θ sample . This density was then
interpolated on a uniform grid centered around the daily observed NEE value

:::
that

::::
are

:::::::
already

:::::::::
available.

::::
We

::::::::
employ

::::::
about

:::::
4000

:::::::
MCMC

:::::::::
samples,

:::
for

::::::
each

:::::::
sample

::::
we

:::::
draw

:::
20

::::::::
samples

:::::
from

:::
the

:::::::::::
multivariate

::::::::
normal

::::::::::
distribution

::::::::
εm + εd,:::::

and
::::
then

::::
add

::::::
these

:::::::::
samples

::
to

:::
the

::::::
model

:::::::::::
evaluations.

:::::::
These

::::::
results

::::
are

::::::
saved

:::
into

:::::
daily

:::::
bins,

:::::
from

:::::
which

:::
we

:::::::
extract

:::::::
several

::::::::
quantiles

::::::::::::::
corresponding

:::
to

:::
the

::::::::::::
1D-marginal

:::::::::
posterior

:::::::::
predictive

::::::::
density. It is worth to note

that the variance of the posterior predictive distributions can also be estimated analytically
as the sum of the measurement error variance and the pushed-forward variance, i.e. the
variance of the output quantity of interest with respect to posterior variability.

The top frame in Fig. 17 corresponds to D18
::::
DST and the bottom frame to D23

::::
DTR.

Generally, the predicted data spread covers well the observed NEE values except for a time
rangearound May-June-July when the observations, with red line, are frequently outside the
5–95

::
for

:::
the

::::::
entire

:::::
time

::::::
range.

::::::::::
Ocasional

::::::
spikes

::::
can

:::
be

:::::
seen

:::::::
outside

::::
the

::::::::
5− 95%

:::::::::
predictive

band, shown in blue. This discrepancy occurs mostly for years 1993–1996. For other years,
the predicted data covers the May-June-July observational data well.
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In order to quantitatively compare the predictive capability of the calibrated models
for D18 and D23

::::
DST :::

and
:::::

DTR, we adopt a probabilistic score based on the predictive
cumulative distribution function (CDF). The Continuous Rank Predictive Score (CRPS)
(Gneiting and Raftery, 2007)

::::::::::::::::::::::::::::
(Gneiting and Raftery (2007) )

:
measures the difference be-

tween the CDF of the provided data and that of the forecast/predicted data, i.e.
::
i.e. data

generated based on the posterior predictive distribution. Thus,

CRPSCRPS:::::: (F ,D) =
1

Nd

Nd∑
k=1

∞∫
−∞

(Fk(yk|D)−HDk(yk))2 dydy
::
k (16)

Here, Fk(yk|D) is the 1-D
:::
1D

:
marginal posterior predictive CDF for day/component k com-

puted using 1-D
:::
1D

:
marginal posterior predictive distributions

Fk(yk|D) =

yk∫
−∞

pk

(
y′′k|D

)
dy′′k (17)

where

pk (yk|D) =

∫
p

(
y1,y2 . . . ,yNdy|D

)
dy1 · · ·dyk−1dyk+1 · · ·dyNdy∼k::

. (18)

is the 1-D
::
1D

:
marginal posterior predictive distribution

::::::
density

:
corresponding to day k,

::::::
based

:::
on

:::::::
p(y|D)

::::::::::
computed

::::
via

::::
Eq.

:
(15)

:
.
:::::::
Herre,

::::::::::::::::::::::::::::::::
dy∼k = dy1 · · ·dyk−1dyk+1 · · ·dyNd . The

CDF of the provided data is approximated as a Heaviside function centered at the obser-
vation value Dk (Hersbach, 2000)

:::::::::::::::::
(Hersbach (2000) ), HDk(yk) = 1yk≥Dk .

Table 4 displays CRPS values based on posterior distributions obtained by averaging
over several time ranges. The first row shows the values corresponding to a 60day time
frame, from mid-June to mid-August, while the second row corresponds to the remainder
of the year. The last row shows the aggregated values, considering the entire year. The
averages in Eq. (16) are taken over all years considered in this study. The

:::
We

::::::::
employ

:::
the
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::::::::
posterior

:::::::::
predictive

::::::
check

:::::
data

::::::::::
presented

::::::
above

::
to

:::::::::
compute

::::::
CRPS

::::::
values

:::
for

:::::
both

::::
DST :::

and

::::
DTR:

.
:::
For

:::::
DST ::

we
:::::::

obtain
::
a

::::::
value

:::::
0.67

:::::
while

:::
for

:::::
DTR :::

the
::::::
CRPS

::::::
value

::
is
:::::

0.60
:
.
::::
The

:
lower

values for D23 compared to D18 indicatea better predictive skill
::::
DTR :::::::::

compared
::
to

:::::
DST

::::::::
indicate,

:::
on

::::::::
average,

:::::::
tighter

::::::::
marginal

::::::::::
predictive

::::::
CDF’s

::::
that

::::
are

::::::
better

::::::::
centered

::::::::
around

:::
the

::::
NEE

:::::
data

:
for the setup when DALEC is run for one cycle and the C

::::::
Carbon

:
pools are

treated as parameters. The results reveal that the largest improvement, about 6%, occurs
for the June–August time frame, while for the rest of the year the improvement is about 2%
only

::::
This

:::::::::
indicates

:
a
::::::
better

::::::::::
predictive

::::
skill

:::
for

::::
DTR :::::::::

compared
::
to

:::::
DST.

In order to measure the effect of calibration on the predictive capability of DALEC we
employ the Continuous Rank Predictive Skill Score (CRPSS) (Wilks, 2011)

::::::::::::::
(Wilks (2011) )

CRPSSCRPSS:::::::: =
CRPSpsp−CRPSprp

CRPSprf−CRPSprp

CRPSpsp−CRPSprp
CRPSprf −CRPSprp
:::::::::::::::::::::

(19)

where CRPSpsp :::::::::
CRPSpsp:is the CRPS computed above based on the posterior predictive

distribution, CRPSprp :::::::::
CRPSprp:is based on the prior predictive distribution, and CRPSprf

:::::::::
CRPSprf:is the CRPS based on “perfect” predictions. For the current study, the “perfect”
predictions have a multivariate normal distribution

::::::::::
correspond

:::
to

:::
the

::::::::::::
hypothetical

:::::
case

::::
with

::
no

:::::::
model

:::::
error

::::
and

::::::::
posterior

:::::::::
densities

:::
for

::::::
model

::::::::::::
parameters centered on the observations

and diagonal covariance matrix Σ defined above
:::::
NEE

::::::::::::
observations. The prior predictive

distribution is defined analogous to the posterior predictive distribution in Eq. (15), with
:::
the

::::::::
posterior

:::::::
density

:
p(θ|D) being replaced by p(θ), the prior density for model parameters θ.

A CRPSS value of 0 implies no improvement of the predictive skill for the calibrated
model parameters compared to the predictions based on the prior information, while a
value of 1 can be achieved when the posterior distribution reduces to a point and the

model prediction is the same as the corresponding experimental data. For the current
study, CRPSprp = 2.38

::::
The

::::::
CRPS

:::::::
values

::::::::::::::
corresponding

::
to

::::
the

:::::
prior

:::::::::::
(CRPSprp),:::::::::

posterior

::::::::::
CRPSprp, ::::

and
::::

the
::::::

ideal
:::::
case

:::::::::::
CRPSprf ::::

are
::::::::::
presented

:::
in

::::::
Table

::
4
:::
for

::::::
both

:::::
DST and

CRPSprf = 0.53 for D18. This leads to CRPSS = 0.4, indicating a 40% improvement in the
predictive skill of DALEC as a result of calibration. We only show here the CRPSS values for
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D18 since for D23, the C pools employed improper priors for which the CRPSprp is not well
defined

::::
DTR.

:::::::
Based

:::
on

:::
the

:::::::
values

::
in

::::
this

:::::
table

::::
the

:::::::
CRPSS

:::
for

:::::
DTR :::::

shows
::
a
::::::
much

::::::::
stronger

:::::::::
improvent

::
in

::::::::::
predictive

:::::::::::
capabilities

::
for

::::
this

:::::::
model

:::::
setup

::::::::::
compared

::
to

:::::
DST.

6 Conclusions

We presented uncertainty quantification results for a process-based ecosystem Carbon
model. We assembled several probabilistic methodologies in a framework that tackles
the connected problems of parameter estimation and forward propagation of input un-
certainties. Depending on the simulation setup, the model employs either steady state or
non-steady

::::::::
transient assumptions, respectively, and it is driven by meteorological data cor-

responding to years 1992–2006
::::::::::
1992-2006

:
at the Harvard Forest site. Daily Net Ecosystem

Exchange (NEE) observations were available to calibrate the model parameters and test the
performance of the model.

We first discussed global sensitivity analysis (GSA) results for the complete set of input
parameters. Based on their contribution to the variance, we find that different parameters
have larger impacts for NEE at certain times of the year when the processes they control
become important. One example is the tsmin

::::
tsmin parameter, which is the critical tem-

perature at which leaf fall begins, and mainly affects NEE in October. We also found that
parameter interactions can also be relevant to the variability of NEE or Gross Primary Pro-
duction (GPP). Unlike NEE and GPP which are fluxes, the Carbon pools, either vegetation
or soil

:::::
(TVC)

:::
or

::::
soil

::::::
(TSC), tend to vary more slowly and their month-to-month variability

depends on a small subset of parameters.
We also employed Fisher Information Matrix (FIM) computations to estimate the relative

information the NEE data contains on the model parameters. To our knowledge this type of
study is employed for the first time in the context of a Carbon model. We ranked model
parameters according to the relative magnitude of the diagonal entries in the FIM and
generally found that most “informed” parameters are also ranked as important based on
the GSA results

:::
We

::::
also

::::::
found

::::
that

::::
the

::::::::::
simulation

::::::
setup

:::::::
affects

:::
the

::::::::
relative

:::::::::::
importance

::
of
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:::::::::::
parameters

::
for

:::::
NEE

::::
and

:::::
TSC

:::::
while

:::::
GPP

::::
and

:::::
TVC

:::
are

::::
less

:::::::::
sensitive

::
to

:::
the

::::::::
change

::::::::
between

::::::
steady

::::
and

:::::::::
transient

::::::::::::
assumptions.

We then proceeded to calibrate the model parameters in a Bayesian framework
::::::::
Bayesian

::::::::::
framework

:::::
using

:::::::::::
informative

:::::::
priors

:::
for

:::
all

:::::::::::
parameters. In this context we examined both

steady and unsteady
::::::::
transient

:
assumptions for the Carbon model simulations. The daily

discrepancies between measured
::
In

::::
the

:::::
latter

::::::::::
approach

:::
the

::::::
initial

:::::::
values

:::
for

:::
the

::::::::
Carbon

:::::
pools

::::
are

:::::
part

:::
of

::::
the

:::::::::::
calibration

:::::::::
process.

::::
The

:::::::::::::
discrepancy

:::::::::
between

:::::::
actual

:
and pre-

dicted NEE values were modeled as independent and identically distributed Gaussians
with prescribed daily variance according to the recorded instrument error. All model
parameters were assumed to have uninformative priors with bounds set according to expert
opinion

:::
was

:::::::::
modeled

:::
as

:
a
:::::::::::
multivariate

:::::::
normal

:::::::::::
distribution

::::
with

:::::::::
constant

:::::
mean

::::
and

::
a
:::::::
square

:::::::::::
exponential

::::::::::
covariance

:::::::
matrix.

::
A

::::::::::::
convergence

::::::
study

::::
was

::::::::::
performed

::
to

::::::::::
determine

::::
the

:::::
effect

::
of

:::::::::::
covariance

::::::
matrix

::::::::::
bandwidth

:::
on

::::
the

:::::::::::
parameters

:::
of

:::
the

::::::::::::
discrepancy

::::::
term.

::
It

::::
was

::::::
found

:::
that

::::
the

::::::::::
converged

::::::::::
correlation

:::::::
length

:::::
does

:::
not

::::::::
depend

:::
on

:::
the

::::::::::
simulation

::::::
setup

::::
and

::::
that

:::
the

::::::
model

:::::::::::
discrepancy

:::
for

:::::
NEE

:::::
data

:::::::
exhibits

::
a
:::::
time

:::::
scale

::
of

::::::
about

::::
one

::::::
week.

The posterior distribution of model parameters was sampled sequentially by first con-
sidering the most relevant parameters and then progressively adding less important pa-
rameters, according to GSA and FIM results

:::::::::::
GSA-based

:::::::
ranking. The posterior samples,

obtained with a Markov Chain Monte Carlo algorithm, exhibit significant dependencies
between some of the model parameters. Further, a GSA analysis based on marginal
posterior distributions shows the importance of considering parameter dependencies when
establishing the importance of each parameter or set of parameters for given quantities of
interest

:::::::::::
Comparison

::
of

:::::::::
posterior

:::::::::
densities

:::
for

:::::::::::
parameters

::::
that

:::
are

:::::::::
common

::
to

:::
the

::::
two

::::::
model

::::::
setups

::::::::
indicate

::::::
similar

:::::::::::
calibration

::::::
results.

The predictive capabilities of the model, employing the parameters’ posterior distribution,
were assessed qualitatively through posterior predictive checks and quantitatively through
Continuous Rank Predictive Score (CRPS) computations. Based on the CRPS values, the
unsteady

::::::::
transient

:
model setup, for which C

::::::
Carbon

:
pools are set as simulation param-

eters, performed slightly better, in particular during the growing seasons, compared to
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model setup assuming steady state conditions
:::::
when

::::::::::
compared

::
to

:::::::
results

:::::::
based

:::
on

:::::
prior

:::::::::
predictive

:::::::::::::
distributions.

::::::
Given

:::::::
similar

::::::::::
calibration

::::::::
results

:::
for

::::
the

:::::::::::
parameters

:::::::::
common

:::
to

:::
the

::::
two

::::::::::::::
configurations,

::::
we

::::::::
attribute

::::
the

:::::::::::::
improvement

::
in

::::
the

::::::::::
predictive

:::::::::::
capabilities

::
to

::::
the

:::::::::
calibrated

:::::::
Carbon

::::::
pools

::
in

::::
the

::::::::
transient

::::::
model

::::::
setup.

The analysis presented in this paper considered a single data series at one site only.
However, the Bayesian framework employed in the parameter calibrations is well-suited
to deal with both heterogenous data and models

::::::::::::::
heterogeneous

::::
data

:::::
and

::::::::
multiple

::::::
model

::::::
setups. We are currently exploring avenues to extend this work to multi-site studies together
with employing multiple data streams to better constrain the model parameters.

The framework presented here encompasses robust statistical methodologies that
can be employed in the development and analysis of more detailed models like the
Community Land Model (CLM). Since some of these methodologies are sampling-based,
their application is restricted to computationally inexpensive models. To this end we are
currently working on developing efficient surrogate models that can be used in place of
expensive models like CLM. With a surrogate model approach in place, one can proceed
to study individual CLM sub-models as well as the CLM model as a whole and potentially
improve its predictive capabilities.
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Table 1. Description of model parameters.

Param. Nom. val. Range Description Units

gdd_min 100 10 · · ·250 threshold for leafout [◦C day]
gdd_max 200 50 · · ·500 threshold for max. LAI [◦C day]
tsmin 5 0 · · ·10 Temperature for leaffall [◦C]
laimax 4 2 · · ·7 Seasonal max. LAI [m2 leaf / m2]
leaffall 0.1 0.03 · · ·0.95 rate of leaffall [day−1]D

ec
id

.P
he

n.

lma 80 20 · · ·150 specific leaf area [gC / m2 leaf]
:::
2ex>

:::
2ex

A
C

M leafcn 25 fixed
::::
fixed leaf

:::
C:N

:
ratio [gC/gN]

nue 7 1 · · ·20 Nitrogen use efficiency [ ]
:::
2ex>

:::
2ex

q10_mr 2 1 · · ·4 Maintenance resp. T-sensitivity [ ]
br_mr 10−4 10−5 · · ·10−2 Base rate for maintenance resp. [gC m−2 day−1 / gC biomass]A

.R
.

rg_frac 0.2 0.05 · · ·0.5 growth respiration fraction [ ]

A
. astem 0.7 0.1 · · ·0.95 Allocation to plant stem pool [ ]

tstem 1
50×365

1
250×365 · · · 1

10×365 stem turnover time [day−1]
troot 1

5×365
1

25×365 · · · 1
365 root turnover time [day−1]

Li
tte

r.

tleaf 10−2 10−3 · · ·10−1 leaf turnover time [day−1]
:::
2ex>

:::
2ex

q10_hr 2 1 · · ·4 Heterotrophic resp. T-sensitivity [ ]
br_lit 1

2×365
1

5×365 · · · 10
5×365 base turnover for litter [gC m−2 day−1 / gC litter]

br_som 1
30×365

1
100×365 · · · 1

10×365 base turnover for SOM [gC m−2 day−1 / gC SOM]

D
ec

om
p.

dr 10−3 10−4 · · ·10−2 decomposition rate [day−1]
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Table 2. Distance correlation factors
::::
Prior

:::::
setup for D18. The diagonal blocks are marked according

to the process the parameters contribute to, see also Fig. 2 and Table 1. The entries
::::
initial

:::::::
Carbon

::::
pool

::::::::
amounts

:::::::::
employed in the diagonal block show dependencies between parameters from the

same process, while the entries in the off-diagonal block show dependencies between parameters
from different processes

::::
DTR.

:::::
Name

: ::
ID

: :::::
Mean

:::
St.

:::
Dev

: ::::::::::
Constraints

:::
leaf

::
C

: :::
vc1

:
0
: ::

20
: :::::::

0< vc1

::::
stem

::
C
: :::

vc2
::::
9000

: ::::
1800

: :::::::
0< vc2

:::
root

::
C
: :::

vc3
::::
1500

: :::
300

: :::::::
0< vc3

::::
litter

::
C

:::
sc1

::
10

: ::
25

: :::::::::::::
0< sc1< 1000

::::
som

::
C

:::
sc2

::::
8800

: ::::
1760

: ::::::
0< sc2

:
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Table 3. Distance correlation factors for D23
:::
DST. The diagonal blocks are marked according to

the process the parameters contribute to, see also Fig. 2 and Table 1. The entries in the diagonal
block show dependencies between parameters from the same process, while the entries in the off-
diagonal block show dependencies between parameters from different processes.

gdd_min 1
gdd_max 0.5 1
tsmin 0 0 1
laimax 0 0.1 0 1
leaffall 0.1 0 0.2 0 1

lma 0 0.2 0 0.1 0.1 1

nue 0.1 0.3 0 0. 0.2 0.9 1

q10_mr 0 0.2 0 0 0.1 0.6 0.6 1
br_mr 0 0.2 0.1 0.1 0.4 0.1 0 0.2 1
rg_frac 0.3 0.1 0 0 0.2 0.4 0.6 0.2 0.1 1

astem 0 0 0 0 0 0 0 0 0 0 1

tstem 0 0 0 0 0.2 0 0 0.1 0.1 0.1 0 1
troot 0 0 0 0 0 0 0 0 0 0 0 0.1 1
tleaf 0 0 0 0 0 0 0 0 0 0 0 0 0 1

q10_hr 0.1 0.1 0.1 0 0.2 0.2 0.1 0.2 0.2 0.2 0 0.2 0 0 1
br_lit 0.1 0.1 0.1 0 0.4 0 0.1 0.1 0.5 0.1 0 0 0 0 0.3 1
br_som 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
dr 0 0 0 0 0.1 0.1 0.1 0.1 0.2 0.1 0 0 0 0 0.1 0.2 0.1 1

gd
d_

m
in

gd
d_

m
ax

ts
m

in

la
im

ax

le
af

fa
ll

lm
a

nu
e

q1
0_

m
r

br
_m

r

rg
_f

ra
c

as
te

m

ts
te

m

tro
ot

tle
af

q1
0_

hr

br
_l

it

br
_s

om

dr
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Table 4. CRPS
::::
and

:::::::
CRPSS values for D18

::::
DST and D23

::::
DTR.

:::
The

::::::::
CRPSS

:::::
value

::
for

::::
DTR :::::

shows
::
a

:::::
much

:::::
larger

:::::::::::
improvement

::
in
:::::::::
predictive

::::::::::
capabilities

:::
for

:::
this

::::::
model

:::::
setup

:::::::::
compared

::
to

::::
DST:

.

Period
:::::
Setup

:
CRPS-D18

::::::::
CRPSprf:

CRPS-D23
::::::::
CRPSprp change

:::::::
CRPSpsp: ::::::

CRPSS
:

Jun–Aug
::::
DST 1.26

::::
0.16

:
1.18

::::
0.90

:
6 Rest of year

:::
0.67

:
1.27 1.25 2

::::
0.31

Overall
:::
DTR 1.27

::::
0.16

:
1.24

::::
1.45

:
2.5

::::
0.60

::::
0.65
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Table 5. Nomenclature.

ACM Aggregate Canopy Model
CRPS Continuous Rank Predictive Score
CRPSS Continuous Rank Predictive Skill Score
DALEC Data Assimilation Linked Ecosystem Carbon
FIM Fisher Information Matrix
GPP Gross Primary Production
GSA Global Sensitivity Analysis
MCMC Markov Chain Monte Carlo
NEE Net Ecosystem Exchange
QoI Quantity of Interest
TSC Total Soil Carbon
TVC Total Vegetation Carbon
DKL(p||q) Kullback–Leibler divergence between probability densities q

and p
LD = p(D|θ) Likelihood of the data D for a particular instance of model

parameters θ
p(θ), p(θ|D) prior and posterior probability densities, respectively, for

model parameters θ
p(y|D) posterior distribution for the predicted NEE data y
pk(yk|D) marginal posterior distribution for the predicted NEE compo-

nent yk
R(X,Y ) Distance correlation between random variables X and Y
Si First-order Sobol index for parameter i
Sij Joint Sobol index for parameters i and j

:::
ST
i

:::::::::
Total-order

:::::
Sobol

:::::
index

:::
for

:::::::::
parameter

::
i

θ Vector of parameters for DALEC
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Schematic of parameter estimation, on yellow background, and forward UQ workflows, on green
background. For this work DALEC is used as both “measurement model”, g, and as “computational
model”, m. In the Bayesian framework the parameters estimation depends both on the model error

εg and on the measurement error εd.

Parameter
Estimation

Forward UQ

Bayesian
Framework

Measurement Model
z = m(x; θ) + εm + εd

GSA

z

x

Data (D)

θ

p
d
f(
θ|D

)

Computational Model
y = f(x; θ)

x
y

Figure 1.
:::::::::
Schematic

::
of

:::::::::
parameter

::::::::::
estimation,

:::
on

::::::
yellow

:::::::::::
background,

::::
and

:::::::
forward

::::
UQ

:::::::::
workflows,

::
on

::::::
green

:::::::::::
background.

::::
For

:::
this

:::::
work

:::::::
DALEC

:::
is

:::::
used

::
as

:::::
both

:::::::::::::
“measurement

:::::::
model”,

:::
m,

::::
and

:::
as

::::::::::::
“computational

:::::::
model”,

:::
f .

::
In

:::
the

:::::::::
Bayesian

::::::::::
framework,

:::::::::
parameter

::::::::::
estimation

::::::::
depends

::::
both

:::
on

:::
the

:::::
model

:::::
error

:::
εm :::

and
:::
on

:::
the

::::::::::::
measurement

:::::
error

:::
εd.
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Decid.
Phen.

ACM
Autotrofic
Respiration

Allocation Litterfall Decomposition

LAI
∆Cf (LAI)

GPP RG,
RM

NPP NPP2 leaf

stem root

TOTVEGC

som litter

TOTSOMC

HR

gdd min

gdd max

tsmin

laimax

leaffall

lma

leafcn

nue

q10 mr

br mr

rg frac

astem

tstem

troot

tleaf

q10 hr

br lit

br som

dr

Figure 2. Schematic of processes, shown with green boxes, in DALEC with associated parameters,
listed in orange boxes. The blue arrows indicate how internal parameters and QoIs, shown with blue
circles, impact DALEC processes, while while the green arrows show the impact of processes on
the QoI and other internal parameters.
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Figure 3. Matrices with first-order
:::
total

:::::
effect

:
Sobol indices

:
,
:::
ST
i ,

:
for monthly averages of NEE . Also

shown are the main Sobol indices for the global average (G
:
a)

:::
DST :::

and
:::
(b)

::::
DTR. The largest value

Sbr_mr = 0.49 occurs
:::::::
colormap

::::::::
changes

:::::
from

:::
red

:
for September average NEE

::::
large

:::::
index

::::::
values

::
to

::::
blue

::
for

:::::::
indices

:::::
≈ 1%. The sum of first-order

::::::::
grayscale

:::::::::::
corresponds

::
to

:
Sobol indices for each month

is shown in parentheses
:::::
index

:::::
values

:::::
from

:::
1%

:::::
down

::
to

:::::
0.1%,

:::::
while

::::
blank

:::::
cells

:::::::
indicate

::::::
values

::::::
smaller

:::
the

::::
0.1%.
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Figure 4. Matrices with main
:::
total

::::::
effect

:
Sobol indices

:
,
:::
ST
i ,

:
for monthly averages of GPP . Also

shown are the main Sobol indices for the global average (G
:
a)

:::
DST :::

and
:::
(b)

::::
DTR. The largest value

Sleaffall = 0.77 occurs for December average GPP. The sum of first-order Sobol indices for each
month

::::::::
colormap

:::::
setup is shown

::::::
similar

::
to

:::
the

::::
one in parentheses

::
Fig.

::
3.
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Figure 5. Matrices with main
::::
total

:::::
effect

:
Sobol indices

:
,
::::
ST
i , for monthly averages of TVC . Also

shown are the main Sobol indices for the global average (G
:
a)

:::
DST :::

and
:::
(b)

::::
DTR. The largest value

Sbr_mr = 0.36 occurs
::::::::
colormap

:::::
setup

::
is
::::::
similar

:::
to

:::
the

:::
one

::
in
::::
Fig.

::
3.
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Figure 6.
::::::::
Matrices

::::
with

::::
total

:::::
effect

:::::
Sobol

:::::::
indices,

::::
ST
i ,

:
for several TVC monthly averages . The sum

of first-order Sobol indices
:::
TSC

:
for each month

:::
(a)

::::
DST :::

and
:::
(b)

::::
DTR:

.
::::
The

::::::::
colormap

:::::
setup

:
is shown

:::::
similar

:::
to

::::::
results in parentheses

::
Fig.

::
3.

Matrices with main Sobol indices for monthly averages of TSC. Also shown are the main
Sobol indices for the global average (G). The largest value Sbr_som = 0.38 occurs for several
TSC monthly averages. The sum of first-order Sobol indices for each month is shown in
parentheses.
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Figure 7. Relevant joint Sobol indices,
::::
Sij , corresponding to monthly

:::::::
October NEE averages for (a)

May
::
(a)

::::
DST and (b) October

::
(b)

::::
DTR. The labels on each line shows

:::::
show the magnitude, in %, of

Sobol indices for the corresponding parameter pairs.
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Figure 8. Relevant joint Sobol indices,
::::
Sij , corresponding to monthly

:::::::
October GPP averages for (a)

May
::
(a)

::::
DST and (b) November

::
(b)

::::
DTR. The labels on each line shows

::::
show

:
the magnitude, in %,

of Sobol indices for the corresponding parameter pairs.
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Figure 9.
:::::::
Relevant

::::
joint

:::::
Sobol

::::::::
indices,

:::
Sij ,

:::::::::::::
corresponding

::
to

::::::::::
September

::::::::
averages

:::
for

:::
(a)

::::
TVC

::::
and

::
(b)

:::::
TSC.

:::::
Both

::::
sets

::
of

::::::
results

:::
are

::::::
based

:::
on

::::
DST.

::::
The

:::::
labels

:::
on

:::::
each

:::
line

:::::
show

:::
the

::::::::::
magnitude,

::
in
:
%,

::
of

:::::
Sobol

::::::
indices

:::
for

:::
the

:::::::::::::
corresponding

:::::::::
parameter

:::::
pairs.
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Figure 10. Snapshot of NEE observations (with red line) for the Harvard Forest site. The light blue
region, bordered by thick blue lines corresponds to ±2σ around the daily NEE values.
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θ
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C
(i+1)
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MCMC

Normalized histograms for diagonal entries of the Fisher Information Matrix corresponding to
parameters astem, tstem, troot, br_lit, br_som, and dr. Results are based on NEE and an ensemble

of parameter values drawn from the corresponding prior distributions.
Schematic of the iterative process for parameter calibration. The MCMC sampling of the joint

density for the set of parameters θ(i) starts at θ(i)
ini :::
θ

(i)
ini:

using an initial proposal covariance C
(i)
ini :::
C

(i)
ini.

For the following iteration, (i+ 1), the initial condition is constructed using the MAP estimate for
θ(i), augmented with initial conditions, in this case the nominal values, for the rest of parameters,
θ(i+1)\(i). The initial proposal covariance C

(i+1)
ini :::::

C
(i+1)
ini :

is constructed based on the sample
covariance matrix for θ(i), augmented with an initial proposal covariance for θ(i+1)\(i),

C
(i+1)\(i)
ini ::::::::

C
(i+1)\(i)
ini .

Normalized histograms for diagonal entries of the Fisher Information Matrix corresponding to
parameters astem, tstem, troot, br_lit, br_som, and dr. Results are based on NEE and an ensemble

of parameter values drawn from the corresponding prior distributions.
Schematic of the iterative process for parameter calibration. The MCMC sampling of the joint density
for the set of parameters θ(i) starts at θ(i)

ini :::
θ

(i)
ini:using an initial proposal covariance C

(i)
ini::::
C

(i)
ini. For the

following iteration, (i+ 1), the initial condition is constructed using the MAP estimate for θ(i), aug-
mented with initial conditions, in this case the nominal values, for the rest of parameters, θ(i+1)\(i).
The initial proposal covariance C

(i+1)
ini :::::

C
(i+1)
ini :

is constructed based on the sample covariance matrix

for θ(i), augmented with an initial proposal covariance for θ(i+1)\(i), C
(i+1)\(i)
ini ::::::::

C
(i+1)\(i)
ini .
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Figure 11. Normalized histograms for diagonal entries of the Fisher Information Matrix
corresponding to parameters gdd_min, gdd_max, leaffall, q10_mr, br_mr, and rg_frac. Results
are based on NEE and an ensemble of parameter values drawn from the corresponding prior
distributions.
Normalized histograms for diagonal entries of the Fisher Information Matrix corresponding to
parameters astem, tstem, troot, br_lit, br_som, and dr. Results are based on NEE and an ensemble
of parameter values drawn from the corresponding prior distributions.
Schematic of the iterative process for parameter calibration. The MCMC sampling of the joint density
for the set of parameters θ(i) starts at θ(i)

ini :::
θ

(i)
ini:

using an initial proposal covariance C
(i)
ini::::
C

(i)
ini. For the

following iteration, (i+ 1), the initial condition is constructed using the MAP estimate for θ(i), aug-
mented with initial conditions, in this case the nominal values, for the rest of parameters, θ(i+1)\(i).
The initial proposal covariance C

(i+1)
ini :::::

C
(i+1)
ini :

is constructed based on the sample covariance matrix

for θ(i), augmented with an initial proposal covariance for θ(i+1)\(i), C
(i+1)\(i)
ini ::::::::

C
(i+1)\(i)
ini .
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Figure 12.
:::::::::::
Convergence

::
of

::::::
model

:::::
error

:::::::::::
components

::::
with

:::::::::
increasing

::::::::::
bandwidth

::
of

:::
the

::::::::::
covariance

::::::
matrix:

:::
(a)

::
µ,

:::
(b)

:::
σm,

::::
and

:::
(c)

::
lc.::::

The
::::
joint

:::
2D

::::::::
marginal

::::::
density

::
of
:::::::
(σm, lc)

:::
for

:::::::
kb = 12

::
is

::::::
shown

::
in

:::
(d).

::
In

:::::::
addition

::
to

::::
DST :::

and
::::
DTR ::::::

setups,
:::
we

::::
also

::::::::::
considered

::::::
“Dup

TR”,
:
a
::::::

setup
:::::::::
equivalent

::
to

::::
DTR:,:::

but
::::
with

::::::
uniform

::::::
priors

::::::::
assumed

:::
for

:::
the

:::::::::
vegetation

::::
and

:::
soil

:::::::
Carbon

:::::
pools.
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Figure 13. D18-problem
:::
DST::::::::

-problem: 1-D
::
1D

:
marginal and 2-D

:::
2D joint marginal PDFs for pa-

rameters showing distance correlation factors above 0.3
::
0.4, see also Table 3.

:::::::
Marginal

::::::
PDFs

:::
are

::::::::
estimated

:::
via

:::::
KDE

:::::
based

:::
on

::::::::::::
approximately

:::::::
5× 105

::::::
MCMC

::::::::
samples.
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Kulback–Leibler divergence, DKL(p||q), between prior q and posterior p densities and scaled
inverse standard deviation, 1/σ∗ = σq/σp for select parameters.

First order Sobol indices for June and September average NEE values. The red bars show results

::::::::
Marginal

:::::
PDFs

:::
are

:::::::::
estimated

:::
via

::::
KDE

:
based on joint 3-D (for group G1) and 2-D (for groups G2

and G3) posterior distributions and 1-D marginal posterior distributions for the rest; blue bars show
results based on 1-D marginal posterior distributions for all parameters; G1={lma, nue, rg_frac},

G2={q10_mr, q10_hr}, G3={gdd_min, gdd_max}
::::::::::::
approximately

::::::
5× 105

:::::::
MCMC

:::::::
samples.

Kulback–Leibler divergence, DKL(p||q), between prior q and posterior p densities and scaled
inverse standard deviation, 1/σ∗ = σq/σp for select parameters.

First order Sobol indices for June and September average NEE values. The red bars show results

:::::::
Marginal

::::::
PDFs

:::
are

:::::::::
estimated

:::
via

:::::
KDE based on joint 3-D (for group G1) and 2-D (for groups G2
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and G3) posterior distributions and 1-D marginal posterior distributions for the rest; blue bars show
results based on 1-D marginal posterior distributions for all parameters; G1={lma, nue, rg_frac},
G2={q10_mr, q10_hr}, G3={gdd_min, gdd_max}

::::::::::::
approximately

:::::::
5× 105

::::::
MCMC

::::::::
samples.

Figure 14. D18-problem
::::
DST :::::::

-problem: 1-D
::
1D

:
marginal PDFs for parameters showing distance cor-

relation factors less than 0.3
:::
0.4 with other parameters, see also Table 3.

Kulback–Leibler divergence, DKL(p||q), between prior q and posterior p densities and scaled inverse
standard deviation, 1/σ∗ = σq/σp for select parameters.
First order Sobol indices for June and September average NEE values. The red bars show results

:::::::
Marginal

::::::
PDFs

:::
are

:::::::::
estimated

:::
via

:::::
KDE based on joint 3-D (for group G1) and 2-D (for groups G2

and G3) posterior distributions and 1-D marginal posterior distributions for the rest; blue bars show
results based on 1-D marginal posterior distributions for all parameters; G1={lma, nue, rg_frac},
G2={q10_mr, q10_hr}, G3={gdd_min, gdd_max}

::::::::::::
approximately

:::::::
5× 105

::::::
MCMC

::::::::
samples.
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Figure 15. D23-problem
::::
DTR :::::::

-problem: 1-D
::
1D

:
marginal and 2-D

:::
2D joint marginal PDFs for

:::::
select

parameters showing distance correlation factors above 0.3, see also Table ??
:::::::::
correlated

::::
with

:::
the

::::::
Carbon

::::::
pools.

:::::::
Marginal

::::::
PDFs

::::
are

:::::::::
estimated

:::
via

:::::
KDE

::::::
based

:::
on

:::::::::::::
approximately

:::::::
5× 105

:::::::
MCMC

::::::::
samples.
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Figure 16. D23-problem: 1-D marginal
:::::::::::::
Kulback-Leibler

:::::::::::
divergence,

::::::::::
DKL(p||q),

::::::::
between

:::::
prior

:
q
:
and 2-D joint marginal PDFs

:::::::
posterior

::
p
::::::::
densities

:
for parameters correlated with the Carbon

pools
:::::::::
DKL > 0.5

:::
for

::::
both

::::
DST :::

and
::::
DTR.
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Figure 17. Posterior
::::::::
Marginal

::::::::
posterior predictive distributions

::::::::
densities using the calibration results

for D18
::::
DST (top frame) and D23

:::
DTR (bottom frame) presented in Sect.

::::::
Section 4. The blue re-

gions correspond to the daily 5–95
:::::::
5− 95% quantile range and the green regions to 25–75

::::::::
25− 75%

quantile range. The red line shows the daily NEE observations.
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